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RESUMO 

Os equipamentos de refrigeração tornaram-se essenciais em várias vertentes, 

especialmente na conservação de alimentos. Nos últimos anos os equipamentos de 

refrigeração fechados têm ganho destaque devido ao seu consumo ser muito inferior 

comparativamente com os abertos.  

O estudo centra-se na análise do escoamento de ar frio que percorre o 

equipamento, tendo em conta as condições exteriores. Para este efeito recorreu-se ao 

uso do programa CFD ANSYS Fluent. Este usa a técnica de volumes finitos na solução das 

equações de conservação da massa, momentum e energia. 

Na primeira parte do trabalho fez-se um conjunto de simulações 2D em que 

foram estudados vários parâmetros. Primeiramente, foi analisada a dimensão da malha 

mais adequada (com apenas elementos quadriláteros); de seguida, foi feita uma 

comparação entre diferentes tipos de saídas e modelos de turbulência. Para terminar o 

estudo 2D foram colocados produtos de diferentes dimensões, atuando como 

obstáculos ao escoamento. 

Quanto à influência dos parâmetros, pode concluir-se que o mais predominante 

é a temperatura na zona inferior junto ao evaporador. O fluxo de calor junto à parede e 

a influência das lâmpadas na geometria com produtos afetam pontualmente, não se 

refletindo noutras zonas geometria de uma forma evidente. O aumento da área 

perfurada nas costas na zona inferior permite uma maior ventilação nessa zona, contudo 

a temperatura aumenta ligeiramente. 

Quanto à geometria com produtos, pode concluir-se através dos resultados que 

a geometria 2D utilizada é bastante limitadora. 

 

Palavras-Chave: Vitrine fechada, simulação CFD, escoamento de ar, ANSYS Fluent. 
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ABSTRACT 

Refrigeration equipment has become essential in several areas, especially in food 

preservation. In the last few years, closed refrigeration equipment becomes more 

popular because its consumption is much lower compared to the open ones. 

The work of this study focuses on the analysis of the cold air flow that traverses 

the equipment, knowing the external conditions. For this purpose,  CFD ANSYS Fluent 

program was used. This uses the finite volumes technique to solve the equations of 

conservation of mass, momentum and energy. 

In the first part of the work, it was made a set of 2D simulations in which several 

parameters were studied. Firstly, the most appropriate mesh dimension was analysed 

(using only quadrilateral elements), then a comparison was made between different 

types of exits and turbulence models. To finish the 2D study products were introduced 

in the geometry with different dimensions, acting as obstacles to the fluid flow. 

Concerning the influence of the parameters, it can be concluded that the most 

predominant is the temperature in the lower zone near the evaporator. The heat flux 

near the wall and the influence of the lamps on the geometry with products affect 

punctually, not being reflected in other geometry zones significantly. The increased 

perforated area in the lower back allows greater ventilation in the lower back, however 

the temperature increases slightly. 

In the geometry with products, it can be concluded that the 2D geometry used is 

very limiting. 

Keywords: Closed display cabinet, CFD simulation, airflow, ANSYS Fluent 

  



 

vii 

 

CONTENTS  

Acknowledgments ................................................................................................... iii 

Declaração de integridade ....................................................................................... iv 

Resumo .................................................................................................................... v 

Abstract .................................................................................................................. vi 

Contents ................................................................................................................ vii 

List of figures ........................................................................................................... ix 

List of tables ........................................................................................................... xii 

Nomenclature ........................................................................................................ xiii 

List of symbols ........................................................................................................ xiv 

1. Introduction ...................................................................................................... 1 

1.1. Closed showcases .............................................................................................. 2 

1.2. Objectives .......................................................................................................... 3 

1.3. Dissertation structure ........................................................................................ 4 

2. State of art ........................................................................................................ 6 

2.1. Problem description ........................................................................................... 7 

2.2. Cold equipment classification ............................................................................ 8 

2.3. Literature review ................................................................................................ 9 

3. Computational model ...................................................................................... 15 

3.1. Mathematical model ........................................................................................ 17 

3.2. Turbulence models .......................................................................................... 24 

3.3. Finite volumes .................................................................................................. 27 

3.4. SIMPLE.............................................................................................................. 29 



 

viii 

 

3.5. Residual values and convergence .................................................................... 33 

4. Case study ....................................................................................................... 36 

4.1. Strategies adopted ........................................................................................... 36 

4.2. Mesh definition ................................................................................................ 38 

4.3. Mesh optimization ........................................................................................... 40 

5. Results and discussion ..................................................................................... 46 

5.1. Study of some parameters influence ............................................................... 46 

5.1.1. Boundary condition on the bottom boundary: 0°C ..................................... 46 

5.1.2. Heat flux 50 and 150W/m2K......................................................................... 49 

5.1.3. Back entrances double size bottom ............................................................. 50 

5.2. Geometry with products inclusion and lamps influence ................................. 52 

6. Conclusion and future work ............................................................................. 56 

 Conclusions ...................................................................................................... 56 

 Future work ...................................................................................................... 57 

7. References ...................................................................................................... 58 

 

  



 

ix 

 

LIST OF FIGURES 

Figure 1.1 - example of food preservation equipment .................................................... 1 

Figure 1.2 - cold showcase description ............................................................................ 3 

Figure 2.1 - showcase's full scheme, including the cold production zone and the storage 

zone .................................................................................................................................. 6 

Figure 2.2 – Real steam compression system .................................................................. 7 

Figure 2.3 - Temperature field using multiple air curtains ............................................. 10 

Figure 2.4 - mean temperature and standard deviations of the display cabinet with doors 

(a) and without doors (b)................................................................................................ 11 

Figure 2.5 - Iced drink cabinet description, .................................................................... 12 

Figure 2.6 - results at the end of each stage: (a) flow field, (b) temperature field ........ 13 

Figure 2.7 - Pathlines for plate evaporator, 1 - with a finned surface, 2 – without a finned 

surface ............................................................................................................................ 14 

Figure 3.1 - Continuity on control volume,  .................................................................... 18 

Figure 3.2 - Conservation of momentum,  ..................................................................... 19 

Figure 3.3 - Conservation of momentum in x  ................................................................ 20 

Figure 3.4 - Energy conservation, ................................................................................... 23 

Figure 3.5 – SST k-𝝎 model definition ............................................................................ 26 

Figure 3.6 -Fluxes in a 2D element according to finite volumes method ...................... 28 

Figure 3.7 - Nodes and vector designation in a 2D element according to  finite volumes 

method ........................................................................................................................... 29 

Figure 3.8 - Control volume ............................................................................................ 31 

Figure 3.9 - Residual values definition on ANSYS - FLUENT ........................................... 35 

Figure 4.1 - Showcase's geometry with no products in the shelves .............................. 36 



 

x 

 

Figure 4.2 - Mesh definition near the glass and wall, element size = 1.65mm (mesh 4, 

approximately 230,000 elements) ................................................................................. 39 

Figure 4.3 - Temperature field after 60s in the meshes 1 to 5, T0 = 15oC, v0 = 2 m/s, T(inlet) 

= 0oC, Q(glass) = 8.29 W/m2K ......................................................................................... 42 

Figure 4.4 - Velocity field after 60s in the meshes 1 to 5, T0 = 15oC, v0 = 2m/s, T(inlet) = 

0oC, Q(glass) = 8.29W/m2K ............................................................................................. 43 

Figure 4.6 - temperature field for mesh 3 after 60 seconds, T0 = 15oC, v0 = 2 m/s, T(inlet) 

= 0oC, Q(glass) = 8.29 W/m2K ......................................................................................... 45 

Figure 4.5 - temperature field for mesh 3 after 55 seconds, T0 = 15oC, v0 = 2m/s, T(inlet) 

= 0oC, Q(glass) = 8.29 W/m2K ......................................................................................... 45 

Figure 5.1 - definition of glass, inlet and outlet ............................................................. 47 

Figure 5.2 – temperature field after 120s for meshes 4 and 5, T0 = 15oC, v0 = 2m/s, T(inlet) 

= 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC ............................................................. 47 

Figure 5.3 - velocity field after 120s for meshes 4 and 5, T0 = 15oC, v0 = 2 m/s, T(inlet) = 

0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC ................................................................ 48 

Figure 5.4 – glass boundary condition ............................................................................ 49 

Figure 5.5 - temperature field after 120s, T0=15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 

8.29 W/m2K, T(bottom) = 0oC ......................................................................................... 50 

Figure 5.6 - temperature field after 120s, T0 = 15oC, v0 = 2 m/s, T(inlet)=0oC, Q(glass)=8.29 

W/m2K, T(bottom) = 0oC ................................................................................................. 50 

Figure 5.7 - velocity field after 120s, T0 = 15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 8.29 

W/m2K, T(bottom) = 0oC, with double sized entrances on the bottom of the perforated 

plate ................................................................................................................................ 51 

Figure 5.8 - temperature field after 120s, T0 = 15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 

8.29 W/m2K, T(bottom) = 0oC, with double sized entrances on the bottom of the 

perforated plate ............................................................................................................. 51 

Figure 5.9 - geometry with products .............................................................................. 52 



 

xi 

 

Figure 5.10 - mesh definition near the glass .................................................................. 53 

Figure 5.11 - geometry with products, temperature field after 120s, T0 = 15oC, v0 = 2 m/s, 

T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC, with double sized entrances on 

the bottom of the perforated plate ............................................................................... 54 

Figure 5.13 - geometry with products, velocity field after 120s, T0 = 15oC, v0 = 2m/s, 

T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC, with double sized entrances on 

the bottom of the perforated plate ............................................................................... 54 

  



 

xii 

 

LIST OF TABLES 

Table 2.1 - Classification of refrigerating equipment according to PRODCOM ............... 8 

Table 3.1 - Turbulence models description .................................................................... 25 

Table 3.2 - Coefficients definition .................................................................................. 32 

Table 4.1 - Mesh quality report ...................................................................................... 40 

 

  

file:///C:/Users/Hugo%20Guedes/Desktop/UM/5o%20ano/tese/Dissertação/Tese_VitorGuedes_29Nov2019.docx%23_Toc25945103


 

xiii 

 

NOMENCLATURE 

CFD Computational Fluid Dynamics 

2D Two-dimensional 

3D Three-dimensional 

GWP Global Warming Potential 

ODP Ozone Depletion Rate 

PRODCOM PRODuction COMmunataire (community production) 

  



 

xiv 

 

LIST OF SYMBOLS 

𝜌 Density [kg/m3] 

𝜏 Surface stress [Pa] 

S Source term [-] 

q Heat flux [W/m2] 

K Turbulent kinetic energy [-] 

T Temperature [K] 

Re Reynolds number [-] 

A Area [m2] 

𝑚̇ Mass flow [kg/s] 

𝑘 Thermal conductivity coefficient  [W/mK] 

∅ Volumetric flow rate [m3/s] 

   

   

   

   

   

 

 

 



 

1 

 

1. INTRODUCTION  

  Mankind has always used food preservation since its inception. A very effective 

way of preserving food is to keep them at low temperatures, avoiding the formation of 

microorganisms, thus preventing their degradation. Over the years, several refrigeration 

systems have been created and refined for this purpose, the first of which consisted of 

simple cabinets with ice cubes. Even today the refrigeration is the most common process 

to preserve the food, although refrigeration has many other applications, such as health 

care, space cooling (to increase processes efficiency or comfort), industry, etc. (figure 

1.1). There are many ways to «produce cold» and many fluids that can be used for this 

purpose. In the past many fluids were used because of their high efficiency (CFC, HCFC). 

However, some of them were banned because of the environmental impact. There are 

two main coefficients to evaluate this impact: ODP (Ozone Depletion Potential) and 

GWP (Global Warming Potential). Today the legislation only allows fluids with ODP equal 

to zero and low GWP (this value oscillate depending on the equipment, the application 

and if it is commercial or domestic). 

   

 

Figure 1.1 - example of food preservation equipment, from 

http://ingecold.com.br/novidades_detalhe.php?noticia=24 

As already mentioned, the main concern nowadays with the use of cold 

equipment has to do with its energy expenditure. This implies the correct use of 

equipment (such as reducing the opening time of doors in a refrigerator/freezer), but 
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also a greater effort on the part of the manufacturers, who must guarantee the correct 

functioning of the equipment with the minimum power dissipated. For that reason, 

closed display cabinets become more and more popular over the years[1]. 

  The most popular way to produce cold in these devices is using refrigerants, that 

will transport the heat from the cold source to the hot source. Depending on which 

source is the one is interested (to refrigerate is the cold source and to heating is the hot 

source), there are two different classifications: heat pumps (heating) and refrigeration 

machines (cooling). That the operation is the same for both, and there are many types 

of equipment that can do both tasks, such as air conditioners. 

1.1. Closed showcases 

Commercial refrigeration equipment is indispensable for the preservation of food 

in such establishments, namely butchers, bakeries, etc. A schematic drawing of the 

cabinet is presented in figure 1.2. There is an upwards airflow on the back that will be 

split in two: a fraction of this flow is entering on the equipment by the back perforated 

plated and the rest of it is entering on the top, near the glass on the front, forming an 

air curtain. 

This type of equipment is divided into two zones: cold production and storage 

(figure 1.2). The cold production zone is usually located at the bottom of the equipment. 

This zone contains insulating material to prevent energy loss to the outside and there is 

only one connection to the storage zone to enable the airflow. 
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Figure 1.2 - cold showcase description 

 

Air enters the storage area through the back of the showcase (through a perforated 

plate) and through an existing channel on the top. Afterwards, the air is exhausted from 

the bottom of the storage zone, entering the cold production zone again, starting a new 

cycle. The existence of a perforated plate is crucial to ensure uniformity of flow in the 

storage zone. This area is bounded by a glass on the face that is customer-facing because 

the glass is a transparent material to facilitate customer choice. If there is a freezing 

zone, it is not visible, and it is attached to the cold production zone. 

It is also common that in the storage zone there are different temperatures intended 

for different foods, even in equipment without freezing.  

1.2. Objectives 

 As referred before, the main goal is to optimize the showcase in order to reduce 

its consumptions without compromising its purpose. There are 2 methods to evaluate 

this kind of situations: computational and experimental. The computational method is 

an extension of the mathematical, but its faster and it is easier to visualise the problem. 

The main reason for using CFD as a tool to optimize the equipment is the reduced cost 

Top air entrance 

Perforated plate 

glass 
storage 

zone 

outlet 

Inlet 

3 1 – evaporator 

2 – conpressor 

3 – condenser 

4 – expansion valve 
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and time when compared to experimental studies. So, the project should follow this 

schedule: 

• Modelling a closed display cabinet 

• Study of the flow in a closed display cabinet in order to determine the following 

parameters: 

- The temperature range inside it, so that this range of values is the smallest possible 

and that these temperatures allow the preservation of food. 

- The flow velocity so that it does not exceed a certain value (so that it does not 

produce excessive noise and does not dehydrate the food) 

- Study the influence of different parameters and the relative importance of each one. 

- Influence of the heat flux from all sources, namely heat transfer from the exterior 

through the boundaries and dissipated power from electric devices (for example the 

lamps). 

- Influence of the products in the refrigerating process. 

1.3. Dissertation structure 

 Considering the objectives mentioned before, in the next chapter the problem 

will be contextualized, explaining the origin of the cold air entering the storage zone. 

Some classifications of this type of equipment will be presented according to different 

entities, and finally a brief literature review including CFD and experimental work. 

 Chapter 3 will introduce numerical simulation and the software ANSYS-Fluent 

used for this project, considering some calculation strategies included on it and its 

functionalities. 

 In chapter 4, the case study will be presented, including the geometry, mesh 

definition and mesh optimization. It will be explained how to optimize the mesh to the 

study. 

In chapter 5, the influence of several parameters will be studied. The last case 

studied will include products, for which a new geometry and mesh will be needed. For 

each model, there will be a small explanation of why this model was made and the next 

step of the study. 
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 Finally, the last chapter will draw some conclusions and propose some future 

work that can continue this research.  
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2. STATE OF ART 

In this chapter, the problem will be described, and the equipment will be 

presented and its working process. Then it will be presented the legislation to this kind 

of equipment and its classification considering the properties and operation parameters. 

Lastly, some scientific papers and other works similar to this one will be reviewed.  

Figure 2.1 presents the full showcase, with the cold production zone and the 

storage zone. 

 

Figure 2.1 - showcase's full scheme, including the cold production zone and the storage zone 

 

The next subchapter explains how the cold is produced in this kind of equipment. 

However, in the present study, this process will be ignored and it will be considered only 

the storage zone. 
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2.1.  Problem description   

  The most common system used in the showcases to produce cold is by vapour 

compression (figure 2.2) 

 

  

Figure 2.2 – Real steam compression system[2] 

 

  At point 1, the refrigerant is in a state of superheated vapour (in an ideal cycle, 

it would be saturated steam, but in the real case it is not to guarantee that there is no 

liquid in the compressor). Then there is a compression in order to raise the temperature 

and pressure of the refrigerant before the condenser, which will remove heat from the 

fluid. At this stage, the energy from the refrigerant can/should be used to warm the 

environment or another process in order to monetize all the energy (most important 

step of the heat pump). The refrigerant at the end of the condenser is liquid (similarly 

the liquid is subcooled to guarantee there is no gas on the expansion). Then there is an 

expansion valve before the refrigerant enters in the evaporator when it will be heated 

by the refrigerated space, restarting another cycle. This refrigerated space will be the 

study object of this project. 
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  There are many other systems used in certain situations that will not be analysed 

because they are not relevant in this case[3]. 

Therefore, the main goal of this project is the improvement of the efficiency in a 

showcase, that is reducing the consumptions without compromising its purpose. The 

consumption reduction is achieved by lowering the mass flow rate and/or increasing the 

air inlet temperature (reducing the power of the refrigeration system). In order to 

optimize the equipment, the temperature field will be evaluated inside the showcase, 

maintaining the inlet conditions. 

2.2.  Cold equipment classification 

Thus, several classifications were assigned according to their application and 

operating parameters. According to the European Community PRODCOM (from the 

French 'PRODuction COMmunautaire'), the cold store can be fitted in the code 'CPA 

29.23.13: Refrigerating and freezing equipment (table 2.1) and heat pumps, except 

household type equipment', which can be divided into several subgroups [4]: 

 

Table 2.1 - Classification of refrigerating equipment according to PRODCOM 

Code Description Characteristics 

29.23.13.33 Refrigerated show-cases and counters incorporating 

a refrigerating unit or evaporator for frozen food 

storage 

Refrigerated and frozen 

food 

29.23.13.35 Refrigerated show-cases and counters incorporating a 

refrigerating unit or evaporator (excluding for frozen 

food storage) 

Refrigerated good 

29.23.13.40 Deep-freezing refrigerating furniture (excluding chest 

freezers of a capacity ≤ 800 litres, upright freezers of 

a capacity ≤ 900 litres) 

Frozen food, small 

equipment 
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29.23.13.50 Refrigerating furniture (excluding for deep-freezing, 

show-cases and counters incorporating a refrigerating 

unit or evaporator) 

Frozen food, large 

equipment 

29.23.13.90 Other refrigerating and freezing equipment  

 

  The equipment under analysis is a commercial showcase that does not contain 

frozen food storage, so, considering this classification, this furniture fits in group 

29.23.13.35. 

  There are many other entities using other classifications, such as EUROVENT, US 

Department of Energy, Energy Star Program requirements, etc. that are more precise, 

considering the following specifications: 

• Volume 

• Operating temperature: 

- Refrigeration (temperature higher than 0°C) 

- Freezing (temperature bellow 0°C) 

- Combined refrigeration and freezing 

• Vertical or horizontal 

• Self-contained or remote compression 

• With or without doors, material (solid doors or glass) 

• Opening type: sliding or pivoting. 

 The normative EN ISO 23953 classifies equipment according to their orientation 

(vertical, semi-vertical or horizontal), shape (line-up, islands, etc), operating 

temperature, service type (self-service or assisted service). 

 

2.3.  Literature review 

 Ribeiro et al (2016) [5] developed a numerical study (2D) using 3 different models 

of an open vertical display cabinet: the first one using a simple air curtain, the second 

one using deflection blades and the third one using multiples air curtains. These curtains 
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are refrigerated by the evaporator on the bottom. The air velocity was defined at the 

exit of the evaporator. This study surprisingly obtained better results on the first model 

(figure 2.3); however, it refers that the second one has more potential if the deflection 

blades were optimized. According to the author, the third model was not successful 

because of the increment of complexity. These results have natural limitations due to 

being performed in 2D simulations. 

 

Figure 2.3 - Temperature field using multiple air curtains[5] 

 

 Chaomuang et al. (2019) developed an experimental study of a closed display 

cabinet, where the main goals were analysing the factors that influence the temperature 

inside the equipment and its variation, comparing these results with the same cabinet 

but with the doors opened (figure 2.4) [6]. The authors observed that 70% of the heat 

transfer was due to thermal bridges and gaps (for example the air infiltration between 

the doors). Comparing the temperatures with and without  doors (when the cabinet was 

empty), in the storage zone there was an increment from 0.4 to 3.1°C and from 8.2 to 

9.5°C in the shelf edges (near the air curtain). The influence of ambient temperature was 
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also studied: the authors verified that there is an almost linear relationship between the 

air temperature inside the equipment and the external temperature. 

 

  

Figure 2.4 - mean temperature and standard deviations of the display cabinet with doors (a) and without doors (b), 

[6] 

 

 Wang et al. (2015) developed a numerical 3D study of an iced drink refrigeration 

cabinet, where the temperatures inside fluctuate between -7°C and -5°C, using an 

automated switch on and automated switch off [7].  

 The cabinet has an enclosing perforated plate that separates the evaporator and 

the storage room, which is simulated by the porous jump model. In the coolant air 

chamber, there is a fan in the bottom to assist the air circulation (figure 2.5). 
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Figure 2.5 - Iced drink cabinet description, (Wang et al., 2016) 

 

 The first time the switch turns on, the refrigeration cabinet is at the same 

temperature of the room, 25°C. The switch remains on until the temperature reaches 

the lower limit, -7°C (first stage). Then the switch turns off and the temperature inside 

the cabinet will naturally raise due to the room temperature being higher until the 

temperature is -5°C (second stage), when the switch turns on, starting a new cycle (third 

stage). The authors conclude that in order to obtain satisfying results they had to 

simulate the full process (figure 2.6). 
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Figure 2.6 - results at the end of each stage: (a) flow field, (b) temperature field, [7]  

 Belman-Flores et al. (2016) built up a numerical study in order to analyse the 

temperature and flow in a refrigerator [8]. Its dimensions are 0.4m × 0.35m × 0.50m 

(width, depth, height) and use three different fluids for the cooling system: ammonia, 

water and hydrogen, which are the refrigerant, absorbent and auxiliary gas, 

respectively. The authors main objective was analysing the conditions on the 

compartment food storage (temperature and velocity) and compared it in different 

conditions, such as shelf position (top and bottom) and with or without finned surface 

(figure 2.7) 
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Figure 2.7 - Pathlines for plate evaporator, 1 - with a finned surface, 2 – without a finned surface, [8] 

They concluded that there is a difference in the average temperature of 0.7K, 

which means that the model without a finned surface is an acceptable option. In terms 

of energy consumption, both models have similar results. This model can still have great 

improvements with an optimal geometry of the plate evaporator. 

 

 

  

2 
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3. COMPUTATIONAL MODEL 

Fluid flows are governed by partial differential equations that represent the laws 

of conservation of mass, momentum and energy. CFD includes fluid mechanics, 

numerical analysis and computational science, transforming the partial differential 

equations into systems of algebraic equations with solution algorithms that calculate 

the value of the desired variables. 

The computational analysis can be divided into 3 components: pre-processing, 

solver and post-processing. Pre-processing involves all the preparation and conditions 

definition needed for the calculation, such as geometry, mesh and boundary conditions. 

Solver includes the calculation of all variables intended for the study. On post-

processing, the results are analysed in many different ways, such as contours, vector 

graphics, video, etc. 

Pre-Processing 

At this stage, the physical problem is defined by adapting itself to the treatment 

of the solver. Pre-Processing is divided into the following phases: 

• Geometry and problem’s domain definition; 

• Mesh creation is the division of the geometry in control volumes; 

• Selection of physical phenomenon to study. 

• Definition of fluid properties and boundary conditions 

The solution of the problem is defined on the nodes in the interior of each control 

volume since the precision of the solution is directly related to the refinement of the 

mesh. That is if a mesh is refined the result of the simulations for greater accuracy. 

However, there is a maximum accuracy that can be achieved, so the mesh should be 

optimized in order to save computational time. The control volume should be as small 

as possible in areas where there is a more abrupt change in flow properties while in 

areas where there is no such change in fluid properties the volume of the control may 

already be larger (for example: in the simulation of the laminar flow of a fluid in a 

pipeline the mesh must be more refined next to the walls of the pipeline since it is in 
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that zone where there will be a greater variation of the flow rate, whereas when 

approaching the axis of the pipeline the mesh does not need to be so refined). 

Solver 

 In Fluent there are two numerical methods based on the finite volume technique: 

pressure-based and density-based solver. The first is used for problems in which the 

flows are incompressible and at low speed while the second one is more suitable for 

studies of compressible flow and high speed. In both cases, the velocity value is given by 

the momentum equation. In the first method, the density is obtained through the 

equation of continuity, while the other method the solution of the pressure field is given 

by the manipulation of the equation of continuity with the momentum equation. 

Both methods follow these steps:  

• Initially, the previously defined mesh is divided into discrete control volumes. 

• Integration of the equations into each control volume, thus constructing the 

discrete algebraic equations of dependent variables (the ones to be calculated), such as 

velocity, temperature, pressure, and so on. 

• Linearization of the discretized equations and solution resulting from the system 

of linear equations of the dependent variables. 

Post-processing 

  ANSYS Fluent Software has a wide range of graphic capabilities in the post-

processing interface, including: 

• Visualization of geometry and mesh; 

• Vector graphics; 

• Coloured contours and flow lines 

• Particles trajectory; 

• Images manipulation; 

• Possibility of creating video files simulating the fluid flow. 
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3.1.  Mathematical model 

The main equations of the mathematical model are the mass conservation law, 

continuity and energy equation: 

Mass conservation law (continuity equation)  

This law is based on the mass balance in the element, that means that the mass 

variation in the control volume is equal to the net change in mass in the control volume. 

The net change is the difference between the mass entering each face is the 

same as that which exits on the opposite side of that control volume. So, the mass 

variation in the control volume is given by: 

𝜕

𝜕𝑡
(𝜌𝛿𝑥𝛿𝑦𝛿𝑧) =

𝜕𝜌

𝜕𝑡
(𝛿𝑥𝛿𝑦𝛿𝑧) 3.1 

 

In turn, the mass passing through each face of the control volume is given by the 

product of the density and the velocity in the component normal to the face of the 

control. Let u, v and w be the velocities along the x, y, and z axes respectively. Figure 3.1 

shows the mass flows in the control volume, which is given by: 

(𝜌𝑢 −
𝜕𝜌𝑢

𝜕𝑥

1

2
𝜕𝑥) 𝛿𝑦𝛿𝑧 − (𝜌𝑢 −

𝜕𝜌𝑢

𝜕𝑥

1

2
𝜕𝑥) 𝛿𝑦𝛿𝑧

+  (𝜌𝑣 −
𝜕𝜌𝑣

𝜕𝑦

1

2
𝜕𝑦) 𝛿𝑥𝛿𝑧 − (𝜌𝑣 −

𝜕𝜌𝑣

𝜕𝑦

1

2
𝜕𝑦) 𝛿𝑥𝛿𝑧

+ (𝜌𝑤 −
𝜕𝜌𝑤

𝜕𝑧

1

2
𝜕𝑧) 𝛿𝑥𝛿𝑦 − (𝜌𝑤 −

𝜕𝜌𝑤

𝜕𝑧

1

2
𝜕𝑧) 𝛿𝑥𝛿𝑦 

 

3.2 
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Figure 3.1 - Continuity on control volume, [9] 

  

 

Adding the transient term and dividing all terms by δxδyδz: 

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
+

𝜕𝜌𝑤

𝜕𝑧
= 0 3.3 

 

 The last equation represents the mass conservation of three-dimensional 

transient flow in a compressible fluid. The first term represents the term transient while 

the others represent the term convective 

Momentum conservation law (momentum equation) 

  According to Newton's 2nd law F = ma, the momentum in the control volume 

particle is equal to the sum of the forces in the particle. The variation of momentum in 

the x, y, and z axes per unit volume in the control volume is given by: 

𝜌
𝐷𝑢

𝐷𝑡
 𝑖𝑛 𝑥 ;  𝜌

𝐷𝑣

𝐷𝑡
 𝑖𝑛 𝑦;  𝜌

𝐷𝑤

𝐷𝑡
 𝑖𝑛 𝑧 3.4 

 

 



 

19 

 

There are two types of forces in the control volume: 

• Surface forces 

- Forces due to pressure 

- Forces due to viscosity 

 

• Body forces 

- Forces due to gravity 

- Centrifugal forces 

- Coriolis forces 

- Electromagnetic forces 

 Surface forces will be considered in terms of momentum and the body forces 

contained in the source term. 

In a three-dimensional case, the stress state in the fluid element is defined in 

terms of pressure and nine components of viscosity stresses as shown in Figure 3.2. The 

pressure is identified by the letter p and the viscous stress by the letter τ.  

 

Figure 3.2 - Conservation of momentum, [9] 

  

 Considering that the forces on the components in x resulting from the pressure 

p and the surface stresses τxx, τxy and τxz, (Figure 3.3). The resulting force in x is the 

sum of all the components acting in that direction of the element. 
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Figure 3.3 - Conservation of momentum in x, [9] 

 

The resulting forces in x on the faces (E, W) are: 

[(𝑝 −
𝜕𝑝

𝜕𝑥

1

2
𝛿𝑥) − (𝜏𝑥𝑥 −

𝜕𝜏𝑥𝑥

𝜕𝑥

1

2
𝛿𝑥)] 𝛿𝑦𝛿𝑧

+  [− (𝑝 −
𝜕𝑝

𝜕𝑥

1

2
𝛿𝑥) − (𝜏𝑥𝑥 −

𝜕𝜏𝑥𝑥

𝜕𝑥

1

2
𝛿𝑥)] 𝛿𝑦𝛿𝑧

= (−
𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
) 𝛿𝑥𝛿𝑦𝛿𝑧 

3.5 

 

 

 In faces (N, S) in the x-axis results: 

− (𝜏𝑦𝑥 −
𝜕𝜏𝑦𝑥

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧 + (𝜏𝑦𝑥 −

𝜕𝜏𝑦𝑥

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧 =

𝜕𝜏𝑦𝑥

𝜕𝑦
𝛿𝑥𝛿𝑦𝛿𝑧  3.6 

 

 Lastly, the forces on direction x on faces (T, B) are given by:  

− (𝜏𝑧𝑥 −
𝜕𝜏𝑧𝑥

𝜕𝑧

1

2
𝛿𝑧) 𝛿𝑥𝛿𝑦 + (𝜏𝑧𝑥 −

𝜕𝜏𝑦𝑥

𝜕𝑧

1

2
𝛿𝑧) 𝛿𝑥𝛿𝑦 =

𝜕𝜏𝑧𝑥

𝜕𝑧
𝛿𝑥𝛿𝑦𝛿𝑧  3.7 
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 The total force by volume unit of the fluid resulting from the surface tensions is 

obtained by the sum of equations mentioned above, which divided by δxδyδz results:  

𝜕(−𝑝 + 𝜏𝑥𝑥)

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
 3.8 

 

 The equation of momentum in component x is obtained by the equality of the 

momentum variation with the resultant of the force due to the surface tensions of the 

equation (previous equation) plus the term source in x. 

𝜌
𝐷𝑢

𝐷𝑡
=

𝜕(−𝑝 + 𝜏𝑥𝑥)

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝑆𝑀𝑥 3.9 

 

 Similarly, on the y component:  

𝜌
𝐷𝑣

𝐷𝑡
=

𝜕(−𝑝 + 𝜏𝑦𝑦)

𝜕𝑦
+

𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝑆𝑀𝑦 3.10 

 And z component:  

𝜌
𝐷𝑤

𝐷𝑡
=

𝜕(−𝑝 + 𝜏𝑧𝑧)

𝜕𝑧
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑥
+ 𝑆𝑀𝑧 3.11 

 

Energy conservation law (Energy equation) 

 This equation is derived from the first law of thermodynamics which states that 

the internal rate of change of a fluid particle is the sum of the variation of heat and the 

variation of the work. 

 Saying that the variation rate 𝜌 is given by: 

𝜌
𝐷𝐸

𝐷𝑡
 3.12 
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  Work is equal to the product of force by the component of velocity in the 

direction of the force. Making the product of equation 3.9 with the velocity in the 

component in x: 

𝜕𝑢(−𝑝 + 𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
 3.13 

 

 The same happens with y and z components, obtaining respectively:  

𝜕𝑣(−𝑝 + 𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
 3.14 

𝜕𝑤(−𝑝 + 𝜏𝑧𝑧)

𝜕𝑧
+

𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
 

3.15 

 

 Isolating the terms that contain pressure p: 

−
𝜕(𝑢𝑝)

𝜕𝑥
−

𝜕(𝑣𝑝)

𝜕𝑦
+

𝜕(𝑤𝑝)

𝜕𝑧
= −𝑑𝑖𝑣(𝑝𝑢) 3.16 

           

 The total work variation resulting from the superficial forces is given by: 

[−𝑑𝑖𝑣(𝑝𝑢)] + [ 
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
]

+ [ 
𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
]

+ [ 
𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] 

3.17 

 

 Equation 3.17 represents the balance of all x, y, and z components of work on 

the fluid particle resulting from forces acting on surfaces. 
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The balance of the heat flux through the faces of the control volume is 

represented by the vector of heat flow q in the three components qx, qy and qz, according 

to Figure 3.4. 

 

Figure 3.4 - Energy conservation,[9] 

 

[(𝑞𝑥 −
𝜕𝑞𝑥

𝜕𝑥

1

2
𝛿𝑥) − (𝑞𝑥 +

𝜕𝑞𝑥

𝜕𝑥

1

2
𝛿𝑥)] 𝛿𝑦𝛿𝑧 = −

𝜕𝑞𝑥

𝜕𝑥
𝛿𝑥𝛿𝑦𝛿𝑧 3.18 

 

 The same happens for the components y and z.  

−
𝜕𝑞𝑦

𝜕𝑦
𝛿𝑥𝛿𝑦𝛿𝑧 

 

3.19 

−
𝜕𝑞𝑧

𝜕𝑧
𝛿𝑥𝛿𝑦𝛿𝑧 

3.20 

 

 Dividing the equations above by δxδyδz: 

−
𝜕𝑞𝑥

𝜕𝑥
−

𝜕𝑞𝑦

𝜕𝑦
−

𝜕𝑞𝑧

𝜕𝑧
= −𝑑𝑖𝑣 𝑞 3.21 
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 According to the Fourier law for the heat flow by conduction:  

𝑞𝑥 − 𝐾
𝜕𝑇

𝜕𝑥
; 𝑞𝑦 − 𝐾

𝜕𝑇

𝜕𝑦
; 𝑞𝑧 − 𝐾

𝜕𝑇

𝜕𝑧
 3.22 

 

 That can be expressed by: 

𝑞 = −𝑘𝑔𝑟𝑎𝑑 𝑇 3.23 

 

 Combining the two previous equations, the final energy balance equation is 

obtained resulting from the conduction heat transfer process. 

−𝑑𝑖𝑣 𝑞 = 𝑑𝑖𝑣 (𝑘 𝑔𝑟𝑎𝑑 𝑇) 3.24 

3.2. Turbulence models 

 Most flows studies are turbulent studies. A flow is defined as laminar, 

intermediate or turbulent through the Reynolds number. This number is given by the 

ratio of inertial forces to viscous forces (UL / ν). Since U is the velocity of the fluid, L is 

the characteristic length of the flow, and ν is the kinematic viscosity. For low values of 

the Reynolds number the flow is laminar, above the critical value (transient Reynolds 

value) the flow becomes turbulent. 

The ANSYS fluent software uses an approach to the numerical simulation names 

RANS (Reynolds Averaged Navier-Strokes Simulation) [10]. This technique solves time-

averaged Navier-Strokes equations and offers several methods of turbulence for all 

turbulent length. This is the most common approach in the industry due to his low cost 

compared to other ones (DNS, LES). There are many turbulent models that can be used 

in this approach, which must be chosen considering the Reynolds number, fluid 

properties and its application (Table 3.1). 



 

25 

 

Model Behaviour and usage 

Spalart-Allmaras 

Economical for large meshes. Performs poorly for 3D flows, free shear 

flows, flows with strong separation. Suitable for mindly complex 

(quasi-2D) external/internal flows and boundary layer flows under 

pressure gradient (e.g. airfoils, wing, airplane fuselages, missiles, ship 

hulls 

Standard k- 𝜺 

Robust. Widely used despite the known limitations of the model. 

Performs poorly for complex flows involving severe pressure gradient, 

separation, strong streamline curvature. Suitable for initial screening 

or alternative designs, and parametric studies 

Realizable k- 𝜺 

Suitable for complex shear flows involving rapid strain, moderate 

swirl, vortices, and locally transitional flows (e.g. boundary layer 

separation, massive separation and vortex shedding behind bluff 

bodies, stall in wide-angle diffusers, room ventilation). 

RNG k- 𝜺 
Offers largely the same benefits and has similar applications as 

Realizable. Possibly harder to converge than realizable. 

Standard k- 𝝎 

Superior performance for wall-bounded boundary layer, free shear, 

and low Reynolds number flows. Suitable for complex boundary layer 

flows under adverse pressure gradient and separation (external 

aerodynamics and turbomachinery). Can be used for transitional 

flows (thought tends to predict early transition). Separation is 

typically predicted to be excessive early 

SST k- 𝝎 
Offers similar benefits as standard k- 𝜔. Dependency on wall distance 

makes this less suitable for free shear flows. 

Table 3.1 - Turbulence models description 
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 There will be studied two different models, Realizable k-𝜀 and SST k-𝜔, which 

can be the most suitable for this study and its variations. 

Turbulence model Realizable k-𝜺 (RKE) 

This model, like the Standard k-𝜀 (SKE) model, is suitable for most situations but 

has some benefits compared to the previous one, such as: 

• Accurately predicts the spreading rate of both planar and round jets.  

• Also, likely to provide superior performance for flows involving rotation, 

boundary layers under strong adverse pressure gradients, separation, and recirculation.  

It is expected to have some rotation in this case study, that is the main reason 

the SKE was excluded for this situation. 

Turbulence model SST k-𝝎 

k-𝜔 models have better performance for boundary layer flows and low Reynolds 

number flows. SST k-𝜔 specifically, is a mix of a k-𝜔 model near the wall and k-𝜀 in the 

freestream (Figure 3.6). 

 

Figure 3.5 – SST k-𝝎 model definition[10] 

RSM 

Physically the most sound RANS model. Avoids isotropic eddy 

viscosity assumption. More CPU time and memory required. Tougher 

to converge due to close coupling of equations. Suitable for complex 

3D flows with strong streamline curvature, strong swirl/rotation (e.g. 

curved duct, rotating flow passages, swirl combustors with very large 

inlet swirl, cyclones). 
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This model is a good compromise between k-𝜔 and k-𝜀 models. 

Near wall treatment 

Four different models can be chosen in order to define the flow behaviour near 

the wall: Standard wall functions, Non-equilibrium wall functions, Enhanced wall 

treatment, User-Defined Wall functions.  

As it was done in the turbulence models, standard wall functions and enhanced 

wall treatment models will be considered. 

Standard wall functions model is designed for high Re attached flow, the near-

wall region is not resolved, the near-wall mesh is relatively coarse. 

The enhanced wall treatment model is used for low Re flows or flows with near-

wall complex phenomena. Usually requires a very-fine near-wall mesh capable of 

resolving this region but can also handle coarse near-wall mesh. 

3.3.  Finite volumes 

The finite volume method uses as a starting point the integral form of the 

conservation equation. 

The domain of the solution is divided into a number of control volumes, the 

above equation is applied to each of them (Figure 3.7). At the central point of each 

volume control is located a computational node, in which the values of the desired 

variables are calculated, as it happens in the boundaries of the volume control. The 

values of the variables at the boundary are obtained through interpolations as a function 

of nodal values (in the centre). 

Volume and surface integrals are approximated using appropriate quadrature 

formulas. As a consequence, an algebraic equation is obtained for each volume control, 

in which the value of the variable to be studied appears in this node and in the 

neighbours. This method can be used in any type of mesh, so it can be used in very 

complex geometries. The mesh itself defines all the boundaries of the volume control; 

however, it does not need to be related to the coordinate system. This method is 
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conservative, provided that the surface integrals are shared on each face of the volume 

and control. 

 

Figure 3.6 -Fluxes in a 2D element according to finite volumes method, [9] 

 

Momentum equation 

 If the pressure field is known, the discretization of the velocity equations and the 

resolution is identical to a scalar equation. For this analysis, a new notation will be used. 

The nodes will be named with uppercase letters and vectors with lowercase letters. 

Consider a node P: This node is located on the coordinates I, J, then the one that is next 

to it on the right (E) is located on the coordinates I, J+1 and the vector that connect these 

nodes is uI+1, J. Following the same logic, the point immediately above (N) is in the 

coordinates I + 1, J and vector that connect these nodes is vI, J+1. 

 Figure 3.8 illustrates a mesh with the designations of the various nodes and 

vectors 
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Figure 3.7 - Nodes and vector designation in a 2D element according to  finite volumes method, [9] 

 The momentum equations (u,v) with this new coordinate system are given by: 

𝑎𝑖,𝐽𝑢𝑖,𝐽 = ∑ 𝑎𝑛𝑏𝑢𝑛𝑏 + (𝑝𝐼−1,𝐽 − 𝑝𝐼,𝐽)𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.26 

𝑎𝑖,𝐽𝑣𝐼,𝑗 = ∑ 𝑎𝑛𝑏𝑣𝑛𝑏 + (𝑝𝐼,𝐽−1 − 𝑝𝐼,𝐽)𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.27 

 

3.4.  SIMPLE 

 The acronym SIMPLE means "Semi-Implicit Method Pressure-Linked Equations". 

The initial algorithm consisted basically of an attempt/error methodology in calculating 

the pressure in the elements. This method was developed considering a 2D stationary 

laminar flow using Cartesian coordinates.  

 To start the calculation according to this algorithm, the value of p* is arbitrated. 

The momentum equations are discretized and solved in order to u* and v* 

𝑎𝑖,𝐽𝑢∗
𝑖,𝐽 = ∑ 𝑎𝑛𝑏𝑢∗

𝑛𝑏 + (𝑝∗
𝐼−1,𝐽

− 𝑝∗
𝐼,𝐽

) 𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.28 
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𝑎𝑖,𝐽𝑣∗
𝐼,𝑗 = ∑ 𝑎𝑛𝑏𝑣∗

𝑛𝑏 + (𝑝∗
𝐼,𝐽−1

− 𝑝∗
𝐼,𝐽

) 𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.29 

   

 The difference between the actual pressure and the pressure estimated can be 

defined by p'. Using this logic for u and v, the actual values of pressure and velocities is 

obtained by the following equations: 

𝑝 = 𝑝 ∗ +𝑝′ 

𝑢 = 𝑢 ∗ +𝑢′ 

𝑣 = 𝑣 ∗ +𝑣′ 

3.30 

 

 Equations (3.28) and (3.29) will be used substituting the values estimated by the 

differences defined above: 

𝑎𝑖,𝐽𝑢∗
𝑖,𝐽 = ∑ 𝑎𝑛𝑏𝑢′

𝑛𝑏 + (𝑝′
𝐼−1,𝐽

− 𝑝′
𝐼,𝐽

) 𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.31 

𝑎𝑖,𝐽𝑣∗
𝐼,𝑗 = ∑ 𝑎𝑛𝑏𝑣′𝑛𝑏 + (𝑝′

𝐼,𝐽−1
− 𝑝′

𝐼,𝐽
) 𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 3.32 

 

 From this moment an approximation will be made: ∑ 𝑎𝑛𝑏𝑢′
𝑛𝑏 e ∑ 𝑎𝑛𝑏𝑣′𝑛𝑏 will 

be considered equal to zero. The omission of this plot is the main error associated with 

the SIMPLE method. Therefore:  

𝑢′𝑖,𝐽 = 𝑑𝑖,𝐽(𝑝′
𝐼−1,𝐽

− 𝑝′
𝐼,𝐽

)𝐴𝐼,𝐽 3.33 

𝑣′𝐼,𝑗 = 𝑑𝐼,𝑗(𝑝′
𝐼,𝐽−1

− 𝑝′
𝐼,𝐽

)𝐴𝐼,𝐽 3.34 

where 𝑑𝑖,𝐽 =
𝐴𝑖,𝐽

𝑎𝑖,𝐽
 e 𝑑𝐽,𝑖 =

𝐴𝐼,𝑗

𝑎𝐼,𝑗
 3.35 

 



 

31 

 

 Combining the equations (3.31) to (3.35), it results: 

𝑢𝑖,𝐽 = 𝑢𝑖,𝐽
∗ + 𝑑𝑖,𝐽(𝑝′

𝐼−1,𝐽
− 𝑝′

𝐼,𝐽
) 3.36 

𝑣𝐼,𝑗 = 𝑣𝐼,𝑗
∗ + 𝑑𝐼,𝑗(𝑝′

𝐼,𝐽−1
− 𝑝′

𝐼,𝐽
) 3.37 

 

The same logic can be applied to 𝑢𝑖+1,𝐽 e 𝑣𝐼,𝑗
∗ . 

 Until now only the momentum equations was considered but the velocity field 

should also satisfy the continuity equation. The continuity is satisfied discretely for the 

scaled control volume shown in Figure 3.9: 

[(𝜌𝑢𝐴)𝑖+1,𝐽 − (𝜌𝑢𝐴)𝑖,𝐽] + [(𝜌𝑣𝐴)𝐼,𝑗+1 − (𝜌𝑣𝐴)𝐼,𝑗] = 0 3.38 

 

 

 

 

 

 

 

 

 

 

 

  

 The velocity-corrected values of equations are substituted and rearranged in 

equations (3.36) and (2.37) in the discretized continuity equation. In order to simplify 

the equation, the coefficients presented in Table 1 were created. 

Scalar control volume 

Figure 3.8 - Control volume, [7] 
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𝑎𝐼,𝐽𝑝′𝐼,𝐽 = 𝑎𝐼+1,𝐽𝑝′𝐼+1,𝐽 + 𝑎𝐼+1,𝐽𝑝′𝐼+1,𝐽 + 𝑎𝐼,𝐽+1𝑝′𝐼,𝐽+1 + 𝑎𝐼,𝐽−1𝑝′𝐼,𝐽−1

+ 𝑏′𝐼,𝐽 
3.39 

 

where 𝑎𝐼,𝐽 = 𝑎𝐼+1,𝐽 + 𝑎𝐼−1,𝐽 + 𝑎𝐼,𝐽+1 + 𝑎𝐼,𝐽−1 and the coefficients are the following: 

 

Table 3.2 - Coefficients definition 

 

Equation (3.39) represents the discretized continuity equation as an equation for 

the pressure correction p'. The term source b' in the equation is the perturbation of 

continuity resulting from the incorrect velocity field u* and v*. Solving equation (3.39), 

the pressure correction p 'can be obtained for all points. Once these values are known, 

the actual pressure field must be obtained using equation (3.30) and the velocity 

components through equations (3.36) and (3.37). The omission of terms ∑ 𝑎𝑛𝑏𝑢′
𝑛𝑏 

e ∑ 𝑎𝑛𝑏𝑣′𝑛𝑏 in the derivation does not affect the final solution because the pressure and 

velocity corrections are zero in a convergent solution given by p*=p, u*=u, v*=v. 

 The pressure equation correction is susceptible to divergence unless some 

under-relaxation factor is used during the iterative process and better pressure values 

are obtained with: 

𝑝𝑛𝑒𝑤 = 𝑝∗ + 𝛼𝑝𝑝′, 3.40 

where 𝛼𝑝 is the under-relaxation factor. If the relaxation factor equal to one, the 

estimated pressure field is corrected by p’. However, the corrections p', in particular 

when the estimated field p* is far from the final solution, is often too large for stable 

simulations. A value of 𝛼𝑝 equal to one does not apply correction, which also makes no 

sense. Therefore, choosing a value between 0 and 1 allows us to add to the pressure 

aI+1,J aI-1,J aI,J+1 aI,J-1 b’I,J 

(𝜌dA)i+1,J (𝜌dA)i,J (𝜌dA)i,J+1 (𝜌dA)i,J (𝜌𝑢∗A)i,J-(𝜌𝑢∗A)i+1,J+(𝜌𝑣∗A)I,j-(𝜌𝑣∗A)I,j+1 
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field p* a fraction of the pressure p' that is large enough to proceed with the iterative 

process, but small enough to have stable simulations. 

 The velocity values are also under-relaxed. The variation of velocity components 

is given by: 

𝑢𝑛𝑒𝑤 = 𝛼𝑢𝑢 + (1 − 𝛼𝑢)𝑢𝑛−1 

𝑣 = 𝛼𝑣𝑣 + (1 − 𝛼𝑣)𝑣𝑛−1 
3.41 

 

 Those factors 𝛼𝑢 𝑒 𝛼𝑣 are relaxation factors of the components of velocities u 

and v, comprised between 0 and 1, and 𝑢𝑛−1 e 𝑣𝑛−1 represent the velocity values 

obtained in the previous iteration. 

 The equation of pressure correction is also affected by the sub-relaxed velocity 

and it can be shown that the terms d of the pressure correction are as follows 

𝑑𝑖,𝐽 =
𝐴𝑖,𝐽𝛼𝑢

𝑎𝑖,𝐽
,     𝑑𝑖+1,𝐽 =

𝐴𝑖+1,𝐽𝛼𝑢

𝑎𝑖+1,𝐽
,         𝑑𝐼,𝑗 =

𝐴𝐼,𝑗𝛼𝑣

𝑎𝐼,𝑗
      and       𝑑𝐼,𝑗+1 =

𝐴𝐼,𝑗+1𝛼𝑣

𝑎𝐼,𝑗+1
 3.42 

 

 The coefficients in denominator refer to the positions (i, J), (i + 1, J), (I, j) and (I, j 

+ 1) of a scalar cell referring to point P. 

 A correct choice of sub-relaxation factors is essential for a good cost/efficiency 

ratio of the simulations. Too high a value can cause oscillations in the solution or even 

divergent solutions, on the other hand very low values imply a higher computational 

cost. Unfortunately, there is no optimal value, this value depends on the flow and this 

value must be optimized in each case. 

 

3.5. Residual values and convergence 

 At the end of each iteration, the residuals of continuity, momentum and energy 

are calculated and saved, thus creating a history of convergence. After the discretization, 

the conservation equation of any dependent property is given by the following equation: 
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𝑎𝑝∅𝑝 = ∑ 𝑎𝑛𝑏∅𝑛𝑏 + 𝑏
𝑛𝑏

 3.43 

 

 

 Where 𝑎𝑝 is the coefficient of the centre of the control volume, 𝑎𝑛𝑏 the 

contribution of the neighbouring cell coefficients and b the contribution of the constant 

to the source term. 

𝑎𝑝 = ∑ 𝑎𝑛𝑏 − 𝑆𝑝
𝑛𝑏

 3.44 

 

 The calculated value of the residual by software according to the Pressure-based 

model is given by the unbalance of equation (3.42) summed in all cells, this is a non-

staggered residue and is written as follows: 

𝑅∅ = ∑ |∑ 𝑎𝑛𝑏∅𝑛𝑏 + 𝑏 − 𝑎𝑝∅𝑝
𝑛𝑏

|
𝑐𝑒𝑙𝑙𝑠 𝑃

 3.45 

 

 The software uses two models of staggered residues, representative of the flow 

∅ through the domain. These are global scaling and local scaling. They are respectively 

defined by the following equations: 

𝑅∅ =
∑ |∑ 𝑎𝑛𝑏∅𝑛𝑏 + 𝑏 −  𝑎𝑝∅𝑝𝑛𝑏 |𝑐𝑒𝑙𝑙𝑠 𝑃

∑ | 𝑎𝑝∅𝑝|𝑐𝑒𝑙𝑙𝑠 𝑃

 3.46 

𝑅∅ =

√∑ (
1
𝑛

𝑛
𝑐𝑒𝑙𝑙𝑠 ) (

∑ 𝑎𝑛𝑏∅𝑛𝑏 + 𝑏 −  𝑎𝑝∅𝑝𝑛𝑏

𝑎𝑝
)

2

 

(∅𝑚𝑎𝑥 − ∅𝑚𝑖𝑛)𝑑𝑜𝑚𝑎𝑖𝑛
 

3.47 

 

 Residual values are a good indicator of the convergence of problems. By default, 

ANSYS Fluent activates the global scaling option. There are some models to evaluate the 
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convergence of results. The definition of residual values in some cases is sufficient to 

ensure convergence but may be misleading in other cases. It is, therefore, good practice 

to assess convergence not only by the value of residues but also by monitoring some 

specifications, such as the heat transfer coefficient. Figure 3.10 shows the configuration 

panel of the residuals, and in the image, the values of the residuals were assigned by 

default by the program. 

 

 

Figure 3.9 - Residual values definition on ANSYS - FLUENT 
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4. CASE STUDY 

In this chapter, the main strategies adopted in the study are presented. The physical 

parameters, geometry and mesh are presented as well as the optimization of the mesh 

 

4.1. Strategies adopted 

Analysing this type of equipment, it can be realized that the initial geometry is very 

simple. The first models are tests that do not include some conditions of the last models. 

As the simulations go on, these conditions will be considered one by one until the final 

model is accomplished. This strategy allows us to detect errors and their origins and 

correct them before the final model is accomplished. The last simulations include 

products which will transpose in more complex geometry. 

The first decision to make is choosing between a 2D or a 3D geometry. Showcases 

usually have a transversal section that is uniform, so the 3D geometry would probably 

not accomplish better results compared with the 2D, but the complexity and the 

computational resources would be much higher. For these reasons, this study would be 

focused on a 2D geometry (figure 4.1) 

 

Figure 4.1 - Showcase's geometry with no products in the shelves 

Zoom A 
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The first concern is to approximate the geometry to reality and simplify it 

whenever is possible without compromise the reliability of the results. With that said, a 

velocity inlet will be considered, with air at 0°C and ignore the cold production zone, 

focusing only on the storage zone. 

 However,  some care is needed when transposing the real geometry to 2D 

because there are some details that cannot be perfectly represented in a 2D geometry. 

In this showcase is not possible to design the air entrances as they are, because the 

lateral section is not constant in all the equipment. In the showcase the air intakes are 

holes but, in this geometry, they will be represented by a line, which means a rectangular 

rip at the full length. In order to not compromise the results and simplify the geometry, 

this line represents a rip that has the same area as the sum of the holes. The perforation 

area ratio (perforated area/total area) in the back is around 7.5%. 

 The first analysis after the geometry was defined was the mesh refinement. The 

simulation was started with a coarse mesh that would necessarily result in a bad 

solution. In the next simulations, the mesh was gradually thinner. At some point the 

solution does not depend on the mesh that was used, that means it is not necessary to 

refine more the mesh. In the next studies, a mesh that has roughly the same element 

size will be used. 

 Boundary conditions delimitate different zones of the domain. This limitation can 

be physical and easy to define, but sometimes the physical phenomenon is hard to 

translate in a boundary condition. Despite that, it is critical to have a boundary definition 

that has the best approach to reality in order to minimize the differences between the 

model and the reality. 

 Most of the boundary conditions were defined according to other experimental 

and numerical studies mentioned previously on the state of art in chapter 1.4. 

 In this case study different boundary conditions were used and also different 

initial values, which were optimized during the study: 
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• Inlet velocity = 2 m/s, according to other studies, the velocity is usually bellow 

3m/s in order to reduce the noise. This value varies according to the refrigerated 

volume and inlet area[5], [11], [12]. 

• Pressure inlet = 0 Pa, the pressure on the equipment should be equal to the 

atmospheric pressure, this value is used by default on other studies similar to 

this one.  

• Outlet: outflow, other studies may use pressure outlet but based on previous 

studies made for this showcase, outflow obtains better results[13]. 

• Inlet temperature = 0°C, the objective is to maintain the temperature at 5°C or 

lower in the product zone, but also higher than 0°C to avoid freezing. The inlet 

temperature is the lowest on the showcase because there are many heat sources 

during until the air reaches the outlet (environment temperature, products 

temperature, lamps, etc) and there are no temperatures below 0°C. 

• Glass heat transfer: Q(glass) = 8.29 W/m2, this value was used on previous studies 

for this showcase, but other values will be evaluated on further simulations[13]. 

• Initial temperature = 15oC, this temperature should be equal to the temperature 

of the room where the showcase is, usually equal or lower than 25°C [12], [14]. 

• Turbulence model: RKE, according to the turbulence models available on the 

software (some of them analysed on chapter 3.2), this should be one of the most 

suitable models for room ventilation and standard situations like this one[10]. 

   

4.2. Mesh definition 

Mesh consists in dividing the domain into small areas/volumes (in 2D or 3D 

simulations). In the 2D model were used only quadrangular elements. In order to 

accomplish a good mesh to further, the mesh definition was made in two steps. The first 

step was to choose the type of elements used (the choice was to use quadrilateral 

elements whenever is possible) and the size of each one related to the others. Smaller 

elements should be used in areas where stronger variations were expected. There are 

also some factors given by the program that were considered, like element quality, 
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minimum orthogonal quality, skewness, maximum aspect ratio and y+. These factors 

consider the element quality based on its shape (aspect ratio, orthogonal quality and 

skewness). The size variation between neighbour elements should also be verified. The 

element size variation should be smooth because of calculation stability. The simulation 

starts only after the mesh definition. The second step is to get the intended precision, 

this can be accomplished by using a coarse mesh (that may present low-quality results 

due to the low number of elements) and to increase the number of elements gradually. 

This raise of the number of the elements must be proportional in order to maintain a 

similar mesh between smaller elements, that way generates better results. At some 

point, as the number of elements were increased, the meshes start to converge and 

should present the same results regardless of the number of elements. The best mesh 

in this group is the one that has the least number of elements and presents the same 

results of all these with a higher number of elements. The showcase’s geometry is 

presented in figure 4.2. 

 

 

 

As it is shown in figure 4.2 the elements that are closer to the wall are smaller 

because it is expected to have a higher variation of velocity in this area (boundary layer). 

This is because the air velocity close to the wall is zero (due to the friction) and quickly 

increases as moving away from the wall. 

 

Figure 4.2 - Mesh definition near the glass and wall, element 

size = 1.65mm (mesh 4, approximately 230,000 elements) 

glass 

wall 

 Zoom A 
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4.3. Mesh optimization 

As mentioned in the last chapter, the first step is to optimize the mesh quality 

based on the factors given by the program. Some of these factors are presented in table 

4.1. 

Table 4.1 - Mesh quality report 

 

 

 

Researching for a better mesh, some refinements were done based on the first 

mesh (mesh with 61,000 elements). 

The second and third meshes (with 93,000 and 117,000 elements, respectively) 

were generated increasing the number of elements in all the domain, because the 

velocity results reveal some unexpected vortices (figure 4.4, meshes 1, 2) and was 

expected that the temperature variations were smoother (figure 4.3, meshes 1 and 2). 

The fourth mesh (with 230,000) was created increasing the number of elements 

in all zones of the showcase because the temperature field still changed, despite the 

bigger changes were below the bottom shelf (figure 4.3, mesh 3). The velocity field 

remains similar, except bellow the top shelf the vortices generated are different (figure 

4.4, mesh 3). 

The fifth mesh (with 415,000 elements) was created increasing the number of 

elements in all the domain to confirm the results obtained for the fourth mesh (figures 

4.3 and 4.4, meshes 4 and 5). 

Mesh 

number 

Mesh report 

Quality 

Number of 

elements Average 

orthogonal quality 

Average 

skewness 

Average 

aspect ratio 

1 0.92 0.18 1.85 61225 

2 0.92 0.18 1.98 93198 

3 0.92 0.18 2.21 117247 

4 0.93 0.17 2.18 232141 

5 0.93 0.17 2.42 415295 
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To the mesh study, there were used many different refinements, resulting in 

consecutively more elements: roughly 61,000 (mesh 1), 93,000 (mesh 2), 117,000 (mesh 

3), 230,000 elements (mesh 4), 415,000 elements (mesh 5).  

The lines in black represent the main streams of air. 

The results in figure 4.3 and 4.4 represent 60 seconds in real-time for the 

temperature and velocity fields, respectively.  
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1 2 

3 4 

5 

Figure 4.3 - Temperature field after 60s in the meshes 1 to 5, T0 = 15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 8.29 W/m2K 

Mesh 1 – 61.000 elements 

Mesh 2 – 93.000 elements 

Mesh 3 – 117.000 elements 

Mesh 4 – 230.000 elements 

Mesh 5 – 415.000 elements 

 

Temperature 



 

43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1 2 

3 4 

5 

Figure 4.4 - Velocity field after 60s in the meshes 1 to 5, T0 = 15oC, v0 = 2m/s, T(inlet) = 0oC, Q(glass) = 8.29W/m2K 

Mesh 1 – 61.000 elements 

Mesh 2 – 93.000 elements 

Mesh 3 – 117.000 elements 

Mesh 4 – 230.000 elements 

Mesh 5 – 415.000 elements 

 

Velocity 
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With the setup used in this simulation, it is expected that the temperature was 

below 5°C in all the domain, where the higher temperatures would be on the bottom 

because this area is the one that is farthest from the inlet, despite having small 

entrances on the back of the equipment. In the first and seconds meshes the number of 

elements is low, and two completely different results can be seen. The spots where the 

temperature is higher is different on both cases and there are too many vortices in the 

first mesh, so it can be concluded that these results are not correct due to the low 

number of elements. In the third mesh (approximately 117,000 elements), the results 

start to stabilize to a certain shape (figure 4.3, mesh 3), where there is a hot spot at the 

bottom due to the low-velocity values in this area, but it was not yet certain that this 

mesh was refined enough. So, at this stage, it was used two more meshes to confirm if 

the third one was refined enough, or the results were still susceptible to mesh variation 

After analysing the results using meshes 4 and 5, it can be realized that there are 

still slight differences in temperatures between these two meshes and mesh 3 does not 

translate the same results that the last ones. Despite that, the results for the velocity 

values are closer, except on the back area, near the air entrances, where only on the 

most refined meshes it is possible to observe vortices. In this case, the velocity field 

remains the same, but the temperature distribution changes significantly, meaning 

there is still heat flux between the air inside the equipment and outside. Assuming that 

the flow may not be stationary yet, more simulations will be made until 120 seconds 

with meshes 4 and 5, instead of the 60 seconds used previously. It is also possible to 

verify that there is a hot spot on the bottom (figure 4.3), probably due to the fact that 

there is a dead zone, where the velocity is almost zero. Another aspect that can affect 

this phenomenon is the condition defined in the bottom wall. This condition is the same 

for all the walls, but this bottom boundary is very specific because it is the physical 

boundary between the refrigerated zone and the evaporator. Because of that, in future 

cases, other conditions will be studied in order to optimize the flow in this area. 

Finally, analysing the temperature results obtained after 60 and 55 seconds 

(figure 4.6) it can be observed that the flow is not yet stationary, so for further 

simulations, the time will be 120 seconds. 
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Figure 4.6 - temperature field for mesh 3 

after 55 seconds, T0 = 15oC, v0 = 2m/s, T(inlet) = 0oC, 

Q(glass) = 8.29 W/m2K 

Figure 4.5 - temperature field for mesh 3 

after 60 seconds, T0 = 15oC, v0 = 2 m/s, T(inlet) = 0oC, 

Q(glass) = 8.29 W/m2K 
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5. RESULTS AND DISCUSSION 

This chapter will be divided into two groups: in the first one some boundary 

conditions will be considered/modified in the geometry/mesh previously defined: 

- The temperature on the bottom wall, near the evaporator 

- The heat flux through the glass 

- The dimension of the holes on the perforated plate on the back 

5.1. Study of some parameters influence 

In chapter 4, many meshes were analysed in order to achieve the good mesh, 

with the desired precision and the minimum number of elements. However, in this 

analysis, only the basic parameters were introduced, such as velocity inlet, initial 

temperature, type of exit, etc. So, in this chapter other parameters will be studied one 

by one in order to perceive the influence of each parameter in the temperature and 

velocity fields.  

5.1.1.  Boundary condition on the bottom boundary: 0°C 

It was decided that the further simulations would be done using 2 different 

meshes with the same refinement as meshes 4 and 5.  

The objective is to develop the model in order to obtain results that may match 

the reality as better as possible. At this stage, the objective was to analyse the influence 

of the boundary conditions in the final results.  

In the first simulations, a heat flow across the glass of 8.29 W/m2 (figure 5.1) was 

used as a boundary condition. However, this value is affected by the temperatures inside 

and outside the showcase and the materials (glass, steel, etc), so the walls will have 

different boundary conditions depending on the conditions they are subject to.  
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Figure 5.1 - definition of glass, inlet and outlet 

 

The bottom boundary is very specific because below it is the evaporator. Due to 

this and despite the isolation, this wall should be colder than the other ones. For those 

reasons, the boundary condition used on this wall was a constant temperature of 0oC 

(Tbottom = 0oC). Figures 5.2 and 5.3 show the temperature and velocity field for these 

new conditions, respectively. 

 

 

 

Figure 5.2 – temperature field after 120s for meshes 4 and 5, T0 = 15oC, v0 = 2m/s, 

T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC 

4 5 

glass 
inlet 
outlet 
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As expected, this new boundary condition lowered the air temperature in the 

display zone, but the velocity field remains similar. That is because the only parameter 

that was changed was the boundary temperature on the bottom wall, but the geometry 

and inlet conditions were maintained. There is also a big change due to the time 

changing, now the maximum temperature is less than 1°C. These values would be great, 

but at the same time, they are not real because not all the conditions were considered. 

So now it can be questioned that the heat transfer through the walls might be too low. 

According to the bibliography, the heat transfer coefficient through the glass, U, 

may have different values depending on the type of glass it was used (simple, double 

glass, etc.). For simple glasses, the average U is 5,7 W/m2K and for traditional double 

glasses U=2,8 W/m2K [15]. Considering that the temperature differences between the 

air inside the equipment and the outside may be on average between 15 and 20°C, it 

can be concluded that the heat flux (𝑄 = 𝑈 × ∆𝑇) is on average 42 W/m2 for double 

glass and 114 W/m2 for simple glass, which is considerably higher than the coefficient 

that was used on previous simulations.  

With that said, in the next simulations some variations will be addressed in the 

heat flux values through the glass to 50 and 150 W/m2K because of the uncertainty 

about these values. 

 

Figure 5.3 - velocity field after 120s for meshes 4 and 5, T0 = 15oC, v0 = 2 m/s, 

T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC 

 

 

4 5 
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5.1.2. Heat flux 50 and 150 W/m2K 

 The following simulation was based on the same starting conditions as the 

previous one, varying only the heat flux defined through the glass. 

 

Figure 5.4 – glass boundary condition 

For these simulations, new velocity fields will not be presented, because they are 

similar/equal to the previous ones. The figures 5.5 and 5.6 evidence the influence of 

heat transfer through the wall. 

glass 
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Figure 5.6 - temperature field after 120s, T0 = 15oC, v0 = 2 m/s, T(inlet)=0oC, Q(glass)=8.29 W/m2K, T(bottom) = 0oC

  

As it can be seen on figures 5.5 and 5.6, the impact of this heat flux is only local for 

both 50 and 150 W/m2K. The maximum temperature in the highest heat flux is not 

admissible. Although, as it can be seen in figure 5.6, those values only appear near the 

glass, which will not affect eventual products. Although the air curtain is at a higher 

temperature than the rest of the air inside the showcase, the hot air will be exhausted 

in a short period of time, preserving the conditions on the zone products. On the next 

simulations, the heat flux will be 50 W/m2K. 

5.1.3. Back entrances double size bottom 

In previous simulations was evident that there was an issue below the bottom 

shelf because the velocity was too low, and that could cause some problems to the 

quality of the products, depending on which products are refrigerated. To avoid this, it 

was decided to increase the size of the holes in this zone in order to increase the mass 

flow (figures 5.7 and 5.8). 

Figure 5.5 - temperature field after 120s, T0=15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, 
T(bottom) = 0oC  
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On this study, it was decided to use only mesh 4 because the previous simulations 

have the same results for mesh 4 and 5, so there is no point simulate with both meshes. 

 

 

 

 

 

 

As it can be seen in figure 3.14, the velocity was increased on the pretended zone, 

although there is still a small area where the velocity remains low. However, this also 

caused a reduction of the mass flow on the rest of the showcase (because the inlet 

Figure 5.8 - temperature field after 120s, T0 = 15oC, v0 = 2 m/s, 
T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC, with double sized 

entrances on the bottom of the perforated plate 

Figure 5.7 - velocity field after 120s, T0 = 15oC, v0 = 2 m/s, 
T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, T(bottom) = 0oC, with double 

sized entrances on the bottom of the perforated plate   



 

52 

 

velocity/mass flow was maintained), which caused a slight increase of the temperatures 

overall (Figure 5.8). This is not critical in this particular case, but this model is not yet 

completed because the products and some other parameters that would affect 

negatively the performance were not considered yet. 

Then, it can be concluded that this variation is not the best in a general case, but 

it can be a better solution if the products stored need ventilation.   

 

5.2. Geometry with products inclusion and lamps influence 

In this final stage, the products in the geometry will be introduced. These 

products have different dimensions and the bigger products are at the bottom because 

there is more space to place them (figure 5.9).  

 

Figure 5.9 - geometry with products 

 

On the bottom, the dimensions are 200 x 150 and 250 x 150 mm, respectively. 

On the shelves, the products are 70 to 80 mm wide, and 100 to 210 mm height, except 

the smaller one on the top shelf that is 50 mm height. The products have similar 

dimensions that some refrigerated food and drinks (packed products, water bottles, 
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soda cans, etc) and the gaps between have 20 mm or less. The point is to evaluate 

different situations where the space between the products are refrigerated or not. 

The heat flux in the products will not be studied so there is no mesh in them, 

they act only as obstacles to the flow. 

 

5.2.1. Mesh definition 

 The mesh definition is different from the previous ones because the introduction 

of products makes it impossible to produce the same mesh. The first change was the 

type of mesh: before it was a quadrilateral mesh and on this one is hybrid (with 

quadrilateral and triangular elements). In this geometry, the same technique shown in 

Figure 5.2 could not be used, so there are triangular elements near the glass (Figure 

5.10). On the other hand, the elements on the rest of the geometry are quadrilateral 

and the principals followed on the mesh construction are the same, such as the element 

size being smaller near the wall because of the boundary layer. 

 

 

Figure 5.10 - mesh definition near the glass 

In order to have the same precision, the element size is roughly the same, and 

not the total elements. This mesh has 70% fewer elements because there is no mesh on 

the products, which represents 30% of the total area.  

5.2.2. Results 

Figures 5.11 and 5.12 represents the simulation without and with the lamps’ 

influence, respectively. The lamp is collocated near the air entrance on the top. Figure 
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5.13 represents the velocity field of both situations (the velocity results are the same, as 

expected). 

  

 

 

 

Figure 5.12 - geometry with products, velocity field after 120s, T0 = 15oC, v0 = 2m/s, T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, 
T(bottom) = 0oC, with double sized entrances on the bottom of the perforated plate 

  

As it can be seen in Figures 5.11 and 5.12 the influence of the lamp is local, as it 

happened on the heat flux through the glass. The only propagation of the heat 

generation by the lamp is to the air curtain. As can also be seen on these figures, 

between the products there is almost no air flow, except on the top shelf between the 

first and third product. That means that in this zone the refrigeration will be reduced. 

Figure 5.12 - lamps influence, geometry with 
products, temperature field after 120s, T0 = 15oC, v0= 2 m/s, 
T(inlet) = 0oC, Q(glass)= 8.29 W/m2K, T(bottom) = 0oC, with 

double sized entrances on the bottom of the perforated plate 

Figure 5.111 - geometry with products, temperature field 
after 120s, T0 = 15oC, v0 = 2 m/s, T(inlet) = 0oC, Q(glass) = 8.29 W/m2K, 

T(bottom) = 0oC, with double sized entrances on the bottom of the 
perforated plate 
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So, it can be concluded that 20 mm between the products is not enough to ventilate this 

space, a larger space was needed as there is on the top shelf, which is confirmed by 

figure 5.13 (the velocity is nearly 0 in the 20 mm gap).  

However, there are a lot of limitations in the 2D simulations. Firstly, the gap 

between the products all the way across cannot be represented. That means that the 

air could be flowing the products, contrary to what is represented in oud 2D results. 

Secondly the inlet and outlets, so as the gaps in the back of the showcase, are 

represented as lines in 2D, which would be transposed to a rip all the way across. In the 

real geometry, the inlets, outlets and back perforation are often circular holes or 

oblongs, which can be only designed in a 3D geometry. 

These limitations in the 2D geometry can leave us to some conclusions that are 

not true. 
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6. CONCLUSION AND FUTURE WORK 

In this chapter some conclusion will be presented and the future work that would 

best complete this one. 

 Conclusions 

This works contains some simulations with different conditions, where the first 

one is the simplest because it contains only the geometry itself, and the next simulations 

increase one more condition that were taken into account. The point of analysing the 

results this way is to visualize which condition has more impact on the temperature 

and/or velocity field and it becomes easier to see the errors on definition. If only the last 

case was made, it was not possible to verify the influence of each parameter. 

The first case helped us to define the mesh definition for the following ones. At 

the beginning were used more than 1 mesh because it was not certain that the 

complexity of the next simulations would have different results, but it was concluded 

later that was not necessary. 

The heat flux through the wall and the influence of the lamps’ studies are similar 

in the way that it only affects locally for the values used. 

On the other hand, defining the temperature as 0°C on the bottom wall (near the 

evaporator) affected a large area compared with the heat flux definition. 

The last step on the empty showcase was to double the size on the bottom of 

the back perforated plate in order to increase the velocity on this area. It was concluded 

that by increasing the mass flow on the bottom, it will be reduced on the other 

entrances, causing to reduce the velocity of the airflow near the glass (air curtain). This 

might be interesting if depending on the application: if the products are packed, the first 

option is better because the temperature is lower overall, if there are products that need 

to be ventilated to maintain is properties, such as fruits and vegetables, it is better to 

use the second option. 
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Lastly, the geometry of the product is very limited because the products are 

represented by boxes, which have the same width as the showcase, that is not the real 

case, where the products are placed side-by-side, having enough space to the air 

circulate all the way across. This causes that the velocity is zero between the products, 

which is not true neither in width nor in length. For those reasons, where the products 

are included is suitable to develop a 3D simulation in order to get reliable results. 

 Future work 

The future work to complement this one would be a 3D simulation that can 

represent better the reality and it would include more geometry changes, such as air 

entrances and exits, product dimensions and glass configuration, in order to optimize 

the configuration of the final equipment. The velocity inlet could also be analysed in 

order to minimize to reduce costs, always guaranteeing the temperature field remain 

acceptable. Another very important parameter that should be analysed is considering 

the products as a thermal load and not just an obstruction to the flow. As a final task, it 

could be done a prototype to validate all the results. 
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