
University of Minho
School of Engineering
Department of Information Systems

Guilherme Jesus Sousa Fernandes

A Decision Support System for the
Management of Smart Mobility Services

January 2020

University of Minho
School of Engineering
Department of Information Systems

Guilherme Jesus Sousa Fernandes

A Decision Support System for the
Management of Smart Mobility Services

Master Dissertation
Master Degree in Engineering and Management of Information
Systems

Supervisors
Professor Dr. Paulo Cortez
Dr. Nuno Oliveira

January 2020

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as

regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e

direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições

não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM

da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial-CompartilhaIgual

CC BY-NC SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

A C K N O W L E D G E M E N T S

This dissertation represents the culmination of 5 years of learning and continuous growth,
widely reflected in this work. For this to take place, I always had the support of several
people to whom I address my special gratitude:

To Professor Dr. Paulo Cortez and Dr. Nuno Oliveira, for the generosity and trust
when they guided me throughout this journey, and, above all, for the time spent in their
orientation, which, despite the full schedule, was reflected in enriching moments and great
learning.

To my mother and brother, for the unconditional love and affection at all times. Thank
you for your knowledge, for your confidence in me at the most difficult times, for your
support in the hours of happiness and sadness that the writing of this thesis brought.

To Bernardo, Felipe, João and Tiago, my closest university friends, for their friendship,
companionship and help. Thank you for making this journey easier and for your help at
all times, for the pleasure of sharing with you the joys and sorrows. To all my friends
and colleagues who made this journey memorable: thank you for all the unforgettable
moments.

Thanks to my friends, from times when youth and innocence ruled life, Alexandre,
Miguel, and Rui. Thank you for your patience and understanding in my absence. Thank
you for your kindness, trust, and courage that you gave me to pursue and strive for my
goals.

To Daniel, my longtime friend who closely followed this journey, always with a friendly
word to give me. For all the fellowship, friendship and patience, thank you.

To my co-worker Pedro for the tips, advice and willingness to help.
To Afonsina, for the second family that always accompanied me along this journey. Thank

you for the companionship, friendship and alliance that always brightened my days and
that will surely accompany me for the rest of my life.

Finally, I would like to share the merits of this achievement with you, Joana. Because you
have always walked by my side, been my safety net and best friend; half is yours and half is
mine... half is you and half is me. You are the right probability in this Russian roulette life.
As James LaBrie said in that song: ’Never in my dreams could I deserve to ever see a vision
quite like her; then unexpectedly I’m taken by surprise; an angel just appeared before my
eyes’. You really are my Arkenstone.

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not

used plagiarism or any form of undue use of information or falsification of results along the

process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University

of Minho.

R E S U M O

Nos dias que correm, a mobilidade assume especial importância no quotidiano das áreas
metropolitanas em crescimento no país. . Com o notório crescimento das cidades, torna-se
necessária e urgente uma transformação dos costumes e formas de mobilidade dentro das
áreas urbanas, alterando as realidades aparentes que hoje conhecemos. Inseridos numa
sociedade cada vez mais consciencializada e alerta para as questões ambientais, é essencial
transportar esta mentalidade renovada para a resolução das problemáticas citadinas. Assim,
o conceito de “Cidade Verde” levanta uma série de questões que exigem uma resposta eficaz
para o bem-estar dos seus habitantes.

Por entre as várias soluções apresentadas para estas patologias, uma das mais promis-
soras é, sem dúvida, o sistema de mobilidade partilhada. Pela sua dimensão, é pertinente
expor o caso prático da cidade de Barcelona, em Espanha, explorando o seu sistema de
partilha de scooters, um meio que adquire especial importância como meio de transporte
urbano. Como qualquer sistema em constante aprimoramento, procura-se uma solução
para a problemática da variação de procura, que apresenta oscilações constantes, tanto a
nível temporal como geográfico, resultando na falta de veículos em algumas áreas e excesso
noutras. Assim sendo, o rebalanceamento do sistema torna-se crucial para uma possível
maximização na utilização de veículos, satisfazendo a procura e potenciando um aumento
da sua utilização.

No correr desta dissertação, foram estudados e utilizados vários métodos de otimização
moderna (metaheurísticas) para a procura de soluções (sub)ótimas para o(s) percurso(s)
a percorrer pelo(s) veículo(s) que executam a redistribuição das scooter/bicicletas pelas
diversas áreas abrangidas pelo sistema de partilha. Deste modo, foi desenvolvido um
sistema de apoio à decisão para satisfazer estas necessidades, garantindo ao utilizador toda
a informação relevante para um trabalho mais eficiente e preciso.

Palavras-Chave: Sistemas de Mobilidade Partilhada, Problema de Rebalancemanto de
Bike Sharing, Sistemas de Apoio à Decisão, Otimização Moderna, Mobilidade como um
Serviço.

iv

A B S T R A C T

Nowadays, mobility is especially important in the daily life of the country growing metropoli-
tan areas. With the increasing influx of people and development of these large cities, the
reality of mobility that we know becomes increasingly unsustainable. Along with mobil-
ity, the environmental concerns are one of the main topics of discussion worldwide and
the population is starting to act and change the way they live to find a more “green” and
sustainable way of doing it.

Several proposals have been put forward, trying to mitigate this issue and, one of the
most promising is, undoubtedly, shared mobility systems. In this case study will be ad-
dressed the Barcelona scooter sharing system, characterized by its great size and importance
as a mean of urban transport. One of the problems presented by these sharing services is
that demand varies widely, both temporal and geographical. Thus, there are several cases
where there is a lack of vehicles in some areas and an excess in others. The rebalancing of
the system is crucial to maximize vehicle utilization and meet customer demand.

In this thesis, several modern optimization methods (metaheuristics) were used to search
for (sub)optimal solutions for the redistribution route(s). A decision support system was
developed to meet this end, giving the end user relevant information for a more efficient
and precise work.

Keywords: Modern Optimization, Metaheuristics, Machine Learning, Neuroevolution,
Online Learning, Mobile Advertising, Performance-based Advertising

v

C O N T E N T S

1 introduction . 1

1.1 Problem Description and Proposed Solution 1

1.2 Expected Results . 2

1.3 Bibliographic Research Strategy . 2

1.4 Document Outline . 4

2 literature review . 5

2.1 Decision Support Systems . 5

2.1.1 Concept . 5

2.1.2 DSS as an Umbrella Term . 6

2.1.3 DSS as a Specific Application . 6

2.1.4 The Architecture of DSS . 6

2.1.5 Decision Support System Classification 7

2.1.6 The Decision Support System User 8

2.2 Smart Mobility . 8

2.2.1 Mobility as a Service . 9

2.2.2 Vehicle Sharing Systems . 10

2.2.3 Operational Repositioning of Vehicles 11

2.2.3.1 Predicted Demand . 11

2.2.4 Traveling Salesman Problem . 12

2.2.5 Bike Sharing Rebalancing Problem 12

2.2.5.1 Static Approach . 12

2.2.5.2 Dynamic Approach . 12

2.3 Optimization Approaches . 13

2.3.1 Operational Research Methods . 13

2.3.1.1 Linear Programming . 14

2.3.1.2 Integer Programming . 14

2.3.1.3 Branch-and-bound . 14

2.3.1.4 Branch-and-cut . 14

2.3.1.5 Nonlinear Programming 14

2.3.2 Modern Optimization . 15

2.3.2.1 Local Search . 16

2.3.2.2 Population-Based Search 18

2.4 Decision Support Systems for Dynamic Vehicle Relocation 21

2.5 Optimization of Dynamic Vehicle Relocation 25

vi

Contents vii

3 problem formalization . 27

3.1 Problem Description . 27

3.1.1 Descriptive Example . 27

3.1.2 Problem Formulation and Definitions 29

4 development of the optimization system 32

4.1 Formulation . 32

4.2 Read Data . 34

4.3 Define Search Space and Solution Representation 37

4.3.1 Dimension . 38

4.3.2 Bounds . 39

4.4 Search for (sub)Optimal Solution . 40

4.4.1 Objective Goal Formulation . 40

4.4.2 Initial Solution and Population Definition 41

4.4.2.1 Initial Solution . 41

4.4.2.2 Initial Population . 44

4.4.3 Change and Breeding (Genetic Operators) 48

4.4.3.1 Change . 48

4.4.3.2 Breeding (Genetic Operators) 53

4.5 Repair . 54

4.6 Save Results . 56

4.7 Stop Criteria . 57

4.8 New Trip . 59

4.9 Output Results . 60

5 experimental results and discussion 61

5.1 Solution Generation Approaches and Weight Experimentation 61

5.1.1 Weight Experimentation . 62

5.1.2 Initial Solution/Population Experimentation 64

5.2 System Experimentation . 66

5.3 Discussion . 68

5.3.1 Author Defined Solution . 68

5.3.2 System Solution . 71

6 conclusions and future work . 74

6.1 Synopsys . 74

6.2 Discussion . 75

6.3 Future Work . 77

a system environment by scenario . 86

a.1 Scenário I . 86

Contents viii

a.1.1 Evaluation Formula . 86

a.1.2 Fleet . 86

a.1.3 Service Level Requirements . 87

a.1.4 Geospatial Coordinates . 87

a.1.5 Distances . 88

a.1.6 Configurations . 88

a.2 Scenário II . 89

a.2.1 Fleet . 89

L I S T O F F I G U R E S

Figure 1 Literature selection process . 3

Figure 2 High-level architecture of a DSS, adapted from (Turban et al., 2010) 7

Figure 3 Schematic view of a DSS, adapted from (Turban et al., 2010) . . 7

Figure 4 Structure of the three-phase OTS DSS, adapted from (Kek et al.,
2009) . 21

Figure 5 Comparison of OTS against base model, adapted from (Kek et al.,
2009) . 22

Figure 6 Relocation instance depicted . 28

Figure 7 One route rebalancing . 29

Figure 8 Two routes rebalancing . 29

Figure 9 Example of a feasible folution . 31

Figure 10 Optimization system flow . 33

Figure 11 YAML configuration file . 35

Figure 12 Example of a complete directed graph G=(V,A) corresponding to a
fictitious instance of the problem 35

Figure 13 Complete directed graph G = (V, A)fw with real data 36

Figure 14 Complete Directed Graph G = (V, A) fwto feed the system . . . 36

Figure 15 Theoretical solution sepresentation 37

Figure 16 Practical solution representation 38

Figure 17 System variables from the Section 3.1.1 example 43

Figure 18 Initial solution example . 43

Figure 19 Practical representation of an initial solution 43

Figure 20 Solution with no repeated stations 44

Figure 21 Solution with repeated stations 44

Figure 22 Example of two possible individuals of the population 44

Figure 23 System variables from the Section 3.1.1 example 45

Figure 24 Output example of the first solution generation technique . . . 45

Figure 25 Output example of the second solution generation technique . 46

Figure 26 Output example of the third solution generation technique . . . 47

Figure 27 Example of three mutation operators, adapted from (Cortez, 2014) 49

Figure 28 Injection operator . 49

Figure 29 Practical representation of a solution 51

Figure 30 Practical representation of exchange operator 51

ix

List of Figures x

Figure 31 Practical representation of insertion operator 51

Figure 32 Practical representation of displacement operator 51

Figure 33 Practical representation of injection operator 51

Figure 34 Differential operator . 52

Figure 35 Practical representation of differential operator 52

Figure 36 Single-point crossover . 53

Figure 37 Possible solution . 59

Figure 38 Length for different weight scenarios 63

Figure 39 Duration for different weight scenarios 63

Figure 40 Execution time for different weight scenarios 63

Figure 41 Operational time from t1 . 69

Figure 42 System solution representation on Barcelona map 72

Figure 43 Author’s solution representation on Barcelona map 73

Figure 44 YAML configuration file . 88

L I S T O F TA B L E S

Table 1 Percentage improvement in permonce indicator of OTS, adapted from
(Kek et al., 2009) . 22

Table 2 Summary of related literature . 26

Table 3 Relocation needs . 28

Table 4 Notation summary . 29

Table 5 Data provided . 34

Table 6 User defined data . 34

Table 7 Relocations example . 34

Table 8 Distances example . 34

Table 9 Fleet example . 34

Table 10 System new state . 45

Table 11 System new state . 46

Table 12 System new state . 47

Table 13 System output with final journeys 56

Table 14 System initial state . 59

Table 15 System after solution . 59

Table 16 System new state . 59

Table 17 System deliverable . 60

Table 18 Weights for each Scenario . 62

Table 19 Results of the weighted evaluation function experimentation (best
values in bold) . 62

Table 20 Optimization results for the single-state algorithms using random
and customized generation of initial solutions (best values in bold) 64

Table 21 Optimization results for the population-based algorithms using ran-
dom and customized generation of the initial population (best values
in bold) . 65

Table 22 Optimization results for system trial (best values (for each scenario)
in bold) . 66

Table 23 Author defined solution . 68

Table 24 System solution . 71

Table 25 Fleet (available and not available) 86

Table 26 Service level requirements for 2017-11-26 12:00:00 87

Table 27 Stations(areas) locations . 87

xi

List of Tables xii

Table 28 Distance between areas/stations 88

Table 29 Fleet (available and not available) 89

L I S T O F A L G O R I T H M S

1 Hill Climbing . 16

2 Simulated Annealing . 16

3 Tabu Search . 17

4 Evolutionary Algorithms . 18

5 Particle Swarm Optimization . 19

6 Ant Colony Optimization . 20

7 Initial solution with domain knowledge . 42

8 Solution repair method . 54

9 Load repair . 55

10 Stop criteria . 57

xiii

L I S T O F A B B R E V I AT I O N S

ACO Ant Colony Optimization
ANN Artificial Neural Networks

B&B Branch-and-bound
B&C Branch-and-cut
BRP Bike Sharing Rebalancing Problem
BSS Bike Sharing System(s)

DBMS Database Managements System
DSS Decision Support Systems

EA Evolutionary Algorithms

FPT Full-Port Time

GA Genetic Algorithms
GUI Graphical User Interface

HC Hill Climbing

IP Integer Programming

LP Linear Programming

MaaS Mobility-as-a-Service
MBMS Model Base Managements System
MILP Mixed Integer Linear Programming
MO Modern Optimization

NP Nondeterministic Polynomial-time
NR Number of Relocations

OTS Optimization-trend-simulation

PBS Population-Based Search
PSO Particle Swarm Optimization

SA Simulated Annealing
SM Smart Mobility

xiv

List of Abbreviations xv

TS Tabu Search
TSP Traveling Salesman Problem

VRP Vehicle Routing Problem
VSS Vehicle Sharing Systems

ZVT Zero-Vehicle Time

1

I N T R O D U C T I O N

1.1 problem description and proposed solution

This project was born due to a concern of CEiiA, a Centre of Engineering and Product De-
velopment that designs, develops and operates innovative products in the mobility industry.
CEiiA is fully aware of the exponential growth of urban areas and their difficulties to main-
tain a fluid traffic jam and offer a smart and sustainable mobility paradigm to its dwellers.
Along with mobility, the environmental concerns are one of the main topics of discussion
worldwide and the population is starting to act and change the way they live to find a more
“green” and sustainable way of doing it. Consequently, CEiiA saw an opportunity to make
a difference and offered sharing services to the citizens of these overflowing urban areas.

These services offer a mobility solution whereby vehicles (cars, bicycles, scooters, etc.)
located at different stations across the urban areas, are available for shared use. These
systems contribute to a more sustainable mobility in these areas, decreasing traffic and pol-
lution caused by individual transportation. In these systems (sharing services), the demand
is really dynamic and changes quickly, both at temporal and geographic level. There are
many scenarios where there is a lack of vehicles in certain areas and an excess in others.

A few challenges arise when setting up these systems to operate efficiently. Consequently,
the decision makers need some sort of aid to give strength to their assumptions or give them
some information that they were not taking into consideration. More than that, they need
to optimize the way the system is currently working. With this in mind, this project comes
to light, where the goal is to implement a decision support system to assist the management
of smart mobility services.

“If we have some concern about ’sustainability’ we need to anticipate what effects our
use might have on future generations - and we have some clear indicators that there’s a
problem.”

— (Allwood and Cullen, 2012)

1

1.2. Expected Results 2

1.2 expected results

The main goal of this project is to develop a decision support system that optimizes the
relocation operations in CEiiA’s vehicle sharing systems. Through modern optimization
techniques, the operational repositioning of the vehicles will be optimized.

The system should:

• deliver the route(s) that the relocation vehicle(s) should take to rebalance the system;

• detail the outcome (distance and time) to the user; and

• adapt to new information (constraints and assets).

1.3 bibliographic research strategy

Every scientific development starts with a proper scientific research, in which the developer
aims to learn about fundamental concepts of the research theme and discover its state
of the art. Therefore, the researcher needs to follow a search methodology to find the
documentation to support the outcome.

To that end, the investigation process initiated with the investigation of the most im-
portant concepts and related keywords and then went to more specific and practical case
studies. A few search platforms were defined as essential to this step: Google Scholar, Web
of Science, ScienceDirect and ResearchGate.

Aside from the platforms, the keywords choice to unveil the most relevant documents
was also truly important. “Vehicle Routing Problem (VRP)” was the first description of the
project that was found. Since that early definition, others started to appear, as “Vehicle
Sharing Systems (VSS)” or “Bike Sharing Rebalancing Problem (BRP)". All of these are
important and slightly different concepts. The foundation concepts of this project were
also key-concepts to be defined and learned: “Decision Support Systems (DSS)”, “Smart
Mobility (SM)”, “Mobility-as-a-Service (MaaS)” and “Modern Optimization (MO)”.

As expected, several irrelevant articles and books resulted from the search queries. Thus,
a filtering criterion was adopted, as shown in Figure 1, to select the documents to build the
groundwork for this project. All selected works were manually inspected, in terms of their
titles and abstracts.

1.3. Bibliographic Research Strategy 3

Research Relevant
Title?

Unrelevant
reading

Read
abstract

Document
in a rec-
ognized

platform?

Document
with
many
quota-
tions?

Relevant
bstract?

Read
sections

headlines

Related?
Read intro-

duction and
conclusion

Search
keywords
Read the
respective
paragraph

Relevant?

Unnecessary
further
reading

Necessary
reading

no

yes

yes no

yes

no

yes no

noyes

yes

Figure 1: Literature selection process

1.4. Document Outline 4

1.4 document outline

This document is organized in six chapters which are structured as follows: Chapter 1
is the introduction where the problem is described and a solution is proposed; expected
results are outlined and the bibliographic research strategy is depicted. The literature re-
view is presented in Chapter 2. It has six subchapters: Decision Support Systems; Smart
Mobility; Optimization Approaches; Decision Support Systems for Dynamic Vehicle Relo-
cation; Optimization of Dynamic Vehicle Relocation. Decision Support Systems subchapter
approaches the basic concepts of DSS; Smart Mobility covers the concepts of Smart Mobil-
ity, Mobility-as-a-Service, Operational Repositioning of Vehicles and the well-known Bike
Sharing Rebalancing Problem. Optimization Approaches presents the main differences be-
tween the operational research and modern optimization methodologies, detailing some of
the most popular algorithms used in the area. Decision Support Systems for Dynamic Ve-
hicle Relocation document some of the state of the art DSS developments in vehicle routing
problems, with particular attention to vehicle relocation cases. Optimization of Dynamic
Vehicle Relocation subchapter states some of the most common algorithms in the area.

Then, Chapter 3 formalizes the problem and specifies the environment that underpins
the system development. In Chapter 4 the implementation construction and the flow of
the system are detailed, presenting a step by step design. The execution of the algorithms
and their behavior in the search for the sub(optimal) solution is also specified. Chapter 5
demonstrates and discusses the experimental results and Chapter 6 summarizes the sys-
tem conception with closing statements and concludes with recommendations of potential
future work.

2

L I T E R AT U R E R E V I E W

This chapter covers the theoretical background associated with this thesis: “A Decision Sup-
port System for the Management of Smart Mobility Services”. The first section (Section 2.1)
provides an overview of what a Decision Support System is, and which benefits business
managers can expect with his adoption. The next section (Section 2.2)– covers the rising
interest of Mobility-as-a-Service in urban areas. Then, Section 2.3 describes the most tech-
nical aspects of the development of the project itself, presenting an introduction of modern
optimization concepts and some of the algorithms used in operational research ands meta-
heuristics areas, within this project context. Sections 2.4 and 2.5 we address some real cases
examples, proving a practical perception of success cases to be considered when designing
the development phase.

2.1 decision support systems

This section introduces the concept of Decision Support Systems (DSS), presenting defi-
nitions and contextualization about the project. It was strongly influenced by the book
Decision Support and Business Intelligence Systems, 9th edition (Turban et al., 2010), a reference
book in the area. We note that the term DSS is used in this work to refer to both its plural
and singular forms.

2.1.1 Concept

Decision Support Systems (DSS) does not have a universally accepted definition among the
experts of the area for it is a content-free expression1. However, we are going to see some
of the early definitions and relevant concepts that characterize it.

In the early ’70s, Scott Mortin defined DSS as an “interactive computer-based systems
which help decision makers utilize data and models to solve unstructured problems”. A
few years later Keen and Scott-Morton (1978) came with another classic DSS definition that
is still employed nowadays: “Decision support systems couple the intellectual resources

1 Has different meaning to different people.

5

2.1. Decision Support Systems 6

of individuals with the capabilities of the computer to improve the quality of decisions.
It is a computer-based support system for management decision makers who deal with
semistructured problems."

By these definitions, we can perceive a DSS as a computer-based system intended to
support managers in a decision situation. It should be seen as a way to extend decision
makers capabilities and never as a machine with the intent to replace people’s judgment.

2.1.2 DSS as an Umbrella Term

As previously said, DSS definitions are open to several interpretations. DSS can also be
used as an umbrella term. By this characterization, DSS encompasses separate support
systems within an organization, like marketing, finance, accounting, production, and many
other systems.

2.1.3 DSS as a Specific Application

Although DSS is usually applied to refer the umbrella term, some use it to refer to the
application itself. Most of the times, DSS are developed to evaluate opportunities or and
support the solution of a specific problem or set of them.

Usually, DSS have their own databases to support the storage of the data; provide a
straightforward user interface; support all decision-making phases and can be used by a
single user on a personal computer (PC) or by many on a Web-based interface.

2.1.4 The Architecture of DSS

Typically deployed online, DSS have three main components: data, models and a user
interface. There is still a fourth, which is an optional one - Knowledge. The individuality
of the support provided, and overall capabilities of the system are defined by the way these
components are assembled (typically via internet). This suggests that a DSS application
can incorporate a data management subsystem, a model management subsystem, a user
interface subsystem, and a knowledge-based management subsystem.

Data Management Subsystem All the relevant data for the DSS to operate is stored in a
database and managed by Database Managements System (DBMS) software.
Model Management Subsystem
This subsystem is a software package which contains statistical, financial and other quan-
titative modelsthat provide analytical capabilities and appropriate software management.
This software is generally called a Model Base Managements System (MBMS)

2.1. Decision Support Systems 7

Figure 2: High-level architecture of a DSS, adapted from (Turban et al., 2010)

User Interface Subsystem
The final user is also considered a part of the system. He communicates with the DSS
through the user interface subsystem. Most of Decision Support Systems provide a Graph-
ical User Interface (GUI) over a Web Browser.
Knowledge-Based Management Subsystem
A DSS must include the three components described until now - DBMS, MBMS, and GUI.
The knowledge-based management subsystem is nonmandatory, but it can grant intelligence
and other benefits to the system. This subsystem can act as an independent component of
the system or support the other three. This knowledge is usually granted by Web Servers.

Figure 3: Schematic view of a DSS, adapted from (Turban et al., 2010)

2.1.5 Decision Support System Classification

The expected outcome of this project is a DSS that, with the proper input, should give the
best answer to the final user. Therefore, the emphasis of this system will be optimization.
This purpose fits in the Model-Driven DSS classification. The focus of such systems lays on
optimizing one or more objectives, like increase profit, reduce costs, etc.

2.2. Smart Mobility 8

2.1.6 The Decision Support System User

This project intends to improve Decision Support Systems of CEiiA’s sharing services by
proposing better routes for their maintenance operations. The main objective is to provide
DSS users with real-time information that permits more efficient maintenance operations;
not only for the rebalancing of the system but also for the preservation of the vehicles
functionality (e.g., battery change).

2.2 smart mobility

Smart Mobility is a new concept that came in the last few years with the growth of internet
of things applications and other emerging technologies. Marked by the promise of environ-
mental change and new mobility solutions, this key component to urban transportations
change aims to reduce car use and related problems, like traffic congestion, crashes, poor
air quality and more (Docherty, 2018).

Private vehicle ownership is still the solution adopted by the great majority of the pop-
ulation to address their everyday mobility purposes. A massive adoption of the Mobility-
as-a-Service (MaaS) paradigm requires a mindset shift from vehicle ownership to vehicle
‘usership’ (Wockatz and Schartau, 2015). Smart Mobility acceptance and implementation can
change the way we live in society, avoiding much of the waste, pollution and environmental
degradation (Docherty, 2018).

Nowadays, we can already see the numbers and the change associated with this shift.
In 2014, car sharing systems had almost 5 million members and 92000 vehicles worldwide
(Vine et al., 2014). The International Transport Forum (ITF-CPB, 2017) went even further
when predicted that an integrated system of on-demand taxis and taxi buses in a rail system
in Lisbon, Portugal could achieve a 44% reduction in peak vehicle kilometres and 53%
reduction in CO2 emissions in the city, and release fully 95% of parking spaces for other
public uses.

Hietanen (2014) sets out his view of future mobility as seeing “the whole transport sec-
tor as a co-operative, interconnected ecosystem, providing services reflecting the needs
of customers”. The boundaries between different transport modes are blurred or disap-
peared completely. The ecosystem consists of transport infrastructure, transportation ser-
vices, transport information and payment services.

2.2. Smart Mobility 9

2.2.1 Mobility as a Service

Mobility-as-a-Service, or MaaS, is a recent concept in the Smart Mobility arena (Pangbourne
et al., 2018) that presents itself as being a new business model for delivering sustainable
transport services (Signorile et al., 2018). As all “as-a-service” instances, Mobility-as-a-
Service assures a personalized use of a bundle of transportation means such as taxis, buses,
cars or bikes for a certain amount of time. Mobility-as-a-Service (MaaS) focuses on address-
ing the needs of the everyday person, providing a set of trip options with different modes,
time and cost (Mulley, 2017).

According to Bude (2016), to work properly, MaaS requires:

• widespread penetration of smartphones on 3G/4G/5G networks;

• secure, dynamic, up-to-date information on travel options, schedules, and updates;

• high levels of connectivity; and

• cashless payment systems.

To enable these conditions, different actors need to cooperate (Goodall et al., 2017):

• mobility management players;

• telephone companies;

• payment processors;

• public and private transportation providers; and

• local authorities with responsibility for transportation and city planning.

Mulley (2017) emphasizes that the conditions to make this change already exist. He
says that the millennials generation is the most predisposed segment of the population to
accept this new paradigm of mobility, due to their level of acceptance of technology, great
flexibility and adaptation capabilities.

2.2. Smart Mobility 10

2.2.2 Vehicle Sharing Systems

Vehicle Sharing Systems are an application of Mobility-as-a-Service, where vehicles such
as bicycles, low emission cars, and electric vehicles (Nair and Miller-Hooks, 2011), are
strategically located in stations across the urban transportation network and represent an
emerging transportation scheme.

For example, users of car sharing systems can rely on a service that provides the comfort
and convenience of private automobiles without having to support their buying cost, insur-
ance and maintenance requirements, fuel expenses or parking headaches (Mitchell, 2008).
Generally, there are three types of car sharing systems implementations (Ait-Ouahmed
et al., 2017):

Stations-based car sharing There are two types of stations-based systems:

1. Round trip car sharing where users must bring the cars back to the departure station;

2. One-way car sharing where users can park the car at a chosen station, among all the
available.

Free-float car sharing This service operates without stations. Users can pick up and
return a vehicle anywhere within a defined area.

In light of the previous example, bike sharing systems offer a one-way approach where
public bicycles, located at different stations across a specific region, are available for shared
use (Dell'Amico et al., 2014). Customers can pickup a vehicle at any location and not
necessarily return it to the departure one.

This project is based on a one-way sharing system. It offers an enormous advantage
for the customers due to the commodity to the user, once he can return the bike to a
area/station close to his destination. This approach tends to lead to an unbalanced system,
where some stations are fully occupied or congested (more than required) and others are
empty or with fewer vehicles than required. Hence, the need for a balanced system urges
and a redistribution of vehicles among stations is required.

2.2. Smart Mobility 11

2.2.3 Operational Repositioning of Vehicles

The design and management of vehicle sharing systems is a tough and meticulous exercise
that raise several optimization problems and design decisions such as the location, number
and capacity of the stations; vehicles fleet size; and others.

The criteria of success of these systems is the guarantee of vehicles availability, so every
decision should be made to ensure enough coverage (i.e., satisfy user demand with appro-
priate quality of service) while minimizing investments and maintenance costs (Gavalas
et al., 2016). These decisions will not be covered in this project, being the responsibility of
CEiiA’s management board. Then again, the strategy adopted to verify the demand needed
for each day and in which hour must be discussed in this report.

2.2.3.1 Predicted Demand

Until now we have learned that, due to spatio-temporal variation of requests, vehicle re-
location is important to enhance the performance of the system. Having to adapt to user
demand dynamics, vehicle relocation activities are typically needed several times on the
course of a day. Thus, relocation decisions are bound, not only to spatial constraints but
also temporal (Gavalas et al., 2016).

Various authors and researchers have different perspectives on how to address these prob-
lems. For example, Froehlicj et al. (2008) predicts the user demand for available bicycles in
a certain station at a certain time. O’Mahony (2015) predicts the service level requirements
for rush hours through the analysis of historical data. For this practical case, an approach
was chosen and implemented: Data Mining approach.

A Data Mining approach (Vogel et al., 2011), through data mining methods and geograph-
ical information technology, grant insight into the complex vehicle (car, bicycle) activity
patterns at stations. A proper design and management of the system based on historical
data and demand prediction should enhance relocation strategies.

2.2. Smart Mobility 12

2.2.4 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization (Cortez,
2014) and can be stated as follows: "A salesman is required to visit each of the n given cities
once and only once, starting from any city and returning to the original place of departure.
What route, or tour, should he choose in order to minimize the total distance traveled?"
(Lin, 1965). The goal is to find the cheapest way of visiting all cities of a given map (Cortez,
2014), with the cost being distance, time or expense (Lin, 1965).

2.2.5 Bike Sharing Rebalancing Problem

A system like vehicle sharing has costs that can fluctuate intensely, depending on a group
of variables, like the population density of the area, the fleet size or the system itself. The
repositioning task is usually assigned to capacitated vehicles based on a central depot that
transfer vehicles from congested stations to ones with fewer vehicles than required, rebal-
ancing the system. The literature refers to the resulting optimization of which route the
vehicles should take, to perform the redistribution at minimum cost, as Bike Sharing Re-
balancing Problem (BRP) (Dell'Amico et al., 2014). There are two ways to address the Bike
Sharing Rebalancing Problem - a Static and a Dynamic one.

2.2.5.1 Static Approach

Also known as Single-Periodic Rebalancing, this version only allows the repositioning of the
vehicles when users cannot act on them during the process (Chemla et al., 2013) – during
the night in most cases. The level of occupation at the stations is measured once and then
the redistribution is planned (Dell'Amico et al., 2014). Static approaches, however, may not
be enough to avoid network failures during the day (Chiariotti et al., 2018) .

2.2.5.2 Dynamic Approach

Also known as Multi-Periodic Rebalancing, is the opposite of the static approach. In other
words, the real-time usage of the system is considered, and the redistribution plan can be
updated as soon as the information required to make decisions is revealed (Dell'Amico et al.,
2014). This suggests that dynamic rebalancing aims at redistributing bikes throughout the
day according to the current network state (Chiariotti et al., 2018) .

2.3. Optimization Approaches 13

2.3 optimization approaches

The concept of optimization is a principle underlying the analysis of complex decision
problems (Luenberger and Ye, 2008). When addressing a complex decision problem, we
focus on an objective. That same objective can be maximized or minimized (depending on
the problem) and have several constraints that can hinder the search of the solution.

Decision problems can have truly different complexities. In this project, we are going to
address a decision problem that exhibits a major complexity level. The Static BRP is NP-
Hard (Schuijbroek et al., 2017). The Dynamic variant has a higher level of complexity so is,
at least, NP-Hard (Ghosh et al., 2017).

NP-HARD
Nondeterministic Polynomial-time (NP) (Moura, 2006) is a complexity class used to clas-

sify decision problems. NP is the collection of decision problems for which the problem
instances are verifiable in polynomial time2 (Kleinberg and Tardos, 2006). There have been
numerous efforts to find polynomial time algorithms for problems in NP.

NP-hard problems are the ones which are, at least, as hard as the hardest problems in
NP. In real practical applications, potentially suboptimal solutions might be determined in
polynomial time (instead of looking for optimal ones, consuming computational resources).
Some algorithms are following presented.

2.3.1 Operational Research Methods

As the name suggests, operational research3 involves ’research on operations’ and is applied
to problems related to operations within an organization. It has been practiced in several
areas such as transportation, manufacturing, public services4.

Usually, operational research tries to find the best (optimal) solution to the problem, iden-
tifying the best course of action. To do this, it uses systematic solution procedures, famously
known as algorithms. To clarify, we are going to see some of those algorithms, with special
attention to those used in previous work, related to vehicle routing and rebalancing prob-
lems. The objective is not to give you a full understanding of each algorithm but to describe
in global terms how operational research tends to approach real-world problems.

2 polynomial time is an efficiency measure of an algorithm. It refers to how quickly the number of operations
needed by an algorithm grows.

3 Also known as Operations Research.
4 This section was strongly influenced by Hillier and Liberman (2014).

2.3. Optimization Approaches 14

2.3.1.1 Linear Programming

Before we proceed to the algorithms, there is a concept that we need to clarify - Linear
Programming (LP). LP uses a mathematical model to represent the problem of interest.
Linear indicate that all the mathematical functions in the model must be linear functions5.
Programming is a synonym for planning. Therefore, LP suggests the planning of activities
to reach an optimal result, among all feasible alternatives.

2.3.1.2 Integer Programming

Integer Programming (IP) designates a Linear Problem that requires the variables to be inte-
gers; it is usually necessary to assign people, machines, and vehicles to activities in integer
quantities. If only some of the variables are expected to have integer values, the model is
referred to as Mixed Integer Linear Programming (MILP)6.

2.3.1.3 Branch-and-bound

In a pure IP problem, only a few solutions can be listed as feasible. The most popular way
to find optimal solution while working with IP algorithms is the Branch-and-bound (B&B)
technique (to identify feasible integer solutions). Considering the original problem to be
too heavy to be solved in a reasonable amount of time, the same is divided into smaller
’subproblems’ until this assumption is no longer applicable.

2.3.1.4 Branch-and-cut

The very first algorithms developed for IP were based on cutting planes but, in practice, the
outcome was not the expected. Over time, the combination of cutting planes and Branch-
and-bound7 algorithms proved to be a powerful algorithm approach to solve large-scale IP
problems. And so, the Branch-and-cut (B&C) algorithm was born.

2.3.1.5 Nonlinear Programming

The assumption that the real-world problems are all linear does not hold. Many economists
say that in economic planning problems, linearity is an exception. In the last decade, the
modeling of nonlinear problems grew substantially. So, nonlinear programming uses a
mathematical model to represent the problem of interest and not all the mathematical func-
tions in the model are linear.

5 A function whose graph is a straight line - a polynomial function of degree zero or one (Gel’fand, 1989).
6 When all variables are expected to have integer values, the model is referred to as pure integer programming.
7 B&C is a B&B technique, where search space is reduced by adding new constraints (cuts) - (Vaira, 2014).

2.3. Optimization Approaches 15

2.3.2 Modern Optimization

The discipline of Operational Research produced many techniques to address multiple real-
world problems. These optimization techniques are often referred to as ’classic’ techniques
(Michalewicz, 2007). On the other hand, Modern Optimization8 (Michalewicz et al., 2006)
methods are appropriate to a wide range of distinct problems, with no need for extensive
domain knowledge, or problems for which no specific optimization algorithm has been
developed, in contrast with these classical techniques (Cortez, 2014). Another differenti-
ating aspect is that Modern Optimization does not assure that the best possible solution
(optimal) is always found but, instead, with reasonable use of computational resources, a
high-quality solution (sub-optimal) is determined.

Once the objective of the optimization9 is clear and defined, only two details need to be
specified: The representation of the solution and the evaluation function. The representa-
tion of the solution is a predominant specification. It will determine the search space and
its scope and, if we do not select the correct domain, in the beginning, we might end up
digging holes in a territory with no gold. The next thing to do is design an evaluation
function that allows the algorithms to evaluate how good a solution is and compare the
quality of different ones (e.g., Formalization 1).

A general constrained optimization problem can be formally stated as follows (Rao, 2009):

minimize
X

f (X)

subject to gj(X) ≤ 0, j = 1, . . . , m

hj(X) = 0, j = 1, . . . , p

(1)

where X is an n-dimensional vector called the design vector, f (X) is the objective function
and g(X) and h(X) are constraints. The components of the X vector are the design or
decision variables xi, i = 1, 2, . . . , n. Finally, the set of all possible solutions define the
search space.

After clarifying the core aspects of modern optimization, their most popular algorithms
(related to this project) are next detailed. The blueprint of the algorithms was based on
Cortez (2014) and Blum and Roli (2003).

8 Also known as “modern heuristics” (Michalewicz and Fogel, 2004) and “metaheuristics” (Luke, 2013)
9 Minimization/maximization expression, regarding the domain constraints.

2.3. Optimization Approaches 16

2.3.2.1 Local Search

Also known as single-state search, local search optimization algorithms concentrate in a local
neighborhood of a given initial solution, generating new solutions from current ones. All
local optimization techniques use iterative improvement (Michalewicz, 2007).

Hill Climbing

Hill Climbing (HC) is a local optimization technique that hikes up and down a hill until
a local optimum is obtained. It starts by considering a single current solution in the search
space and comparing it to a new one from its neighborhood. If that solution has a better
fit to the problem than the current one, this one starts to be considered the best solution
and the former is forgotten. Otherwise, nothing happens and another neighbor is selected,
repeating the procedure. The procedure ends when no further improvements are feasible,
or the designated time runs out (Michalewicz, 2007).

Algorithm 1 Hill Climbing
Input: s (initial solution), f (evaluation function), . . . (other parameters)

while termination conditions not met do . E.g. maximum number of iterations
s′ ← change(s, ...) . Pick a solution from s neighborhood
s← best(s, s′, f) . Select best solution for next iteration

end while
Output: s

Simulated Annealing

In the ’80s, a variation of the Hill Climbing was proposed: Simulated Annealing (SA).
Inspired by the annealing phenomenon of metallurgy, SA considers a control parameter T
(commonly referred to as temperature) to decide whether to accept an inferior solution or
not10. The parameter T starts the execution with high values (randomizing the search) and
then, gradually decreases. Towards the end, the T value is quite low, making the algorithm
behave like Hill Climbing.

Algorithm 2 Simulated Annealing
Input: s (initial solution), T (initial temperature), f (evaluation function), . . . (other parameters)

while termination conditions not met do
for i iterations do . Iterate i times for each T

s′ ← change(s, ...) . Pick a solution from s neighborhood
if s′ = best(s, s′, f) then

s← s′ . Select best solution for next iteration
else

s← accept(T, s′, s) . accept worse solution
end if

end for
T ← cooldown(T) . Cooling schedule

end while
Output: s

10 The higher the temperature (T value), the higher the probability to accept an inadequate solution is.

2.3. Optimization Approaches 17

Tabu search

Tabu Search (TS) is a variation of Hill Climbing (Cortez, 2014). Its purpose is simple
- prevent an iteration of the search that had already been performed (during a specified
amount of iterations). The way that this happens is also simple. The algorithm includes
a ’memory’ (tabu list of length L) that forces the search to move to unexplored search
space, preventing it from being stuck in a local optimum. The memory stores the most
recent solutions and does not let the algorithm ’visit’ them in the next iterations, avoiding
unnecessary searches. After the number of iterations surpasses the length L of the memory,
the positions turn, once again, available.

Algorithm 3 Tabu Search

Input: s (initial solution), f (evaluation function), . . . (other parameters)
list← {} . Tabu list
while termination conditions not met do

s′ ← change(s, list, ...) . Pick a solution from s neighborhood,
not in list

if s′ = best(s, s′, f) then
update(list, s) . Update list
s← s′ . Select best solution for next iteration

else
update(list, s′) . Update list

end if
end while

Output: s

2.3. Optimization Approaches 18

2.3.2.2 Population-Based Search

Another interesting class of search methods is the Population-Based Search (PBS). Instead
of using a single search point, PBS uses a set of feasible solutions. Because of this, these
methods tend to avoid being stuck at local minimums by easily locating worthy regions of
the search space (Michalewicz and Fogel, 2004).The usage of more computational power
can be justified by the diversity of solutions that can be found, using these methods. Most
population-based methods steal concepts from biology (Luke, 2013).

Genetic and Evolutionary Algorithms

Based on evolution theory, Genetic Algorithms (GA)11 follow the principle in which only
the fittest entities survive. More recently, the term Evolutionary Algorithms (EA) was
adopted to address genetic algorithm variants, which include real value representations
and flexible genetic operators (Michalewicz, 1996). In a simple way, following the biologi-
cal terminology associated (Luke, 2013), the behavior of the algorithms goes something like
this: It starts with an initial generation of candidate solutions and then generates new ones
(breeding) through genetic operators like crossover and mutation. Crossover generates children
through a combination of two or more parent solutions, while mutation performs a small
change to an individual (Cortez, 2014).

Algorithm 4 Evolutionary Algorithms

Input: f (evaluation function), . . . (other parameters)
P← initialize(. . .) . Random (or not) initial population
while termination conditions not met do

eval(P) . Evaluate P individuals
p← select_parents(P) . Select a set of parents from P
p′ ← crossover(p) . Create offspring
p′′ ← mutation(p′) . Apply mutations to some children
eval(p′′) . Evaluate new individuals
P← select(p ∪ p′′) . Set next population

end while
Output: P

11 Proposed John Holland at the University of Michigan in the 1970s (Luke, 2013).

2.3. Optimization Approaches 19

Swarm Intelligence

With a family of algorithms like Particle Swarm Optimization (PSO) and Ant Colony Opti-
mization (ACO), Swarm Intelligence is inspired by the swarm behavior manifested by several
animals, like ants, bees, and others (Cortez, 2014). The essence of Swarm Intelligence lays
on the self-organized behavior that the agents’ population presents (Michalewicz, 2007).

particle swarm optimization is a stochastic12 optimization technique that is es-
sentially a form of guided mutation (Luke, 2013). Unlike other population-based methods,
PSO does not focus on expanding the population but in its preservation. When changes
in the search space are detected, the population members are tweaked. In other words,
candidate solutions are mutated towards the best solution (the guided mutation moves the
particles in the search space).

Algorithm 5 Particle Swarm Optimization

Input: f (evaluation function), . . . (other parameters)
Population← initialize_population() . Initialize population
Best← best(P, f) . Best particle
while termination conditions not met do

for p ∈ Population do . Iterate over all particles
s← move(s, ...) . Update particle’s position
s← adjust(s, ...) . adjust s position (if outside bounds)
if f (s) < f (p) then

p← s . Update previous best
end if
if f (s) < f (B) then

p← s . Update best value
end if

end for
end while

Output: B

12 Something that was randomly determined.

2.3. Optimization Approaches 20

ant colony is an algorithm inspired by real colonies of ants, which pour pheromone
on the ground to influence the behavior of other ants; the greater the amount of pheromone
on a particular path, higher the probability that other ants will select it. In these systems,
the pheromone levels guide the creation of new solutions (Michalewicz, 2007).

Algorithm 6 Ant Colony Optimization

Input: f (evaluation function)
initialize_pheromone() . Initialize pheromone levels
while termination conditions not met do

for ant ∈ Colony do . Iterate over all ants
s← constructSolution() . Construct solution
f (s) . Evaluate s

end for
update_pheromone() . Update pheromone levels

end while
Output: s

2.4. Decision Support Systems for Dynamic Vehicle Relocation 21

2.4 decision support systems for dynamic vehicle relocation

As we saw, these sharing services need some sort of system that offer some aid to the
management when it comes to decision making. To this day, different Decision Support
Systems were developed to help these managers, allowing them to have a clearer view of
the day to day scenarios and provide information about what repercussions each decision
should lead. Some real-world examples are presented in the next section.

Kek et al. (2009) present a three-phase optimization-trend-simulation (OTS) decision sup-
port system to help car sharing operators determine a set of near-optimal manpower and
operating parameters for the vehicle relocation problem. This DSS was tested on real-world
operational data from a car sharing company in Singapore. The results are fascinating.
They suggest that the manpower recommended by the system lead to a cut in staff cost of
50%, a reduction in zero-vehicle-time ranging between 4.6% and 13.0% and a contraction
in the number of relocations between 37.1% and 41.1%. The structure of this approach is
presented in Figure 4 .

Figure 4: Structure of the three-phase OTS DSS, adapted from (Kek et al., 2009)

The first phase of the OTS is an Optimizer. It receives, as input from the car sharing sys-
tem, characteristics such as the number of parking stalls, staff costs, vehicle relocation costs;
then proceeds to determine the resource allocation that minimizes the cost, displaying the
optimized staff needs and activities, relocations and the number of vehicles at the stations
at each time.

Trend Filter, the second phase, receives the output from the Optimizer and ’filters’ them
through heuristics. The expected output is a set of recommended operating parameters.
The third and last phase of OTS evaluates the effectiveness of the recommended parameters
using three performance indicators - ZVT (Zero-Vehicle Time), FPT (Full-Port Time) and NR
(Number of Relocations).

We note that in this work, when ZVT occurs at a station, the station has no available
vehicles to satisfy the demand. When FPT occurs, the station has no empty parking stalls
and users want to return the vehicles to that station (not being able to do so). A greater
value of NR means a higher cost of vehicle relocation operations and, both ZVT and FPT
reduce the attractiveness of the carsharing system to users. Consequently, for an optimal
performance of the system, the values for ZVT, FPT and NR should all be minimized (close
to zero). The implementation of OTS presented interesting results. In Figure 5 we can see
that all the performance indicators are either maintained or reduced. The most relevant
value is the NR. NR levels dropped to an exciting 41.1%.

2.4. Decision Support Systems for Dynamic Vehicle Relocation 22

Figure 5: Comparison of OTS against base model, adapted from (Kek et al., 2009)

From the values shown in Table 1, we can see the performance improvement when com-
pared to the base model.

Table 1: Percentage improvement in permonce indicator of OTS, adapted from (Kek et al., 2009)

Vehicle to Trip-Station Improvements

Ratio dfgwZVT dffwFPT dfwNR

0.03 4.6 0.0 41.1
0.07 6.0 8.1 38.0
0.12 11.2 0.0 37.1
0.21 13.0 71.3 0.0

In another example, Caggiani and Ottomanelli (2012) developed a flexible fuzzy DSS
(based on a Fuzzy Inference System13) for the vehicles relocation in a bike sharing system.
The goal was to determine the optimal repositioning flows, time intervals and distribution
patterns that would minimize the redistribution costs and assure user satisfaction.

The system starts to predict future demand among stations, basing the forecast demand
method on Artificial Neural Networks (ANN) and Fuzzy Logic14. The Neural Net translates
the spatio-temporal variation of requests, giving the user important feedback about the
vehicle usage for that day or time period. Being based on fuzzy logic suggests that the result
can be better than a traditional one, especially when dealing with uncertain, imprecise or
ambiguous environment.

13 A fuzzy inference system is a system that uses fuzzy set theory to map inputs to outputs.
14 Fuzzy logic is an approach based on ’degrees of truth’ rather than the usual ’true or false’ logic on which the

modern computer is based.

2.4. Decision Support Systems for Dynamic Vehicle Relocation 23

When the demand is known, the system needs to be rebalanced. The relocation paths are
calculated by solving the well-known TSP, formulated as fixed-point Non-Linear Integer Opti-
mization. The solution algorithm is based on a Branch-and-bound algorithm. The proposed
DSS leads to a diminution of lost users, increasing their probability of finding available
bikes or free slots. The operation of the system was only simulated and not deployed, but
easily could be extended to wider and real sized systems.

Many were the initiatives that emerged in the last few years, regarding vehicle routing
problems. These examples were detailed because of the similarities to this project, but we
are going to see many other important developments in this specific area. Not all of them
are about Decision Support Systems per se, but the fundamentals of redistribution systems
are covered.

In the late ‘90s, Dror et al. (1998) proposed that a fleet of electric vehicles relocation
should be made by a fleet of capacitated tow trucks. Two decades after, we are still making
progress in this area, that is more actual than never. A year later, Barth and Todd (1999)
simulated a rebalancing system and showed that the vehicle relocation is minimized when
18-24 vehicles are available for every 100 users.

A few years later, Wang et al. (2010) presented a forecast-based relocation model that
showed an improvement in the overall efficiency of the system. Correia and Antunes (2012)
formulated a Mixed Integer Linear Programming (MILP) strategy to optimize the depot
location in a one-way carsharing system and Boyacı et al. (2015) proposed a multi-objective
MILP to develop one with an electric fleet.

The benefit of sharing systems in coexistence with other networks such (as public trans-
portation) was studied by Chow and Sayarshad (2014) and, in the same year, Nourinejad
and Roorda (2014), by taking the user needs and individuality into account (departure,
arrival and request time), defined a better model that can be used, not just as a DSS for
optimal relocation operations, but also as a strategic decision-making aiding tool to find an
optimal fleet size.

In round-trip systems, the requirements are slightly different. The fact that the users have
to return the vehicles to the departure location forces the system to have a higher fleet size
(Nourinejad and Roorda, 2015).

When the system has uncertain requirements, some adjustments need to be made. Stud-
ies were made and articles were published to address these particular cases. Fan et al. (2008)
and Nair and Miller-Hooks (2011) developed different models to address these issues. The
first had the objective of maximizing revenues and minimizing relocation costs; the second
wanted to minimize the cost of vehicle relocation.

When it comes to bike sharing systems, some things are not the same. The literature
covers that as well. Some examples will be following presented.

2.4. Decision Support Systems for Dynamic Vehicle Relocation 24

Froehlicj et al. (2008), using data from a Bike Sharing System(s) in Barcelona (Spain),
tested a few predictive techniques to forecast the demand. The results present an aston-
ishing average error of 8% over all days. Another experiment, led by Borgnat et al. (2011),
through data from BSS on Lyon (France), predicted hourly rental of vehicles.

Many different approaches were used in the last few years to predict user behavior and
habits towards demand. Hemdersom and Fishman (2013) predicted departures and arrivals
from customers on time window of 1 hour and the expectation of stations occupancy. The
model was tested on the BSS from Chicago (EUA).

Borgnat et al. (2011) and Caggiani and Ottomanelli (2013) went the extra mile and in-
cluded weather and holidays in their studies. With that detail, they were able to improve
their predictions accuracy in more than 50%.

Predictions of users demand only give companies the knowledge to design better sys-
tems. The real value emerges when inventory and routing problems start to take part in
the equation. Some authors described their work with these aspects. Caggiani and Ot-
tomanelli (2013) proposed a DSS that, based on the user demand prediction, minimized the
repositioning costs. Schuijbroek et al. (2013) also address both problems, combining them
into a single framework. To summarize, through historical data, estimate optimal inventory
levels, which serve as a base to the routing problem, minimizing the distance to travel. The
model performance was tested on systems from Boston and Washington (USA). A solution
was identified within one or two minutes (better than other often-used formulations after
two hours).

Regue and Recker (2014) proposed to find the optimal inventory levels at each station
and the optimal routes for the repositioning vehicles to redistribute bikes through a BSS.
They combined different datasets to foresee future station inventory levels. Based on the
results, a stochastic linear integer problem was resolved to determine the estimated number
of bikes required at each station.

As we can see, this area has experienced a boom in the last few years derived to the
necessities of today’s society.

2.5. Optimization of Dynamic Vehicle Relocation 25

2.5 optimization of dynamic vehicle relocation

Now that we covered the fundamentals of some algorithms, we can have a better under-
standing of why they are being used in this area. We are going to see some work from
multiple authors to have a clearer perception of the state of the art. We are only going to
address routing optimization and leave out other system design initiatives, like the determi-
nation of size and location of stations. To see some of the related work to that end consult
authors/articles like Lin and Yang (2011).

Brinkmann et al. (2016) presented a multi-periodic inventory routing problem, evaluated
by a cost-benefit routing algorithm. Two search algorithms were implemented in their work:
Hill Climbing to choose the best solution (until a local optimum is found) and Simulated
Annealing, for further exploitation of the search space.

From the system of Reggio Emilia (Italy) was collected the data that served for testing of
the Dell'Amico et al. (2014) research. They addressed the Bike Sharing Rebalancing Problem
as a four Mixed Integer Linear Programming formulation, including an exponential number
of constraints, and Branch-and-cut algorithms. Caggiani and Ottomanelli (2012) formulated
the problem as a fixed-point Optimization, basing the solution also in a Branch-and-bound
procedure. Chemla et al. (2013) also proposes a Branch-and-cut algorithm for the problem:
to obtain the lower bound. Through Tabu Search, they obtained the upper bound of the
optimal solution.

Raviv et al. (2013) presented two MILP formulations to a static rebalancing problem in
which they minimized traveling costs and user dissatisfaction by assuring a proper inven-
tory level in each station. Each one describes a distinct version of the problem. Another
MILP formulation was developed by Ghosh et al. (2017). Their ultimate objective was to
maximize profit for a bike sharing system, considering a trade-off between demand (max-
imize) and expenses (minimize). On the other hand, Contardo et al. (2012) offer a for-
mulation for the dynamic rebalancing problem. The purpose of the optimization was the
maximization of the service demand.

For the dynamic rebalancing of a bike sharing system, Chiariotti et al. (2018) came up
with a greedy rebalancing path, implementing a nearest-neighbor heuristic, with the goal
of improving the availability of the service.

In the vehicle routing Marinakis et al. (2010) proposed a hybrid algorithm based on Parti-
cle Swarm Optimization. Gong et al. (2012) also worked with Particle Swarm Optimization
to address the Vehicle Routing Problem (VRP) with time windows. Three years later, Mari-
nakis et al. (2013) solved a variant of the problem with the same approach, the Vehicle
Routing Problem with stochastic demands. Bianchi et al. (2006), in the same problem, ex-
plored the hybridization of metaheuristic by means of two objective functions and Mak and
Guo (2004) explored Genetic Algorithms, taking into account soft time windows. In the

2.5. Optimization of Dynamic Vehicle Relocation 26

same problem, but with a distinct strategy, Vaira (2014) proposed a genetic algorithm based
on a random insertion heuristics. They also used Branch-and-bound (B&B). Lei et al. (2012)
went the extra mile and addressed the Vehicle Routing Problem with Stochastic Demands
and Split Deliveries, using an adaptive large neighborhood search heuristic.

Rizzoli et al. (2007) used an Ant Colony Optimization metaheuristic and applied their
research to real-world variants of the vehicle routing problem. A VRP with time windows
for an important supermarket in Switzerland; VRP with pickup and delivery for a lead-
ing distribution company in Italy; a time-dependent VRP for load distribution in Padua,
Italy (trip depends on the time of day); on-line VRP in Lugano, Switzerland (customers’ or-
ders arrived during the delivery process). Table 2 summarizes the most important related
literature.

Table 2: Summary of related literature

Study Static (S)/ Modern Optimization (M)/ Bike Sharing Car Sharing
Dynamic (D) Operational Research (O)

(Caggiani and Ottomanelli, 2012) D O X 5

(Dell'Amico et al., 2014) D O X 5

(Raviv et al., 2013) S O X 5

(Ghosh et al., 2017) S O X 5

(Chemla et al., 2013) S O X 5

(Brinkmann et al., 2016) D M X 5

(Bianchi et al., 2006) S M X X
(Gong et al., 2012) S M X X
(Marinakis et al., 2010) S M X X

(Rizzoli et al., 2007) D M X X
(Mak and Guo, 2004) D M X X

(Fan et al., 2008) D O 5 X
(Kek et al., 2009) D O 5 X
(Correia and Antunes, 2012) D O 5 X
(Boyacı et al., 2015) D O 5 X

3

P R O B L E M F O R M A L I Z AT I O N

3.1 problem description

CEiiA is a Portuguese company that has projects all over the world. The output of this
thesis is expected to be implemented in the Decision Support Systems of several services
worldwide, implemented by CEiiA.

In conversations with Nuno Oliveira, Data Scientist at CEiiA, it was decided that the
testing environment should be the Barcelona scooter sharing system. This system already
has a significant lifetime, an obvious need for relocation (several times during the day)
and trustworthy predictive models. Despite being a Bike Sharing Rebalancing Problem15,
ideally, the system should be applied to any service without adaptations (the specifications
of each sharing service would be characterized in the input data for the system and not in
the system itself). It would have as input the relocation needs, the capacity of the transport
vehicle(s) and eventually the time limit to do the relocation and would return the route(s)
of the relocations and associated time and cost.

Scooter sharing services are associated with the BRP. As they are the best-known refer-
ence in this variety of studies, throughout the development documentation we will refer to
scooters as bikes.

3.1.1 Descriptive Example

In the initial phase, the problem will be simplified. Over time, incrementally, we will add
complexity to it, making the system more versatile and powerful. As already mentioned,
the system to be developed aims to solve the needs of a dynamic rebalancing system. The
following example (selected from the data) demonstrates the system requirements: to bal-
ance the service for a certain hour, while minimizing the distance traveled by the vehicles.
The system, querying the data to a certain hour or a day, will discover the relocation re-
quirements for specific areas of the sharing service.

15 The literature refers to the resulting optimization of which route the vehicles should take, to perform the
redistribution at minimum cost, as BRP (Dell'Amico et al., 2014).

27

3.1. Problem Description 28

Table 3 displays the relocation needs for 2017-11-26 12:00:00.

Table 3: Relocation needs
Hour Area Relocation

2017-11-26 12:00:00 177 10

2017-11-26 12:00:00 107 8

2017-11-26 12:00:00 192 8

2017-11-26 12:00:00 9 6

2017-11-26 12:00:00 108 6

2017-11-26 12:00:00 162 6

2017-11-26 12:00:00 176 6

2017-11-26 12:00:00 84 -30

2017-11-26 12:00:00 57 -15

2017-11-26 12:00:00 148 -5

Figure 6 depicts the selected areas in Barcelona.This system intends to identify the short-
est route that facilitates the delivery of 10, 8, 8,6, 6, 6, 6 vehicles respectively to areas 177,
107, 192, 9, 108, 162 and 176 by removing 30, 15 and 5 vehicles from areas 84, 57 and 148,
departing from area 84 and returning to it in the end.

Figure 6: Relocation instance depicted

3.1. Problem Description 29

3.1.2 Problem Formulation and Definitions

In this section we define the problem under study and the notations used throughout the
report. As the areas under study are defined by a geographical point (latitude, longitude),
we will refer to the centroid of each area as station. This will facilitate the comprehension
of the problem formulation. Therefore, the problem is given by a set of n stations N =

{1, 2, 3, . . . , n}|{84} and the depot O = {84}. Each station i has a request qi , which can
be either positive (qi > 0 - delivery node) or negative (qi < 0 - pickup node). Every
pair of locations (i, j) , where i, j ∈ N and i 6= j, is associated with a distance traveled
dij that, according to the system data, is symmetrical (dij = dji). We can formulate a
complete directed graph G = (V, A), where V = {1, 2, . . . , n} (N stations and O depot) and
A = {(i, j) : i, j ∈ V, i 6= j}, with a traveling distance dij associated with each arc (i, j) ∈ A.

A fleet of m identical vehicles of capacity Q is available at the depot to transport the bikes.
The bikes removed from pickup nodes can either go to a delivery node or back to the depot
(depending on the demand) and bikes supplied to delivery nodes can either come from the
depot or from pickup nodes. Depending on the capacity of the vehicles and demand (or
business regulations), the balance of the system can be restored by one vehicle (Figure 7) or
more (Figure 8).

Figure 7: One route rebalancing Figure 8: Two routes rebalancing

Table 4: Notation summary
N Station n + 1 Number of Stations (depot inclusive)
O Depot m Number of vehicles
V Set of vertices Q Vehicle capacity
A Set of arcs qi Demand at vertex i
n Number of stations dij Distance of the arc (i, j)

i+/− Delivery/pickup Station li truck load leaving station i

3.1. Problem Description 30

The BRP determines where to send m vehicles through the graph, with the purpose
of minimizing the total distance traveled. There are many constraints that challenge the
system and require special attention from the developers, like:

• each vehicle operates a course that starts and finishes at the depot;

• each vehicle leaves the depot vacant or with some initial load;

• a station can be visited multiple times until the request is fulfilled;

• a station can serve as temporary storage to improve the route; and

• others.

These are some of the most adopted or discussed constraints in the field. These business
decisions shape the way that the system operates. There are other constraints that restrict
the feasibility of the solution:

• time window for rebalancing operations;

• size of the fleet; and

• others.

Figure 9 presents a feasible solution for the example above (with two trucks, each one can
carry 15 vehicles). It should be noted that station 9 and 107 were visited two times until the
request was satisfied. The constraint that allows multiple visits to a station is not always
followed (e.g., Dell'Amico et al. (2014)), but in some cases, can make a difference. This is
just an example that helps us to understand the complexity of a large sharing system and
its rebalancing requirements.

The constraints that we just saw are soft constraints (related to user-goals). Michalewicz
(2007) recognizes hard and soft constraints as being the two main types of constraints in
modern optimization problems. Hard constraints cannot be infringed and are due to factors
such as laws or physical restrictions (Cortez, 2014). Such constraints must be addressed to
guarantee real value to the system:

• vehicles capacity shall not be exceeded;

• speed limits shall not be broken;

• regulations restricting truck drivers’ working and driving hours must be attended;
and

• others.

3.1. Problem Description 31

Figure 9: Example of a feasible folution

4

D E V E L O P M E N T O F T H E O P T I M I Z AT I O N S Y S T E M

4.1 formulation

This project attempts to address the lack of real, dynamic and adaptable solutions to solve
this problem; adaptable to the size of the available truck fleet, their features, environment
characteristics, and business rules. The system should be easily adjusted to the different
types of vehicles to be transported and not attached to a specific type. Despite several
studies and papers on this subject, there is no holistic approach that contemplates the end-
to-end process, developed and planned for a mild and effective implementation. The fact
that the need for such systems is more popular than ever raises the need for a solution that
meets the constraints of most BSS businesses in major cities. There is an obvious urgency for
such solutions to cease to be the focus of academic studies alone and focus on developing
cohesive and robust solutions.

The project will compare the performance of algorithms that follow different approaches
and converge to a solution that can address the day to day business requirements. This is a
a problem that can either be solved by a single trip, carried by a single truck, or by t trips,
performed by m vehicles. The final solution will be represented by a matrix in which each
row describes a trip. The solution should look like this:

sol =

l11 l12 . . . l1n

l21 l22 . . . l2n
...

...
. . .

...
lt1 lt2 . . . ltn

Where t represents each trip and n the station visited, l is the load that the truck has when

leaving each station n. To explain the development and associated logic of the system,
we are going to follow the already listed example (see Chapter 3.1). The system can be
represented by the flow represented in Figure 10. Each step of the flow is explained in the
following sections.

32

4.1. Formulation 33

Read Data

Define
Search Space

outer config

variables

Search for
(sub)optimal

Solution

Repair

Save Results

New Trip

Stop
Criteria?

Output
Results

no

yes

Figure 10: Optimization system flow

4.2. Read Data 34

4.2 read data

In general terms, the first phase of the system is the building of its infrastructure and the
loading of the specifications in which the rebalacing optimization is going to be built upon.
Global variables like stations demand, distance between them, available fleet and truck
atributtes are loaded. The description of the variables are presented in Tables 5 and 6.

Table 5: Data provided

Name Extension Purpose Description

relocations .csv Necessities
to be met

A dataset with 3 columns and 8267 rows, each one of them
expressing the necessities associated with a particular station,
at a particular time. Example: Table 7

distances .csv Distances
between
stations

A dataset with 264 columns and 264 rows, each one of them
representing the distance (meters) between areas. Example:
Table 8

areas .csv lat e lon of
each station

A dataset with 3 columns and 264 rows, each one represent-
ing the latitude and longitude of each area’s centroid. Exam-
ple: Table 27

Table 6: User defined data

Name Extension Purpose Description

fleet .csv Truck Fleet Dataset with 3 columns and x rows, representing a fleet of x
trucks. Examaple: Table 9

config .yml Configuration
Parameters

YAML file with configuration variables that are defined by
the user and are volatile over time. See Figure 11

Table 7: Relocations example
Hour Area Relocation

2017-11-26 12:00:00 177 10

2017-11-26 12:00:00 107 8

2017-11-26 12:00:00 192 8

2017-11-26 12:00:00 9 6

2017-11-26 12:00:00 108 6

2017-11-26 12:00:00 162 6

2017-11-26 12:00:00 176 6

2017-11-26 12:00:00 84 -30

2017-11-26 12:00:00 57 -15

2017-11-26 12:00:00 148 -5

Table 8: Distances example
X1 X2 X3 X4

Y1 0 332.8 881.3 730.6
Y2 332.8 0 776.1 398.3
Y3 881.3 776.1 0 851.8
Y4 730.6 398.3 851.8 0

Table 9: Fleet example
Plate Capacity available

11− XX− 22 15 TRUE
22−YY− 33 15 TRUE
33− ZZ− 44 10 FALSE

4.2. Read Data 35

--- config . yml
journey :

l i m i t : 60 #time, in minutes , to rebalance the system
v e l o c i t y : 750 #m/min - 45km/h average speed during a trip
depot: 84 #depot

operations :
b y c i c l e s :

pickup: 1 #average time spent on picking up a bycicle
del iver : 1 #average time spent on delivering a bycicle

s c o o t e r s :
pickup: 1 #average time spent on picking up a scooter
del iver : 1 #average time spent on delivering a scooter

Figure 11: YAML configuration file

To relate to the example with the formulation of the problem present in Section 3.1, Figure
12 tends to clarify the reader about the construction of the graph, corresponding to each
problem instance (fictitious values).

Hour Area Relocation
2017-11-26 12:00:00 177 10

2017-11-26 12:00:00 107 8

2017-11-26 12:00:00 192 8

2017-11-26 12:00:00 9 6

di, j Distance di, j Distance
d177,107 2 988 d107,192 7 990
d177,192 680 d107,9 9 219
d177,9 10 000 d192,9 5 500

177

107

192

9

10 000

19 219

0

2 988

680
0

7 990

0

5 500

0

Figure 12: Example of a complete directed graph G=(V,A) corresponding to a fictitious instance of
the problem

4.2. Read Data 36

Some adaptations were implemented to facilitate the algorithm to always consider feasi-
ble solutions. For example, as depicted in Table 7, the stations do not follow an incremental
approach (Figure 13), making it arduous to impress a search logic to them. The problem
was adressed by maping each station to an identifier (Figure 14), folowing an incremental
approach, allowing the algorithm(s) to easilly evaluate the solution and making the bound-
aries much more ristrict (see Section 4.3.2).

In the execution of the optimization module, the algorithm(s) is going to run based on
a data frame with the auto increment identifier of each station, the actual need to be ad-
dressed and the need after the journey returned by the search (see Table 14).

177

107

192

9

10 000

19 219

0

2 988

680
0

7 990

0

5 500

0

Figure 13: Complete directed graph G = (V, A)fw
with real data

1

2

3

4

10 000

19 219

0

2 988

680
0

7 990

0

5 500

0

Figure 14: Complete Directed Graph G = (V, A)
fwto feed the system

4.3. Define Search Space and Solution Representation 37

4.3 define search space and solution representation

With all global variables defined, all the requirements to represent the solution and the
search space are satisfied. Both the search space and the representation of the solution are
dynamically derived by the specifications of each instance of the problem. This use case
has three distinct redistribution hours each day. Each one of them differs in complexity and
demand, requiring different constraints that require consideration. The need to perform
each task with high adaptability is crucial and, on account of all the constraints, the solution
can be highly variant. It should be noted that the Bike Sharing Problem is a non trivial
variant of of the well known Traveling Sales Problem, thus it does not assume just the
distance between stations. In effect, the best solution is not the shortest path between
stations, but the shortest path that allows a fleet of trucks to fully restore the service level
of each station. With this in mind the solution should not only represent the stations, but
also the vehicles delivered/picked on each one of them.

The most direct way of representing this task is to consider, for each station, the pair
station→ quantity, in which the station would be its identifier (∈ N+) and the quantity
to be delivered (∈ N+

0) or picked (∈ N−0). This approach would have a straightforward
implementation but the search space associated with it could be smaller. Consider that the
truck drives to station number 3. This station has a demand for 8 vehicles. So the solution
should be 3→ -8. So, considering that the truck can carry 15 vehicles simultaneously (Q =

15), the algorithm should consider from 3→ -15, to 3→ 15. This is not an unacceptable
search space but it could be more advantageous. Instead of considering the pair station→
quantity, we are going to consider the pair station→ load, in which the station would be its
identifier (∈ N+) and load, the truckload leaving the station (∈ N+

0). As the vehicles that
can be picked or delivered are constrained by the truck capacity Q, the search space can
be optimized, only considering, in this example, 3→ 0, to 3→ 15, allowing the algorithm,
with the same computational power, to explore regions that can be more meaningful. It
should be noted that many Modern Optimization methods are implemented by assuming
solutions with a numeric vector. Thus, we assume this representation of solutions, putting
each trip in a loop, that will only stop when all service level requirements are quenched
or the time window constraint is corrupted. The solution representation is depicted below
(Figure 15):

solt : S1 L1 S2 L2 S3 L3 [...] Sn−1 Ln−1 Sn Ln

Pair1 Pair2 Pair3 Pairn−1 Pairn

Figure 15: Theoretical solution sepresentation

where each pair corresponds to the station identifier and the truck load when leaving it.

4.3. Define Search Space and Solution Representation 38

As the solution is driven by constraints, in order to deliver a valid and meaningful so-
lution, its construction should reflect them. As one of the constraints is that each truck
operates a course that starts and finishes at the depot, S1 should always be considered as
the depot and should not be part of the solution representation on the optimization tasks,
being the first pair a false one, making the first value of the solution the truck load leaving
the depot.

solt : S1 L1 S2 L2 S3 L3 [...] Sn−1 Ln−1 Sn Ln

Depot Pair1 Pair2 Pairn−1 Pairn

Figure 16: Practical solution representation

To better understand what the solution represents, the following flow tries to facilitate its
interpretation.

Depot l0 66 V1

l1
''oo V2 l2 66 V[...]

l[...]
))
Vn−1 ln−1 66 Vn

4.3.1 Dimension

This is a problem that can either be solved by a single trip, carried by a single truck, or by
t trips, performed by m vehicles. We have to consider this factor when we think about the
dimension of the solution. To make sure that the system can find a solution for every in-
stance of the problem, its representation and search space should consider that one trip can
restore the equilibrium of the system. Consequently, the dimension should be considered
as being V number of vertices, multiplied by two (truckload for each one of them), less one
(excluding depot).

D = (V × 2)− 1, V ∈N+\{1} (2)

By the example given in the previous chapter (Section 3.1), we have 10 areas to visit, includ-
ing depot. So, 10× 2− 1 = 19.

4.3. Define Search Space and Solution Representation 39

4.3.2 Bounds

The search space is not only composed by the dimension, but also by the bounds of the
solution. These intend to control the dispersion of the generated solutions, maintaining the
coherence of the solutions generated with the case study expectations.

So, as seen in Figure 16, odd numbers represent the load of the truck when leaving
each station, and the even ones, the station identifier. So, following the logic of the auto-
increment identifier, for each station and capacity Q, the bounds could be granted by:

lower =

0, if i is odd

min(N), if i is even

i, representing the index of the solution vector

upper =

Q, if i is odd

max(N), if i is even

i, representing the index of the solution vector

Consider the example given in the previous chapter (Section 3.1):

lower : 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

upper : 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15

Attending to the problem constraints, we ought to consider that the truck must return
vacant to the depot. To do so, the last station visited should have a positive demand
(delivery node). To meet this business logic in mind, we have to add conditions to our
bounds.

lower =

0, if i is odd

min(N), if i is even, i<{n×2}

min(N+), if i is even, i≥ {n×2}

i, representing the index of the solution vector

upper =

Q, if i is odd, i<{n×2}

max(N), if i is even, i<{n×2}

0, if i is odd, i≥ {n×2}

max(N+), if i is even, i≥ {n×2}

i, representing the index of the solution vector

which translates into:

lower : 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

upper : 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 7 0

4.4. Search for (sub)Optimal Solution 40

4.4 search for (sub)optimal solution

Modern Optimization, also known as metaheuristics, are exceptional when it comes to
finding a ’good enough’ solution when there is no simple way to find the absolute best.
Two different metaheuristic approaches were considered when modeling this problem; local
and population-based search. In the first one, Hill Climbing and Simulated Annealing
were implemented, and in the second, Evolutionary Algorithms were considered. The
two approaches will be compared throughout this section, giving a thorough explanation
of each step of the development, opposing one approach to another and comparing the
results at the end.

4.4.1 Objective Goal Formulation

The evaluation function, also known as fitness, translates the project desired goal; the mini-
mization of the distance traveled in a redistribution instance.

minimize
X

d(x)

where d(x) =
n

∑
i=1
i 6=n

d(i, i + 1) i, n ∈N+ (3)

But, if we only consider the distance, this project would not care if the business goals
were met or not, making this project just the study and development of a solution to the
Traveling Salesman Problem. The goal of the solution is the minimization of the total dis-
tance traveled, that can meet the service level requirements of all stations. Since considering
the solutions under the single objective of the distance traveled would lead to unacceptable
outcomes, this factor should be incorporated in the evaluation formula.

minimize
X

d(x) + αr(x)

where d(x) =
n

∑
i=1
i 6=n

d(i, i + 1) i, n ∈N+

r(x) =
n

∑
i=1

r(|i|) i, n ∈N+

(4)

In some cases, solutions can be improved by incorporating some domain knowledge.
As this is an incremental approach, the redistribution can be performed by t trips. To
align with business goals and to enhance the algorithm performance, each trip should also
maximize the demand. For instance, supplied stations should no longer be considered in

4.4. Search for (sub)Optimal Solution 41

the next trips, resulting in a logical distance/time advantage and increasing the probability
of finding better solutions.

minimize
X

d(x) + αr(x)− β f (x)

where d(x) =
n

∑
i=1
i 6=n

d(i, i + 1) i, n ∈N+

r(x) =
n

∑
i=1

r(|i|) i, n ∈N+

f (x) =
n

∑
i=1

[r(|i|) = 0] i, n ∈N+

(5)

So, the ultimate goal is to have a solution that minimizes the distance required to redis-
tribute as many vehicles as possible, trying to reduce the number of stations left to visit for
the next trip.

As for α and β values, these were set by executing some experiments, as discussed in
Section 5.

4.4.2 Initial Solution and Population Definition

4.4.2.1 Initial Solution

As seen in Section 2.3.2, one of the characteristics that differentiate local and population
based approaches is the initialization of the search environment. Local search only con-
siders one initial solution and generates new ones from the old ones. The most common
approach is to set the initial solution randomly (Cortez, 2014), but better results can come
when applying domain knowledge to it, putting the initial solution on a more desirable
local neighborhood, increasing the probabilities of discovering a more suitable one.

Although, too much domain knowledge can harm the search. Generating a solution that
can be one (sub)optimal can cause the algorithm to get stuck at a local optimum, hardly
granting the chance to explore other interesting areas; especially in single initial solution
approaches. In this case, some ground rules were determined to try to add some domain
knowledge to it, but not too much.

So, the initial solution could be seen as depicted in Figure 17, representing a trip that
could rebalance the system. Algorithm 7 exhibits the principle behind the construction of
the single initial solution.

4.4. Search for (sub)Optimal Solution 42

Algorithm 7 Initial solution with domain knowledge
Input: f (fleet), d (demand matrix),depot (depot index), . . . (other parameters)

Q← max$capacity(f) . Capacity of ’bigger’ truck
n_stations← nrows(d)− 1 . Number of stations to visits
pickup_nodes← neg(d) . Stations with negative demand
delivery_nodes← pos(d) . Stations with positive demand
s←[] . Empty Array
i← 1 . Number of iterations
while i ≤ n_stations do . n_stations is the termination criteria

if i = 1 then
s← max(Q, d[depot]) . Load leaving depot (max possible)
if Q/2 ≥ max(Q, d[depot]) then . If truck is more than half full, go deliver. Go

pick when not
s← get(delivery_nodes) . Go to delivery node

else
s← get(pickup_nodes) . Go to pickup node

end if
end if
if i = n_stations then . Last station selection

s← get(delivery_nodes) . Must be a delivery node
s← 0 . Must return empty to depot

else
s← get(d) . Go to random station
s← sample(0 : Q) . Leave that station with random load (not

exceeding truck capacity)
end if
i← i + 1

end while
Output: s

Algorithm 7 provides a brief demonstration of the domain knowledge printed in the
initial solution creation. The focus is, as usual, to impress human vision on the system’s
operation. As we mentioned how dangerous it is to create a local optimum as an initial
solution, the truckload is randomly generated in the process. Since we want the first station
to be visited after the depot not to be completely random, the load for the depot is first
generated. Considering this load, if it fills half the capacity of the truck, the station to visit
will be a delivery node. Otherwise, it is a sign that the truck still has a lot of cargo space, so
it should visit a pickup node. Given the constraints of the business, as already mentioned,
the truck returns without a single vehicle to the depot. For this, the last station to visit must
be a delivery node. These are the basic principles of creating the initial solution.

4.4. Search for (sub)Optimal Solution 43

Example

According to the example in Section 3.1.1, reported in Table 7, Figure 17 represents the
instance of the problem, arranged by logical sense.

pickup_nodes : 1 2 3 4 5 6 7 delivery_nodes : 8 9 n_stations : 9 Q : 15 O : 8

Figure 17: System variables from the Section 3.1.1 example

Following Algorithm 7, and using the information from Figure 17, we can derive an
initial solution to feed the local search algorithm(s).

s : 15 5 4 4 6 9 5 7 1 10 3 2 6 3 1 6 2 1 0

stations_visited : 5 4 9 7 10 2 3 6 1 truck_load : 15 4 6 5 1 3 6 1 2 0

Figure 18: Initial solution example

We can translate the vector s to a practical representation, which can give us a clear
understanding of what it should express.

V8 15 99
V5

4
%%

oo V4 6 99 V9

5
&&
V10 1 99 V7

3
%%
V2 6 99 V3

1
%%
V6 2 99 V1

Figure 19: Practical representation of an initial solution

Leaving Depot, V8, with 15 bicycles, the truck goes to the station labeled 5, V5, leaving
loaded with 4 bicycles, dropping 11 in V5 (15− 11), and so on. The vector should be read
this way.

4.4. Search for (sub)Optimal Solution 44

4.4.2.2 Initial Population

In population-based algorithms, like evolutionary algorithms, instead of considering a sin-
gle initial solution, it considers a set of them, commonly known as population. Common
population size values are Np ∈ {20; 50; 100; 200; 500; 1000; 2000} (Cortez, 2014). It gives us
more liberty to use domain knowledge on the initial population, being able to explore more
distinct regions of the search space. Taking advantage of this fact, we developed a method
of creating non random solutions to incorporate the population. We started with the stream
of thought previously considered, but then we were left with the sensation that the versatil-
ity of the region considered should be bigger, so we only considered the previous method
to generate 1/5 of the population. The possibility of generating a set of local optima was
considered and explored to determine the rest. Consider Figure 22 as an example.

Figure 20: Solution with no repeated stations

O

V2

l o

V3

l2

V4

l3

V5

l4

V6

l5

0

Figure 21: Solution with repeated stations

O

V2

l o

V4l2

V3

l40

V5

lo

V6

l5

0

Figure 22: Example of two possible individuals of the population

Figure 22 depicts two example trips. Figure 20 can have the solution with only one
trip but, when that it is not the case, it delivers no advantage because it has no focus on
emptying a set of stations to not have to include them in eventual next journeys, as Figure
21 does. The principles to each one are based on the Algorithm 7 but, for one, the load
is not random, forcing the truck to deliver/pick the maximum possible, for each station.
For another, this principle is followed but another one is added: the get() method allows
repeated stations to be incorporated in the solution, allowing the truck to visit the same
station multiple times throughout the journey. In Figure 21 example we can perceive that
this variant can be an advantage in the pursuit of better solutions, being a differentiation to
another approaches known in the field. Notice the examples shown on the next page.

4.4. Search for (sub)Optimal Solution 45

Example

Following the example already described in Section 4.4.2.1 we illustrate the two new
solution generation techniques. Recognize the variables:

pickup_nodes : 1 2 3 4 5 6 7 delivery_nodes : 8 9 n_stations : 9 Q : 15 O : 8

Figure 23: System variables from the Section 3.1.1 example

The first technique illustrated earlier and detailed in Algorithm 7, creates a solution
similar to:

s : 15 5 4 4 6 9 5 7 1 10 3 2 6 3 1 6 2 1 0

stations_visited : 5 4 9 7 10 2 3 6 1 truck_load : 15 4 6 5 1 3 6 1 2 0

Figure 24: Output example of the first solution generation technique

where each truck load (except depot) is random. This means that some work is necessary
to give real value to the output. Table 10 represents the impact that the solution would
have on the system service level requirements. Details on Table 10 calculations are given in
Section 4.8.

Table 10: System new state

Station Demand Need After

1 10 8

2 8 11

3 8 3

4 6 8

5 6 -5
6 6 7

7 6 2

8 -30 -15

9 -15 -16

10 -5 -3

The different colors observed express the different types of impact that the redistribution
had on the status of the system. The red color represents that vehicles were delivered
where they should have been picked and vice versa. Green means this did not happen, i.e.,
vehicles were loaded/unloaded where it was supposed to. Yellow means that vehicles were
loaded/unloaded where it was supposed to but in excess, i.e., it is still necessary to return
there to restore the service level.

4.4. Search for (sub)Optimal Solution 46

Example (continuation)

As we have seen, a considerable effort is still required to make the solution acceptable in
terms of the load. In the second technique, this obstacle is overcome. Considering the same
stations as the previous example we can notice the upgrade that this technique can be to
the optimization task.

s : 15 5 9 4 3 9 15 7 9 10 14 2 6 3 0 6 0 1 0

stations_visited : 5 4 9 7 10 2 3 6 1 truck_load : 15 9 3 15 9 14 6 0 0 0

Figure 25: Output example of the second solution generation technique

Table 11 represents the impact that the solution would have on the system service level
requirements. The color blue is shown when station demand is completely fulfilled, no
longer being necessary to include them in the next solutions. When the color of the table
cell is not changed it means that there was no change in demand for the station.

Table 11: System new state

Station Demand Need After

1 10 10

2 8 0

3 8 2

4 6 0

5 6 0

6 6 6

7 6 0

8 -30 -15

9 -15 -3
10 -5 0

As we can see, with a change in the loads, we were able to find an initial solution that
can be a local optimum, fully satisfying the needs of 5 stations, leaving two of them close
to the ideal status.

Despite having visited all stations, it was not possible to update the demand of the last
ones. Due to this technique not being able to repeat stations in the solution creation, this
situation may happen. To try to avoid these obstacles the third technique was developed.

s : 15 5 9 4 3 9 15 7 9 10 14 2 6 3 0 6 0 1 0

4.4. Search for (sub)Optimal Solution 47

Example (continuation)

This technique allows the return to stations already visited on the same trip. This ad-
dresses a purpose that can be crucial to making the most of the available time. So we
can look at the third technique as an improved version of the second, giving the solution
generation more flexibility.

With the repetition of stations, we could exchange one that could not be updated with
any that could. For example, just by switching from 6 to 9, and recalculating the loads, we
could build an even more relevant initial solution. Table 12 represents the impact that this
small change would have on the system service level requirements.

s : 15 5 9 4 3 9 15 7 9 10 14 2 6 3 0 6 0 1 0

s : 15 5 9 4 3 9 15 7 9 10 14 2 6 3 0 9 3 1 0

stations_visited : 5 4 9 7 10 2 3 9 1 truck_load : 15 9 3 15 9 14 6 0 3 0

Figure 26: Output example of the third solution generation technique

Table 12: System new state

Station Demand Need After

1 10 7

2 8 0

3 8 2

4 6 0

5 6 0

6 6 6

7 6 0

8 -30 -15

9 -15 0

10 -5 0

With this minor change, it was possible to prepare an initial solution that satisfies the
service requirements from 60% of the stations. These techniques are undoubtedly an asset
to the final solution. Practical results of the implementation of these techniques detailed in
Section 5.1.2

4.4. Search for (sub)Optimal Solution 48

4.4.3 Change and Breeding (Genetic Operators)

To consider solutions in the neighborhood of the one(s) in memory, some adjustments must
be made to the current ones, in order to discover and exploit some more interesting areas of
the search space. These adjustments differ for each instance, some being more challenging
than others. The system logic and the solution representation will dictate these adjustments.

The problem that we have in hands is a ’hybrid integer’. Integer because all elements are
treated as integers; Hybrid because of its nature, composed by elements that hold a different
meaning, being addressed differently. On one hand, with the stations we are in the presence
of a combinatorial problem and, on the other hand, with the load of the trucks, we have
a (discrete) numerical problem. Thus, we have to be very careful when addressing this
problem, applying different techniques in the same change.

4.4.3.1 Change

When working with a single solution, the adjustments made in the solution to exploit its
neighborhood are denominated ’change’. In this hybrid problem we, first need to divide
the solution in stations visited and truck load, as in Figure 18.

As we can split this problem in two, it makes sense to have at least three change options:

• only stations are modified;

• only the truck load is changed; and

• both stations and truck load are modified.

4.4. Search for (sub)Optimal Solution 49

Combinatorial Problem

In this problem, the objective is to find combination of stations that optimizes the score of
the evaluation function (see Section 4.4.1). Since the main goal is the visit all stations by the
shortest path, this problem can be solved by considering the permutation of the stations
{1, 2, 3, ..., n}.

A permutation describes an arrangement or ordering of items. There are n! permutations
of n items. This grows so exponentially that the amount of time to generate all permutations
would be gigantic, for n > 12, since 12! = 479, 001, 600 (Skiena, 2010). With (meta)heuristics
we can set a maximum number of iterations to assure that the algorithm does not take
too long to generate a satisfying solution. The vector that stores the sequence of stations
to be visited can be reordered, through the permutation of the elements. This is a typical
combinatorial problem.

From (Cortez, 2014) we can see examples of mutation operators for the Traveling Sales-
man Problem. They were considered and implemented but were forced to satisfy the prob-
lem constraints. These examples are depicted in Figure 27: exchange, insertion, and dis-
placement. The first operator swaps two randomly selected cities, the following inserts a
city into an arbitrary position and the third inserts a random subtour into another position.

Figure 27: Example of three mutation operators, adapted from (Cortez, 2014)

However, this is not a pure Traveling Salesman Problem. For instance, the repetition of a
station may improve the quality of the solution. This was previously discussed in Section
4.4.2.2, but here we examine how it works. Instead of just permutate the stations’ vector,
the injection operator stores in memory the stations to visit; selects a random element and,
instead of swapping it with another from the same vector, it removes it from the solution
and adds another element from the vector in memory.

Figure 28: Injection operator

4.4. Search for (sub)Optimal Solution 50

There is also a key factor in this operator. If the user decides so (through defining a
Boolean variable as TRUE), it can allow the operator to accept one station to appear fol-
lowed by the same one, shortening the trip - through a logic repair, Algorithm 8.

Using some domain knowledge with some trial and error we can also associate with
each type of change, a probability of occurring. The probability of exchange and insertion
operators has an associated probability of 0.3 each, while displacement has a probability of
0.2. We just want a trip to be introduced from afar; therefore, the probability associated
with the injection operator is 0.1. Sometimes we also want no changes in the stations, but
only in the associated load, thus leaving 0.1 probability to no modifications.

4.4. Search for (sub)Optimal Solution 51

Examples

Starting from the solution represented in Figure 29, the operators will be exemplified.

V1 l1 99
V2

l2
%%

oo V3 l3 99
V4

l4
%%
V5 l5 99

V6

l6
%%
V7 l7 99

V8

l8
%%
V9 l9 88V10

Figure 29: Practical representation of a solution

Exchange

V1 l1 99
V2

l2
%%

oo V6 l6 99
V4

l4
%%
V5 l5 99

V3

l3
%%
V7 l7 99

V8

l8
%%
V9 l9 88V10

Figure 30: Practical representation of exchange operator

Insertion

V1 l1 99
V2

l2
%%

oo V3 l3 99
V4

l4
%%
V9 l9 99

V5

l5
%%
V6 l6 99

V7

l7
%%
V8 l8 88V10

Figure 31: Practical representation of insertion operator

Displacement

V1 l1 99
V2

l2
%%

oo V7 l7 99
V8

l8
%%
V9 l9 99

V3

l3
%%
V4 l4 99

V5

l5
%%
V6 l6 88V10

Figure 32: Practical representation of displacement operator

Injection

V1 l1 99
V2

l2
%%

oo V3 l3 99
V4

l4
%%
V5 l5 99

V6

l6
%%
V7 l7 99

V8

l8
%%
V9

l9

ee

Figure 33: Practical representation of injection operator

4.4. Search for (sub)Optimal Solution 52

Numerical Problem

The Bike Sharing Rebalancing Problem is different from the Traveling Salesman Problem
because it has the mission of rebalancing a sharing system. This increases the problem
difficulty but has a tremendous potential to be adapted to a mundane problem, being able
to make life easier for many. To work with the loads, we needed an operator that would
allow us to make small changes in values, trying to come up with new ones that would
allow us to get an interesting trade-off for future solutions. Thus originated the differential
operator, which chooses v values from [1, n], v ∈N+, and adds x from [−1, 1], x ∈N+. That
is, choose a set of indexes from the vector and add or remove the values 0 or 1. Examples
of this operator are shown in Figures 34 and 35.

Figure 34: Differential operator

Example

V1 l1 99
V2

l2
%%

oo V3

l3−1

99 V4

l4
%%
V5 l5 99

V6

l6+1
%%
V7 l7 99

V8

l8
%%
V9

l9+0

88V10

Figure 35: Practical representation of differential operator

4.4. Search for (sub)Optimal Solution 53

4.4.3.2 Breeding (Genetic Operators)

In the presence of a population, rather than a single solution, the possibilities of generating
new solutions increase, being able, in addition to changing the solution individually, to
cross with others, taking advantage of their diversity to explore regions of the search space
that otherwise it would not be possible. So, in addition to the mutation operators we just
discussed, we added a crossover technique.

The crossover operator is a genetic operator that combines two solutions (parents) to
produce a new one (children). The ideia behind crossover is that the children might be
better than both parents, if he takes the best characteristics from each parent.

One of the most basic operators to understand and implement has been adopted in the
system development. Despite its simplicity, it fits properly in this particular problem. The
operator is the single point (or one point) crossover, where both parents are split at a
randomly determined crossover point. Then, a new child is created by appending the first
part of the first parent with the the second part of the second (Altenberg, 1995). Figure 36
depicts the single point crossover process and Karlin and Liberman (1978) describes it by:

R(r) =

1/(L− 1) if
L−1
∑

i=1
|ri+1 − ri| = 1,

0, otherwise

Both crossover and mutation operators occur during the evolution, according to an a
priori defined probability. The probability applied to the crossover is 0.4, and the probability
of a mutation is 0.6. Each mutation operator has its own associated probability (see Section
4.4.3.1).

Figure 36: Single-point crossover

4.5. Repair 54

4.5 repair

The goal of this section is not to give an exact blueprint of the way that the functions
perform, but to elucidate the reader about the inherent logic.

For each optimized trip that the algorithm returns, there is a repair at the station level,
ensuring that it does not make unnecessary trips. The algorithm can visit a station and do
nothing (does not leave or lift vehicles). When this occurs, the repair procedure removes
such unnecessary trip, therefore optimizing the travel time to the maximum.

s : 15 5 10 5 8 4 10 8 2 3 2 9 0 s : 15 5 10 5 8 4 10 8 2 9 0

Attached to this, as the same station can appear more than once in the solution, there is the
possibility that they will appear one after the other, meaning that a trip will link to the same
geographical point. When this happens, the procedure detects the occurrence, eliminating
the redundancy. With the logic of the solution representation, dictating the obliviation of
the first station and load.

s : 15 5 10 5 8 4 10 8 2 15 7 9 0 s : 15 5 8 4 10 8 2 15 7 9 0

Algorithm 8 demonstrates in detail the execution of the logical repair of the solution.

Algorithm 8 Solution repair method
Input: s (solution)

truck_load← odd(s) . Truck load throughout the journey
stations_visited← even(s) . Stations visited throughout the journey
waste←[] . Empty Array to store useless trips
for load in truck_load do . Go through the array

if load = next_load then . See if loads are equal
waste← append(load_position) . Save position in the solution array
waste← append(station_position) . Save also the station position

end if
end for
s← remove(s, waste) . Remove useless trips from the solution
waste←[] . Empty Array to store repeated stations
for station in stations_visited do . Go through the array

if station = next_station then . See if stations are equal
waste← append(station_position) . Save position in the solution array
waste← append(load_position) . Save also the load position

end if
end for
s← remove(s, waste) . Remove useless trips from the solution

Output: s

4.5. Repair 55

After this, there is also a repair at the vehicle load level. The algorithm determines that
a truck, on a journey, can only carry a certain number of vehicles, but in some situations,
it may carry more than indicated. This adjustment deals with those situations, making the
system more reliable.

s : 15 5 10 5 8 4 10 8 2 3 2 9 0 s : 15 5 10 5 8 4 12 8 4 3 2 9 0

Algorithm 9 demonstrates in detail the execution of the logical repair of the solution.

Algorithm 9 Load repair
Input: s (solution), t (truck), l (service levels)

truck_capacity← capacity(t) . Truck load throughout the journey
situation← demand(l, s) . Number of vehicles left to redistribute
imp← improvement(t, l, s) . Load improvement for each station until Q
indexes← (imp, l, s) . Indexes that can be improved

for i in indexes do . Go through the array
s← re f orm(indexes, imp, s) . Change indexes load

end for
Output: s

More than logical corrections to the solution, the implemented repairs attempt to ad-
dress the weaknesses that the randomness of metaheuristics bring, enriching the system
with domain knowledge. While Algorithm 8 only compares the stations and loads with
those immediately followed in the solution, the Algorithm 9 tries to figure out where to ad-
d/remove load throughout the solution, i.e., without fiddling with the sequence of stations
that the search output delivered, tries to find a possible solution that the system may not
have been able to acknowledge.

4.6. Save Results 56

4.6 save results

As we saw in Section 4.1, the final solution should deliver the final journey collection
distributed by the fleet available at the time of redistribution. Its structure is theoretically
represented by:

sol =

l11 l12 . . . l1n

l21 l22 . . . l2n
...

...
. . .

...
lt1 lt2 . . . ltn

Where, t represents each trip, n the station visited and l the load that the truck has when
leaving each station n. For system understanding, ease of implementation and readability,
the results are stored as a matrix, composed by the vectors of the solutions generated in the
loop.

Table 13: System output with final journeys

t s0 ls0 s1 ls1 s2 ls2 s3 ls3 · · · sn−1 lsn−1 sn lsn

1 8 15 1 5 10 10 5 8 · · · 3 2 6 0

2 8 12 5 2 3 0 10 5 · · · 6 0 × ×
...

...
...

...
...

...
...

...
... · · ·

...
...

...
...

t 8 0 7 4 10 0 × × · · · × × × ×

Where s0 represents the depot indicator, ls0 the truck load leaving the base, and so on,
representing, in order, the stations to visit and the load, leaving each one of them.

4.7. Stop Criteria 57

4.7 stop criteria

Generally speaking, the objective is to route a fleet of vehicles to minimize the deviation
of service levels. Business decisions aim to ensure that, within limited time, the possible
redistributions are made. The minimization of distances and redistribution time increases
operational efficiency. For instance, it permits to cut operating costs (e.g., less time spent
by staff, less fuel, less maintenance vehicles) and to increase the probability of additional
revenues because relocated vehicles are available sooner. Thus, the solution must satisfy
the defined requirements as efficiently as possible. Therefore, the optimization system has
two principles as stopping criteria: satisfaction of the service level requirements and/or
compliance with the service time window constraint.

When the first event is triggered, the service will be possible within the time stipulated
by the business rules. When the second event is triggered, that will not be the case. In
this situation another approach is taken by the system to maximize the remaining time: to
narrow down the search size to try to get another possible trip in the remaining time. This
means that the system will try to choose a subset of stations to attempt to decrease the
deviation of service levels as much as possible.

Algorithm 10 Stop criteria

Input: s (solution), w (time window), t (truck), l (service levels), o (operational times), r
(results)
time← remaining(t, w) . Time left to break the time constraint
situation← demand(l, s) . Number of vehicles left to redistribute
duration← duration(s, o) . Total Redistribution Duration
if situation = 0 then . Check if service levels are met

save_results(s, r) . Save result
end_search() . Cease search task

else
if duration ≥ w then . Check trip duration

new_trip() . New search with less stations to visit
else

save_results(s, r) . Save result
end if

end if
Output: r

4.7. Stop Criteria 58

Thus, we realize that the time criteria does not force a strict stop event, but rather a
change of approach to the search, trying to make the most of the system structure and
behavior, to avoid waste (see Section 4.8).

The calculation of deviation of service levels is nothing less than the sum of the absolute
values of the matrix column that stores the demand, iteratively, after each solution. If this
sum is 0, then the need has been suppressed by the system final solution (see Table 16).

The time estimation is performed for each vehicle by the sum of the distance traveled on
the journey, divided by the average truck speed along the journey, then adding the vehicles
loading and unloading time (loading and unloading times set in config.yml).

An explanation of the time evaluation is presented in Section 5.3.

4.8. New Trip 59

4.8 new trip

As long as the service level requirements are not met, or the user-defined time boundary is
not surpassed (see Section 4.7), the search is not over and a new trip ought to be generated.
The system has to dynamically recalculate the size of the search space and prepare the
environment for a new search.

The system maintains in memory the redistribution requirements. As solutions are gen-
erated and secured, those requirements are renewed. The update logic is presented next.
Table 14 represents the initial state of the system and Figure 18 is a possible initial solution.

Table 14: System initial state
Station Demand Need After

1 10 10

2 8 8

3 8 8

4 6 6

5 6 6

6 6 6

7 6 6

8 -30 -30

9 -15 -15

10 -5 -5

Considering a solution like the one depicted in Figure 37, the system determines the
remaining necessities (represented in Table 15) and which stations are in a position to
be suppressed (represented in Table 16). With the information updated, the system can
continue the search (defined in Section 4.3).

s : 8 15 1 5 10 10 5 8 2 2 7 0 9 15 4 9 3 2 6 0

Figure 37: Possible solution

Table 15: System after solution
Station Demand Need After

1 10 0 [10+(5-15)]

2 8 2 [8+(2-8)]

3 8 1 [8+(2-9)]

4 6 0 [6+(9-15)]

5 6 4 [6+(8-10)]

6 6 4 [6+(0-2)]

7 6 4 [6+(0-2)]

8 -30 -15 [-15+(15-0)]

9 -15 0 [-15+(15-0)]

10 -5 0 [-5+(10-5)]

Table 16: System new state
Station Demand Need After

1 0 0

2 2 2

3 1 1

4 0 0

5 4 4

6 4 4

7 4 4

8 -15 -15

9 0 0

10 0 0

4.9. Output Results 60

4.9 output results

In the end, the system should return, not only the trips (t) that must be performed by the
truck drivers but also complementary information, to clarify the final user of the quality of
the solution. As for the representation of the stations to be visited, they will be delivered to
the user in their true identity, not as the system represents in the search phase. Moreover, it
will be transmitted information regarding the individual distance for each route, the total
and individual duration, how many trips each truck makes, as well as the truck (v) license
plate. This information is crucial to the redistribution operator.

Apart from this, relevant information will also be presented for the business itself, such
as which vehicles are to be redistributed and how many stations are to be visited at the
end of each route (and at the end of redistribution, if applicable). Table 17 shows the final
results presented to the user.

Table 17: System deliverable

v t s0 ls0 s1 ls1 s2 ls2 s3 ls3 · · · sn−1 lsn−1 sn lsn

1 1 8 15 1 5 10 10 5 8 · · · 3 2 6 0

2 2 8 12 5 2 3 0 10 5 · · · 6 0 × ×
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...

...

2 t 8 0 7 4 10 0 × × · · · × × × ×

cj Plate Length Duration Trip Missed Stations

c1 XYZ 10033.3 13.37 1 20 8

c2 ZYX 8093.8 10.72 1 12 5
...

...
...

...
...

...
...

ck ZYX 2100.2 2.80 nm 0 f w0 f w

Total − L D − M S

5

E X P E R I M E N TA L R E S U LT S A N D D I S C U S S I O N

To try to understand if the approaches proposed in Chapter 4 make sense and are useful
for the business, some experiments are reviewed and presented, opposing approaches and
results.

This chapter is divided into two sections.The first one describes the advantages of using
some domain knowledge in the generation of solutions, both in local and population-based
optimization. Different weights were also tested for the evaluation function. In the second
one, two analysis scenarios are compared by contrasting the results of different proposed
algorithms.

5.1 solution generation approaches and weight experimentation

At this stage we will not restrict the process by a time limit, allowing the optimization
task to execute until the service levels are assured. The operational times will also not
be accounted for, as these will only make sense for the business and not for this study.
Therefore, for each solution it is considered the total duration of the redistribution, the
distance covered in meters, and the execution time of the optimization task. The tests will
run 10 times for each algorithm, and an average result will be displayed.

61

5.1. Solution Generation Approaches and Weight Experimentation 62

5.1.1 Weight Experimentation

As we saw in Section 4.4.1, the evaluation function is given by

minimize
X

d(x) + αr(x)− β f (x) (6)

where α and β values are defined weights, establishing a Weighted-Formula Approach for
a Multi-Objective Optimization (Cortez, 2014). First, we will consider the weights of the
evaluation function. After testing several scenarios based on intuition, three promising
weight scenarios were selected and executed for comparison purposes. Their values are
represented in Table 18 and search results are described in Table 19.

Table 18: Weights for each Scenario

values α β

Scenario I 1100 700
Scenario I I 1500 100
Scenario I I I 1500 1000

Table 19: Results of the weighted evaluation function experimentation (best values in bold)

Scenario I Length Duration Execution

Hill Climbing 21750.08 16.81 17.74
Simulated Annealing 21670.51 16.87 15.34
Evolutionary Algorithms 22617.71 18.40 16.21

Scenario I I

Hill Climbing 21712.66 16.87 17.89
Simulated Annealing 21521.51 16.53 18.28
Evolutionary Algorithms 21605.63 16.50 16.42

Scenario I I I

Hill Climbing 21460.20 16.83 16.85
Simulated Annealing 21783.91 17.52 14.68
Evolutionary Algorithms 22043.42 17.63 15.99

As we can see from Table 19 values, scenario I I presented the best results, both in terms
of distance traveled, as well as in travel time, distributed by the two distribution vehicles
(Q = 15). Thus, the values to consider for the evaluation function weights are 1500 for α

and 100 for β. Figures 38, 39 and 40 represent graphically the values from Table 19.

5.1. Solution Generation Approaches and Weight Experimentation 63

Figure 38: Length for different weight scenarios

Figure 39: Duration for different weight scenarios

Figure 40: Execution time for different weight scenarios

5.1. Solution Generation Approaches and Weight Experimentation 64

5.1.2 Initial Solution/Population Experimentation

Local Based Approach Experimentation

Two algorithms were implemented from those mentioned and explained in Section 2.3.2:
Simulated Annealing and Hill Climbing. With the same principles but with different be-
havior, we are going to examine which one best fits the issue at hand. First, we try to
understand the impact that the custom generation of initial solutions have in the search for
solutions. These results are compared with the previously obtained results, described in
the Table 19. These values were obtained following the methodology for custom solution
generation promoted by this research work (see Section 4.4.2.1).

When the initial solution generation is random, the search begins at a random starting
point within the search space. That position can be good or bad. By not using domain
knowledge, we are using a completely random initial search position. However, the search
task could benefit from the utilization of a much more attractive initial point by assuming
domain knowledge.

Table 20: Optimization results for the single-state algorithms using random and customized genera-
tion of initial solutions (best values in bold)

Random Generation Length Duration Execution

Hill Climbing 29373, 54 21.34 25.56
Simulated Annealing 28914.40 20.45 24.21

Custom Generation

Hill Climbing 21712.66 16.87 17.89
Simulated Annealing 21521.51 16.53 18.28

Table 20 confirms the gain of using the methodology presented in this document, being
advantageous in all the assessment metrics considered: the length (m), the duration (min)
of the journey, and the execution time of the search task (sec).

5.1. Solution Generation Approaches and Weight Experimentation 65

Population Based Approach Experimentation

Above we look at the benefits of generating a single initial solution, but when the search
algorithm considers an initial population, does the benefit remain? As described in Section
2.3.2.2, population-based algorithms, such as the Evolutionary Algorithms implemented in
this paper, consider several solutions as a starting point.

The importance of setting the initial population in meaningful places of the search space
can become even more fundamental than in single-state approaches. The utilization of
various initial points in the search space allows to explore diverse interesting and relevant
areas of the problem and not to restrict to a specific area. Hence, as we also saw in Section
4.4.2.2, the strategy adopted for early population generation is to consider multiple domain
knowledge applications to explore most of the search space, in order to find a solution
flexible enough to adapt to different instances of the problem.

Table 21: Optimization results for the population-based algorithms using random and customized
generation of the initial population (best values in bold)

Random Generation Length Duration Execution

Evolutionary Algorithms 28644.75 22.463 24.15

Custom Generation

Evolutionary Algorithms 21605.63 16.49 16.43

Table 21 presents the results obtained when considering the strategy adopted in this
paper (see Section 4.4.2.2) and also results not using domain knowledge, confirming that
for this problem, the randomness in solution generation is outweighed by the benefits of
biased solutions.

These results confirm that the customized method for generating initial solutions results
in enhanced optimizations for both single-state and population-based methods.

5.2. System Experimentation 66

5.2 system experimentation

This section presents the experiments executed for different scenarios to verify the versatil-
ity and flexibility of the system to meet the many challenges of the real sharing service.

A major business concern is the conformity with a time window. Therefore, system rules
had to be considered to make the most of the available time because time may not be
enough to reestablish service levels. Thus, the system follows two principles:

• the initial load for each truck must be packed when the rebalancing begins and

• for each truck’s last trip, the travel time back to the depot is not accounted for.

In this study only two scenarios will be presented here for analysis purposes. For reasons
of compliance and understanding, the instance that underpins the scenarios is the one
previously described in Section 3.1.1. Scenario I is the same as the one used by the author
for the solution proposed in Figure 9, where two trucks with capacity for 15 vehicles are
considered (Q = 15). For scenario I I, only one truck is considered, also with capacity for
15 vehicles (Q = 15).

The results of the experiment are represented in Table 22, with each value being the result
of the average from 10 observations. Each scenario environment can be revisited in A.

The time considered for redistribution, agreed with Nuno Oliveira, was 1 hour (60 min),
with the operational loading/unloading time of 1 min for each vehicle.

Table 22: Optimization results for system trial (best values (for each scenario) in bold)

Scenario I Length Duration Missed Stations Execution

Hill Climbing 21737.86 58.14 0 0 31.51
Simulated Annealing 22389.75 57.27 0 0 51.63
Evolutionary Algorithms 22033.04 58.75 0 0 49.46

Scenario I I

Hill Climbing 11373.31 58.42 22.1 5.9 36.09
Simulated Annealing 11987.03 57.19 20.2 5.8 59.56
Evolutionary Algorithms 12085.54 58.57 20 5.4 36.91

5.2. System Experimentation 67

Table 22 shows that the utilization of only one truck to redistribute, conditions the main
business goal of meeting the service level requirements. In general, the search algorithm
is able to find a solution that enables effective system rebalancing. However, the organiza-
tional infrastructure has to be aligned with the requirements of the problem.

When the service level requirements have been met, the metrics considered and analyzed
to choose the best solution and/or algorithm are the distance traveled and the duration of
the redistribution, taking into account the operational time. According to Nuno Oliveira,
the execution of the redistribution in the shortest possible time and distance is a big compet-
itive advantage because it reduces costs of relocation (e.g., fuel, staff, maintenance vehicles)
and monetize resources (e.g., vehicles are available sooner). Based on the same logic, we
can understand that when it is not possible to meet the requirements, the most important
metrics should be the vehicles that have not been redistributed and the stations that have
remained in need.

In scenario I, although the Hill Climbing algorithm has the best result in terms of distance
traveled during redistribution, Simulated Annealing has a notable advantage in averaging
redistribution duration. All of them satisfy the requirements, but 1 minute can be the
difference between losing a customer or not.

In scenario I I, the results tend to give an advantage to Evolutionary Algorithms. This
scenario is undoubtedly more demanding in terms of deliverables and is perhaps a more
realistic scenario in terms that the conditions for full redistribution cannot always be met.
Although it takes longer, and travel further, the solutions proposed by the Evolutionary
Algorithms can, on average, satisfy more stations than other algorithms.

We realize that to always ensure that the best possible solution is found, we must guaran-
tee that multiple searches are generated, various algorithms are tested and that the viability
of the final output is considered. The user should be able to decide which one is the best
according to their needs. The display of diverse metrics is valuable to support the user in
their decision.

5.3. Discussion 68

5.3 discussion

5.3.1 Author Defined Solution

To further analyze the system, we will try to contrast the system solutions with the solution
defined by the author of this thesis, represented in Figure 9. It is important to realize
that the handmade solution took a long time, demonstrating the importance of this type of
system. A more complete assessment of the utility of this system can be done by comparing
with the author’s solution. Table 23 demonstrates the solution of Figure 9 in the system
deliverable scheme.

Table 23: Author defined solution

v t ls0 s1 ls1 s2 ls2 s3 ls3 s4 ls4 s5 ls5 s6 ls6 s7 ls7

1 1 15 3 7 6 1 4 0 9 15 4 10 7 4 2 0

2 2 15 5 9 10 14 2 10 1 0 × × × × × ×

cj Plate Length Duration Trip Missed Stations

c1 XYZ 12856.56 58.81 1 0 0

ck ZYX 9375.44 33.36 1 0 f w0 f w

Total − 22232 58.81 − 0 0

The first trip has considerable size and its duration is very close to the 60min limit. We
are going to consider it to understand how the duration metric is evaluated. The second
trip takes less time because it is shorter, with fewer vehicles to redistribute. This one will
not be analyzed in detail.

The first trip (t1) is represented by:

s : 15 3 7 6 1 4 0 9 15 4 10 7 4 2 0

stations_visited : 3 6 4 9 4 7 2 truck_load : 15 7 1 0 15 10 4 0

5.3. Discussion 69

Figure 41 shows the calculation of the operational time for the first trip (t1), considering
1min for vehicle loading/unloading. As explained earlier, we consider that the first loading
of each truck do not count as operational time.

truck_load : 15 7 1 0 15 10 4 0

8min

6min

1min

15min

5min

6min

4min

Figure 41: Operational time from t1

Thus, the operational time is given by the sum of the difference between n and n + 1
values. Therefore:

operational_time = (15− 7) + (7− 1) + (1− 0) + |(0− 15)|+ (15− 10) + (10− 4) + (4− 0)

operational_time = (8) + (6) + (1) + (15) + (5) + (6) + (4)

operational_time = 45

As we can see from the operational time required for only one route, the travel time must
be reduced to enable a redistribution that respects the time window stipulated by the user.
Considering the time window of 60 minutes, there are only 15 minutes left to spend driving
between stations.

Considering an average speed of 45km/h (750m/min) along the entire route, we can
translate a maximum distance that the trip must meet.

max_distance = remain_time× average_speed

max_distance = 15× 750

max_distance = 11250

5.3. Discussion 70

Looking at the Table 23 we notice that, even though it is close, the distance traveled
during redistribution (12856.56 m) exceeds 11250 of the remaining time. The elapsed travel
time is then:

travel_time =
trip_length

average_speed

travel_time =
12856.56

750

travel_time = 17.14

Knowing that the duration will exceed the expected, the total time (duration) is given by:

total_time = operational_time + travel_time

total_time = 45× 17.14

total_time = 62.5

As already mentioned, the return trip from the last journey of each truck does not count
to the redistribution time (a measure adopted to optimize the algorithm performance and
increase the chances of finding better solutions). So, the distance between the last station
and the depot does not add to the journey duration, only for the distance traveled. There-
fore, we have to exclude the distance between 2 (last station) and 8 (identifier of the depot).

return_trip =
trip_length(ind, depot)

average_speed

duration = total_time− return_trip

duration = 62.5− 2770.373
750

duration = 62.5− 3.69

duratioin = 58.81

With the thoroughness of the problem, it becomes a very difficult task for a human to
perform quickly and effectively. All possible combinations make each instance a complex
challenge.

5.3. Discussion 71

5.3.2 System Solution

The processing speed of a computer is always higher than human work particularly for
small, specific and repetitive tasks. Therefore, a system that performs these sorts of tasks is
always a valuable asset for the organization and the general welfare.

Table 24 presents a solution generated by Evolutionary Algorithms, where the deliverable
provides a feasible and better solution than the presented by the author of the thesis, shown
in Table 23. This solution visits one less station on the first trip, managing to make a trade-
off with the second truck, improving the overall response time.

Table 24: System solution

v t ls0 s1 ls1 s2 ls2 s3 ls3 s4 ls4 s5 ls5 s6 ls6

1 1 15 6 9 1 0 9 15 4 9 1 8 3 0

2 2 15 7 9 2 1 10 6 5 0 × × × ×

cj Plate Length Duration Trip Missed Stations

c1 XYZ 11074.32 56.16 1 0 0

ck ZYX 9507.44 34.54 1 0 f w0 f w

Total − 20581.76 56.16 − 0 0

In less than a minute, the metaheuristics were able to test thousands of different combi-
nations, saving time, stress and resources to the organization.

Figures 42 and 43 represent the routes that redistribute the service. Comparing the im-
ages, we can see that the system output (Figure 42) trips are ’cleaner’ and more direct
than those of the author’s solution (Figure 43). This again demonstrates the significance of
implementing such solutions, confirming their value to organizations.

5.3. Discussion 72

Figure 42: System solution representation on Barcelona map

5.3. Discussion 73

Figure 43: Author’s solution representation on Barcelona map

6

C O N C L U S I O N S A N D F U T U R E W O R K

This chapter presents the final aspects of this dissertation and briefly describes the work
performed, the main conclusions some limitations that arose during its development and
aspects to be addressed in the future.

6.1 synopsys

In this project, the goal was to test several modern optimization methods (metaheuristics)
in the search for (sub)optimal solutions for redistribution route(s) of a sharing service. A
decision support system was developed to meet this end.

The thesis introduced first the conceptual structure of what is a decision support sys-
tem, defining it in the light of the most renowned authors in the area, converging to the
project expectations and what type of decision support system will derive from the project
development. Next, the Smart Mobility thematic is presented, referring to the motivations
behind this project and framing it in the current mobility arena. More than that, it goes into
detail about what sharing services are and their importance, not only in terms of mobility
in urban areas but also about their environmental relevance and tendency to be spread.

To link the concepts, a holistic review is made, trying to elucidate the reader about basic
concepts of optimization algorithms (operational research and metaheuristics). Then, a
state of the art is presented, where relevant related studies are scrutinized.

After reviewing the concepts and the state of the art, the development of the system is
detailed, trying to make as clear as possible the thinking behind all the development and
implementation. The structure of the implementation and the flow of the system is detailed,
presenting, step by step, the structure of the system, with practical examples supporting the
theory, graphs and matrices that theoretically represent the solution, to the final deliverable,
specifying the algorithms and their behavior in the search for the sub(optimal) solution.

Two different metaheuristic approaches were considered when modeling this problem;
local and population-based search. In the first one, Hill Climbing and Simulated Annealing
were implemented, and in the second, Evolutionary Algorithms were considered. These

74

6.2. Discussion 75

two approaches have completely different behavior. Local based only consider one solu-
tion at a time and upgrade it until they find the best solution, considering a finite set of
attempts. Population-based consider a set of solutions and initials and make adjustments
to chosen solutions of the population, and cross-referencing each other. These are two
different concepts that allow an interesting analysis.

Finally, we have the section with experimental results and their discussion, where several
scenarios are proposed and analyzed, so that best practices can converge to a final interpre-
tation, therefore testing the system, opposing the system output with the solution designed
by the system developer.

The results were very satisfactory considering the tailor-made procedures for creating,
altering and repairing solutions. All of these combinations offer the system an integrated
and realistic program to design and evaluate solutions. With all the structure assembled,
all algorithms can generate satisfactory results, with no significant averaging differences
between optimization approaches. Even so, it is proposed that all algorithms are considered
for each instance, leaving the final choice for the system user.

6.2 discussion

In a booming market, where many organizations try to achieve leadership and stand out
from the competition, having a competitive advantage is not always easy. Owning some-
thing unique is difficult and innovating in such a saturated market is even more difficult.
The investment in research is therefore crucial. In the case of this project, where the sharing
service itself is based on a purely flexible structure, innovation and research play a critical
role in the survival of the business.

A system like vehicle sharing has costs that can fluctuate intensely, depending on a group
of variables, like the population density of the area, the fleet size or the system itself. These
sharing services need some sort of system that offer some aid to the management when it
comes to decision making, allowing them to have a clearer view of the day to day scenarios.

The execution of the redistribution in the shortest possible time and distance is a big
competitive advantage because it reduces costs of relocation (e.g., fuel, staff, maintenance
vehicles) and monetize resources (e.g., vehicles are available sooner). Therefore, a robust,
cohesive and adaptable decision support system was designed to support a sharing system
business, regardless of its features. With minimal code adaptation required, it is possible to
migrate the system to integrate existing decision support platforms.

Studying the developments of the field of study it was possible to observe the notori-
ous lack of robust, dynamic and scalable solutions, most of them being only the target of
theoretical study. The development of this type of system/application is nonexistent in
the market, which gives even more relevance to this project. Even so, most studies never

6.2. Discussion 76

dynamically considered the system as a whole. The final solution was always based on as-
sumptions like all trucks have the same capacity, or that each truck has to visit all stations
on each trip. The greatest value of the proposed system is that the infrastructure is adapted
to accept solutions (routes) that can visit the same station multiple times on the same trip
and that it is not required to visit all, being able to make interesting trade-offs between
trucks and/or between trips. These are two differentiating features that give this system
unique performance, resulting in very interesting outputs.

The experimental results showed that the system output can be more relevant than a
handmade solution. In less than a minute, the system can present the user a viable, all-in-
one solution, featuring multiple evaluation metrics for complete transparency.

As for the performance of search algorithms (metaheuristic), none stood out holistically,
i.e., each stood out for some specific metric or scenario. Hill Climbing algorithm has the
best result in terms of distance traveled during redistribution, Simulated Annealing has
a notable advantage in averaging redistribution duration and, although it takes longer,
and travel further, the solutions proposed by the Evolutionary Algorithms can, on average,
satisfy more stations than other algorithms (when the time limit for redistribution does not
allow the fulfillment of all service level requirements).

Even so, the developed system is not perfect. This project considered a weighted-formula
approach. This is not the most advantageous approach when working with multi-objective
optimization problems. This approach was considered due to its simplicity of implemen-
tation and flexibility in handling the output. It was the most straightforward strategy for
incremental integration, as defined early in the project. Because of that, interesting and
valuable trade-offs could have been lost.

It is noteworthy the importance that the open-source tool R had during this project. The
implementation flexibility it provided ensured the success of the project.

6.3. Future Work 77

6.3 future work

Despite the system developed in this thesis being a step forward in the development of
decision support applications for vehicle sharing services, there is still a very long road to
walk. This project is academic but has the ambition to overcome this barrier and be applied
in a real environment of sharing services. As it is, it can be deployed, requiring maintenance
and support, at least for data refreshment. Nevertheless, some improvements can be made
by adapting the system to more complex business rules, trying to take advantage of demand
behavior, always trying to lose as few customers as possible.

Listed below are some improvements which might enhance the performance and usabil-
ity of the system:

• integrate the system with the Decision Support Systems of diverse services worldwide,
implemented by CEiiA;

• add the weight of station utilization rate to the evaluation function for interesting trade-
offs and more realistic and business-friendly deliverable;

• integrate the calculation of the service level requirements in the system, creating a
system that is able to feed itself, automating its execution; and

• build a Graphical User Interface for the system to work independently.

B I B L I O G R A P H Y

Ait-Ouahmed, A., Josselin, D., and Zhou, F. Relocation optimization of electric cars in one-
way car-sharing systems: modeling, exact solving and heuristics algorithms. International
Journal of Geographical Information Science, 32(2):367–398, September 2017. doi: 10.1080/
13658816.2017.1372762. URL https://doi.org/10.1080/13658816.2017.1372762.

Allwood, J. M. and Cullen, J. M. Sustainable Materials - With Both Eyes Open (With-
out the Hot Air). UIT Cambridge Ltd., 2012. ISBN 190686005X. URL https:

//www.amazon.com/Sustainable-Materials-Both-Eyes-Without/dp/190686005X?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=190686005X.

Altenberg, L. The schema theorem and price's theorem. In Foundations of Genetic Algorithms,
pages 23–49. Elsevier, 1995. doi: 10.1016/b978-1-55860-356-1.50006-6. URL https://doi.

org/10.1016/b978-1-55860-356-1.50006-6.

Barth, M. and Todd, M. Simulation model performance analysis of a multiple station
shared vehicle system. Transportation Research Part C: Emerging Technologies, 7(4):237–
259, August 1999. doi: 10.1016/s0968-090x(99)00021-2. URL https://doi.org/10.1016/

s0968-090x(99)00021-2.

Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-
Doria, O., and Schiavinotto, T. Hybrid metaheuristics for the vehicle routing prob-
lem with stochastic demands. Journal of Mathematical Modelling and Algorithms, 5(1):91–
110, December 2006. doi: 10.1007/s10852-005-9033-y. URL https://doi.org/10.1007/

s10852-005-9033-y.

Blum, C. and Roli, A. Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

Borgnat, P., ABRY, P., FLANDRIN, P., ROBARDET, C., ROUQUIER, J.-B., and FLEURY,
E. SHARED BICYCLES IN a CITY: A SIGNAL PROCESSING AND DATA ANALYSIS
PERSPECTIVE. Advances in Complex Systems, 14(03):415–438, June 2011. doi: 10.1142/
s0219525911002950. URL https://doi.org/10.1142/s0219525911002950.

Boyacı, B., Zografos, K. G., and Geroliminis, N. An optimization framework for the
development of efficient one-way car-sharing systems. European Journal of Operational

78

https://doi.org/10.1080/13658816.2017.1372762
https://www.amazon.com/Sustainable-Materials-Both-Eyes-Without/dp/190686005X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=190686005X
https://www.amazon.com/Sustainable-Materials-Both-Eyes-Without/dp/190686005X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=190686005X
https://www.amazon.com/Sustainable-Materials-Both-Eyes-Without/dp/190686005X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=190686005X
https://www.amazon.com/Sustainable-Materials-Both-Eyes-Without/dp/190686005X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=190686005X
https://doi.org/10.1016/b978-1-55860-356-1.50006-6
https://doi.org/10.1016/b978-1-55860-356-1.50006-6
https://doi.org/10.1016/s0968-090x(99)00021-2
https://doi.org/10.1016/s0968-090x(99)00021-2
https://doi.org/10.1007/s10852-005-9033-y
https://doi.org/10.1007/s10852-005-9033-y
https://doi.org/10.1142/s0219525911002950

Bibliography 79

Research, 240(3):718–733, February 2015. doi: 10.1016/j.ejor.2014.07.020. URL https:

//doi.org/10.1016/j.ejor.2014.07.020.

Brinkmann, J., Ulmer, M. W., and Mattfeld, D. C. Inventory routing for bike sharing systems.
Transportation Research Procedia, 19:316–327, 2016. doi: 10.1016/j.trpro.2016.12.091. URL
https://doi.org/10.1016/j.trpro.2016.12.091.

Bude, p. Global smart infrastructure—smart city transformation 2016. 2016.

Caggiani, L. and Ottomanelli, M. A modular soft computing based method for vehicles
repositioning in bike-sharing systems. Procedia - Social and Behavioral Sciences, 54:675–
684, October 2012. doi: 10.1016/j.sbspro.2012.09.785. URL https://doi.org/10.1016/j.

sbspro.2012.09.785.

Caggiani, L. and Ottomanelli, M. A dynamic simulation based model for optimal fleet
repositioning in bike-sharing systems. Procedia - Social and Behavioral Sciences, 87:203–
210, October 2013. doi: 10.1016/j.sbspro.2013.10.604. URL https://doi.org/10.1016/j.

sbspro.2013.10.604.

Chemla, D., Meunier, F., and Calvo, R. W. Bike sharing systems: Solving the static rebalanc-
ing problem. Discrete Optimization, 10(2):120–146, May 2013. doi: 10.1016/j.disopt.2012.
11.005. URL https://doi.org/10.1016/j.disopt.2012.11.005.

Chiariotti, F., Pielli, C., Zanella, A., and Zorzi, M. A dynamic approach to rebalancing
bike-sharing systems. Sensors, 18(2):512, February 2018. doi: 10.3390/s18020512. URL
https://doi.org/10.3390/s18020512.

Chow, J. Y. and Sayarshad, H. R. Symbiotic network design strategies in the presence of
coexisting transportation networks. Transportation Research Part B: Methodological, 62:13–
34, April 2014. doi: 10.1016/j.trb.2014.01.008. URL https://doi.org/10.1016/j.trb.

2014.01.008.

Contardo, C., Morency, C., Rousseau, L., and Centre interuniversitaire de recherche
sur les réseaux d’entreprise, l. l. e. l. t. Balancing a Dynamic Public Bike-sharing Sys-
tem. CIRRELT (Collection). CIRRELT, 2012. URL https://books.google.pt/books?id=

QEZBDQEACAAJ.

Correia, G. and Antunes, A. P. Optimization approach to depot location and trip selection
in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation
Review, 48(1):233–247, January 2012. doi: 10.1016/j.tre.2011.06.003. URL https://doi.

org/10.1016/j.tre.2011.06.003.

Cortez, P. Modern Optimization with R. Springer International Publishing, 2014. doi: 10.
1007/978-3-319-08263-9. URL https://doi.org/10.1007/978-3-319-08263-9.

https://doi.org/10.1016/j.ejor.2014.07.020
https://doi.org/10.1016/j.ejor.2014.07.020
https://doi.org/10.1016/j.trpro.2016.12.091
https://doi.org/10.1016/j.sbspro.2012.09.785
https://doi.org/10.1016/j.sbspro.2012.09.785
https://doi.org/10.1016/j.sbspro.2013.10.604
https://doi.org/10.1016/j.sbspro.2013.10.604
https://doi.org/10.1016/j.disopt.2012.11.005
https://doi.org/10.3390/s18020512
https://doi.org/10.1016/j.trb.2014.01.008
https://doi.org/10.1016/j.trb.2014.01.008
https://books.google.pt/books?id=QEZBDQEACAAJ
https://books.google.pt/books?id=QEZBDQEACAAJ
https://doi.org/10.1016/j.tre.2011.06.003
https://doi.org/10.1016/j.tre.2011.06.003
https://doi.org/10.1007/978-3-319-08263-9

Bibliography 80

Dell'Amico, M., Hadjicostantinou, E., Iori, M., and Novellani, S. The bike sharing rebalanc-
ing problem: Mathematical formulations and benchmark instances. Omega, 45:7–19, June
2014. doi: 10.1016/j.omega.2013.12.001. URL https://doi.org/10.1016/j.omega.2013.

12.001.

Docherty, I. New governance challenges in the era of ‘smart’ mobility. In Gov-
ernance of the Smart Mobility Transition, pages 19–32. Emerald Publishing Limited,
March 2018. doi: 10.1108/978-1-78754-317-120181002. URL https://doi.org/10.1108/

978-1-78754-317-120181002.

Dror, M., Fortin, D., and Roucairol, C. Redistribution of Self-service Electric Cars: A Case of
Pickup and Delivery. Research Report RR-3543, INRIA, 1998. URL https://hal.inria.

fr/inria-00073142. Projet PRAXITELE.

Fan, W. D., Machemehl, R. B., and Lownes, N. E. Carsharing. Transportation Research
Record: Journal of the Transportation Research Board, 2063(1):97–104, January 2008. doi:
10.3141/2063-12. URL https://doi.org/10.3141/2063-12.

Froehlicj, J., Neumann, J., and Oliver, N. Sensing and pedicting the pulse of the city through
shared bicycling. 2008.

Gavalas, D., Konstantopoulos, C., and Pantziou, G. Design and management of vehicle-sharing
systems: A survey of algorithmic approaches, pages 261–289. 12 2016. ISBN 9780128034545.
doi: 10.1016/B978-0-12-803454-5.00013-4.

Gel’fand, I. M. Lectures on Linear Algebra (Dover Books on Mathematics). Dover
Publications, 1989. ISBN 0486660826. URL https://www.amazon.com/

Lectures-Linear-Algebra-Dover-Mathematics/dp/0486660826?SubscriptionId=

AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=

165953&creativeASIN=0486660826.

Ghosh, S., Varakantham, P., Adulyasak, Y., and Jaillet, P. Dynamic repositioning to reduce
lost demand in bike sharing systems. Journal of Artificial Intelligence Research, 58:387–430,
February 2017. doi: 10.1613/jair.5308. URL https://doi.org/10.1613/jair.5308.

Gong, Y.-J., Zhang, J., Liu, O., Huang, R.-Z., Chung, H. S.-H., and Shi, Y.-H. Optimizing
the vehicle routing problem with time windows: A discrete particle swarm optimization
approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42(2):254–267, March 2012. doi: 10.1109/tsmcc.2011.2148712. URL https://doi.

org/10.1109/tsmcc.2011.2148712.

Goodall, W., Tiffany Dovey, F., Bornstein, J., and Bonthron, B. The rise of mobility as a
service. 2017.

https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1108/978-1-78754-317-120181002
https://doi.org/10.1108/978-1-78754-317-120181002
https://hal.inria.fr/inria-00073142
https://hal.inria.fr/inria-00073142
https://doi.org/10.3141/2063-12
https://www.amazon.com/Lectures-Linear-Algebra-Dover-Mathematics/dp/0486660826?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0486660826
https://www.amazon.com/Lectures-Linear-Algebra-Dover-Mathematics/dp/0486660826?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0486660826
https://www.amazon.com/Lectures-Linear-Algebra-Dover-Mathematics/dp/0486660826?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0486660826
https://www.amazon.com/Lectures-Linear-Algebra-Dover-Mathematics/dp/0486660826?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0486660826
https://doi.org/10.1613/jair.5308
https://doi.org/10.1109/tsmcc.2011.2148712
https://doi.org/10.1109/tsmcc.2011.2148712

Bibliography 81

Hemdersom, J. and Fishman, A. Divvy: Helping chicago’s new bike share find its balance.
Data Science for Social Good, 2013.

Hietanen, S. Mobility as a service - the new transport model? 2014.

Hillier, F. S. and Liberman, G. J. Introduction to Operations Research.
McGraw-Hill, 2014. ISBN 0073523453. URL https://www.amazon.com/

Introduction-Operations-Research-Frederick-Hillier/dp/0073523453?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=0073523453.

ITF-CPB. Transition to shared mobility: How large cities can deliver inclusive transport
services. page 54, May 2017.

Karlin, S. and Liberman, U. Classifications and comparisons of multilocus recombination
distributions. Proceedings of the National Academy of Sciences of the United States of America,
75(12):6332–6336, 1978. ISSN 00278424. URL http://www.jstor.org/stable/68958.

Keen, P. G. W. and Scott-Morton, M. S. Decision Support Systems: An Or-
ganizational Perspective (Addison-Wesley series on decision support). Addison-
Wesley, 1978. ISBN 0201036673. URL https://www.amazon.com/

Decision-Support-Systems-Organizational-Addison-Wesley/dp/0201036673?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=0201036673.

Kek, A. G., Cheu, R. L., Meng, Q., and Fung, C. H. A decision support system for vehicle
relocation operations in carsharing systems. Transportation Research Part E: Logistics and
Transportation Review, 45(1):149–158, January 2009. doi: 10.1016/j.tre.2008.02.008. URL
https://doi.org/10.1016/j.tre.2008.02.008.

Kleinberg, J. and Tardos, E. Algorithm Design. Pearson, 2006. ISBN 9780321295354.
URL https://www.amazon.com/Algorithm-Design-Jon-Kleinberg/dp/0321295358?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=0321295358.

Lei, H., Laporte, G., and Guo, B. The vehicle routing problem with stochastic demands and
split deliveries. INFOR: Information Systems and Operational Research, 50(2):59–71, May
2012. doi: 10.3138/infor.50.2.059. URL https://doi.org/10.3138/infor.50.2.059.

Lin, J.-R. and Yang, T.-H. Strategic design of public bicycle sharing systems with service
level constraints. Transportation Research Part E: Logistics and Transportation Review, 47(2):
284–294, March 2011. doi: 10.1016/j.tre.2010.09.004. URL https://doi.org/10.1016/j.

tre.2010.09.004.

https://www.amazon.com/Introduction-Operations-Research-Frederick-Hillier/dp/0073523453?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073523453
https://www.amazon.com/Introduction-Operations-Research-Frederick-Hillier/dp/0073523453?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073523453
https://www.amazon.com/Introduction-Operations-Research-Frederick-Hillier/dp/0073523453?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073523453
https://www.amazon.com/Introduction-Operations-Research-Frederick-Hillier/dp/0073523453?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073523453
http://www.jstor.org/stable/68958
https://www.amazon.com/Decision-Support-Systems-Organizational-Addison-Wesley/dp/0201036673?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201036673
https://www.amazon.com/Decision-Support-Systems-Organizational-Addison-Wesley/dp/0201036673?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201036673
https://www.amazon.com/Decision-Support-Systems-Organizational-Addison-Wesley/dp/0201036673?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201036673
https://www.amazon.com/Decision-Support-Systems-Organizational-Addison-Wesley/dp/0201036673?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201036673
https://doi.org/10.1016/j.tre.2008.02.008
https://www.amazon.com/Algorithm-Design-Jon-Kleinberg/dp/0321295358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0321295358
https://www.amazon.com/Algorithm-Design-Jon-Kleinberg/dp/0321295358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0321295358
https://www.amazon.com/Algorithm-Design-Jon-Kleinberg/dp/0321295358?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0321295358
https://doi.org/10.3138/infor.50.2.059
https://doi.org/10.1016/j.tre.2010.09.004
https://doi.org/10.1016/j.tre.2010.09.004

Bibliography 82

Lin, S. Computer solutions of the traveling salesman problem. The Bell System Technical
Journal, 44(10):2245–2269, Dec 1965. doi: 10.1002/j.1538-7305.1965.tb04146.x.

Luenberger, D. G. and Ye, Y. Linear and Nonlinear Programming. Springer US, 2008. doi:
10.1007/978-0-387-74503-9. URL https://doi.org/10.1007/978-0-387-74503-9.

Luke, S. Essentials of Metaheuristics (Second Edition). lulu.com, 2013. ISBN 1300549629.
URL https://www.amazon.com/Essentials-Metaheuristics-Second-Sean-Luke/dp/

1300549629?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=

xm2&camp=2025&creative=165953&creativeASIN=1300549629.

Mak, K. and Guo, Z. A genetic algorithm for vehicle routing problems with stochastic
demand and soft time windows. In Proceedings of the 2004 IEEE Systems and Information
Engineering Design Symposium, 2004. IEEE, 2004. doi: 10.1109/sieds.2004.239880. URL
https://doi.org/10.1109/sieds.2004.239880.

Marinakis, Y., Marinaki, M., and Dounias, G. A hybrid particle swarm optimization
algorithm for the vehicle routing problem. Engineering Applications of Artificial Intel-
ligence, 23(4):463–472, June 2010. doi: 10.1016/j.engappai.2010.02.002. URL https:

//doi.org/10.1016/j.engappai.2010.02.002.

Marinakis, Y., Iordanidou, G.-R., and Marinaki, M. Particle swarm optimization for the
vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4):1693–
1704, April 2013. doi: 10.1016/j.asoc.2013.01.007. URL https://doi.org/10.1016/j.

asoc.2013.01.007.

Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, 1996. ISBN 3540606769. URL https://www.amazon.

com/Genetic-Algorithms-Structures-Evolution-Programs/dp/3540606769?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=3540606769.

Michalewicz, Z. Adaptive Business Intelligence. Springer, 2007. ISBN 3540329285. URL
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/

dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285.

Michalewicz, Z. and Fogel, D. B. How to Solve It: Modern Heuris-
tics. Springer, 2004. ISBN 3540660615. URL https://www.amazon.com/

How-Solve-Heuristics-Zbigniew-Michalewicz/dp/3540660615?SubscriptionId=

AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=

165953&creativeASIN=3540660615.

https://doi.org/10.1007/978-0-387-74503-9
https://www.amazon.com/Essentials-Metaheuristics-Second-Sean-Luke/dp/1300549629?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1300549629
https://www.amazon.com/Essentials-Metaheuristics-Second-Sean-Luke/dp/1300549629?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1300549629
https://www.amazon.com/Essentials-Metaheuristics-Second-Sean-Luke/dp/1300549629?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1300549629
https://doi.org/10.1109/sieds.2004.239880
https://doi.org/10.1016/j.engappai.2010.02.002
https://doi.org/10.1016/j.engappai.2010.02.002
https://doi.org/10.1016/j.asoc.2013.01.007
https://doi.org/10.1016/j.asoc.2013.01.007
https://www.amazon.com/Genetic-Algorithms-Structures-Evolution-Programs/dp/3540606769?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540606769
https://www.amazon.com/Genetic-Algorithms-Structures-Evolution-Programs/dp/3540606769?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540606769
https://www.amazon.com/Genetic-Algorithms-Structures-Evolution-Programs/dp/3540606769?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540606769
https://www.amazon.com/Genetic-Algorithms-Structures-Evolution-Programs/dp/3540606769?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540606769
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/How-Solve-Heuristics-Zbigniew-Michalewicz/dp/3540660615?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540660615
https://www.amazon.com/How-Solve-Heuristics-Zbigniew-Michalewicz/dp/3540660615?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540660615
https://www.amazon.com/How-Solve-Heuristics-Zbigniew-Michalewicz/dp/3540660615?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540660615
https://www.amazon.com/How-Solve-Heuristics-Zbigniew-Michalewicz/dp/3540660615?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540660615

Bibliography 83

Michalewicz, Z., Schmidt, M., Michalewicz, M., and Chiriac, C. Adaptive Busi-
ness Intelligence. Springer, 2006. ISBN 3540329285. URL https://www.amazon.

com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=3540329285.

Mitchell, W. Mobility on demand. 2008.

Moura, L. Introduction to the theory of np-completeness. page 66, 2006.

Mulley, C. Mobility as a services (MaaS) – does it have critical mass? Transport Reviews, 37

(3):247–251, March 2017. doi: 10.1080/01441647.2017.1280932. URL https://doi.org/10.

1080/01441647.2017.1280932.

Nair, R. and Miller-Hooks, E. Fleet management for vehicle sharing operations. Trans-
portation Science, 45(4):524–540, November 2011. doi: 10.1287/trsc.1100.0347. URL
https://doi.org/10.1287/trsc.1100.0347.

Nourinejad, M. and Roorda, M. Carsharing operations policies: a comparison between one-
way and two-way systems. Transportation, 42, 05 2015. doi: 10.1007/s11116-015-9604-3.

Nourinejad, M. and Roorda, M. J. A dynamic carsharing decision support system. Trans-
portation Research Part E: Logistics and Transportation Review, 66:36–50, June 2014. doi:
10.1016/j.tre.2014.03.003. URL https://doi.org/10.1016/j.tre.2014.03.003.

O’Mahony, D. B., Eoin an Shmoys. Data analysis and optimization for (citi)bike sharing.
2015.

Pangbourne, K., Stead, D., Mladenović, M., and Milakis, D. The case of mobility as a
service: A critical reflection on challenges for urban transport and mobility governance.
In Governance of the Smart Mobility Transition, pages 33–48. Emerald Publishing Limited,
March 2018. doi: 10.1108/978-1-78754-317-120181003. URL https://doi.org/10.1108/

978-1-78754-317-120181003.

Rao, S. S. Engineering optimization: theory and practice. John Wiley & Sons, 2009.

Raviv, T., Tzur, M., and Forma, I. A. Static repositioning in a bike-sharing system: mod-
els and solution approaches. EURO Journal on Transportation and Logistics, 2(3):187–
229, January 2013. doi: 10.1007/s13676-012-0017-6. URL https://doi.org/10.1007/

s13676-012-0017-6.

Regue, R. and Recker, W. Proactive vehicle routing with inferred demand to solve the
bikesharing rebalancing problem. Transportation Research Part E: Logistics and Transporta-
tion Review, 72:192–209, December 2014. doi: 10.1016/j.tre.2014.10.005. URL https:

//doi.org/10.1016/j.tre.2014.10.005.

https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://www.amazon.com/Adaptive-Business-Intelligence-Zbigniew-Michalewicz/dp/3540329285?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=3540329285
https://doi.org/10.1080/01441647.2017.1280932
https://doi.org/10.1080/01441647.2017.1280932
https://doi.org/10.1287/trsc.1100.0347
https://doi.org/10.1016/j.tre.2014.03.003
https://doi.org/10.1108/978-1-78754-317-120181003
https://doi.org/10.1108/978-1-78754-317-120181003
https://doi.org/10.1007/s13676-012-0017-6
https://doi.org/10.1007/s13676-012-0017-6
https://doi.org/10.1016/j.tre.2014.10.005
https://doi.org/10.1016/j.tre.2014.10.005

Bibliography 84

Rizzoli, A. E., Montemanni, R., Lucibello, E., and Gambardella, L. M. Ant colony op-
timization for real-world vehicle routing problems. Swarm Intelligence, 1(2):135–151,
September 2007. doi: 10.1007/s11721-007-0005-x. URL https://doi.org/10.1007/

s11721-007-0005-x.

Schuijbroek, J., Hampshire, R., and van Hoeve, W.-J. Inventory rebalancing and vehicle
routing in bike sharing systems. European Journal of Operational Research, 257(3):992–
1004, March 2013. doi: 10.1016/j.ejor.2016.08.029. URL https://doi.org/10.1016/j.

ejor.2016.08.029.

Schuijbroek, J., Hampshire, R., and van Hoeve, W.-J. Inventory rebalancing and vehicle
routing in bike sharing systems. European Journal of Operational Research, 257(3):992–
1004, March 2017. doi: 10.1016/j.ejor.2016.08.029. URL https://doi.org/10.1016/j.

ejor.2016.08.029.

Signorile, P., Larosa, V., and Spiru, A. Mobility as a service: a new model for sustainable mo-
bility in tourism. Worldwide Hospitality and Tourism Themes, 10(2):185–200, April 2018. doi:
10.1108/whatt-12-2017-0083. URL https://doi.org/10.1108/whatt-12-2017-0083.

Skiena, S. S. S. The Algorithm Design Manual. Springer, 2010. ISBN 1849967202. URL
https://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=1849967202.

Turban, E., Sharda, R. E., and Delen, D. Decision Support and Business Intel-
ligence Systems (9th Edition). Prentice Hall, 2010. ISBN 013610729X. URL
https://www.amazon.com/Decision-Support-Business-Intelligence-Systems/dp/

013610729X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=

xm2&camp=2025&creative=165953&creativeASIN=013610729X.

Vaira, G. Genetic algorithm for vehicle routing problem. page 158, 2014.

Vine, S. L., Lee-Gosselin, M., Sivakumar, A., and Polak, J. A new approach to predict the
market and impacts of round-trip and point-to-point carsharing systems: Case study of
london. Transportation Research Part D: Transport and Environment, 32:218–229, October
2014. doi: 10.1016/j.trd.2014.07.005. URL https://doi.org/10.1016/j.trd.2014.07.

005.

Vogel, P., Greiser, T., and Mattfeld, D. C. Understanding bike-sharing systems using data
mining: Exploring activity patterns. Procedia - Social and Behavioral Sciences, 20:514–523,
2011. doi: 10.1016/j.sbspro.2011.08.058. URL https://doi.org/10.1016/j.sbspro.2011.

08.058.

https://doi.org/10.1007/s11721-007-0005-x
https://doi.org/10.1007/s11721-007-0005-x
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1108/whatt-12-2017-0083
https://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1849967202
https://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1849967202
https://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1849967202
https://www.amazon.com/Decision-Support-Business-Intelligence-Systems/dp/013610729X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013610729X
https://www.amazon.com/Decision-Support-Business-Intelligence-Systems/dp/013610729X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013610729X
https://www.amazon.com/Decision-Support-Business-Intelligence-Systems/dp/013610729X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013610729X
https://doi.org/10.1016/j.trd.2014.07.005
https://doi.org/10.1016/j.trd.2014.07.005
https://doi.org/10.1016/j.sbspro.2011.08.058
https://doi.org/10.1016/j.sbspro.2011.08.058

Bibliography 85

Wang, H., Cheu, R., and Lee, D.-H. Dynamic relocating vehicle resources using a
microscopic traffic simulation model for carsharing services. In 2010 Third Interna-
tional Joint Conference on Computational Science and Optimization. IEEE, May 2010. doi:
10.1109/cso.2010.98. URL https://doi.org/10.1109/cso.2010.98.

Wockatz, P. and Schartau, P. Im traveller needs and uk capability study: supporting the
realisation of intelligent mobility in the uk. In IM traveller needs and UK capability study:
supporting the realisation of intelligent mobility in the UK, pages 1–35. October 2015. doi:
10.1108/978-1-78754-317-120181002.

https://doi.org/10.1109/cso.2010.98

A
S Y S T E M E N V I R O N M E N T B Y S C E N A R I O

This appendix serves as a reminder, if necessary, of the environment behind the scenarios
for system experimentation (Section 5.2).

a.1 scenário i

a.1.1 Evaluation Formula

minimize
X

d(x) + αr(x)− β f (x)

where α = 1500 & β = 100

d(x) =
n

∑
i=1
i 6=n

d(i, i + 1) i, n ∈N+

r(x) =
n

∑
i=1

r(|i|) i, n ∈N+

f (x) =
n

∑
i=1

[r(|i|) = 0] i, n ∈N+

(7)

a.1.2 Fleet

Table 25: Fleet (available and not available)
Plate Capacity available
XYZ 15 TRUE
ZYX 15 TRUE
YXZ 10 FALSE

86

A.1. Scenário I 87

a.1.3 Service Level Requirements

Table 26: Service level requirements for 2017-11-26 12:00:00

Hour Area Relocation ID
2017-11-26 12:00:00 177 10 1

2017-11-26 12:00:00 107 8 2

2017-11-26 12:00:00 192 8 3

2017-11-26 12:00:00 9 6 4

2017-11-26 12:00:00 108 6 5

2017-11-26 12:00:00 162 6 6

2017-11-26 12:00:00 176 6 7

2017-11-26 12:00:00 84 -30 8

2017-11-26 12:00:00 57 -15 9

2017-11-26 12:00:00 148 -5 10

a.1.4 Geospatial Coordinates

Table 27: Stations(areas) locations
ID Area Latitude Longitude
1 177 41.39446 2.155730
2 107 41.39134 2.146347
3 192 41.39084 2.153818
4 9 41.40213 2.165954
5 108 41.38893 2.149614
6 162 41.39574 2.160796
7 176 41.39682 2.152529
8 84 41.40098 2.180908
9 57 41.41730 2.172617
10 148 41.37510 2.147933

A.1. Scenário I 88

a.1.5 Distances

Table 28: Distance between areas/stations
di, j Distance di, j Distance di, j Distance di, j Distance

d177,192 431.7352 d107,162 1303.422 d192,148 1817.079 d108,148 1542.504
d177,9 1207.32 d107,176 798.5859 d9,108 2004.482 d162,176 701.7969

d177,108 799.2059 d107,84 3082.193 d9,162 830.7663 d162,84 1779.739
d177,162 446.9816 d107,57 3625.005 d9,176 1268.168 d162,57 2591.11
d177,176 375.0533 d107,148 1809.014 d9,84 1257.084 d162,148 2532.482
d177,84 2226.706 d192,9 1612.832 d9,57 1774.846 d7,84 1858.355
d177,57 2904.002 d192,108 411.0985 d9,148 3359.673 d7,57 1439.637
d177,148 2246.887 d192,162 797.4612 d108,162 1202.867 d7,148 3801.518
d107,192 627.2566 d192,176 672.356 d108,176 909.9641 d8,57 1605.997
d107,9 2030.982 d192,84 2529.699 d108,84 2939.563 d8,148 3525.419

d107,108 382.7962 d192,57 3332.652 d108,57 3692.28 d9,148 3359.673

a.1.6 Configurations

--- config . yml
journey :

l i m i t : 60 #time, in minutes, to rebalance the system
v e l o c i t y : 750 #m/min - 45km/h average speed during a trip
depot: 84 #depot

operations :
s c o o t e r s :

pickup: 1 #average time spent on picking up a scooter
del iver : 1 #average time spent on delivering a scooter

Figure 44: YAML configuration file

A.2. Scenário II 89

a.2 scenário ii

The only difference between scenario I and scenario II is the availability of the rucks. Table
29 shows that only one truck is available.

a.2.1 Fleet

Table 29: Fleet (available and not available)
Plate Capacity available
XYZ 15 TRUE
ZYX 15 FALSE
YXZ 10 FALSE

	1 Introduction
	1.1 Problem Description and Proposed Solution
	1.2 Expected Results
	1.3 Bibliographic Research Strategy
	1.4 Document Outline

	2 Literature Review
	2.1 Decision Support Systems
	2.1.1 Concept
	2.1.2 dss as an Umbrella Term
	2.1.3 dss as a Specific Application
	2.1.4 The Architecture of dss
	2.1.5 Decision Support System Classification
	2.1.6 The Decision Support System User

	2.2 Smart Mobility
	2.2.1 Mobility as a Service
	2.2.2 Vehicle Sharing Systems
	2.2.3 Operational Repositioning of Vehicles
	2.2.3.1 Predicted Demand

	2.2.4 Traveling Salesman Problem
	2.2.5 Bike Sharing Rebalancing Problem
	2.2.5.1 Static Approach
	2.2.5.2 Dynamic Approach

	2.3 Optimization Approaches
	2.3.1 Operational Research Methods
	2.3.1.1 Linear Programming
	2.3.1.2 Integer Programming
	2.3.1.3 Branch-and-bound
	2.3.1.4 Branch-and-cut
	2.3.1.5 Nonlinear Programming

	2.3.2 Modern Optimization
	2.3.2.1 Local Search
	2.3.2.2 Population-Based Search

	2.4 Decision Support Systems for Dynamic Vehicle Relocation
	2.5 Optimization of Dynamic Vehicle Relocation

	3 Problem formalization
	3.1 Problem Description
	3.1.1 Descriptive Example
	3.1.2 Problem Formulation and Definitions

	4 Development of the Optimization System
	4.1 Formulation
	4.2 Read Data
	4.3 Define Search Space and Solution Representation
	4.3.1 Dimension
	4.3.2 Bounds

	4.4 Search for (sub)Optimal Solution
	4.4.1 Objective Goal Formulation
	4.4.2 Initial Solution and Population Definition
	4.4.2.1 Initial Solution
	4.4.2.2 Initial Population

	4.4.3 Change and Breeding (Genetic Operators)
	4.4.3.1 Change
	4.4.3.2 Breeding (Genetic Operators)

	4.5 Repair
	4.6 Save Results
	4.7 Stop Criteria
	4.8 New Trip
	4.9 Output Results

	5 Experimental results and discussion
	5.1 Solution Generation Approaches and Weight Experimentation
	5.1.1 Weight Experimentation
	5.1.2 Initial Solution/Population Experimentation

	5.2 System Experimentation
	5.3 Discussion
	5.3.1 Author Defined Solution
	5.3.2 System Solution

	6 Conclusions and Future Work
	6.1 Synopsys
	6.2 Discussion
	6.3 Future Work

	A System Environment by Scenario
	A.1 Scenário I
	A.1.1 Evaluation Formula
	A.1.2 Fleet
	A.1.3 Service Level Requirements
	A.1.4 Geospatial Coordinates
	A.1.5 Distances
	A.1.6 Configurations

	A.2 Scenário II
	A.2.1 Fleet

