Identification of Histone H4-Based Peptoids as Inhibitors of Megan DeMart, Molly Dubose, Sarah Mann, Corey Causey, PhD, and Bryan Knuckley, PhD • University of North Florida • Department of Chemistry

Protein Arginine Methyltransferases (PRMTs) are a family of 11 members of the 11 members of the PRMT family are divided into two main types, Type I and Type II. PRMT1, the major Type I isozyme, catalyzes the formation of asymmetrically dimethylated arginine (ADMA). PRMT1 activates transcription of cancer genes. Peptoids, or poly-N-substituted glycine's are a class of oligomers whose side chains are appended to the nitrogen atom of the peptide backbone rather than the alpha carbon. Kinetic parameters were conducted for both peptoid sequences. The K_{cat}/K_m and IC₅₀ values determined that peptoids show inhibition activity. The specificity and location of these interactions are currently being determined by altering the residues of a known peptoid sequence that has these interactions.

Background

Enzymes bind with substrates in the active site. The active site is composed of unique amino acid residues which create a specific, ideal environment. This enzyme-substrate complex is formed via a lock and key model shown below.

PRMTs post translationally modify arginine residues by methylating its histone tails. PRMT1 produces ADMA, while PRMT5 produces SMDA.

• PRMT1 can activate transcription of cancer-related genes. Inhibition of PRMT1 would be beneficial to repress activation of these cancer-related genes

• Peptoids are similar to peptides but differ in the location of the

microwave

ninetic pa	rameters of selected p	eptides			
Peptide	k _{cat} (min⁻¹)	<i>K_m</i> (μM)	K _{cat} /K	$C_m(M^{-1}min^{-1})$	
AcH4-21	3.55 ± 0.68	0.39 ± 0.01	1.10	× 10 ⁵	
AcH4-16	152 ± 14	0.28 ± 0.01	1.82	× 10 ³	
AcH4-13	365 ± 174	0.18 ± 0.05	4.94	× 10 ²	
^a These valu determining	ues were reported in Osl g these values was 15 μ	borne et al ^{/.} The S M.	SAM concentra	ation for	
Kinetic pa	rameters of peptoids				
Peptoid	k _{cat} (min⁻¹)	<i>K_m</i> (μM)	K _{cat} /K	(M ⁻¹ min ⁻¹)	
AcH4-16	nd ^a	nd ^a	nd ^a		
AcH4-13	nd ^a	nd ^a	nd ^a	nd ^a	
AcH4-8	nd ^a	nd ^a	nd ^a		
^a The kinetic lack of proc	c parameters for these of duct formation, SAM cor	compounds were ncentration was 4	not determine 0 µM.	d due to a	
Substrate	vs Inhibitor	IC ₅₀ values	of peptoids		
		Acetylated Peptoids		Unacetylated Peptoids	
Enzyme	Enzyme	Peptoid	<i>IC₅₀</i> (μΜ)	Peptoid	<i>ΙС₅₀</i> (μΜ
Substrate C	Competitive	AcH4-16	916 ± 19.5	H4-16	396 ± 31
substrate	AB	AcH4-13	>1000	H4-13	898±93.

Future Directions

Peptoid	Sequence		
H4-16 K12A	KAGGAGLGKGGKGRGS		
H4-16 K16A	AAGGKGLGKGGKGRGS		
H4-16 K12A K16A	AAGGAGLGKGGKGRGS		

Conclusions

We were able to identify a novel PRMT inhibitor. Advantages of this inhibitor are that it is resistant to proteases due to the peptoid structure and the fact that it lacks peptide bonds. This inhibitor is likely a competitive inhibitor and may be specific to PRMT1.

Acknowledgements

UNF COAS Dean's Leadership Fellowship UNF COAS Research Enhancement Plan

^aSAM concentration was 40 μ M.

- Determine the kinetic parameters and IC_{50} values for the three H4-16 peptoids.
- We also plan on testing the H4-16 peptoid as a possible inhibitor for PRMT5
- Determine the the type of inhibition
- Determine the binding site for the H4-16 peptoid