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Abstract: This note revisits the ideas of the so-called semiparametric methods that we consider to
be very useful when applying machine learning in insurance. To this aim, we first recall the main
essence of semiparametrics like the mixing of global and local estimation and the combining of
explicit modeling with purely data adaptive inference. Then, we discuss stepwise approaches with
different ways of integrating machine learning. Furthermore, for the modeling of prior knowledge,
we introduce classes of distribution families for financial data. The proposed procedures are illustrated
with data on stock returns for five companies of the Spanish value-weighted index IBEX35.
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1. Introduction

The Editors of this Special Issue pointed out that machine learning (ML) has no unanimous
definition. In fact, the term “ML”, coined by Samuel (1959), is quite differently understood in the
different communities. The general definition is that ML is concerned with the development of
algorithms and techniques that allow computers to learn. The latter means a process of recognizing
patterns in the data that are used to construct models; cf. “data mining” (Friedman 1998). These models
are typically used for prediction. In this note, we speak about ML for data based prediction and/or
estimation. In such a context, one may say that ML refers to algorithms that computer codes apply to
perform estimation, prediction, or classification. As said, they rely on pattern recognition (Bishop 2006)
for constructing purely data-driven models. The meaning of “model” is quite different here from what
“model” or “modeling” means in the classic statistics literature; see Breiman (2001). He speaks of the
data modeling culture (classic statistics) versus the algorithmic modeling coming from engineering
and computer science. Many statisticians have been trying to reconcile these modeling paradigms;
see Hastie et al. (2009). Even though the terminology comes from a different history and background,
the outcome of this falls into the class of so-called semi-parametric methods; see Ruppert et al. (2003)
or Härdle et al. (2004) for general reviews. According to that logic, ML would be a non-parametric
estimation, whereas the explicit parametrization forms the modeling part from classic statistics.

Why should this be of interest? The Editors of this Special Issue also urge practitioners not to
ignore what has already been learned about financial data when using presumably fully automatic
ML methods. Regarding financial data for example, Buch-Larsen et al. (2005), Bolancé et al. (2012),
Scholz et al. (2015, 2016), and Kyriakou et al. (2019) (among others) have shown the significant
gains in estimation and prediction when including prior knowledge in nonparametric prediction.
The first two showed how knowledge-driven data transformation improves nonparametric estimation
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of distribution and operational risk; the third paper used parametrically-guided ML for stock
return prediction; the fourth imputed bond returns to improve stock return predictions; and the
last proposed comparing different theory-driven benchmark models regarding their predictability.
Grammig et al. (2020) combined the opposing modeling philosophies to predict stock risk premia.
In this spirit, we will discuss the combination of purely data-driven methods with smart modeling, i.e.,
using prior knowledge. This will be exemplified along the analysis of the distributions (conditional
and unconditional) of daily stock returns and calculations of their value-at-risk (VaR).

Notice finally that in the case of estimation, methods are desirable that permit practitioners to
understand, maybe not perfectly, but quite well, what the method is doing to the data. This will
facilitate the interpretation of results and any further inference. Admittedly, this is not always
necessary and certainly also depends on the knowledge or imagination of the user. Yet, we believe
it is often preferable to analyze data in a glass box than in a black box. This aspect is respected in
our considerations.

Section 2 revisits the ideas of semiparametric statistics. Section 3 provides an intensive treatment
of the distribution modeling followed by its combination with local smoothing. In Section 4, we give
empirical illustrations. Section 5 concludes. In the Appendix are given additional details.

2. Preliminary Considerations and General Ideas

It is helpful to first distinguish between global and local estimation. Global means that the
parameter or function applies at any point and to the whole sample. Local estimation applies only to a
given neighborhood, like for kernel regression. It is clear that localizing renders a method much more
flexible; however, the global part allows for an easy modeling, and its estimation can draw on the entire
sample. Non-parametric estimators are not local by nature; for example, power series based estimators
are not. Unless you want to estimate a function with discontinuities, local estimators are usually
smoothing methods; see Härdle et al. (2004). This distinction holds also for complex methods (cf. the
discussion about extensions of neural networks to those that recognize local features), which often turn
out to be related to weighted nearest neighbor methods; see Lin and Jeon (2006) for random forests or
Silverman (1984) for splines. The latter is already a situation where we face a mixture of global and
local smoothing; another one is orthogonal wavelet series (Härdle et al. 1998).

Those mixtures are interesting because the global parts can borrow the strength from a larger
sample and have a smoothing effect, while the local parts allow for the desired flexibility to detect
local features. Power series can offer this only by including a (in practice unacceptable) huge number
of parameters. This is actually a major problem of many complex methods, but mixtures allow
substantially reducing this number. At the same time, they allow us to include prior knowledge about
general features. For example, imposing shape restrictions is much simpler for mixtures (like splines)
than it is for purely local smoothers; see Meyer (2008) and the references therein. Unless the
number of parameters is pre-fixed, their selection happens via reduction through regularization,
which can be implemented in many ways. Penalization methods like P-splines (Eilers et al. 2015)
or LASSO (Tibshirani 1996) are popular. The corresponding problem for kernel, nearest neighbors,
and related methods is the choice of the neighborhood size. In any case, one has to decide about
the penalization criterion and a tuning parameter. The latter is until today an open question;
presently, cross-validation-type methods are the most popular ones. For kernel based methods,
see Heidenreich et al. (2013) and Köhler et al. (2014) for a review or Nielsen and Sperlich (2003) in the
context of forecasting in finance.

The first question concerns the kind of prior information available, e.g., whether it is about the set
of covariates, how they enter (linearly, additively, with interactions), the shape (skewness, monotonicity,
number of modes, fat tails), or more generally, about smoothness. This is immediately followed by
the question of how this can be included; in some cases, this is obvious (like if knowing the set of
variables to be included); in some others, it is more involved (like including parameter information via
Bayesian modeling). Knowledge about smoothness is typically supposed in order to justify a particular
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estimator and/or the selection method for the smoothing parameter. Information about the shape
or how covariates enter the model comprises the typical ingredients of semiparametric modeling
(Horowitz 1998) to improve nonparametric estimation (Glad 1998).

Consider the problem of estimating a distribution, starting with the unconditional case. In many
situations, you are more interested in those regions for which data are hardly available. If you used then
a standard local density estimator, you would try to estimate interesting parameters like VaR from only
very few observations, maybe one to five, which is obviously not a good idea. Buch-Larsen et al. (2005)
proposed to apply a parametric transformation using prior knowledge. Combining this way a local
(kernel density) estimator with such a global one, however, allowed them to borrow strength from the
model and from data that were further away. Similarly, consider conditional distributions. Locally,
around a given value of the conditioning variable, you may have too few observations to estimate a
distribution nonparametrically. Then, you may impose on this neighborhood the same probability law
up to some moments, as we will do in our example below.1

Certainly, a good mixture of global and local fitting is problem-adapted. Then, the question falls
into two parts: which is the appropriate parametric modeling, and how to integrate it with the flexible
local estimator. For the former, you have to resort to expertise in the particular field. For the latter,
we will discuss some popular approaches. All this will be exemplified with the challenges of modeling
stock returns for five big Spanish companies and predicting their VaR.

In our example, the first step is to construct a parametric guide for the distribution of stock
returns Y. To this aim, we introduce the class of generalized beta-generated (BG) distributions
(going back, among others, to Eugene et al. (2002) and Jones (2004)), as this distribution class
allows modeling skewed distributions with potentially long or fat tails. While this is not a
completely new approach, we present it with an explicit focus on the above outlined objectives
including the calculation of VaRs and combining it with nonparametric estimation and/or validation.
Our validation is more related to model selection and testing, today well understood and
established, and therefore kept short. The former, i.e., the combination with nonparametric estimation,
is discussed for the problem of analyzing conditional distributions and can be extended to the
combination with methods for estimating in high dimensions. For this example, in which the
prior knowledge enters via a distribution class, we discuss two approaches: one is based on the
method of moments, the other one on maximum likelihood. The latter is popular due to Rigby and
Stasinopoulos (2005) and Severini and Staniswalis (1994). Rigby and Stasinopoulos (2005) considered
a fully parametrized model in which each distribution parameter (potentially transformed with a
known link) is written as an additive function of covariates, typically including a series of random
effects. They proposed a backfitting algorithm (implemented in the R library GAMLSS) to maximize a
penalized likelihood corresponding to a posterior mode estimation using empirical Bayesian arguments.
Severini and Staniswalis (1994) started out with the parametric likelihood, but localized it by kernels.
This is maximized then for some given values of the covariates.

3. A Practical Example

We now discuss the technical steps for the announced practical example. While this section
focuses on the technical part, the empirical exercise is done in the next section.

3.1. Distribution Modeling

Often, the Student t distribution was used in financial econometrics and risk management to model
the conditional asset returns, going back to Bollerslev (1987). However, it is well known that it does not
describe very well the empirical features of most financial data. Therefore, several proposals have been

1 Further advantages are that semiparametric modeling can help to overcome the curse of dimensionality and that
semiparametric models are more robust to the choice of smoothing parameters.
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made of skewed Student t distributions; see Theodossiou (1998) and Zhu and Galbraith (2010) for the
context of finance or Jones and Faddy (2003) and Azzalini and Capitanio (2003) in (applied) statistics.
For a more general discussion and compendium, see Rigby et al. (2019).

Let us consider two classes of skewed t distributions. Both are derived from the (generalized)
BG classes; see Appendix A. These allow for the generation of many flexible distribution classes.
The fist version depends on two parameters, whereas the second one depends on three. One may
directly go for the second one. Remember, however, later on, that this is just a parametric guide for the
semiparametric estimator. There is certainly a trade-off between the gain of flexibility, on the one hand,
and the loss of its regularization, on the other hand. Moreover, each additional parameter in the global
part may raise the costs of implementation and computation to an unacceptable degree. Both skewed t
distributions are generated by taking a standard Student t as the baseline distribution in (A1) and (A2),
respectively. Specifically, plugging in FY(y; a, b) = 1

2

(
1 + y/

√
a + b + y2

)
, a so-called scaled Student

t2, into (A1), gives our skewed t of Type 1 with the probability density function (pdf):

gT1(y; a, b) = k1

(
1 +

y√
a + b + y2

)a+1/2(
1− y√

a + b + y2

)b+1/2

, (1)

where k−1
1 = B(a, b)

√
a + b2a+b−1 and y ∈ R. We write Y ∼ T1(a, b); see Jones and Faddy (2003).

Plugging the baseline cumulative density (cdf) into (A2) gives our skewed t of Type 2 with the pdf:

gT2(y; a, b, c) = k2
1

(a + b + y2)3/2

(
1 +

y√
a + b + y2

)ac−1(
1− 1

2c

(
1 +

y√
a + b + y2

)c)b−1

, (2)

where k2 = c(a+b)
B(a,b)2ac and y ∈ R. We write Y ∼ T2(a, b, c); see Alexander and Sarabia (2010) and

Alexander et al. (2012). The densities gT1 , gT2 are illustrated in Figure 1.

Figure 1. Graphics of the probability density function: left for the skewed t1 (1) when (a, b) = (2,2),
(5,2), (8,2), (2,5), and (2,8); center for the skewed t2 (2) with (a, b, c) = (2,2,0.5), (8,2,0.5), (5,2,0.5), (2,5,0.5),
and (2,8,0.5); and on the right, (2,2,2), (8,2,2), (5,2,2), (2,5,2), and (2,8,2).

For implementation, estimation, model selection, and in particular, for the possible integration of
ML, we take a closer look at the basic properties of these two distributions. Note that for a = b in (1),
one obtains the classical Student t distribution with 2a degrees of freedom. The same is true for the
three-parameter case (2) when setting a = b with c = 1. Furthermore, the cdfs are given by:

GT1(y; a, b) = I

(
1
2

{
1 +

y√
a + b + y2

}
; a, b

)
, (3)

and:
GT2(y; a, b, c) = I(Fc

Y(y; a, b); a, b), (4)
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respectively. Having explicit expressions for the pdf, one may think that likelihood based methods are
straight-forward, including those for tests and model selection. Note, however, that for a sample of
size m, you need to know the joint distribution of (y1, . . . , ym), which are not independent. In practice,
many work with log ∏m

i=1 gTk (yi; θ), (k = 1, 2 with θ = (a, b) for k = 1, θ = (a, b, c) else) as a likelihood
approximate, ignoring potential dependencies. This weakens both the efficiency of estimation and the
validity of likelihood based inference. Therefore, it is interesting to look at alternatives. For estimation,
recall the moment based approach; then, we need to to express parameters a, b, and if applicable c,
in terms of estimable moments. For the case of the skewed t distribution of the first kind, we have:

E(Yr) =
(a + b)r/2

B(a, b)

r

∑
j=0

(
r
j

)
2−j(−1)jB

(
a− r

2
− j, b− r

2

)
(5)

if a, b > r/2. An advantage of this expression is that we do not need to estimate the centered,
standardized moments. This is even more an advantage when we try to estimate these moments
nonparametrically. Similarly, for the skewed t distribution of the second kind:

E(Yr) =
(a + b)r/2

B(a, b)

r

∑
j=0

(−1)j
(

r
j

)
2−j

∞

∑
k=0

(
−r/2

k

)
(−1)kB

(
a− r/2 + j− k

c
, b
)

. (6)

Clearly, this reveals a problem because we cannot solve this (easily) for a, b, and c.

3.2. Financial Risk Measures

The parametric part provides us with explicit formulas that we can use to derive closed expressions
for the risk measures, namely the VaR and tail moments. In fact, it can be shown that:

VaRT1 [p; a, b] =

√
a + b(2VaRB[p; a, b]− 1)

2
√

VaRB[p; a, b](1−VaRB[p; a, b])
, and (7)

VaRT2 [p; a, b, c] =

√
a + b(2VaR1/c

B [p; a, b]− 1)

2
√

VaR1/c
B [p; a, b](1−VaR1/c

B [p; a, b])
, (8)

with 0 ≤ p ≤ 1, where VaRB[p; a, b] denotes the VaR of a classical Be(a, b) distribution. Furthermore,
if Y ∼ T1(a, b), then the for a given yp, its corresponding tail moments can we written as:

E{Yk|Y ≤ yp} = E

{
(a + b)k/2(2B− 1)k

2kBk/2(1− B)k/2 |
√
(a + b)(2B− 1)
2
√

B(1− B)
≤ yp

}

=
(a + b)k/2

2k

k

∑
j=0

ajE{Bk/2−j(1− B)k/2 | B ≤ h(xp)},

where aj = (−1)j(k
j)2

k−j and h(z) = {a + b + z2 +
√
(a + b)z2 + z4}/{2(a + b + z2)}, which is

increasing in z, with a, b ∈ R+. For k = 1, we get the T(ail)VaR. If B ∼ Be(a, b), then one has:

E{Bk/2−j(1− B)k/2 | B ≤ h(xp)} =
1− FB̃(h(yp))

FB(h(yp))

B(k/2 + a− j, b− k/2)
B(a, b)

, (9)

where B̃ ∼ Be(k/2+ a− j, b− k/2), b > k/2, and h(z) as above. In sum, for the Type 1 class, we obtain
explicit expressions for the tail moments that do not change when (a, b) are functions of covariates.

3.3. Combining The Prior with Nonparametric Estimation

First, let us briefly consider the case of being only interested in the estimation of the unconditional
distribution g(·), say, in that of stock returns Y. Once a proper parametric choice (say Gθ) is found and
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the parameters θ are estimated, we know that Ỹ := Gθ̂(Y) has a pretty smooth density g̃, which is not
too far from the uniform [0, 1] distribution. Then, as g(y) = g̃{Gθ̂(y)}, you obtain the final estimate.
A next step to proceed could be to apply a nonparametric estimator like, for example, a kernel density
for g̃. The prior estimation served here to stretch data where we had many observations, and contract
them where we had only a few. You may say that this could also be done either by taking the empirical
cdf for transformation or by taking the local bandwidth that always includes the same number of
neighbors. This would be purely nonparametric and therefore renounce the use of prior information.
In practice, these alternatives suffer from various problems like giving wiggly results, a much harder
bandwidth choice, etc. For details and applications in actuarial sciences, consult Bolancé et al. (2012)
and Martínez Miranda et al. (2009).

We turn now to the slightly more challenging problem of considering conditional distributions.
For example, what is the stock return distribution of Telefónica and its VaR given a certain value of
the Spanish IBEX35? Having huge datasets, you may try to estimate this with a fully nonparametric
estimator. However, if you doubt that stationarity holds over a long period, you may want to
restrict your dataset to not include more than twelve months (as an example). In such a case,
you better resort to a parametric guide like above and turn a, b (and c if applicable) into flexible
functions of the conditioning covariate X. Again, a likelihood based approach may now look at
log prodm

i=1gTk (yi; θ(xi)) (k = 1, 2 with θ(xi) = (a(xi), b(xi)) for k = 1, etc.) ignoring potential
dependencies. Rigby and Stasinopoulos (2005) specified the elements of θ as additive, parametrized
functions of xi with some random coefficients, and maximized a penalized version of this. In contrast,
Severini and Staniswalis (1994) did not parametrize the elements of θ, but maximized (along θ) the
smoothed version, i.e., summ

i=1 log gTk (yi; θ(x))Kh(x− xi) for any x. Here, Kh(v) = h−1K(v/h) for a
kernel function K(·) with bandwidth h. That is, they obtained for given x an estimate of the value that
θ takes at x. Notice that the latter method is usually implemented for θ containing only one element
(typically the mean).

As said before, an interesting alternative is to estimate nonparametrically the moments of Y
and then derive the elements of θ. Thanks to Formula (5), we can do this for the Type 1 skewed t
distributions. More specifically, the algorithm would look as follows: For sample (xi, yi), i = 1, 2, . . . , m
with yi being the return of the stock and xi the conditioning variable (in our application, the market
return) conduct:

Step 1: Estimate the conditional first two moments µ1 and µ2 by:

µ1(xi) = E(y|xi), and log µ2(xi) = E(y2|xi) ,

where the nonparametric functions can be estimated, e.g., by kernel regression, splines, etc.
Step 2: You now may either take a grid over the range of X, with M grid points xj, or you

may calculate the estimates for each observation xi. Let us call them µ̂1j and µ̂2j, j = 1, 2, . . . , M for
either case.

Step 3: Calculate estimates (âj, b̂j) by solving in (aj, bj), j = 1, 2, . . . , M, the non-linear system:

µ̂1j =
(aj − bj)

√
aj + bj

2
·

Γ(aj − 1
2 )Γ(bj − 1

2 )

Γ(aj)Γ(bj)
, (10)

µ̂2j =
aj + bj

4
·
(aj − bj)

2 + aj − 1 + bj − 1
(aj − 1)(bj − 1)

. (11)

Step 4: Then, the estimate of the conditional distribution is of the form:

ĝ(y|xj) = gF(y|âj, b̂j) .
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Following Nielsen and Sperlich (2003), Kyriakou et al. (2019), and Mammen et al. (2019), you could
use local linear regression in Step 1 for both functions, combined with the validated R2 for the
bandwidth choice. Obviously, any method known as ML, including LASSO variable selection, can be
applied in this step. However, it is less evident how these methods could be combined with the
aforementioned likelihood based approaches. Note further that the conditional distribution obtained
by this strategy can also be used for semiparametric prediction of the unconditional distribution:

ĝ(y) =
1
m

m

∑
i=1

gF(y|âi, b̂i) . (12)

This shows that with µ̂1, µ̂2, you can predict the marginal distribution of Y for scenarios in which
the distribution of X is changing (Dai et al. 2016). For example, we could predict the unconditional
distribution of stocks for different distributions of the IBEX35. Note finally that Step 3 cannot easily
be applied to the skewed t distribution of Type 2; recall (6). In such a case, you could only try to
apply the idea of Rigby and Stasinopoulos (2005), but with procedures and algorithms that are still to
be developed.

4. Empirical Illustration

Consider daily stock returns from 1 January 2015 to 31.12.2015 for five companies of the Spanish
value-weighted index IBEX35; namely Amadeus (IT solutions for tourist industry), BBVA (global
financial services), Mapfre (insurance market), Repsol (energy sector), and Telefónica (information and
communications technology services); see Table 1. The returns are negatively skewed in four of the
five companies considered, but positively skewed in the last one.

Table 1. Summary statistics. The sample size is m = 261 for all sets.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

Maximum daily return 0.046286 0.040975 0.050847 0.073466 0.062264
Minimum daily return −0.097367 −0.060703 −0.067901 −0.0877323 −0.051563
Mean 0.000900 −0.000452 −0.000623 −0.001416 −0.000408
Standard deviation 0.014601 0.016249 0.015942 0.021349 0.016301
Skewness −1.163797 −0.465779 −0.723655 −0.166165 0.130372
Kurtosis 10.292160 3.824688 4.873980 5.435928 4.422885

We first fit the data by the maximum likelihood (ignoring dependence) to both distribution classes,
working with standardized data. Tables 2 and 3 show the parameter estimates with standard errors.

Table 2. Maximum likelihood estimates for the skewed t model of Type 1, standardized data. Standard
errors are in parenthesis.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

â 6.194309 10.773980 7.271484 5.009976 7.083988
(2.378890) (8.474473) (3.684818) (1.980271) (3.810294)

b̂ 6.171897 10.76088 7.250156 5.005015 7.086958
(2.378415) (8.477441) (3.686769) (1.980433) (3.810390)
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Table 3. Maximum likelihood estimates for the skewed t model of Type 2, standardized data. Standard
errors are in parenthesis.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

â 1.050617 0.935678 0.8685684 0.808572 1.120804
(0.443072) (0.407211) (0.329048) (0.363157) (0.650834)

b̂ 5.126098 7.144007 6.217545 2.998354 3.497796
(2.091549) (5.104088) (3.184219) (0.917090) (1.110353)

ĉ 2.973896 3.653026 3.617017 2.721519 2.331579
(0.761879) (0.733523) (0.668503) (0.698227) (0.774010)

To choose between these two models, one may use the Bayesian information criterion (BIC).
However, as our (working) likelihood neglects the dependence structure, it might not be reliable.
While the three-parameter model presents the largest values for BIC (not shown), the gain, however,
is always close to, or smaller than, 1%.

An alternative is to apply ML methods comparing the parametric estimates with purely
nonparametric ones. This is not recommendable any longer when switching to conditional distributions
due to the moderate sample sizes. In Figure 2, you see how our models (in red) adapted to the
empirical cdf (blue) for the stocks of Amadeus and BBVA. As expected, the three-parameter model
gave slightly better fits. In practice, the interesting thing to see is where improvements occurred,
if any. The practitioner has to judge then what is of interest for his/her problem; ML cannot do this
for him/her. However, ML can offer specification tests; see Gonzales-Manteiga and Crujeiras (2013)
for a review. For example, a test that formalizes our graphical analysis is the Kolmogorov–Smirnov
(KS) test:

KS = sup |Fm(yi)− F(yi; θ̂)|, i = 1, 2, . . . , m,

where Fm(yi) is the empirical cdf and F(y; θ̂) is the cdf of the particular model class with θ̂ from Tables 2
and 3. To calculate the p-value, we can use the parametric bootstrap:

Step 1: For the observed sample, find the maximum likelihood estimator, F(y; θ̂), F̂m(y), and KS.
Step 2: Generate J bootstrap samples y(j)

1 , . . . , y(j)
m ∼ F(y; θ̂) under H0 (the data follow model F);

fit them; and compute F(y; θ̂(j)), F̂(j)
m (y), and KS(i) for each bootstrap sample j = 1, 2, . . . , J.

Step 3: Calculate the p-value as the fraction of synthetic bootstrap samples with a KS statistic
greater than the empirical KS statistic obtained from the original data.

To obtain an approximate accuracy of the p-value for ε =0.01, we generated J = 1
4 ε−2 = 2500

bootstrap samples. Table 4 shows the results for both distribution classes and all datasets. It can be
seen that with all p-values larger than 0.499, both models could not be rejected at any reasonable
significance level in any of the considered datasets.

Finally, let us see how different the VaR are, when calculated on the base of one model compared
to the other; recall Equations (7) and (8). They were calculated at the 95% confidence level for all
datasets; see Table 5. The T1 model with two parameters provided slightly higher VaR values than the
T2 model. The difference again seemed to be somewhat marginal, except maybe for Amadeus.
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Figure 2. Plots of the theoretical cdfs of the skewed t models (LEFT: T1 model; RIGHT: T2 model) and
the empirical cdf. Stocks: Amadeus; BBVA.

Table 4. Bootstrap p-values for both models and all five datasets.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

Skewed t T1 0.593 0.676 0.499 0.761 0.829
Skewed t T2 0.732 0.908 0.733 0.732 0.915

Table 5. Values at risk VaRT1[0.05; a, b)] and VaRT2[0.05; a, b, c] for the five stocks considered.

Stocks Amadeus BBVA Mapfre Repsol Telefónica

VaRT1 −0.024941 −0.028328 −0.028521 −0.040059 −0.029110
VaRT2 −0.023089 −.02817 −0.027794 −0.038330 −0.028029

Let us turn to the estimation of the conditional distribution. Here, the integration of the ML
happens by incorporating the covariates nonparametrically. For the sake of presentation and brevity,
we restricted ourselves here to the moment based approach; for more details on the likelihood based
one, we refer (besides the above cited literature) to the recent compendium of Rigby et al. (2019) and
the references therein. Limiting ourselves to the moment based method automatically limited us to the
skewed t1 class; recall Equation (6).2 Furthermore, for the sake of illustration, we limited the exercise
to the estimation of all distribution parameters as nonparametric functions of one given covariate X,
namely the IBEX35. It was obvious that estimates for µ1, µ2 could equally well be the result of a complex
multivariate regression or a variable selection procedure like LASSO. We estimated µ1(IBEX35)
and µ2(IBEX35) using different methods provided by standard software; the presented results
were obtained from penalized (cubic) spline regression with data-driven penalization. For details,

2 You may develop numerical approximations working with (6), but this is clearly beyond the scope of this note. However,
the above studies insinuate that the gain by using the more complex Type 2 class is rather marginal. Those advantages get
easily compensated by the local estimator.
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consult Ruppert et al. (2003) and the SemiPar project. Figure 3 gives an example of how this performed
for the BBVA stocks.

Figure 3. Estimates µ̂1, ̂log µ2 for BBVA stock returns as functions of IBEX35.

Table 6 gives for the IBEX35 quantiles Q1 = −0.00768, Median = Q2 = 0.00079, Q3 = 0.00687 the
corresponding moment estimates of the different stock returns; Table 7 the corresponding (aj, bj) for
Formulas (10) and (11). Table 8 gives the corresponding conditional VaRs obtained from Formula (7).

Table 6. First two moments of stock returns for given IBEX35 values (looking at its quantiles).

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica
Quartile µ̂1j µ̂2j µ̂1j µ̂2j µ̂1j µ̂2j µ̂2j µ̂1j µ̂2j µ̂1j

Q1 −0.323500 2.336970 −0.493668 1.489340 −0.481228 2.215213 −0.430198 1.654110 −0.509551 1.941169
Q2 0.025464 2.385443 0.094427 1.240531 0.060678 1.487417 0.056462 1.474321 0.034497 1.253373
Q3 0.280358 2.492818 0.503731 1.523203 0.439138 1.623399 0.405799 1.698132 0.433284 1.421627

Table 7. Parameter (aj, bj) of the conditional stock return distributions for given IBEX35 values.

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica
Quartile âj b̂j âj b̂j âj b̂j âj b̂j âj b̂j

Q1 1.742906 2.136783 5.397247 6.904428 1.990996 2.690554 3.143186 4.048275 2.490487 3.398563
Q2 1.736629 1.709150 5.492494 5.226327 3.133551 3.019128 3.184576 3.076590 5.016808 4.924298
Q3 1.953575 1.639172 6.478997 5.008818 4.327494 3.356619 3.640170 2.851049 6.809153 5.483973

Table 8. The conditional value at risk VaRT1(IBEX35) for given IBEX35 values.

IBEX35 Amadeus BBVA Mapfre Repsol Telefónica

Q1 −0.037728 −0.038910 −0.044802 −0.053801 −0.043939
Q2 −0.031199 −0.027981 −0.030278 −0.041117 −0.029327
Q3 −0.026029 −0.020886 −0.022744 −0.032601 −0.021913

In Figure 4, you can see the entire conditional distributions for the three IBEX35 quantiles. Finally,
in Figure 5, we plotted the resulting unconditional distributions when you integrate over the observed
IBEX35 values; recall Equation (12). They reflect quite nicely the asymmetries and some fat tails.
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Figure 4. Conditional densities of stock returns at the quantiles of IBEX35 for Amadeus (upper left),
BBVA (upper center), Mapfre (upper right), Repsol (lower left), and Telefónica (lower right).

Figure 5. Unconditional densities of stock returns obtained from integrating the conditional ones over
all observed IBEX35 values.

5. Discussion and Conclusions

In this note, we revisited the ideas of semiparametric modeling to propose for ML what one
could call glass box modeling. It integrates ML in a mixture of a global and a local part in which the
global one is as a parametric guide for the nonparametric estimate. We discussed different advantages
of such a kind of smart modeling and the steps to be performed. In our illustration (analyzing
financial data), we proposed as a parametric guide some (generalized) beta-generated distributions.
In particular, we considered two classes of skewed t distributions. This allowed us to work with
analytical expressions for the pdf, cdf, moments, and quantile functions, including the VaR, even on a
local level. An empirical application with five datasets of stock returns was performed for illustration.
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Appendix A. Some Classes of Beta-Generated Distributions

This is to recall the class of BG distributions and to present some basic properties of this class.
Let us call pdf f (y) the baseline probability function with F(y) being the corresponding cdf. The class
of BG distributions is defined in terms of the pdf by:

gF(y; a, b) =
Γ(a + b)
Γ(a)Γ(b)

f (y)F(y)a−1[1− F(y)]b−1, (A1)

where Γ(y) denotes the gamma function and a, b > 0 some real numbers. If for m being the sample size,
we set a = i and b = m− i + 1 in (A1), one obtains the pdf of the ith order statistic from F (Jones 2004).
For a 6= b, we obtain a family of skewed distributions, for a = m and b = 1 the distribution of the
maximum, for a = 1 and b = m the one of the minimum, and for a = b = 1 obviously gF = f . In our
context, the first property is the most interesting one. The parameters a and b control the tailweight
of the distribution, where a controls the left-hand and b the right-hand tailweight. Consequently,
for a = b, one obtains a symmetric sub-family, but still with a = b controlling the tailweight. The BG
distribution accommodates several kinds of tails like potential and exponential ones (Jones 2004).

For the moment method and in order to express the VaR in terms of moments or (a, b), we need
to relate a, b to (directly) estimable moments. Let us now denote the cdf associated with (A1) by
GF(y; a, b) = I(F(y); a, b) with I(F(y); ·, ·) denoting the incomplete beta-function ratio:

Bx(a, b)/B1(a, b) , where By(a, b) =
∫ y

0
ta−1(1− t)b−1dt

where 0 ≤ y ≤ 1, such that B1(a, b) = (Γ(a)Γ(b)/Γ(a + b). For a random variable B ∼ Be(a, b), i.e.,
following the classical beta distribution, a simple stochastic representation of (A1) is Y = F−1(B).
This allows for a direct simulation of the values of a random variable with pdf (A1). The raw (i.e.,
not centered, not normalized) moments of a BG distribution can be obtained by:

E[Yr] = E[{F−1(B)}r] for integers r > 0 .

Recently, some extensions have been proposed, e.g., by Alexander and Sarabia (2010),
Alexander et al. (2012) and Cordeiro and de Castro (2011), of which we consider the one towards
three parameters: The generalized BG (GBG) distribution is defined for a, b, c > 0 by the pdf:

gF(y; a, b, c) =
cΓ(a + b)
Γ(a)Γ(b)

f (y)F(y)ac−1[1− F(y)c]b−1. (A2)

For c = 1, we get the BG distribution; for a = c = 1, one obtains the so-called proportional hazard
model; and setting a = 1 yields the so-called Kumaraswamy generated distribution.
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