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Vasculitides are a heterogeneous group of low frequent disorders, mainly characterized

by the inflammation of blood vessels that narrows or occlude the lumen and limits the

blood flow, leading eventually to significant tissue and organ damage. These disorders are

classified depending on the size of the affected blood vessels in large, medium, and small

vessel vasculitis. Currently, it is known that these syndromes show a complex etiology in

which both environmental and genetic factors play a major role in their development.

So far, these conditions are not curable and the therapeutic approaches are mainly

symptomatic. Moreover, a percentage of the patients do not adequately respond to

standard treatments. Over the last years, numerous genetic studies have been carried out

to identify susceptibility loci and biological pathways involved in vasculitis pathogenesis

as well as potential genetic predictors of treatment response. The ultimate goal of these

studies is to identify new therapeutic targets and to improve the use of existing drugs to

achieve more effective treatments. This review will focus on the main advances made in

the field of genetics and pharmacogenetics of vasculitis and their potential application

for ameliorating long-term outcomes in patient management and in the development of

precision medicine.

Keywords: systemic vasculitis, polymorphism, genome-wide association studies, immunochip, precision

medicine

INTRODUCTION

Systemic vasculitides represent a heterogeneous group of chronic diseases characterized by the
inflammation of the blood vessels. These disorders are classified according to the diameter of the
affected vessels in large, medium and small vessel vasculitis, and may affect one or several organs
and tissues of the body, resulting in different clinical presentations. In the past years, considerable
therapeutic advances have beenmade in the treatment of vasculitis; however, the lack of appropriate
therapeutic response and the appearance of side effects remain a major concern (1).

Although the specific mechanisms underlying vasculitis are not fully understood, it is currently
known that these conditions show a complex etiology in which both genetic and environmental
factors appear to contribute to their pathogenesis (2). In recent years, our knowledge of the genetic
landscape of vasculitis has experienced a significant increase, mainly due to the development of
large-scale genetic scans, including genome-wide association studies (GWASs) and Immunochip
studies, focused on analyzing single-nucleotide polymorphisms (SNPs) in cases and controls
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(Figure 1). In addition to the human leukocyte antigen (HLA)
region, which represents the strongest association in vasculitis,
multiple loci located outside the HLA have been shown to play a
role in the genetic predisposition to these disorders (Table 1).

Identification of genes and molecular pathways deregulated in
vasculitis is crucial to better understand disease pathogenesis and
for the development of more effective therapeutic approaches.
In this sense, Nelson et al. (27) demonstrated that a drug with
genetic support has twice the possibilities of going from phase
I to approval in the different phases of drug development,
than those drugs without genetic support. The authors found
that genes associated with a broad spectrum of human diseases
were significantly enriched in target genes for drugs approved
in the United States or the European Union, highlighting the
importance of the provided genetic knowledge in different drug
mechanisms. In addition, genetic studies not only have the
potential to identify molecular targets for new therapies, but they
also allow us to determine the best way to administer current
treatments. In this regard, several pharmacogenetic studies based
on candidate genes have identified a number of genetic variants
influencing treatment response in different vasculitides (Table 2).

This review aims to provide an update of the main findings
obtained from genetic and pharmacogenetic studies as well as
their potential application to precision medicine in vasculitis.

CONTRIBUTION OF GENETICS TO NEW
THERAPEUTIC APPROACHES IN
VASCULITIS

Takayasu Arteritis
Takayasu arteritis (TAK) is a chronic vasculitis characterized
by granulomatous inflammation of large vessels, predominantly
the aortic arch and its branches, which results in non-specific
constitutional symptoms, such as fever and weight loss, and
serious complications, including arterial stenosis, occlusion and
aneurysm. This disease affects mainly young females with a
higher incidence in Asia and Latin America (46).

Genetic studies have shown that the HLA region represents
the main genetic risk factor in TAK. Specifically, an association
at the genome-wide significance level between the classical
allele HLA-B∗52:01 and this vasculitis has been reported in
TAK patients from Japanese, Turkish and European-American
origin (3, 47), and confirmed in Greek, Mexican Mestizo, India,
Thai, and Korean populations (48–52). Moreover, independent
associations within the HLA class II region, specifically with the
DRB1∗07 classical allele and DRB1/DQB1 polymorphisms, have
also been reported (3, 53, 54); however, additional studies in
well-powered populations are required to confirm these findings.

Outside the HLA region, five loci have been consistently
associated with TAK through three large-scale genetic analyses
(3–5), IL6 (interleukin 6), encoding a cytokine that plays a
crucial role in the immune response by regulating the balance
between Th17 cells and regulatory T cells (Treg) (55); LILRB3
(leukocyte immunoglobulin like receptor B3), which encodes a
protein that binds to HLA class I molecules to inhibit immune
cell stimulation (56); IL12B, encoding the p40 subunit of IL-12

and IL-23, two cytokines with a key role in the inflammatory
responses mediated by Th1 and Th17 cells, respectively (57);
FCGR2A (Fc fragment of IgG receptor IIa) that encodes an
immunoglobulin Fcg receptor (FcgR), which has a relevant role
in humoral immunity by participating in modulation of antibody
production by B cells, phagocytosis, and clearing of immune
complexes (58); and an intergenic locus on chromosome 21q22
near PSMG1 (proteasome assembly chaperone 1).

Interestingly, some genes associated with TAK are being
explored as therapeutic targets for this vasculitis. On one hand,
tocilizumab, a humanized monoclonal antibody against IL-6
receptor (IL-6R), has shown clinical efficacy in TAK patients in
several case series studies (59). This efficiency was confirmed in
a prospective clinical trial evaluating tocilizumab in refractory
TAK, although the primary end-point was not met, probably due
to the low number of individuals included in this study (60). A
phase III clinical trial evaluating this biological agent as a first-line
therapy in TAK patients is currently underway (NCT02101333).

On the other hand, administration of ustekinumab, a
monoclonal antibody to the p40 subunit common to IL-12
and IL-23, to patients with active TAK achieved decrease of
inflammatory markers but did not improve vascular lesions in a
pilot clinical trial (61). In a more recent study, this drug was used
to treat a patient with refractory TAK and psoriasis (for which
this drug is approved), two diseases that share the genetic risk
locus IL12B, with satisfactory results (62). Ustekinumab allowed
a significant reduction in glucocorticoid dose and full reduction
of vessel wall thickness, thus demonstrating the usefulness
of drug repositioning based on the existence of a common
genetic component.

Moreover, several evidences, including the association
observed between FCGR2A and TAK, indicate that, in addition
to T lymphocytes, B cells are also involved in the pathogenesis of
this vasculitis. In this regard, depletion of B cells using rituximab,
a chimeric anti-CD20 monoclonal antibody, has been shown
to be effective in a case series study, achieving clinical and
laboratory remission (63). Nevertheless, a randomized control
trial is needed in order to confirm the efficacy of rituximab in
patients with TAK.

Giant Cell Arteritis
Giant cell arteritis (GCA) is a vasculitis characterized by chronic
inflammation of medium- and large-sized blood vessels, mainly
the aorta and external carotid arteries and their branches.
A severe complication of this disorder is the occlusion of
the ophthalmic artery, which leads to acute and irreversible
blindness. GCA represents the most frequent vasculitis in elderly
individuals from Western countries affecting predominantly
women and people over 50 years of age (64).

In the last years, a high number of candidate gene association
studies have been performed in GCA, most of them focused on
analyzing genes encoding inflammatory cytokines (65). These
studies identified the HLA class II region, specifically the classical
allele DRB1∗04, as the main genetic risk factor in GCA. However,
both the low sample size and the lack of replication cohorts of
these studies have been limiting factors in the identification of
robust genetic associations outside the HLA region. Nevertheless,
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FIGURE 1 | Timeline representing key events in vasculitis genetic research. HLA, human histocompatibility complex; BD, Behçet’s disease; GCA, giant cell arteritis;

AAV, ANCA-associated vasculitis; KD, Kawasaki’s disease; TAK, Takayasu arteritis; GPA, granulomatosis with polyangiitis; GWAS, genome-wide association study.

some of the non-HLA loci associated with this vasculitis
using candidate-gene approaches were replicated in different
populations (66–71) and, therefore, they represent potential
genetic risk factors in GCA, including IL33, which encodes
a member of the IL-1 family involved in pro-inflammatory
cytokines production, angiogenesis and vascular permeability
(72, 73); IL17A, encoding a pro-inflammatory cytokine with
a relevant role in the differentiation of Th17 lymphocytes
(74); VEGF (vascular endothelial growth factor), encoding a
proangiogenic mediator (75); and NLRP1 (NLR family pyrin
domain containing 1), encoding a protein implicated in the
formation of the inflammasome, which activates caspases 1 and
5 leading to the activation of pro-inflammatory cytokines such as
IL-1β and IL-18 (76).

More recently, the emergence of massive genotyping
platforms and the formation of a large consortium focused on
the study of the genetic basis of GCA have allowed a significant
progress in the identification of this genetic component.
Until now, two large-scale genetic studies, a GWAS and an
Immunochip, have been performed in GCA (6, 8). Both of them
have confirmed the classical allele HLA-DRB1∗04 as the most
consistent association with this vasculitis. In addition, several
non-HLA loci have been also found to play a role in the GCA
genetic predisposition, including PTPN22 (protein tyrosine
phosphatase non-receptor type 22), PLG (plasminogen), and
P4HA2 (prolyl 4-hydroxylase subunit alpha 2).

The association between PTPN22 and GCA was initially
identified in a candidate-gene association study (7) and
subsequently confirmed by using the Immunochip strategy (6).
This gene encodes LYP, a tyrosine phosphatase involved in several
immune signaling pathways, such as the T cell receptor (TCR)
pathway and the humoral activity of B cells. The strongest signal
within this locus corresponds to a functional variant (rs2476601),

previously associated with multiple immune-mediated disorders,
that results in a non-synonymous arginine to tryptophan amino
acid change (R620W). It has been described that carrying
the rs2476601 risk allele results in enhanced B lymphocyte
autoreactivity, deregulated TCR signaling, and reduced capacity
for TLR-induced type 1 interferon (IFN) production (77). On
the other hand, PLG, encoding plasminogen, is involved in
different processes relevant for GCA, such as angiogenesis,
lymphocyte recruitment, and production of inflammatory
mediators, including tumor necrosis factor alpha (TNF-α) and
IL-6 (78), and P4HA2, encoding an isoform of the alpha subunit
of the collagen prolyl 4-hydroxylase, is an important hypoxia
response gene whose expression is induced by hypoxia-inducible
factor-1 (HIF-1), which also induces the expression of other genes
involved in GCA such as IL6,MMP9 (matrix metallopeptidase 9),
and VEGF (79).

These genetic findings, together with other lines of evidence,
have contributed to the identification of several molecular
pathways implicated in the GCA pathogenesis. Currently, it
is known that both Th1 and Th17 cells are relevant player
in GCA with two main cytokine clusters contributing to the
local inflammation, the IL-6/IL-17 and the IL-12/IFN-γ axes
(74). Interestingly, whereas the inflammatory activity of the IL-
6/IL-17 cytokine cluster seems to be affected by glucocorticoid
treatment, the IL-12/IFN-γ cytokine cluster is resistant to this
therapy. This, together with the adverse events associated with
long-term glucocorticoids use, has led to the search for new
therapeutical agents.

Considering the major role of IL-6 in the pathogenesis of
GCA, the potential use of tocilizumab in the treatment of
this vasculitis has been explored. IL-6 inhibition has shown
clinical efficacy in several randomized controlled trials (80,
81), thus representing a promising therapeutic strategy for
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TABLE 1 | Non-HLA loci associated with vasculitis at genome-wide significance level.

Type of vasculitis Susceptibility locus Chromosomic region Population Approach References

TAK FCGR2A 1q23.3 Turkish, European-American Immunochip (3)

IL12B 5q33.3 Turkish, European-American, Japanese GWAS (3, 4)

IL6 7p15.3 Turkish, European-American GWAS (5)

LILR3B 19q13.42 Turkish, European-American GWAS (5)

PSMG1 21q22.2 Turkish, European-American GWAS (5)

GCA PTPN22 1p13.2 European Candidate-gene, Immunochip (6, 7)

PLG 6q26 European GWAS (8)

P4HA2 5q31.1 European GWAS (8)

AAV SERPINA1 14q32.13 European Candidate-gene, GWAS (9–11)

PRTN3 19p13.3 European Candidate-gene, GWAS (9, 10, 12)

PTPN22 1p13.2 European Candidate-gene, GWAS (10, 13–15)

SEMA6A 5q23.1 European GWAS (13)

BD IL10 1q32.1 Japanese, Turkish GWAS (16, 17)

IL23R/IL12RB2 1p31.3 Japanese, Turkish, European GWAS, Immunochip (16–18)

CCR1/CCR3 3p21.31 Turkish GWAS follow-up (19)

STAT4 2q32.2-q32.3 Turkish GWAS follow-up (19)

ERAP1 5q15 Turkish GWAS follow-up (19)

KLRC4 12p13.2 Turkish GWAS follow-up (19)

GIMAP4 7q36.1 Korean GWAS (20)

IL12A 3q25.33 European, Middle East and Turkish GWAS, Immunochip (18, 21)

JRKL/CNTN5 11q22.1 European Immunochip (18)

KD ITPKC 19q13.2 European, Asian GWAS (22)

FCGR2A 1q23.3 European, Asian GWAS (22)

CASP3 4q35.1 European, Japanese Candidate-gene (23)

BLK 8p23.1 Han Chinese, Japanese, Korean GWAS (24–26)

CD40 20q13.12 Han Chinese, Japanese GWAS (25, 26)

TAK, Takayasu arteritis; GCA, giant cell arteritis; AAV, Anti-neutrophil cytoplasmic antibody-associated vasculitis; BD, Behçet’s disease; KD, Kawasaki’s disease; GWAS, genome-wide

association study.

this type of vasculitis. Indeed, tocilizumab has been recently
approved to treat GCA by the United States Food and Drug
Administration (FDA). Furthermore, other biological agents,
such as ustekinumab and abatacept, a fusion protein comprising
the Fc region of IgG1 and the extracellular domain of cytotoxic
T lymphocyte antigen 4 (CTLA4) that inhibits the co-stimulatory
signal required for T cell activation, have also shown encouraging
but more moderate results (82, 83). Better powered studies are
required in order to evaluate the efficacy of these drugs in GCA.

Finally, the potential therapeutic application of two
monoclonal antibodies, anakinra and secukinumab, targeted
against IL-1β receptor and IL-17A (one of the genes associated
with GCA), respectively, is currently under investigation
(NCT02902731 and NCT03765788). Both cytokines are crucial
for the differentiation of Th17 cells and, therefore, their
inhibition could be a therapeutic option in patients with GCA.

ANCA-Associated Vasculitis
Anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) is a group of disorders characterized by

necrosing inflammation of small vessels, including arterioles,
capillaries and venules, that comprises three separate conditions,
granulomatosis with polyangiitis (GPA), microscopic
polyangiitis (MPA), and eosinophilic granulomatosis with
polyangiitis (EGPA). AAV frequently affects small vessels in
the respiratory tract and kidneys and is characterized by the
presence of antibodies directed against two proteins, proteinase
3 (PR3) and myeloperoxidase (MPO), located on the membrane
of monocytes and neutrophils (84).

Both candidate gene association studies and GWASs
published in last years have identified several loci associated with
these forms of vasculitis (2). Specifically, three GWASs on AAV
have been performed so far (9, 10, 13), one in European patients
with GPA and MPA and two in North American patients of
European descent (one including patients with GPA and the
other one including patients with GPA and MPA). Interestingly,
these studies have shown that the genetic background of AAV
depends on auto-antibody specificity rather than clinically
defined disorders. In this regard, different HLA genes have
been associated with the different ANCA subgroups; whereas
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TABLE 2 | Genes associated with treatment response in vasculitis.

Vasculitis Locus Region Treatment Population Approach References

KD ITPKC 19q13.2 IVIG Japanese, Taiwanese Candidate-gene (28, 29)

CASP3 4q35.1 IVIG Japanese, Taiwanese Candidate-gene (28, 29)

FCGR2C 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (30)

FCGR3B 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (30, 31)

FCGR2B 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (32)

CCL17 16q21 IVIG Taiwanese Candidate-gene (33)

CCR5 3p21.31 IVIG Japanese Candidate-gene (34)

CCL3L1 17q21.1 IVIG Japanese Candidate-gene (34)

IL1B 2q14.1 IVIG Taiwanese Candidate-gene (35)

IFNG 12q15 IVIG Taiwanese Candidate-gene (36)

HMGB1 13q12.3 IVIG Korean Candidate-gene (37)

BCL2L11 2q13 IVIG Korean GWAS (38)

STX1B 16p11.2 IVIG European Immunochip (39)

BAZ1A/C14orf19 14q13.1-q13.2 IVIG European Immunochip (39)

SAMD9L 7q21.2 IVIG Korean GWAS (40)

AAV HLA-DRB1*0405 6p21.32 Remission induction therapy China Candidate-gene (41)

FCGR2A 1q23.3 Rituximab or cyclophosphamide – Candidate-gene (42)

TNFSF13B 13q33.3 Rituximab European Candidate-gene (43)

BD ABCB1 7q21.12 Colchicine Turkish Candidate-gene (44)

MTHFR 1p36.22 Colchicine Turkish Candidate-gene (45)

KD, Kawasaki’s disease; AAV, Anti-neutrophil cytoplasmic antibody-associated vasculitis; BD, Behçet’s disease; IVIG, intravenous immunoglobulin; GWAS, genome-wide

association study.

polymorphisms within the DPB1 and DPA1 genes appeared to
be associated with PR3-ANCA-positive patients, DQB1 showed
a specific effect in the MPO-ANCA subgroup (10).

Additionally, four non-HLA genetic loci, SERPINA1 (serpin
family A member 1), PRTN3 (proteinase 3), PTPN22, and
SEMA6A (semaphorin 6A) have been associated with AAV at
genome-wide significance level (9, 10, 13), the first two showing
a specific association with the subgroup of patients positive
for PR3-ANCA.

SERPINA1 encodes α1-antitrypsin (α1AT), an inhibitor of the
serine proteases, including proteinase 3. The association between
this gene and AAV was initially described in a candidate gene
study (11), in which a functional genetic variant known to cause
a deficient production of α1-AT appeared to be associated with
GPA, and subsequently confirmed by GWAS (9, 10). It has
been proposed that, since PR3 is a target of α1AT, a decreased
production of this inhibitor could result in higher levels of
circulating PR3, leading to the synthesis of anti-PR3 ANCA (11).

Regarding PRTN3, the role of this gene in AAV was described
in a candidate gene association study, in which a genetic
variant affecting a putative transcription factor-binding site was
associated with GPA (12). Subsequently, two of the GWASs
performed in AAV have confirmed this association (9, 10).
Interestingly, the most recent GWAS reported that the lead SNP
at this gene (rs62132293), which is in almost complete linkage
disequilibrium (LD) with that described in the original study, acts
as an expression-quantitative trait locus (eQTL) that results in an
increased expression of PRTN3 in neutrophils (10).

The protein encoded by SEMA6A has been characterized
as a critical regulator of angiogenesis by modulating VEGF
signaling (85). Nevertheless, it should be considered that,
although polymorphisms within this locus showed genome-wide
significance (13), this association was not subsequently validated
in a replication study performed in a well-powered cohort of
European AAV patients (including GPA, MPA, and EGPA cases)
(86) or in the subsequent GWAS carried out by the same group
(10). Therefore, further genetic association studies are needed to
confirm the role of SEMA6A in AAV.

Finally, PTPN22 has been consistently associated with both
GPA and MPA by candidate gene and genome-wide studies
(10, 13–15). The highest signal within the PTPN22 locus lies
on the R620W functional variant, the same one associated with
GCA, thus pointing to a pleiotropic effect of this polymorphism
in both vasculitis.

On the other hand, polymorphisms within the CTLA4 locus,
encoding a protein which transmits an inhibitory signal to T cells
by blocking the interaction between CD28 on the T cell and CD80
or CD86 on the antigen-presenting cell, have been implicated in
AAV by candidate gene analyses in different populations (87–92)
and have shown suggestive association in GWASs (9, 13), thus
supporting the idea that this locus represents a genetic risk factor
for AAV.

Regarding EGPA, no GWAS has been published in this disease
so far and the few associations reported to date have been
identified using a candidate-gene strategy. In this regard, an early
candidate-gene study reported an association between EGPA
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and the HLA-DRB4 gene (93), which highlights the existence
of different HLA associations for the different AAV subgroups.
In addition, polymorphisms within several non-HLA genes,
including FCGR3B and IL10, have also been associated with this
vasculitis (94, 95). On the other hand, a role of eotaxin-3 in
the EGPA pathogenesis was proposed. Interestingly, serum levels
of this molecule were found to be increased in active patients
and correlated with eosinophil counts, total immunoglobulin E
(IgE) levels and acute-phase parameters (96, 97). However, a
genetic study failed to identify an association between the gene
encoding this molecule, CCL26, and EGPA, maybe due to a lack
of statistical power (97). Therefore, the role of this gene as a
susceptibility factor for EGPA remains to be clarified.

Although we are still far from fully understanding the
pathogenic mechanisms implicated in AAV, genetic studies are
contributing to their elucidation. Insights into these pathogenic
pathways have opened new strategies for biological treatment.
In this line, the central role that ANCA-mediated neutrophil
activation plays in these disorders has led to the therapeutic use
of B cell depleting drugs for AAV. Rituximab has proved to be
highly effective for both remission induction and maintenance
treatment (98), representing one of the major breakthroughs
of the last decade in the treatment of these vasculitides.
Additionally, the therapeutic potential of other B cell-targeting
agents, such as belimumab, is being evaluated (NCT01663623).
Belimumab is a humanized monoclonal antibody against BAFF,
a potent B cell activator, which represents an interesting target
for AAV treatment, since it has been reported to increase the
production of PR3-ANCA in GPA patients (99).

On the other hand, B cells require T cell help to differentiate
into antigen-specific Ig-producing plasma cells. Therefore,
blockade of the co-stimulation signal required for full T cell
activation using abatacept (CTLA4-Ig) is also an interesting
treatment option that has shown clinical efficacy in an open-label
clinical trial (100).

Behçet’s Disease
Behçet’s disease (BD) is an inflammatory disorder that may
affect arteries and veins of all sizes. It is characterized by
heterogeneous clinical manifestations, including oral and genital
ulcers, which are the hallmark lesions of this vasculitis, as well
as vascular, gastrointestinal, articular, and central nervous system
manifestations. This condition shows a male preponderance and
is more frequent in the Middle East and Asia (101).

BD is the vasculitis that has benefited most from the genome-
wide era, with five large-scale genetic studies performed on
this disorder so far, four GWASs and an Immunochip (16–
18, 20, 21). This has lead to the discovery of a significant
number of consistent genetic risk loci, including the HLA region
that, as in other vasculitis, is the main susceptibility locus
for BD. Specifically, an association between the classical allele
HLA-B∗51 and this disorder has been consistently identified in
different ethnic groups during the last years (102). Moreover,
dense genotyping and imputation of this region have evidenced
additional independent signals. In this regard, a study published
in 2013 reported that the association between HLA-B∗51 and
BD was explained by a SNP located between the HLA-B and

MICA genes (103). They also identified three independent signals
within the HLA region, located within PSORS1C1 (psoriasis
susceptibility 1 candidate 1), upstream HLA-F-AS1 (HLA-F
antisense RNA 1), and within HLA-Cw∗16:02. In addition, a
subsequent Immunochip study also described two signals, HLA-
B∗57 and HLA-A∗03, that showed an independent effect to that
conferred by HLA-B∗51 (18).

Several loci outside the HLA region have also shown
robust associations with this vasculitis. The first GWASs
on BD, performed in Japanese and Turkish populations
and simultaneously published in 2010, evidenced the role
of IL10 and IL23R/IL12RB2 as genetic risk factors in BD
(16, 17). The association with the IL23R/IL12RB2 locus was
subsequently confirmed in an Immunochip study performed
in BD patients from Spain (18). IL10 encodes a cytokine that
has an anti-inflammatory role by suppressing the expression
of pro-inflammatory cytokines, such as IL-6, IL-12, and IL-
1, but also promotes B cell responses by enhancing B cell
survival, proliferation, and antibody production (104). The
IL23R/IL12RB2 locus contains two genes with a crucial role in
the inflammatory response. IL23R encodes a subunit of the IL-23
receptor, whereas IL12RB2 encodes an IL-12 receptor chain. As
previously indicated, IL-12 and IL-23 participate in the immune
responses mediated by Th1 and Th17 cells, respectively (57).

In addition, a follow-up study, in which data from the Turkish
GWAS were imputed, identified four new loci contributing to the
BD susceptibility, CCR1/CCR3 (C-C motif chemokine receptor
1/3), STAT4 (signal transducer and activator of transcription
4), KLRC4 (killer cell lectin like receptor C4), and ERAP1
(endoplasmic reticulum aminopeptidase 1) (19). All these loci
play relevant roles in the immune response. The CCR1 and
CCR3 genes form a chemokine receptor gene cluster, which
also includes CCR2, CCRL2, CCR5, and CCXCR1, on the
chromosomal region 3p21. These genes encode proteins critical
for the recruitment of effector immune cells to the site of
inflammation (105). The protein encoded by STAT4 is a member
of the STAT family of transcription factors that mediates
responses to IL-12, IL-23, and type 1 IFNs, and regulates the
differentiation of Th1 and Th17 lymphocytes (106). The signal
detected at the KLRC4 region is located within a haplotype
block that contains five natural killer (NK) cell receptor genes
(KLRK1, KLRC1, KLRC2, KLRC3, and KLRC4), some of which
act as co-stimulators for CD4+ and CD8+ T cells (107). Finally,
ERAP1 encodes an amino peptidase that is crucial for antigen
presentation through HLA class I molecules. Interestingly,
ERAP1 variants conferred risk for BD in HLA-B∗51 positive
individuals preferentially, thus suggesting the existence of an
interaction between both proteins (19).

In 2013, a third GWAS performed on BD patients from
Korea reported GIMAP4 (guanosine-5

′

-triphosphatase (GTPase)
IMAP family member 4) as a new susceptibility locus (20).
This gene encodes a protein belonging to the GTP-binding
superfamily and to the immuno-associated nucleotide (IAN)
subfamily of nucleotide-binding proteins that seems to play a
role in regulating T cell apoptosis (108). Functional studies
performed by the authors revealed that the minor allele of the
most associated SNP within this region correlated with lower
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protein activity, and that CD4+ T cells from BD patients have
a diminished GIMAP4 expression (20).

A genome-wide association between IL12A, encoding the p35
subunit of IL-12, and BD has also been described in a GWAS
performed on an admixed cohort including Western Europeans,
Middle Eastern and Turkish cases with BD (21). This association
was confirmed in a subsequent Immunochip study, in which the
JRKL/CNTN5 (jerky like/contactin 5) locus was also identified
as a new genetic risk factor for BD (18). The protein encoded
by JRKL has an unknown function, whereas CNTN5 encodes a
member of the immunoglobulin superfamily that mediates cell
surface interactions during nervous system development (109).

BD treatment has undergone a significant evolution over
the years, thanks to the increased knowledge of the pathogenic
mechanisms involved in this disease. Genetic findings have
evidenced the prominent role of immune responses mediated
by Th1 and Th17 cells in BD, with multiple pro-inflammatory
molecules contributing to its pathological landscape. This has led
to the study of new biological therapies, most of them targeted
against cytokines.

In this line, inhibition of IL-1 and IL-6 has shown the
most interesting results in both small case series and clinical
trials. Specifically, three IL-1 blockers have shown clinical
efficacy in BD patients, the IL-1 receptor antagonist anakinra,
as well as canakinumab and gevokizumab, targeting the IL-
1 molecule directly, which have proved to be effective for
all BD manifestations, especially for the most severe ocular
involvement (110). In relation to IL-6 inhibition, tocilizumab
has proved to be highly effective in treating BD patients
with neurological involvement as well as in controlling uveitis,
although less promising results were found regarding the
treatment of mucocutaneous manifestations (110). Ustekinumab
and secukinumab have also shown clinical efficacy in case
series studies (111, 112). In addition, the clinical utility of
Ustekinumab is currently being evaluated in a phase 2 clinical
trial (NCT02648581).

Although there are more clear evidences of T cell involvement
in BD, several studies have suggested a possible pathogenic role of
B lymphocytes. Indeed, depletion of B cells using rituximab has
also emerged as a promising therapy in BD patients (110).

Kawasaki’s Disease
Kawasaki’s disease (KD) is a systemic vasculitis that affects small
and medium size vessels. It mainly affects children younger than
5 years of age, especially of Asian origin. The most serious
complication of KD is the development of coronary artery lesions
(CALs), representing the main cause of acquired heart disease
among children in Japan, Europe and the USA (113).

Although seven GWASs and an Immunochip have been
published in both European and Asian KD cohorts in recent
years (22, 24–26, 39, 114–116), only a few consistent genetic
associations have been described so far, probably due to the lack
of statistical power of most of these studies.

As in other vasculitis, the HLA locus seems to be involved
in the KD genetic predisposition. However, contradictory results
have been found regarding the specific HLA alleles associated
with this disease. Whereas early candidate gene studies identified

associations with HLA-Bw54 (previously known as Bw22) in
Japanese population (117, 118) and with HLA-Bw51 and HLA-
B44 in European patients (119–121), a genetic variant located
within the HLA class II region (between HLA-DQB2 and HLA-
DOB)was identified as the strongest signal in a GWAS performed
on KD cases from Japan (26). This association within the HLA
class II region was then replicated in an European-American
case-parent trio study using the Immunochip platform (39). In
addition, a more recent GWAS identified several SNPs within the
HLA class I region associated with KD in Korean population, but
failed to replicate this association in an independent case/control
set from Japan (24). The small sample sizes of these studies and
the varying LD patterns observed across different populations are
likely explanations of these heterogeneous findings.

Regarding genetic risk factors outside theHLA locus, genome-
wide associations within the ITPKC and the FCGR2A loci were
identified in a GWAS performed in European KD patients
and replicated in independent cohorts of Asian and European
descent (22). The KD-associated SNP within FCGR2A is a
functional variant encoding a H131R substitution. It has been
reported that the presence of arginine instead of histidine at
this amino acid position reduces the affinity of the receptor
for the IgG2 isotype (122). ITPKC (inositol-trisphosphate 3-
kinase C), encoding one of the three isoenzymes of ITPK that
phosphorylate inositol 1,4,5-trisphosphate (IP3), was initially
implicated in KD by linkage analysis using sib-pairs (123). This
same study showed for the first time that ITPKC acts as a negative
regulator of T cell activation through the Ca2+/nuclear factor
of activated T cells (NFAT) signaling pathway. Interestingly, a
subsequent study showed that the genetic variant associated with
KD has functional consequences, influencing the ITPKC protein
levels, which regulates the production of IL-1β and IL-18 (124).
Moreover, using a positional candidate gene study for the 4q35
region, previously linked to KD, Onouchi et al. identified several
genome-wide associations within the CASP3 (caspase 3) gene,
which encodes a caspase with a crucial role in apoptosis (23).
Similarly to the function identified for ITPKC, this study also
reported that one of the associated SNPs, located within the
5
′

untranslated region of the gene, had functional implications,
affecting binding of NFATc2 to the DNA sequence surrounding
this polymorphism.

In 2012, two subsequent GWASs, published simultaneously,
identified two new susceptibility loci for KD, BLK (BLK proto-
oncogene, Src family tyrosine kinase) andCD40 (CD40molecule)
(25, 26). BLK encodes a non-receptor tyrosine-kinase of the
src family of proto-oncogenes with a crucial role in B cell
receptor signaling, thus participating in B-cell activation and
antibody secretion (125). The CD40 gene is a member of the
TNF-receptor superfamily that encodes a receptor expressed
on antigen-presenting cells involved in inflammation through
selection of autoreactive T cells and activation of B and T
cells (126).

Additionally, large-scale genetic studies have reported
suggestive signals in different loci, including CAMK2D
(calcium/calmodulin-dependent protein kinase II delta),
CSMD1 (CUB and Sushi multiple domains 1), LNX1 (ligand
of numb-protein X1), NAALADL2 (N-acetylated alpha-linked
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acidic dipeptidase-like 2), TCP1 (t-complex 1), PELI1 (pellino E3
ubiquitin protein ligase 1), DAB1 (Dab reelin signal transducer
homolog 1), COPB2 (coatomer protein complex beta-2 subunit),
ERAP1, NMNAT2 (nicotinamide nucleotide adenylyltransferase
2), FUT1 [fucosyltransferase 1 (H blood group)], RASIP1 (Ras
interacting protein 1), and BRD7P2 (bromodomain containing
7 pseudogene 2) (24, 39, 114–116). However, these associations
did not reach genome-wide significance level nor were replicated
in later studies and, therefore, they cannot be considered as
established susceptibility loci.

As shown by genetic studies, both T and B cells participate in
the pathogenic mechanisms implicated in KD. The involvement
of the FCGR2A gene evidences the relevant role of IgG receptors
in the pathogenesis of this vasculitis, providing a biological basis
for the use of intravenous immunoglobulin (IVIG), the standard
treatment for KD patients. However, approximately up to 20%
of patients do not fully respond to this therapy, presenting
an increased risk for the development of coronary aneurysms
(127). Therefore, several therapeutic options are being tested for
treatment of refractory cases.

Considering the role of TNF-α in the pathogenesis of KD,
the clinical efficacy of TNF-α inhibitors, such as infliximab
and etanercept, has been evaluated. Although treatment with
infliximab has shown clinical efficacy in different studies,
including reduction of fever duration, markers of inflammation
and immunoglobulin reaction rates, its role on the prevention of
CALs is still to be determined (128). A phase III trial comparing
the efficacy of a second dose of IVIG with infliximab treatment
is currently recruiting participants (NCT03065244). In addition,
a phase II clinical trial to determine the safety and efficacy of
etanercept in reducing the incidence of persistent or recurrent
fever in KD patients is currently ongoing (NCT00841789).

On the other hand, studies in mice have demonstrated that
both IL-1α and IL-1β are involved in the development of CALs
in KD (129, 130). Interestingly, PELI1, encoding a protein that
acts an intermediate component in the signaling cascade initiated
by the IL-1 receptor (131), showed a suggestive association with
CALs development in a KD GWAS (115). Thus, genetic findings
also support the role of this pathway as a potential drug target
in this vasculitis. Considering this, the potential clinical efficacy
of blocking IL-1β receptor using anakinra is currently being
explored. Three case reports have reported the beneficial clinical
use of this biological agent (128). Moreover, two phase II clinical
trials exploring the efficacy of anakinra are currently underway
(NCT02179853 and NCT02390596).

Polyarteritis Nodosa
Polyarteritis nodosa (PAN) is a systemic, necrotizing medium-
sized vessel vasculitis, mainly affecting adults between the ages of
40–60 years, although it can also appear in children. The clinical
features of PAN depend on the affected organs and include
systemic symptoms and involvement of the gastrointestinal, renal
and peripheral nervous systems.

In 2014, two independent studies identified loss-of-function
mutations in the CECR1 (cat eye syndrome chromosome region
candidate 1) gene, which encodes the extracellular adenosine
deaminase 2 (ADA2), using whole-exome sequencing (132, 133).

Interestingly, in many cases, both the clinical manifestations and
the histological findings of the deficiency of ADA2 (DADA2)
were consistent with the diagnosis of PAN, which suggests
that DADA2 contributes to the clinical phenotype of this
vasculitis. The ADA2 protein is mainly expressed by myeloid
cells and plays a role in the proliferation and differentiation of
macrophages. In this regard, its deficiency has been linked to an
imbalance in monocytes differentiation toward proinflammatory
M1 macrophages (133, 134).

Clinical management of patients with DADA2 is challenging.
None of the commonly used immunosuppressive drugs have
resulted particularly effective. Anti-TNF agents have shown
promise in the management of the inflammatory syndrome and
vasculitis; however, this therapy is not able to completely control
the disease manifestations in all treated patients. Considering
that bone marrow–derived monocytes and macrophages are
the main source of secreted ADA2, it was hypothesized that
hematopoietic stem cell transplantation (HSCT) could be an
effective treatment for this condition. In this regard, two studies
have reported that HSCT was able to normalize the plasmatic
levels of ADA2 and to control the disease manifestations (135–
137), thus suggesting that this therapy could represent a definitive
treatment of DADA2. In addition, enzyme-replacement therapies
have also been considered as a potential treatment for these
conditions. However, the results obtained using this strategy have
not been entirely satisfactory (138).

GENETICS DETERMINANTS OF
TREATMENT RESPONSE IN VASCULITIS

The genetic basis of treatment response has only been evaluated
in three types of vasculitis so far, KD, AAV, and BD, mainly
by means of candidate-gene association studies. This has led
to the identification of several potential genetic predictors of
treatment efficacy.

Most of the pharmacogenetic studies performed in vasculitis
have analyzed genetic variants involved in the resistance to IVIG
therapy in KD. As it was already mentioned, this treatment is
highly effective, but around 10–20% of patients are resistant and
have a higher risk for CALs. Therefore, it is essential to elucidate
the causes of this resistance in order to predict the responsiveness
of patients during the early stages of the disease.

Polymorphisms previously associated with KD have been
evaluated in relation to the IVIG response. A study published
in 2013 showed that the risk alleles of the ITPKC and CASP3
susceptibility variants (rs28493229 and rs72689236, respectively)
were overrepresented in IVIG resistant patients with respect to
responding patients (28). These associations were replicated in a
subsequent study (29), thus supporting the role of these genes
in the response to IVIG treatment. Interestingly, a functional
study demonstrated that the poor response observed in patients
homozygous for the risk allele of the ITPKC locus correlated with
increased cellular production of IL-1β and IL-18 (124).

On the other hand, additional studies have evaluated the
implication of candidate genes in the clinical efficacy of IVIG
based on their functional role. Given that the anti-inflammatory

Frontiers in Immunology | www.frontiersin.org 8 August 2019 | Volume 10 | Article 1796

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Acosta-Herrera et al. Genetic Studies in Vasculitis

activity of IVIG is partly mediated through FcgR (139), the role
of several genes encoding these proteins have been explored.
In this regard, polymorphisms within FCGR2B, FCGR2C, and
FCGR3B have been involved in the response to this drug
in different studies performed by the same group (30–32).
In addition, genetic variants located within genes encoding
chemokine receptors and their ligands, including CCR5 (C-C
motif chemokine receptor 5), CCL3L1 (C-C motif chemokine
ligand 3 like 1), and CCL17 (C-C motif chemokine ligand 17),
as well as genes encoding pro-inflammatory cytokines, such
as IL1B and IFNG, have also been implicated in the IVIG
treatment resistance (33–36). Moreover, an association between
a polymorphism of the HMGB1 (high mobility group box 1)
locus, involved in inflammation and cell differentiation, and the
clinical efficacy of this treatment has been recently reported
(37). However, all these associations need to be confirmed in
independent studies.

The genetic basis of IVIG response in KD has also been
explored through comprehensive large-scale genetic analyses
(38–40). Both GWAS and Immunochip data have been used
to identify genetic variants associated with IVIG resistance by
stratifying KD patients according to treatment response. A
polymorphism within the BCL2L11 (BCL2 like 11) gene showed
a specific association at the genome-wide significance level with
the subgroup of responder patients in an IVIG response-stratified
genome-wide association study (38). The protein encoded by
this gene, known as Bim, is an important regulator of the
negative selection of B lymphocytes in the bone marrow and of
T lymphocytes both in the thymus and the periphery (140). In
addition, a very recent GWAS performed in Korean KD patients
identified the SAMD9L (sterile alpha-motif domain-containing
9-like) gene as a susceptibility factor for IVIG resistance (40).
This gene encodes a cytoplasmic protein involved in multiple
cellular processes, such as cell proliferation and innate immune
responses to viral infections (141). Several suggestive signals that
could be involved in the response to IVIG therapy were identified
using the Immunochip platform, including an intronic SNP of
the STX1B (syntaxin 1B) gene and a genetic variant located in
the intergenic region of BAZ1A (bromodomain adjacent to zinc
finger domain 1A) and C14orf19 (39).

A study published in 2017 developed a genetic model to
predict IVIG resistance in KD patients (142). In this study, the
additive effect of 11 SNPs associated with IVIG response (p < 1
× 10−05) was used to calculate a GWAS-based weighted genetic
risk score (wGRS). A significant association between wGRS and
the response was found, suggesting that this scoring system can
significantly increase the sensitivity and specificity of prediction
of IVIG responsiveness.

Regarding AAV, the advances achieved in its therapeutic
management in recent years have allowed these forms of
vasculitis to go from presenting high mortality to becoming
chronic diseases. Currently, the standard treatment for AAV
consists of glucocorticoids together with cyclophosphamide or
rituximab. However, despite the success of this therapy, a high
percentage of patients do not reach complete remission.

Only three pharmacogenetic studies have evaluated the role
of genetic variants as predictors of treatment response in

AAV so far. One of them, performed in 152 AAV patients
from China, was focused on analyzing the possible implication
of the HLA locus in the response to remission induction
therapy after 6 months (41). Among the 56 HLA-DRB1, HLA-
DPB1, HLA-DQB1, and HLA-DQA1 alleles analyzed, HLA-
DRB1∗0405 appeared to be associated with the clinical efficacy
of this treatment; specifically, the proportion of patients showing
treatment failure was higher in the subgroup of patients carrying
this allele (41.7%) than in the subgroup of patients negative for
HLA-DRB1∗0405 (12.9%).

On the other hand, the main mechanism through which
rituximab achieves B cell depletion is antibody-dependent cell
mediated cytotoxicity (ADCC), which is mediated through
FcgR. Regarding cyclophosphamide, it requires activation by
the hepatic cytochrome P450 (CYP) enzymes. Considering
this, a more recent study has explored the role of several
polymorphisms, located within three genes encoding FcgR
(FCGR2A, FCGR2B, FCGR3A) and two genes encoding different
CYP isoforms (CYP2B6 and CYP2C19), in the response to the
treatment with rituximab and cyclophosphamide, respectively
(42).When both subgroups of patients (96 treated with rituximab
and 93 with cyclophosphamide) were individually analyzed,
the authors did not find any potential predictor of treatment
response among the genetic variants selected. However, when
AAV patients were considered as a global cohort, the FCGR2A
519AA genotype was found to predict complete response
independently of the induction treatment used.

In addition, a study published in 2017 evaluated the role
of several candidate genes in the rituximab response in two
independent cohorts of patients with AAV, including MPA
and GPA (43). Only one (rs3759467) of the 18 analyzed
SNPs showed a consistent association with treatment efficacy.
Interestingly, this association was specific for the subgroup of
patients PR3-ANCA positive. The associated SNP is located
in the 5′ regulatory region of the TNFSF13B gene, encoding
the B-cell activating factor BAFF, which has been reported to
increase the production of PR3-ANCA in GPA patients (99), as
previously mentioned.

Finally, pharmacogenetic studies performed in BD were
focused on analyzing genetic factors implicated in the response to
colchicine. This drug is the most frequently and widely used for
oral and genital ulcers, papulopustular lesions, and arthralgias;
however, some patients do not respond to this therapy.

Until now, two genes have been associated with colchicine
response in BD. A study published in 2012 identified an
association between two SNPs, C3435T and G2677T/A, of the
ABCB1 (ATP binding cassette subfamily B member 1) gene and
the efficacy of this treatment in a candidate-gene study including
a cohort of 68 responder and 37 non-responder patients
(44). ABCB1, also known as MDR1 (multidrug resistance), is
implicated in drug metabolism by encoding an ATP-dependent
drug efflux pump for different xenobiotic compounds, including
colchicine (143).

A second pharmacogenetic study, in which 165 responder
and 215 non-responder patients were analyzed, reported a
role of the MTHFR (methylenetetrahydrofolate reductase) locus
in the response to colchicine treatment (45). This gene
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encodes an enzyme that catalyzes the conversion of 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-
substrate for homocysteine remethylation to methionine. In this
case, the polymorphism associated with the response, C677T,
causes an amino acid substitution from alanine to valine leading
to reduced activity and increased thermolability of the enzyme,
which in turn results in increased levels of homocysteine (144).
It has been described the existence of hyperhomocysteinemia
in BD patients, which correlates with thrombosis and ocular
involvement (145).

SHARED GENETIC COMPONENT IN
VASCULITIS

Nowadays, it is widely accepted that autoimmune disorders in
general and vasculitides in particular share susceptibility genes
and molecular pathways influencing their development (146,
147). Indeed, a large number of susceptibility loci described
here are common to different vasculitides. The combination of
different diseases as a single phenotype in large-scale studies,
such as GWAS and Immunochip, has proven to be very useful
in the evaluation of this shared genetic component and in the
identification of potential drug targets that could be repurposed
in related conditions (148–151).

To date, two studies have been conducted combining different
forms of vasculitides. In the first one, Carmona et al. (152)
combined data from large-vessel vasculitis, namely GCA and
TAK, and found a significant genetic correlation within the
IL12B locus. Considering this, ustekinumab, which has been
successfully used to treat refractory TAK, could be of potential
clinical use in GCA. Similarly, Ortiz-Fernandez et al. (153)
combined data of different vasculitides (GCA, TAK, AAV, IgA
vasculitis, and BD) and identified a common signal within the
lysine demethylase 4C (KDM4C) gene, which encodes a histone
demethylase involved in epigenetic mechanisms and that could
be of potential use in the treatment of these conditions.

PRECISION MEDICINE IN VASCULITIS:
FROM GENETIC FINDINGS TO CLINICAL
APPLICATION

The goal of precision medicine is to maximize treatment
efficacy by developing more targeted drugs directed against
biological pathways with a pathogenic role in the disease, as
well as by optimizing the use of existing drugs, through the
a priori selection of those patients who will benefit from a
certain treatment.

As described in this review, it is now clear that genetic
studies offer great potential for understanding the molecular
mechanisms involved in vasculitis. Thus, insight into disease
pathogenesis is progressively leading to new ways for targeted
biologic treatment. Moreover, based on the moderate effects
provided by the thousands of genome-wide SNPs identified
by GWAS, nowadays it is possible to predict each individual
susceptibility by means of the polygenic risk score (PRS) analysis,
which have been recently performed in other diseases with

remarkable results (154). Currently, PRSs are being calculated
for different phenotypes separately and, as a potential next
step, parallel calculation and disease comparisons of PRS could
reflect shared and opposite mechanisms in different vasculitides.
However, although these diseases have benefited from the
genome-wide era, genetic studies conducted to date still lack
enough statistical power to detect variants with moderate effects
and, consequently, only a few consistent genetic risk loci have
been identified so far. Therefore, further genetic studies in
larger cohorts are crucial to obtain information on the missing
heritability of these disorders.

Moreover, in recent years, the translation of
GWAS/Immunochip findings into biological insights has
been challenging, mainly due to the difficulty of identifying
causal variants, as well as by the fact that many of the disease-
associated SNPs are located in non-coding regions of the
genome. Therefore, substantial effort is needed to move from
association signals to understanding the functional implication
of the genes. In this sense, integration of genomic data with
other–omic information, such as epigenomic and transcriptomic
data, has become a useful approach to unravel the mechanisms
underlying complex diseases. Thus, a better understanding of the
interaction between these factors will allow us to obtain a clearer
picture of the molecular network involved in the pathogenesis of
vasculitis, so that we may turn basic biological knowledge into
targets for new therapeutic approaches.

On the other hand, it is likely that a better use of existing
drugs will improve the clinical management of vasculitis. In this
regard, prediction of those patients that will respond to a specific
drug based on their molecular profiles results essential. Although
several genetic variants have been described as potential predictor
of drug efficacy, mainly in KD but also in AAV and BD, at present,
no validated biological biomarker exists to predict treatment
response in vasculitis. Again, large-scale genetic studies including
well-powered cohorts will be essential to identify genetic profiles
that help to classify vasculitis patients and to guide the selection
of the most appropriate therapeutic intervention.

It is, therefore, expected that genetic findings in vasculitis
continue to open new ways for targeted biologic therapies
and improve the use of existing drugs, which will lead to
a more personalized application of treatment in the future.
However, multiple issues must be overcome before precision
medicine can be effectively implemented, which will necessarily
require great collaborative efforts among vasculitis expertise
research groups.
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