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ABSTRACT
Understanding Impact of Twitter Feed on Bitcoin Price and Trading Patterns

by Ashrit Deebadi

“Cryptocurrency trading was one of the most exciting jobs of 2017”. “Bit-
coin” “Blockchain”, “Bitcoin Trading” were the most searched words in Google
during 2017. High return on investment has attracted many people towards this
crypto market. Existing research has shown that the trading price is completely
based on speculation, and its trading volume is highly impacted by news media.
This paper discusses the existing work to evaluate the sentiment and price of the
cryptocurrency, the issues with the current trading models. It builds possible solutions
to understand better the semantic orientation of text by comparing different machine
learning techniques and predicts Bitcoin trading price based on Twitter feed sentiment
and additional Bitcoin metrics. We observe that the statistical machine learning
model was able to better predict the sentiment of Twitter tweet feed compared to
the advanced BERT model. Using Twitter feed sentiment and additional Bitcoin
metrics, we were able to improve the prediction of bitcoin price compared to only

using bitcoin’s previous day closing pricing.
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CHAPTER 1
Introduction

In 2018, cryptocurrencies market value rose from 19 Billion USD to 741 Billion
USD with Bitcoin (BTC) alone, having a 59.87 percent market cap [2]. Such an
exponential increase in market volume had attracted everyone around the world to
look into cryptocurrencies as a good asset to invest and make money. As a result,
there have been large swings in their price and trading volume. Bitcoin alone increased
2000 percent from 833 USD on Jan 14, 2017, to 19535 USD on Dec 16, 2017, then
falling to 8000 USD in Feb 2018. Blockchain, the technology behind cryptocurrencies,
is suggested to be the beginning of Web 3.0, and the value of these cryptocurrencies
will continue to grow in the future as the blockchain field grows.

The cryptocurrencies are bought and traded on trading platforms similarity to
traditional stock market platforms. The traditional stock markets operate only for a
fixed number of hours, and the company’s stocks are exclusively listed on government-
regulated stock exchanges like NASDAQ, Bombay Stock Exchange, Hong Kong Stock
Exchange. Unlike these traditional markets, the crypto markets are not yet regulated
by any country, and anyone can buy and sell them across the world at any time
and hence makes their price more volatile. Government announcements, regulations,
alliances, and promotions from famous personalities have played a key role in deciding
the price of cryptocurrencies. If a statement is made in the USA, the news propagates
to other countries like India, China via the internet, Social media websites, etc.

The paper aims to understand the sentiment of the market through twitter and
analyze its effect on the trading volume and price of BTC. Since “BTC — Fiat”
currencies combination is the most widely used exchange pair and transactional data
of Bitcoin is highest, we choose BITCOIN as the cryptocurrency to conduct research.

The selected articles and proceedings of this survey include research in the field of



sentiment-based prediction models, bitcoin price formations, and Natural Language
Processing. Once we are able to see any relation between twitter sentiment and bitcoin

price, we try to use the sentiment to predict the price of Bitcoin.



CHAPTER 2
2.1 Machine Learning Fundamentals

Machine Learning Algorithms are broadly classified into two categories: Super-
vised and Un-Supervised Learning, as shown in Figure 1.

Supervised Learning: It is the process of having input variables (X) and output
variable (Y) and then use mathematical models to find how these input variables (X)
are mapped to output (Y). Here we build a model using lots of training data (existing
labeled data) and then use it to predict output (y) for new incoming data.

Unsupervised Learning: It is the process of having only input data (X) and no
corresponding output, then use mathematical models to find some underlying structure
in this data and group them. Here we build a model using existing un-labeled data to

group them by finding some similarities between them.
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Figure 1: Supervised and Unsupervised Learning
Source : 3]

Since we are using only supervised learning for our project, we will discuss the

two types of supervised learning algorithms- classification and regression.



Classification is where the output variable is a category. The output is always a
binary number. E.g., For the problem of classifying the sentiment of an article, the
output is always either positive, negative, or neutral. In every case, the output will
belong to any one of the categories- positive, negative, or neutral.

Regression is where the output variable is a real value. The output is always in
terms of an actual number like price or units. For example, the problem of predicting
the price of a stock, here the output is the price in USD, which is always an actual
value like 200, 3000, 10000 USD rather than categorical values.

2.2 Textual Analytics Background

Semantic orientation (SO) is a measure of subjectivity and opinion in the text. It
helps in capturing an evaluative factor and strength of a subject topic or idea. The
evaluative factor is whether the opinion is positive or negative, and the strength is the
degree to which the word or sentence, in the opinion, is positive or negative. When we
use semantic orientation in the analysis of public opinion, like online articles, social
media posts, it helps in measuring the popularity and success of that particular topic.

Sentiment analysis refers to the general method of extracting subjectivity and
polarity from the text. It is essential to understand the semantic orientation of the
text, i.e., the polarity and strength of words, to find the sentiment of a given text.
Hence, it has drawn a lot of attention, and there have been several machine learning
approaches to understand how semantic orientation improves sentiment analysis.
2.2.1 Bag of Words Approach

Bag-of-Words (BOW) is a representation of the text that describes the occurrence
of words within a document. It consists of two main components - a list of all words
in the document, and the number of times each word has occurred. The idea behind

this approach is, documents are similar if they have similar content. By using this,



we can infer information between texts following the below steps :

1. Taking all the training data and pre-processing it by ignoring cases, punctuation
and fixing misspelled words, stemming the word.

2. Building a vocabulary dictionary by taking unique words and keeping the
count of how many times each word has occurred. The vocabulary can be built by
taking N-Grams, where N is a number 1,2 or 3. 1-Gram means taking each word,
2-Grams is making a pair of words, etc.

We can further fine-tune this approach by using Term Frequency - Inverse
Document Frequency (TF-IDF) where:

1. Term Frequency is the score if the word in the current document.

2. Inverse Document Frequency is the score of how rare the word is ac-cross the
document.

By doing this, we can get details of what the important words are, which help us
understand the SO problem, the limitations of this approach are as follows:

1. If the test data has a word which is not present in the vocabulary dictionary,
the model cannot address that word.

2. It has sparsity where some words have very few values, and some are large.

3. It cannot consider the context of the text as it is just considering word count.
2.2.2 Word2Vec Approach

Word2Vec, published in 2013, brought a significant boost to the field of Natural
Language Processing. With the intuition, a word can have different meanings when
used in a different context; word2vec tries to capture the different contexts of words
based on its position in the sentence. E.g., the word “Apple”” can represent fruit or
the company, and when we say, ‘I love eating an apple”, we refer to the fruit, and

when we say ‘I love the new Apple iPhone”; we refer to the company. So, the context



in which we use the word makes it very important in understanding its meaning.

A vector represents each word in the data, and each word has two vectors, center
vector (v.) and context vector (u,). The center vector is accessed when the word is
the center word at position wt, and we obtain the context vector when the word is in

the surrounding window (n).

P(we_y | wy) P(Weyo | W)

P(we_q | W) P(Weyq | W)

problems  turning banking  crises  as

L ) J
Y Y L : )

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Figure 2: Word2Vec model
Source : [3]
As shown in Figure 2, at each position, “‘t”” in the text, we calculate the probability
of context word given center word using the similarity of word vectors for center
having a fixed window size. We keep updating these vector values to maximize the

probability of context word given center word.

T
1
1 - exp(u,"v,) J(8) = —?z Z log P(Weyj | we; 8)
ogp(olc) =log Vv T t=1-m=jsm
(a) (b)

Figure 3: (a) P(wiy1/w;) simplest first formula,and (b) Objective function of
Word2Vec
Source : [4]



Figure 3(a), represents Figure 2’s P(w;y1/w;) in a generalized form where u
is the probability distribution when it is the center word, and v is the probability
distribution when it is the context word as shown above. As discussed earlier, the aim
is to maximize these vectors probabilities subject to minimize the objective function
J(0) Figure 3 (b)using gradient descent.

There are two variations of the Word2Vec model, Continuous Bag of Words
(CBOW) and Skip Gram. In CBOW, the model is used to predict the next word from
the current window of surrounding context words, and in Skip Gram, the model uses
the current word to predict the surrounding window of context words.

Limitations:

1. The sub-linear relationships are not explicitly defined, and there is little
theoretical support behind such characteristic [4].

2. As the size of vocabulary increases, using softmax function would be challenging
to train the model despite approximation algorithms like negative sampling (NEG)
and hierarchical softmax (HS) to tackle this issue, other complications still occur [4].
2.2.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) is a unique architecture of the feedforward
Neural Network with memory. RNN uses the information learned in previous states
and propagates it forward into the network. Using this architecture is helpful in many
applications like Speech Recognition, Predictive Typing, and Machine Translation
where the sequence of data is essential.

In general feedforward Neural Networks, the inputs of the vector’s are considered
to be independent, and the information that it learns at X, passes forward to the next
state, say X1, as shown in Figure 4. In RNN, the sequential data generate the hidden

state and adds along with the output of network-dependent with the hidden state, as



shown in Figure 5. But as we proceed to move forward deeper into the network to
X5, X109, the X information gets lost. This architecture doesn’t perform well in cases

where the sequence of data is essential.
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Figure 4: RNN Forward Transmission

Source : [4]
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Figure 5: RNN Architecture
Source : [4]

The weights in all the hidden layers (h) are updated using backpropagation.
So, if we change the intensity of weights at each state, then we can influence the
rate at which propagation moves forward, i.e., the increasing weight moves the data

forward and decreasing the weight stops from moving forward. But as the network



start’s becoming complex, even this creates a problem called vanishing gradient and
exploding gradient where the vanishing gradient is when the weight is too small, and
the exploding gradient is where weight is too large.
2.2.3.1 Stacked Auto Encoders + Long Short-Term Memory

Long Short-Term Memory (LSTM) solves the vanishing gradient and exploding
gradient problem by explicitly introducing a memory unit called the cell into the
network. Figure 6 is the diagram of an LSTM building block where each block is a

cell.

® ® ®
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Figure 6: LSTM Cell
Source : [5]
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Figure 7: LSTM Architecture
Source : [5]

The Figure 7 ordered from left to right explains the internal working of an LSTM
cell. The first step in LSTM is to decide which information goes forward from the
previous cell. Using the sigmoid function with inputs as h;_; and z;, we filter the
input and output (f;) information from the previous cell is taken forward. This layer

is called the forget gate layer.



The second step is to decide which information from the current cell is kept, using
another sigmoid and tanh layer; the outputs from these functions are taken using
pointwise operations and updated to the current cell. Next, we update the old cell
state, C,, into the new cell state C}. In the final step using the sigmoid layer, tanh
layer, we decide which data goes out from current cell state C;.

By controlling forget gates, errors will be backpropagated through any number of
layers. This architecture enables the network to learn tasks that depend on events
that occurred many steps back [5].

Though LSTM solves the memory issue of RNNs, when sentences are too long,
LSTM still doesn’t perform well. This is because, as the distance from the current cell
keeps increasing, the probability of keeping the word’s context decreases exponentially
in cells that are far away [6]. E.g., in the sentence, ‘“Bitcoin is insanely amazing, I
will go online and buy some of it immediately”’. When the model is reading the final
word “‘it”’, we are not sure what it’s referring to and what influence it has on overall
sentence meaning.

Another problem with LSTM is that it’s hard to parallelize the work for processing
sentences since you have to process word by word.

2.2.4 Transformer

As discussed in the earlier section, LSTM can be used to deal with sequence-
depended data where it either propagates the information forward or forgets it; Seq2Seq
models can be used to deal with similar sequence- depended data for translation and
understanding the context. Every Seq2Seq model has an Encoder and a Decoder where
the Encoder uses the input data to transform into a higher-dimensional space, and

Decoder takes this higher dimensional text and translates into the output sequence.

10



The Transformer is similar to the Seq2Seq model, which has 6 six encoders and
6 decoders, as shown in Figure 8. All the Encoders have the same architecture and
similar internal workflow. Likewise, all the Decoders have the same architecture and
similar internal workflow. An Encoder consists of two layers: Self-attention and a

Feedforward Neural Network.
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Figure 8: Transformer Architecture
Source : [5]

Attention [7]|, which proposes a new way of translating the word by paying
attention to a part of a subset of the information. In the, E.g., “Bitcoin is insanely
amazing, I will go online and buy some of it immediately’” when the model is reading
the final word ““it”’, attention helps in associating “‘it”” with “Bitcoin”.

Unlike RNN, where we encode the entire sentence in a hidden state, here we
encode each word in a corresponding hidden state, which passes to the decoding stage.
We do this because every word in the sentence can have relevant information that can

be transferred later in the network instead of dropping them in earlier states, which

11



was the main issue in LSTM. So for the decoding to be precise, using Attention, it
takes every word of the input into account.

Attention works as shown in Figure 9 [7], the first step takes an input sentence
e,g, “Thinking Machines,” embeds each word of a sentence using embedding technique
like Word2Vec. The second step is to generate a Query vector W-q, a Key Vector
W-k, and a Value vector W-v for each of this embedded vector. The third step is to
calculate the score by taking the dot product of the query vector and key vector, which
is the score of each word at each position. The fourth step is to normalize the score
using the softmax layer, and the fifth step is to calculate each value vector with the
softmax score so that only words with importance dominates in the vector. Finally,
we sum up the weighted value vectors, which gives output Z of a single attention
layer. Since Transformers uses 6 Attention heads, we combine outputs of 6 different

self-attention layers with a weight matrix to provide a final output of this layer.

Wo@
T Qo
*In all encoders other than #0, Ol
we don't need embedding. Iy } L

We start directly with the output
of the encoder right below this one

+HH= o o

Figure 9: Attention Workflow
Source : [§]

The model maintains the order of the words in the input sequence by adding a

vector to each input embedding. The embedded vectors follow a pattern that the

12



model learns, which helps in determining the position of each word, or the distance

between different words in the sequence |7] as shown in Figure 13.

POSITIONAL 1 1 084 [LOOHN 054 1 091 LAY
ENCODING

+

+ +
EMBEDDINGS [T T 1] LT 1] [T T 1]

INPUT

Figure 10: Positional encoding with an embedding size of 4
Source : [§]

Summarizing the Encoder section, the inputs are first embedded, then positional
vectors are added. Next, it passes through the self-attention layer whose output is
layer normalized, and this normalized output goes trough a Feedforward network
whose output is again layer- normalized.

The Decoder works in the same way, where the only difference is that self -
attention layer is only allowed to see the previous positions of the output sequencing
masking the future positions before sending it to softmax calculation step in self
-attention layer. The output of the final Decoder is a float vector, which passes
through the final softmax layer, which gives the log-probability of each word in the
final vector.

2.2.5 Bidirectional Encoder Receiver from Transformers

Bidirectional Encoder Receiver from Transformers, i.e., BERT, is a new language
representation model that gives the state of the art results [9] for 11 Natural Language
Processing tasks. It is based on Transformer architecture and uses only Encoders for
word embedding as shown in Figure 11. As the name states, it’s Bi-Directional, unlike

most embedding techniques, e.g., Word2Vec, which are unidirectional, either right to

13



left or left to right, BERT considers both left and right directions making it better

understand the context while embedding the word.

4 )
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w -»{ Add & Norm
_ 4 | Encoder 4 | Encoder
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Attention | — 1 Encoder 1 Encoder

==y

\ BERTgase BERT,_a,gy

Figure 11: BERT Architecture
Source : [10]

Using Transformer and its Attention technique, our example “Bitcoin is insanely
amazing, I will go online and buy some of it immediately’” was able to associate the
embedded word “‘it”” with ‘“‘bitcoin”. Here the input to Transformer was an embedded
vector, transforming the sentence into vector form using embedding technique like
Word2Vec. As we known the limitations of Word2Vec from earlier discussion, only a
fixed context window is considered while embedding current center word, which does
not word well for long and complex sentences. Overcoming this problem, BERT uses
Attention and Transformer’s encoder Technique improving word embedding.

BERT currently has two different models: BERT base and BERT large the
differences, as shown in Figure 13, where the BERT base has the same of existing

models like Open AI GPT and BERT large was developed to outperform the base

14



model [9].

BERT BERT

Base Large
Layers 24 112
Hidden Size 768 1024
Heads 12 16
Parameters 110M 340M

Figure 12: BERT base and BERT large parameters
Source : [10]

BERT is developed in two steps: Pre-Training and Fine-Tuning, where Pre-
Training is done on a huge unlabeled English Wikipedia and BooksCorpus dataset.
The pre-training tasks are Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). BERT is trained using tokens which are generated using WordPiece
tokenizer, an inbuilt library which consists of most commonly used 30,000 English
words and letter of all alphabets. While reading the word, if it’s not present in the
WordPiece vocabulary, it is broken into smaller words until it finds that word. If
the words are still not found, then it further breaks the word into single letters, the

tokenizer remembers the order of the words using two number signs “‘##"".

Input [CLS]  my  dog is s =D =D = e ##;in (SEF)
E?r:‘:.n Efcis) Emy Edog Ess Ecue Epsery Ere Eukes Ever Ermo | | B
+ + + + + + + + + + +
g;ggqenl = Ex En E, Ea Ea Eg Es Es Es Es
+ + + + + + + + + + +
E;sti)t‘inn E, B E, E; E, Es Eg E; Eg Eq =T

Figure 13: Embedding using WordPiece tokenizer
Source : [9]
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Three special tokens are added in each text sequence: a [CLS| token, a [SEP]
token, and positional embeddings. [CLS| token is added at the starting of each
sentence, [SEP| token at the end of the sentence, and word positional embedding to
remember the position of each word in the input sequence as shown in Figure 13. The
output generated using the above tokens is fed as the input to the BERT.

BERT is pre-trained using two different tasks: Masked Language Modeling and
Next Sentence Prediction. In Masked Language Modeling in every input sequence,
some words are masked, and the model should predict the masked words, as shown in
Figure 14 , here 15 percent of the words are selected randomly, and out of these, a
[MASK] token replaces 80 percent words. Out of the remaining 20 percent, a different

word replaces 10 percent of the words, and the rest 10 percent are left unchanged.

[ 80% } [ my dog is ]
[ 15% | [ 10% | [ my dog s ]
1% ] [ my dog s )

Figure 14: Masked Language Modeling in BERT
Source : [9]

BERT uses Next Sentence Prediction to infer relationships between two sentences.
As shown in Figure 15, the model takes two sentences A and B, where it has to predict
if sentence A is followed by sentence B. The goal of training the BERT model using

Masked LM and Next Sentence Prediction is to minimize the combined loss function.

[CLS] the man went to the [MASK]
store [SEP] he bought a gallon

[MASK] milk [SEP]
Label IsNext
[CLS] the man went to the [MASK]
store [SEP] penguin [MASK] are flight
##tless birds [SEP]
Label NotNext

Figure 15: Masked Language Modeling in BERT
Source : |9
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Prediction

Classifier

[CLS] | like to draw  [SEP]

Figure 16: Fine tuning Next Sentence Prediction Layer in BERT
Source : |9

The second step in BERT modeling is Fine-tuning. BERT can be fine-tuned for
any specific task by adding an additional layer to the base model. For the sentiment
analysis task, which is a classification problem, a classification layer is added on top
of Next Sentence Prediction Transformer output, as shown in Figure 16. Fine-tuning
training retains most hyper-parameters of the original BERT model tuning it to our
specific task.

2.3 Predictive Analytics Background

Predictive Analytics is the technique to predict the future using historical data.
Generally, we take historical data, and mathematical techniques are applied to
understand the trends, based on which the value is estimated in the future [11]. With
the rise of big data, as huge volumes of data are being stored, applying statistics and
machine learning to this data for understanding the trends and patterns is becoming
an emerging topic. Using this technique and applying it to predict stock price has

caught many researcher’s attention.
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Stock Market is an industry where millions of transactions are processed and
stored every day [12]. The price on which a single stock trades is always uncertain;
it can be somewhat understood by looking at its historical trading prices and other
data points. These kinds of problems are framed as Time series problems. With the
practical application of ML and statistical techniques, we can utilize this historical
data and other points to estimate somewhat the future price, which is better than
random guessing.

For example, if the company Apple’s stock is being traded current at 100 USD,
if we want to estimate its price after a month, it would be a very tough task. E.g.,
analyzing the historical trading prices of Apple, we noticed the price on an average
fluctuates 4 percent monthly. If the market is a bull market - Trend is increasing, we
can say there is a high chance that the price of apple would be 104 next month, but if it
was a bear market - Trend is decreasing, the price would be 96 USD. Therefore, using
historical data, we were able to capture trends, and then using applied mathematics, we
noticed a 4 percent fluctuation. This estimation is generally better random guessing.

A Time-series problem usually has four components- Level, Trend, Seasonality,
Noise. Out of these, trend - Increasing/decreasing pattern and seasonality, repetition,
if any are the important features that models capture. Many research papers were
published in the last few decades to capture these components effectively. These
techniques can be broadly classified into statistical and machine learning models and
based on volume, type of data respective techniques are used.

2.3.1 Linear Regression

Linear regression is used to find the relationship between a dependent variable

(y), and an independent variable (x). For a simple linear regression, we will have

only one independent variable x, but for multilinear regressor, there can be many
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independent variables of x. E.g., For Bitcoin price prediction, we will consider only
date and its price as the dependent variable, and our aim is to predict the price for a

given day. A simple Linear equation is shown below.

y=a+bx

Here y is the predicted value, a is the y-intercept, b is the slope of the line, and x
is the coefficient variable. The aim is to find the best-fitting line, which minimizes the
sum of squared errors (SSE) between the actual value of a Bitcoin price (y) and our
predicted stock price. The drawback with this approach is, it doesn’t capture trends,
seasonality, and is not a good approach for time series data.

2.3.2 Auto Regression Integrated Moving Average

Auto Regression Integrated Moving Average (ARIMA) is an advanced statistical
technique that integrates regression and moving average to capture trends. Auto
Regression(AR) uses previous values from past time intervals to estimate the next
value:

AR(p) is the method where p stands for periods to consider in the past to predict
the next outcome. AR(1) considers only ¢ — 1 value. AR (2) considers t — 1, t — 2
values while predicting the value at time t.

Formula:

y=c+Pry1+ b2+ + OpYrp + €,

Moving Average (MA) residual errors from past time stamps forecasts to predict
the next outcome.

Formula:

Y = c+ e+ 0161 + Oagp o+ -+ - + 054y,
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Combining AR and MA gives ARIMA, which helps in better analyzing the past
components.

Formula:

y; =c+ ﬁbly;_l +oeee qbpyg_p +01g4 1+ -+ gqst—q + &,

ARIMA model can be represented as ARIMA (p,d,q), where p is the order of AR,
d is the degree of the first difference, and q is the order of MA.
2.3.3 Prophet

Prophet, an open-source time-series model, was developed by Facebook and
released in 2017 [13]|. The prophet is a model for forecasting time series data; it uses
an additive model where we capture non-linear trends controlling yearly, weekly, daily
seasonality, and holiday effects. It gives good results for time series data, which has
strong seasonal effects and several seasons of historical data. It works well in handling
missing data, changes in the trend, and outliers well.

The model takes a window size N, which can be referred to as number of days
back in time, as shown below. The model can change individual § values. The model

gives us the option of handling seasonality and special events.

F(yn+1> = (91331 + (92(132 + (93%3 + .+ enfEn

For time-series models, there can exist seasonality that happens due to particular
human behavior. For example, a stock market operates only 5 days a week, which
can produce a pattern that repeats every week. Vacations and breaks are effects that
might repeat every year, handling these event smoothens the forecasting curve. The
model manages the seasonal events by using Fourier series transformations.

For handling certain events which caused the minor spike, say there is a product

launch on Day 24. While considering that day in the window N, the models check if
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that day is flagged or not, improving overall impact on the surrounding days of Day
24. Internally the flagged days are handled by adding regularization to the 6 of that
day, smoothing the model’s predictive curve.
2.4 Relevant Classification Algorithm

Classifying data is a common task in machine learning for given data points, each
belonging to one of two classes, and the goal is to determine which class a new data
point belongs to.
2.4.1 Support Vector Machines

Support Vector Machines, proposed by Vapnik [14], is a widely used classification
model where it maps input vectors into a high-dimensional feature space by construct-
ing a separating hyperplane in the higher dimensional space. While predicting, the
class of the unlabeled data point is determined by plotting it and checking which side
of the hyperplane does this point belongs to.

Support Vector Regression (SVR) is a type of Support vector machine that
supports linear and non-linear regression. As shown in Figure 18, the model aims to
fit as many data points as we can between the lines without violating the margin of

error. The margin of error is given by epsilon.

f(X)—>y

The SVR takes the input X and gives an output y, internally using the training data

X, y the model learns the co-relation of how y varies with X.
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Figure 17: data points represented in a 2D space by SVM
Source : [15]
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Figure 18: data points represented in a 2D space by SVR
Source : [16]
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CHAPTER 3

Proposed Model
3.1 R2 score

For Regression, we would like to know what is the variance between the actual
number and predicted number; in such a case, R? is the metric that is used. R-squared
is the statistical measure that tells us how close the data points are to the fitted

regression line.

R? = ExplainedV ariation/TotalV ariation

The best possible score is 1.0, and it can be negative. As shown in Figure 19, the
model score for the left model is low compared to the right model, this is because the
data points for the left model are scattered a lot, which makes it hard to fit into our
model. Whereas data points in the right model are not scattered around, and the

model was able to fit better, giving it a better R? score.

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Fitted
rESponses

Observed responses Observed responses

Figure 19: Regression Model for two scattered points
Source : [17]

3.2 Predictive Model
We use the Prophet model as discussed in the earlier section, ref performs well

to capture daily, weekly trends, and performs well for daily predictions; hence we

24



choose this model to set up a base model to predict the bitcoin price. We are using

the sliding window technique, as shown in Figure 20.

DAY 1 DAY 60 41

Predict day 61
DAY 2 DAY 61 j

Predict day 62

Figure 20: Prophet Model

We take a sliding window with range n, then the model trains on BTC close price
from ty to t, and predicts the value on t, 1, then we retrain the model from ¢; to
t,+1 and predicts ¢, .2 and so-on. For example, n = 60 where n is the number of days,
we predict the bitcoin price of Day 61. Then we retrain the model from Day 2 to Day
61, maintaining n = 60 window size to predict the bitcoin price of Day 62. We keep
retraining the model again so that the model predicts better based on changing trends.
We use the R2 score on this test set as our evaluation metric. Once the base model is
running, the aim to see if we can improve the R2 score of the test set by adding a
daily sentiment and additional features.

3.3 Sentiment Analysis Model

As we are using twitter feed for aggregating Bitcoin opinion for a day, the tweets

are posted throughout the day, which needs to be collected and processed each day.

As shown in Figure 21, using Twitter API, we first extract Bitcoin-related tweets
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from the API using “#BTC”, “#BITCOIN" hashtags, with the English language as
the filter. Once the tweets are collected, they are pre-processed using pre-processing
techniques, which will pass through a classification algorithm for classifying. If the
individual tweet is positive 1 or negative 0, as shown in Figure 22. Once all the
tweets are classified, we need to aggregate that day’s overall sentiment, i.e., if it was a
positive day for Bitcoin stating people were supporting bitcoin or negative day stating

people were not supporting on that day.

Scoring the Tweet's

. Aggregating tweets Computing day's
TWITER API —» Tweets Pre-Processing |—| positive and negative —— geres g —M P g. Y
intensity day-wise overall sentiment

Figure 21: Sentiment Analysis Pipeline for Twitter Tweets

TEXT SENTIMENT
awww that bummer you shoulda got david carr of ... 0
is upset that he can not update his facebook b... 0
dived many times for the ball managed to save ... 0
my whole body feels itchy and like its on fire 0
no it not behaving at all mad why am here beca... 0
Just woke up having no school is the best feel... 1
thewdb com very cool to hear old walt intervie. .. 1
are you ready for your mojo makeover ask me fo... 1
happy th birthday to my boo of alll time tupac... 1
happy charitytuesday 1

Figure 22: Classification Algorithm Result
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3.4 Final Merged Model

The final proposed model is as shown in the Figure 23, where the left side of the
figure is the workflow of the predictive model as explained in the earlier section, the
center workflow is the sentimental analysis workflow as explained in the earlier section.
The SVM model has three inputs - next day price prediction from the predictive
model, current-day aggregated twitter sentiment, and additional features, which will
be explained in the dataset preparation section. These inputs, when passing through
the SVM model, give us the adjusted bitcoin price, which is expected to be better

than our predictive analysis base model.

Tweets Pre Scoring Twests positive ‘Aggregating
[ DAY 1 } 000 o{ DAY 90 ]ﬁ [ TWITTER API —rl Procaséing H i negatio sty tweets day,wise}*

PREDICT Computing -
DAY 91 DAY 91 overall AFdd't"’"a'
PRICE sentiment eatures

( | )

FINAL PRICE
OF DAY 91

Figure 23: Final Proposed pipeline

3.5 Python Libraries

We use a couple of python libraries throughout our experiment, and this section
will be covering an overview of some common python libraries -SentimentAnalyzer,
GridsearchCV.

1. SentimentAnalyzer: A SentimentAnalyzer is an NLTK function implemented
to facilitate Sentiment Analysis tasks. Using NLTK features and classifiers, with the

help of the package we can extract the intensity of positivity, negativity from a given
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sentence.

2. GridsearchCV: Tuning hyperparameters for a model is very important in
improving its performance. In the sci-kit-learn package, there is an inbuilt function
GridsearchCV that makes it easy to fine-tune the parameters performing an exhaustive
search. For example, for Support Vector Classifier, C, kernel, and gamma are some
hyperparameters which can be fine-tuned using GridsearchCV. The search takes an
estimator (regressor or classifier such as sklearn.svm.SVC()), a parameter space, a
method for searching or sampling candidates, a cross-validation scheme, and a score

function.
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CHAPTER 4
Dataset Preparation
A general tweet on Twitter can have handle names of other users, URLs to a
website, text, and emojis expressing their opinion about a certain topic. When we
make an API call and download a tweet, any of the above details if present comes
with the tweet. Most of these details don’t bring much information to understand the
user’s emotion while writing the tweet, and we can consider it as noise. We need to
remove this noise as much as we can to get good results in our experiments. Hence,
we do data cleaning on the collected tweets to reduce noise from them. It is done by

removing punctuation, removing stop words, keeping only digits, and English letters.

Keep Only Digits and English
Characters

Remove Punctuations Remove Stop Words

Figure 24: Data Cleaning Workflow

As shown above, in Figure 24 if the tweet has any punctuation’s like ““!I”” <7

2l

“rt”, “via”’, “and” are removed. Next, if the tweet has any stop words like ““a”, “‘an”,
“the”, ““there” are removed. Later, we check if a character is a valid digit or an
English letter and only valid ones are retained. By the end of this process, we get a
cleaned tweet from which noise is reduced.
4.1 Dataset 1

We download the dataset from Kaggle [18]|, which is prepared by Stanford
University. It consists of 1.6 million tweets equally distributed into positive and

negative tweets. Each tweet consists of six fields- sentiment of the tweet, tweet ID,

tweet date, query, userID, and text as shown in Figure 25 :
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Sentiment 1D TweetDate query userlD text
0 1467810369 Mon Apr 06 22:19:45 PDT 2008 NO_QUERY _TheSpecialOne_  @switchfoot http:/ftwitpic.com/2y1zl - Awww, t...
0 1467810672 Mon Apr 06 22:19:49 PDT 2008 NO_QUERY scotthamilton is upset that he can't update his Facebook by ...
0 1467810917 Mon Apr 06 22:19:53 PDT 2009 NO_QUERY mattycus (@HKenichan | dived many times for the ball. Man...
0 1467811184 Mon Apr 06 22:19:57 PDT 2009 NO_QUERY ElleCTF my whole body feels itchy and like its on fire
0 1467811193 Mon Apr 06 22:19:57 PDT 2009 NO_QUERY Karoli @nationwideclass no, i's not behaving at all....

Figure 25: Preview of the Tweets downloaded from [1]

Out of these six features, we use only sentiment and text for our experiments.

Using the data preparation technique, we drop all other features and keep only text

and sentiment, as shown in Figure 26. Sentiment feature has two binary values 0 for

negative, and 1 for positive, the text feature has tweet written by the user.

Text

Sentiment

awww that bummer you shoulda got david carr of... 0

is upset that he can not update his facebook b...
dived many times for the ball managed to save ...
my whole body feels itchy and like its on fire

no it not behaving at all mad why am here beca...

S 0 e O

Figure 26: Pre-processed data containing user tweet and polarity

A standard tweet can have a maximum of 140 characters limit in it, but as we see

below, in our dataset, some tweets have over 200 characters, which means some illegal

characters need to be removed. From Figure 27, we can see the result of pre-processing

removed anomalies, illegal characters, and reduced the size of the tweets to standard

140 characters.
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Tweets size before pre processing Tweets size after pre processing
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Figure 27: Change in tweet size before and after preprocessing

4.2 Dataset 2

We collect this data from Jan 01, 2017 to Feb 28, 2018 available at [18|. The
data set consists of 8 fields, as shown in Figure 28:

1. Timestamp: The date on which features are collected. It follows the yyyy-mm-
dd convention.

2. Tweet Volume: Total number of tweets tweeted worldwide on that day related
to bitcoin. We collect this metric from bitinfocharts [19], and the values are on a scale
of USD thousands, i.e., 14 is equal to 14000 USD.

3. Average Transaction Fee: The average transaction fee for all bitcoin transac-
tions done during that day. We collect this metric from bitinfocharts [19], and the
values are on a scale of BTC, i.e., 0.35 is equal to 0.35 BTC.

4. Average Transaction Value: The average Transaction value for all the bitcoin
transactions done during that day. We collect this metric from bitinfocharts [19], and
the values are on a scale of USD thousands, i.e., 3.5 is equal to 3500 USD.

5. BTC close price: The closing price of Bitcoin for that day. We collect this

metric from Yahoo Finance [20], and the values are on a scale of USD thousands, i.e.,
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3.5 is equal to 3500 USD.

6. Volume: The Total Bitcoin volume circulated for that day. We collect this
metric from Yahoo Finance [20], and the values are on a scale of USD thousands, i.e.,
3.5 is equal to 3500 USD.

7. Bullish: No. of Bullish tweets for that day. We collect this metric using
augmento APT [1].

8. Bearish: No. of Bearish tweets for that day. We collect this metric using

augmento APT [1].

Unnamed: @ TWEET VOLUME(in K) AVG Transaction Fee AVG Transaction value(in K) Close volume Bullish Bearish
2017-01-01 21.0 0.350 5.80 998.325 147775008 41 10
2017-01-02 26.4 0.392 550 1021.750 222184992 27 8
2017-01-03 27.2 0.396 6.50 1043.840 185168000 14 14
2017-01-04 31.6 0.633 8.10  1154.730 344945984 73 22
2017-01-05 334 0.410 10.80 1013.380 510199008 70 41
2018-02-24 56.6 6.200 48.09 9813.070 6917929984 185 129
2018-02-25 63.3 2.700 40.20 9664.730 5706939904 144 128
2018-02-26 66.5 2.400 44.90 10366.700 7287690240 269 120
2018-02-27 64.8 2.400 4560 10725.600 6966179840 247 122
2018-02-28 68.8 2.800 7740 10397.900 6936189952 247 109

Figure 28: Data set 2
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4.3 Dataset 3

Usually, we can extract bitcoin tweets from twitter by using Twitter API, but
the timeline for analysis is from 10-01-2017 to 03-01-2018. Twitter has restrictions
over mining historical tweets. Hence, we use “Get Old Tweets Programmatically”
[21] an APT to get old tweets.

As shown in Figure 29, we use 3 AWS EC2 instances to extract tweets of different
months parallelly from 10-01-2017 to 03-01-2018, collecting 5000 tweets every day
by running automated scripts that call the API every 5 minutes and downloads the
tweets. We initially store the tweets on the local EC2 file system, then we use scp

calls and download them to our local desktop and merge all the files.

EC2

‘ —_— Twitter API — | Data Merging

EC2

EC2

Figure 29: Data set 3 workflow

A total of 467361 are collected; we preprocess these tweets by removing tags,
emoji’s, URL, and following Figure 29. Each tweet consists of twitter handle, times-
tamp, tweet. Using the handle, if duplicates are present, we remove them. We keep

the date and cleaned tweet, as shown in Figure 30, for our experiments.
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Date

Text

2017-10-01
2017-10-01
2017-10-01
2017-10-01
2017-10-01

beyond bitcoin power struggle trust based tech. .
bitcoinagile power struggle trust based techno. ..
power struggle trust based technology bitcoin fyi

free bitcoins faucet earn free btc minutes bit._ ..

extremely bias whole bitcoin novelty theme pla. ..

Figure 30: Data set 3
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CHAPTER 5

Experiments

5.1 Hardware and Software Requirements
5.1.1 Hardware Requirements

We use 4 different machines for different tasks during the experiments, they are :

1. Machine 1: Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz Desktop
with 6 Core(s), 12 Logical Processor(s),Ram : 16Gb DDR4

2. Machine 2: Google Collab TPU enabled instance

3. Machine 3: AWS p2.xlarge instance with 1GPU, 4 vCPU, 61Mem (GiB), 12
GPU Memory (GiB), and High Network Performance

4. Machine 4: AWS t2.micro instance with 1 vCPU, 1Mem (GiB), EBS-Only
Storage, and Low to Moderate Network Performance
5.1.2 Software Requirements

We use python3 as the primary programming language for the majority of the
experiments. Where we use Python Packages like pandas, numpy, matplotlib, numba,
sklearn, bs4, pyspark for data manipulation, and modeling. We use the Jupyter
notebook to conduct all our experiments. Natural Language manipulations are done
using python NLP libraries like nltk, re. For predictive analytics, we use Facebook’s
prophet fbprophet. BERT experiments are performed using Pytorch, where we use
pytorchpretrainedbert, torch libraries. Other essential libraries are pickle, os for
storing values and reading files Tweets are gathering using GetOldTweets-python [1],

augmento [21].
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5.2 Sentiment Analysis

We use Machine 1 and dataset 1 for sentiment analysis experiments; we split this
data into Train and Test data in the ratio of 80-20 and perform 3 fold cross validation.
We use Logistic Regression with TF-IDF, Logistic regression with count vectorizer,
N-gram, and BERT, as discussed in earlier sections to compare their performance.
We use Machine 2 for experiments related to BERT; with a configuration of BERT
cased, text length 120, and run three epochs. The following results were obtained, as

shown in Figure 31, Figure 32, and Figure 33.

Model Average Validation Accuracy Test Accuracy ROC — AUC Runtime (mins)
Logistic Regression+ | 87.4 85.5 79.2 37

TF-IDF

Logistic Regression+ | 83.6 79.4 83.8 15

TF-IDF+ Count

Vectorization

N- Gram B86.8 81.2 84.2 42

Figure 31: Results for Statistical Models

Comparison of models Comparison of models

80

o
o
L

Accuracy

Area Under the Curve
s
X

N
(=]
s

TF-IDF Count Vectorizer N-gram TF-IDF Count Vectorizer N-gram

Figure 32: Model Accuracy and ROC for Statistical Models

From Figure 31 experiments, we see that although being a statistical machine
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Epoch Loss Accuracy Runtime
1 0.63 70.8 17h
3 0.03 71.2 51h

Figure 33: Model Accuracy and runtime for BERT

learning model, Logistic Regression with TF-IDF gave the best test accuracy of 85.5
percent with a runtime of 37 mins for classifying the tweets. In comparison, BERT,
which is one of the best classification algorithms, takes significantly long training time
(51 hrs) and provides an accuracy of just 71 percent, as seen in Figure 33. The Machine
used to train BERT was substantially more powerful in terms of CPU computation
and memory than the one used for Figure 31 experiments.

The reason for such poor performance is BERT is pre-trained using Wikipedia
articles, which has well-written articles, i.e., which follows grammar rules. In com-
parison, the tweets are usually written using locally spoken slang like ‘“‘wanna’,
“gonna’”, “YOLO”, which generally doesn’t follow strong grammar rules making the
classification problem harder.

Now dataset 3 is taken, using Machine 1 sentiment features are extracted from
them using VADER and spacy NLP. Each pre-processed tweet passes through VADER
and spacy functions, and their rate of positively, negativing are derived from them.
At the end of this process, the dataset obtained is as seen in Figure 34.

We aggregate all tweets during a day for this data and plot them to understand
how they change over the duration. As we see in Figure 35, negative sentiment
dominates positive sentiment in this prepared dataset. Now we take Bullish and
Bearish features from dataset 2 and see how they change during the same period. In
Figure 36, we see there are a few days when Bearish sentiment is high and a few days

when Bullish sentiment is high.
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Date Text Pos_sent Neg_sent

2017-10-01 beyond bitcoin power struggle trust based tech... 0.311 0.217
2017-10-01  bitcoinagile power struggle trust based techno_. 0411 0.185
2017-10-01 power struggle trust based technology bitcoin fyi 0.447 0.202
2017-10-01 free bitcoins faucet earn free btc minutes bit. . 0.452 0.000
2017-10-01  extremely bias whole bitcoin novelty theme pla... 0.299 0.137 |

Figure 34: Dataset 2 feature extraction results
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Figure 35: Dataset 2 Tweet’s daily positive and negative trend

When we are comparing these two charts, in Figure 35, we don’t observe any
significant spikes or changes between two consecutive days, whereas there are many
spikes and changes in Figure 36. Hence, Figure 36 reflects better emotions of twitter
user’s sentiment during this period.

Our collected dataset 3 didn’t perform well because there was still noise present

in them despite cleaning. This noise is instead the content of the tweet where only
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Bullish vs Bearish sentiment Tweet's Trend
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Figure 36: Data source [1] Tweet’s daily positive and negative trend

general statements were made rather than specifically talking about price movement.
Whereas the dataset 2 tweets were explicitly talking about price moment, making
them a better metric. Hence we will dataset 2 features in the further analysis of price
prediction.

From Figure 37, we can say that there seems to be some relation between
sentiment, bitcoin closing price, and tweet volume. We try to understand these
relations further before using this for final experiments. We combine the bullish and
bearish sentiment of a day and generate a sentiment score between -4 to +4 for that
day. A maximum negative score is -4, and the maximum positive score is +4 for
a day. The following shows the trend between twitter tweet volume, daily bitcoin
closing price, and overall daily sentiment.

From Figure 38, we can see a relation between bitcoin’s price, sentiment, and
tweet volume for a day. From Figure 39 we can see that

1. When tweet volume increased, and the sentiment trend was bullish, the bitcoin

price increased.
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Figure 37: daily twitter tweet volume vs bitcoin closing price vs daily sentiment

2. When sentiment trend was bearish, and tweet volume was low, the bitcoin

price decreased.

From these observations, we can say there seems to be some influence of these

features on bitcoin’s closing price. Hence, we move on to the bitcoin price prediction

to build our proposed model.
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Figure 38: daily twitter tweet volume vs bitcoin closing price vs daily final sentiment

5.3 Predictive Analysis

In this section, we predict the closing price of bitcoin; for this, we first set up a
base model using dataset 2 closing price, as shown in Figure 40. For this task, we use
the Prophet model as discussed in the earlier section. We use the closing price of the
previous day to predict the price of the next day, as shown in Figure 41.

Since this model uses sliding window N to predict the price, we test different N
values varying from almost one year to one week to understand its impact on the R2
score. As seen in Figure 44, when the window is 394 days, the training R2 score was
-19.7 as we decreased the window size to 274, the R2 score improved to 0.22. Further,
when we reduce the window size to 7 days, we notice the best training R2 score of

0.79. We see a trend where decreasing the sliding window increases the R2 score.
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Figure 39: (a) ,(c) When tweet volume increased and the sentiment trend was bullish,
bitcoin price increased ,(b)When sentiment trend was bearish, and tweet volume was
low, bitcoin price decreased

Date Close_price

2017-01-01  998.325
2017-01-02 1021.750
2017-01-03 1043.840
2017-01-04 1154.730
2017-01-05 1013.380

Figure 40: bitcoin closing price in USD

When the window size is 7 (one week), the model captures only daily trends while

predicting the closing price of bitcoin, but while predicting the closing price, we want
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actual_price predicted_price

9813.07 12871.214803
9664.73 12669.150745
10366.70 12226.157064
10725.60 11921.638803
10397.90 11810.070003

Figure 41: bitcoin closing price predictions in USD

to consider weekly and monthly trends as well. We try different values for window N,
as shown in Figure 42 based on the experiment results, we take 90 days (approx. 3
months) as the window size, capturing 3 months, 12 weeks price trends. So our final
baseline model will have a training window size of 90 and a training time of 300 days.

We test all the models on February 2018 predictions, so our test set would have 28

values.
Training R2 Score for N window size
5
0 — J— — -_— | | | | | | |
l 330 300 270 240 210 180 150 120 90 60 30 7
v 5
o
]
2
< 10
o
=
8
= -15
-20

-25 . .
Window size

Figure 42: Training R2 score for N window sizes
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We see the training and test results of our baseline model in Figure 43 and
Figure 44. The red line is the actual price, and the blue line is our model’s predicted
price, as we can see in Figure 43 for the first 150 predictions, our model predicts
well since there are no exponential spikes. Later, when there were exponential rises,
our model was able to catch the changing trend, but it failed when there was an

exponential fall.

Training Price Prediction with 90 days moving window
3.0
- Prediction with proposed model

- Actual price
2.5

2.0
15
1.0

0.5

Scaled Bitcoin Price

0.0
-0.5
-1.0

0 50 100 150 200 250 300
Prediction number

Figure 43: Training Price Predictions for N = 90 window size
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We can see in Figure 44 that our model performs poorly on the Test set, it

achieved an R2 score of -19.93. This score becomes our base model score that we try

to improve by adding the sentiment, and additional features from dataset 2.

Scaled Bitcoin Price

18

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Price Prediction 90 days moving window only last 30 days

- Prediction
- Actual

0 5 10 15 20 25 30
Prediction number

Figure 44: Test R2 score for N = 90 window size

45



5.4 Proposed Model

Using dataset 2 and Machine 3, we follow the recursive additive approach,
where we first choose a combination of features, then using these features we train
the SVM model and predict for test data. Using gridsearchCV, we tune the SVM
hyperparameters to optimize and get the best R2 score.

As shown in Figure 45, we try RBF and sigmoid SVM kernels, try different values

of C, gamma, and epsilon values to find the optimal values.

parameters = {'kernel':['rbf', "sigmoid'],
"C':np.logspace(np.logle(e.ee1), np.logle(200), num=28),
"gamma' :np.logspace(np.logle(e.ee001), np.logle(20), num=38),
"epsilon':np.logspace(np.logle(e.eveel), np.logle(2e), num=30)}

Figure 45: SVM Parameter Hypertuning

Sentiment and predicted prices are fixed features for all models; we keep adding
additional features to them. As we see in Figure 46,

1. When we use only one extra feature, Average Transaction Fee, the best R2
score obtained is -7.67.

2. When we choose two features, Average Transaction Fee and Tweet Volume,
the best R2 score obtained is -2.9.

3. When we choose three additional features, Average Transaction Fee, Twitter
Volume, and Average Transaction Value, we obtained the best R2 score of -1.938.

From Figure 47, adding the sentiment and additional features improved our R2
score. Comparing it to Figure 44, the R2 score for Figure 47 is approximately 90

percent lesser than our base model R2 score. It reduced from -19.8 is -1.938.
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Figure 46: Test R2 Score for Different Additional Features
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Figure 47: Test R2 score for N = 90 window size with best features
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CHAPTER 6

Conclusion and Future Work

In this paper, we discussed the types of Text classification models, their advan-
tages, and disadvantages. We performed experiments to compare the statistical model
and advanced BERT model for sentiment classification. For dataset 1 twitter tweets,
the results of the experiments show that the statistical model performed well, whereas
BERT took comparatively larger training times with less accuracy.

We have performed experiments on a novel approach to predict the bitcoin prices
using information from both predictive analysis and sentiment analysis. We performed
the numerical analysis using Facebook’s prophet model, where a base model gave us
an R2 score of -19.8 for a sliding window of N = 90. We observed that using twitter
tweet feed related to bitcoin to our proposed model, we were able to improve the R2
score. Also, utilizing additional features of dataset 3 improved the R2 score to -1.938
R2, as shown in Figure 48. Hence we observe that adding textual information from
twitter to the bitcoin price data can greatly improve the prediction accuracy.

For our experiments, we took a time frame of 14 months; the results of predictive
analysis can be improved by using more training data having larger time frames. We
can try considering weekly, monthly moving averages and see if this improves the
bitcoin price prediction. Also, in textual analysis, improved training data can be
collected; for example, instead of randomly extracting tweets from API, we can try
collecting opinions of certain users only and see how their sentiment is changing over
the time. Additionally, instead of just looking at the current day’s sentiment as used
in our model, we can try using a wider window sentiment and see if it improves the

model.
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Figure 48: Comparing Base Prediction Vs Actual Vs Proposed Model Prediction
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