
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-14-2020

Benchmarking MongoDB multi-document transactions in a Benchmarking MongoDB multi-document transactions in a

sharded cluster sharded cluster

Tushar Panpaliya

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/322921812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F910&utm_medium=PDF&utm_campaign=PDFCoverPages

Benchmarking MongoDB multi-document transactions in a sharded cluster

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tushar Panpaliya

May 2020

© 2020

Tushar Panpaliya

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Benchmarking MongoDB multi-document transactions in a sharded cluster

by

Tushar Panpaliya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2020

Dr. Suneuy Kim Department of Computer Science

Dr. Robert Chun Department of Computer Science

Dr. Thomas Austin Department of Computer Science

ABSTRACT

Benchmarking MongoDB multi-document transactions in a sharded cluster

by Tushar Panpaliya

Relational databases like Oracle, MySQL, and Microsoft SQL Server offer trans-

action processing as an integral part of their design. These databases have been a

primary choice among developers for business-critical workloads that need the highest

form of consistency. On the other hand, the distributed nature of NoSQL databases

makes them suitable for scenarios needing scalability, faster data access, and flexible

schema design. Recent developments in the NoSQL database community show that

NoSQL databases have started to incorporate transactions in their drivers to let users

work on business-critical scenarios without compromising the power of distributed

NoSQL features [1].

MongoDB is a leading document store that has supported single document

atomicity since its first version. Sharding is the key technique to support the horizontal

scalability in MongoDB. The latest version MongoDB 4.2 enables multi-document

transactions to run on sharded clusters, seeking both scalability and ACID multi-

documents. Transaction processing is a novel feature in MongoDB, and benchmarking

the performance of MongoDB multi-document transactions in sharded clusters can

encourage developers to use ACID transactions for business-critical workloads.

We have adapted pytpcc framework to conduct a series of benchmarking experi-

ments aiming at finding the impact of tunable consistency, database size, and design

choices on the multi-document transaction in MongoDB sharded clusters. We have

used TPC’s OLTP workload under a variety of experimental settings to measure

business throughput. To the best of our understanding, this is the first attempt

towards benchmarking MongoDB multi-document transactions in a sharded cluster.

ACKNOWLEDGMENTS

I want to express my sincerest gratitude to my project advisor Dr. Suneuy Kim for

her consistent support and collaboration throughout this research project. I consider

myself extremely fortunate to have received an opportunity to work with someone as

passionate as her. She has been patient with me since the start of this project and

has given me valuable insights that helped me move in the right direction to achieve

my goals. I would not have been able to complete this project without her guidance.

I am also thankful to my committee members Dr. Thomas Austin and Dr. Robert

Chun, for providing their feedback and guidance. Finally, I want to thank my amazing

parents and helpful friends for their countless hours of support and encouragement

along the way.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Related work . 4

3 MongoDB Sharding and Replication 7

3.1 MongoDB Sharding . 7

3.2 MongoDB Replication . 8

3.3 MongoDB Tunable Consistency 9

3.3.1 MongoDB read concern . 9

3.3.2 MongoDB write concern 10

4 MongoDB multi-document transactions 12

4.1 Efficient resource allocation through logical sessions 13

4.2 Improved read isolation using local snapshots 13

4.3 Enhanced synchronization of sharded replica using the hybrid clock 14

4.4 Update-structure of Wired tiger storage engine 15

4.5 Durability supported by retryable writes 15

4.6 Efficient reading mechanism using safe secondary reads 16

5 OLTP benchmarks . 17

5.1 TPC-C benchmark . 17

5.2 TPC-C schema design . 18

5.3 TPC-C Database Schema . 19

5.4 TPC-C transactions . 20

vi

vii

5.4.1 New-Order . 21

5.4.2 Payment . 21

5.4.3 Order-status . 22

5.4.4 Delivery . 22

5.4.5 Stock-level . 22

6 Pytpcc framework . 23

6.1 Load Phase . 23

6.2 Execution Phase . 24

6.3 MongoDB driver . 25

6.4 Configurations . 25

6.5 Database Schema design for MongoDB 25

6.5.1 Referenced schema of Pytpcc framework 27

6.5.2 Embedded schema of Pytpcc framework 27

7 Experiment and Results . 29

7.1 Experiment setup . 29

7.2 Experiment 1 - Impact of read-write consistency on throughput . 29

7.3 Experiment 2 - Impact of schema design on throughput 32

7.4 Experiment 3 - Impact of sharding on throughput with various data
size . 34

7.5 Experiment 4 - FindAndModify vs find+update 36

8 Conclusion and future work . 39

LIST OF REFERENCES . 40

APPENDIX

viii

A Referenced schema documents . 43

B Embedded schema documents . 46

C Sample benchmark output . 49

LIST OF TABLES

1 MongoDB read concern [2] . 10

2 MongoDB write concern [3] . 11

3 Minimum percentage of different transaction type [4] 21

4 Pytpcc configurations . 26

ix

LIST OF FIGURES

1 MongoDB sharding components 8

2 MySQL vs. MongoDB transaction 12

3 TPC-C database system heirarchy[4] 19

4 TPC-C database system ER diagram [4] 20

5 Pytpcc Activity diagram . 24

6 Pytpcc Referenced Schema . 27

7 Pytpcc Embedded Schema . 28

8 Impact of read-write consistency on throughput 30

9 Impact of schema design on throughput (Ref. Shard: Sharded
cluster with referenced schema, Emb. Shard: Sharded cluster with
embedded schema) . 33

10 Number of warehouses vs. Throughput 34

11 Number of warehouses vs. Threads for throughput saturation . . 35

12 FindAndModify vs. find+update 37

13 FindAndModify new-order code 38

x

CHAPTER 1

Introduction

Scalability is an essential feature of modern database systems. It enables applica-

tions to work with massive data without compromising the performance. Sharding in

NoSQL databases provides horizontal scalability by data distribution across multiple

nodes. It is useful for applications with fast data growth. System design in NoSQL

databases is centered around distributed architecture, fast data access, improved

performance, and scalability. As stated in the CAP theorem, every distributed system

needs to make a trade-off between consistency and availability in a partition tolerant

environment [5]. Some NoSQL databases offer higher consistency by compromising

availability while others choose eventual consistency.

Applications like System of Records (SOR) and Line of Business (LOB) are

types of systems that need support for atomic transactions with ACID guarantees [6].

Relational databases support durable transactions with the highest level of consistency

by incurring the cost of data availability and system scalability. NoSQL databases

follow a completely different approach and facilitate faster data access and scalable

systems to boost overall database performance. Application developers choose NoSQL

databases for performance gain but rely on RDBMS for business-critical scenarios.

NoSQL systems have started embracing transactions to extend their use cases under

critical workloads that demand ACID guarantees.

NoSQL databases like Amazon DynamoDB and Microsoft Azure Cosmos DB

offer limited functionality for transaction processing. MongoDB is among the only few

NoSQL databases to offer fully compliant multi-document ACID transactions with

its all existing distributed system benefits. Multi-document transactions with ACID

guarantees are available in MongoDB driver version 4.2 across multiple operations,

collections, databases, and shards. Distributed transactions spanning across multiple

1

documents are useful for running a business-critical workload while working with

the horizontally scalable system. The multi-document transaction support enables

application developers to work with ACID transactions without losing any distributed

system benefits. Benchmarking multi-document transactions in the sharded cluster

can empower the system with massive data to run business-critical workloads without

compromising scaling benefits.

TPC-A and TPC-C benchmarks are typical OLTP (Online Transaction Process-

ing) benchmarks for relational database systems. These benchmarks run many small

transactions to exercise the complexities of a real-world e-commerce system. Since

NoSQL systems have started supporting transactions, benchmarking transactional

NoSQL systems interest both academia and industry [1]. Especially, there is not much

work done for benchmarking the multi-document transaction feature of MongoDB.

MongoDB’s research in [7], presents that TPC-C can be used for benchmarking

multi-document transactions. It uses a python framework named pytpcc that models

the TPC-C workload for MongoDB’s document-based schema design. Pytpcc is a

python-based open-source framework of the TPC-C OLTP benchmark for NoSQL

systems. It is a simulation of an e-commerce system for running transactions on a

backend database and has a MongoDB driver. Previous work [7] on evaluating trans-

action performance done by the MongoDB community involves running transactions

in a 3 node MongoDB 4.0 replication-based cluster along with pytpcc framework.

However, it does not consider sharding because transactions under the sharded cluster

were not available during that time.

Our research expands this idea to a distributed sharded MongoDB cluster. We

have extended pytpcc framework to work with MongoDB atlas sharded clusters. Our

experiments show that multi-document transactions can improve system performance

with scaling requirements while maintaining ACID guarantees. The multi-document

2

transaction being a novel feature to NoSQL systems, we believe our results can address

questions about transaction processing amongst developers and NoSQL community.

3

CHAPTER 2

Related work

CouchDB supports multi-document transactions complying with ACID guarantee

in its driver version 6.5. It provides read committed isolation level that guarantees

every read performed gets the majority committed data [8]. Transactions in CouchDB

are tracked by smart clients to avoid reliance on 2 phase commit protocols. FaunaDB

is another NoSQL database that supports transactions across its data partitions. It

uses a RAFT-based consensus and Calvin storage engine that enables transaction

scheduling and replication [9]. FaundaDB transactions execute in 2 phases – an

execution phase and a commit phase. Execute phase reads data from a snapshot, and

the commit phase parallelly resolves transaction writes across the data partitions.

Cloud data stores like Google Cloud Storage (GCS) and Windows Azure Storage

(WAS) provide the ability to store virtually unlimited data while supporting replication

and disaster recovery. These data stores offer high availability in a geographically

distributed cluster and provide single item durable consistency [10]. G-store is another

key-value data store that supports transactions but only within a group called key

groups [11]. Key groups store data, and the keys are cached on the local nodes

but can migrate from one group to another to improve efficiency and performance.

These data stores implement transaction processing logic within the data store itself.

Deuteronomy [12] supports ACID transactions by dividing the storage engine into a

transaction component (TC) and a data component (DC). These components function

as independent systems that work together to provide atomic operations in cloud-based

or local data stores. The ability of components to work independently enables these

systems to use heterogeneous data stores.

Systems like Percolator [13] implement the transaction logic inside the client

to enable multi-item transactions using a snapshot isolation technique. It relies

4

on a central timestamp called Timestamp Oracle (TO) and locking protocols to

support snapshot isolation. This approach works well for transactions in a single

data store but fails to address heterogeneous data stores due to its limiting ability to

address deadlocks scenarios [13]. ReTSO – Reliable and efficient design for transaction

support is another architecture that uses a centralized system to implement a lock-free

snapshot isolation strategy [14]. It reduces the overhead of transaction concurrency

and improves throughput measured by concurrent transactions running per minute.

Yahoo Cloud Serving Benchmark (YCSB) is a tool that allows comparing the

performance of NoSQL systems [15]. Its key feature is that it can be easily extended

by defining new workloads. YCSB is often used to measure the raw performance of the

NoSQL system by stressing them under a variety of workloads. OLTP benchmarks,

on the other hand, work with many small transactions to measure the transaction

performance of the database systems. YCSB+T is an extension of the original

YCSB benchmark that allows running operations by wrapping them in transactions.

YCSB+T adds 2 novel blocks, a workload executor, and transaction API in the YCSB

client [16]. Operations are executed inside transactions in a closed economy workload

(CEW). The closed economy workload simulates an OLTP environment but has only

a minimal set of operations. The workload executor block executes the workload and

validates results by assigning an anomaly score to the workload execution.

YCSB+T uses a client-coordinated transaction protocol [17] across heterogeneous

data stores and relies on the datastore’s capabilities of single-item strong consistency,

adding user-defined data, and global read-only access. These features avoid the need

for a central coordinating system to enable transactions to work on multiple items

while maintaining ACID properties. The protocol works in 2 phases – In phase one,

data items are first fetched from the respective data stores and then tagged with

a timestamp in the form of metadata. In phase two, the transaction commits and

5

updates a global variable called TSR that decides the fate of transactions. Concurrency

between transactions is assumed to be handled by the test-and-set ability of individual

data stores.

The transaction processing council’s TPC-C and TPC-A are a type of OLTP

benchmarks that offer multiple transaction types. TPC offers a set of detailed

guidelines for systems targeting transaction benchmarking in complex e-commerce

environments. These workloads are adopted by traditional relational databases to

benchmarks transaction performance to facilitate valuable insights about business-

critical scenarios. NoSQL database usage, on the other hand, has been limited to not

so critical use cases demanding performance gain. Transaction processing in NoSQL

databases is a new area; there is limited research done for benchmarking transactions.

MongoDB’s research in [18] suggests that the TPC-C benchmark can be adapted

to their document-based NoSQL database. Their research shows promising results but

is limited to replica set clusters. Other efforts in [16, 17] suggest that YCSB client

can be modified to work with data stores with different data models provided each of

these data stored handle ACID guarantees at the individual database level.

6

CHAPTER 3

MongoDB Sharding and Replication

MongoDB is a distributed document-based NoSQL database that enables

application developers to leverage the power of replication, high availability, indexing,

and sharding through its schema-less design architecture. MongoDB stores data in

JSON documents with support for arrays, nested objects that allow dynamic and

flexible schema. It uses powerful queries to enable users to filter and sort information

from documents. In this chapter, we describe MongoDB’s mechanism of horizontal

scaling and synchronization of data across multiple servers.

3.1 MongoDB Sharding

Sharding is MongoDB’s mechanism of scaling the cluster capacity to support the

deployment of large datasets and improve systems performance. When applications

work with huge data, single server capacity can get overwhelmed as the client stresses

the server with concurrent operations. There are two different ways of scaling a

system: vertical scaling and horizontal scaling. Vertical scaling increases system

capacity by adding more hardware components (e.g., RAM, CPU cores, disks) to a

single server system. Vertical scaling works well if the dataset has limited growth

over time. However, it is inefficient for handling a huge increase in data due to its

practical scaling limitations and associated scaling cost.

Horizontal scaling works by adding more commodity computers to the cluster

of multiple servers and then distributing the data across these servers. While an

individual server cannot handle the entire load, having multiple servers with moderate

capacity can work together by distributing the data to improve performance. These

servers can be added and removed as per systems need. This approach has higher

maintenance costs as compared to vertical scaling but provides more flexibility. Figure

7

1 depicts MongoDB sharding components

Figure 1: MongoDB sharding components

MongoDB supports horizontal scaling by breaking data into chunks and then

distributing them across multiple shards. Each shard can work as a replica set to

increase availability. A sharded cluster in MongoDB consists of three components –

shard, mongos, and config server. A shard is a data-bearing component that contains

a part of system data in the form of chunks. Mongos acts as a middleware between

client and server and keeps track of which chunks belong to which shards. Config

servers store all the configuration settings about the sharded cluster.

3.2 MongoDB Replication

Replication is MongoDB’s mechanism of data synchronization to facilitate data

availability, disaster recovery, and data backups. MongoDB replica set consists of 2

or more nodes, where one of these nodes is primary, and others are secondaries. In a

replica set, write operations are first applied to the primary node and then recorded in

8

a capped collection named oplog. Each replica set member has its oplog that reflects

the current database state. Secondary nodes can asynchronously copy operations from

the primary’s oplog to synchronize themselves with the primary node.

The client can vary the durability of write operations using write concern. While

data writes are always applied to the primary node, data reads can happen from any

member of the replica set. MongoDB allows the client to read data using different

read concern values. Read and write concern has a direct implication on data

consistency and is explained in detail in the next section. In one of our experiments,

we discuss the impact of data consistency on system throughput.

3.3 MongoDB Tunable Consistency

MongoDB provides tunable consistency to the client via different read and write

concern values [19]. Read concern value specifies how durable data the application

wants to read and write concern determines the level of consistency by specifying how

many replicas should acknowledge the write operation to be successful.

3.3.1 MongoDB read concern

Read concern allows the client to set a level of consistency for read operations.

Internally MongoDB consults wired tiger storage engine to read data based on the

read concern value specified by the client. The default value for read concern in every

MongoDB operation is local. While each MongoDB operation can provide its read

concern, in case of multi-document transactions, only a transaction-level read concern

is used for all the reads that are part of the transaction [20]. It allows transactions to

work on consistent data. Table 1 shows available read concern values for MongoDB

operations and transactions. It also describes the level of consistency each option

9

provides.

SR.
No read concern Description

Rollback
possibil-
ity

Available
to trans-
actions

1 local
Reads most recent data from the
node but provides no guarantee
that data is majority committed

Yes Yes

2 available
Reads data from the node if avail-
able without guaranteeing it is
majority committed

Yes No

3 majority Reads data that is majority com-
mitted across the cluster No Yes

4 linearizable
Reads data from the cluster
guaranteeing that all the earlier
writes are majority committed

No No

5 snapshot Reads data from a consistent
snapshot across the cluster No Yes

Table 1: MongoDB read concern [2]

3.3.2 MongoDB write concern

When the client issues a write request to the server, MongoDB acknowledges a

successful write to the client after it receives the acknowledgments from the number

of replicas specified by the write consistency level. Write concern value decides the

degree of consistency for the written data. MongoDB allows either an integer value

between 1 to N (N = number of nodes) or majority for write concern. Table 2 shows

different write concern values available to MongoDB operations and transactions.

10

SR.
No write concern Description

Rollback
possibil-
ity

Available
to trans-
actions

1 1

Writes data to only one node
from cluster before returning
acknowledgement back to the
client

Yes Yes

2 majority

Writes data to more than half
data-bearing nodes before return-
ing acknowledgement back to the
client

No Yes

3 n

Writes data to all the data-
bearing node in the cluster before
sending acknowledgment back
the client

No Yes

Table 2: MongoDB write concern [3]

11

CHAPTER 4

MongoDB multi-document transactions

MongoDB version 4.0 introduced multi-document transactions with Atomicity,

Consistency, Isolation, and Durability guarantees. ACID transactions are useful to

satisfy application developer needs for complex scenarios that need all-or-nothing execu-

tion while working on consistent data. MongoDB multi-document transactions follow

pretty much the same syntax as that of traditional relational database transactions.

Figure 2 shows a comparison between MySQL and MongoDB transactions.

Figure 2: MySQL vs. MongoDB transaction

The introduction of multi-document transactions amalgamates MongoDB’s

document-based model and distributed ACID guarantees. We now address the

design details of MongoDB multi-document transactions. These are essential features

that empower multi-document transactions to work with highly consistent data while

maintaining system integrity. MongoDB multi-document transactions are empowered

by the following features [6]. The rest of the chapter summarizes these features that

are considered to be crucial to understanding MongoDB multi-document transactions.

12

• Efficient resource allocation through logical sessions

• Improved read isolation using local snapshots

• Enhanced synchronization of sharded replica using the hybrid clock

• Update-structure of Wired tiger storage engine

• Durability supported by retryable writes

• Efficient reading mechanism using safe secondary reads

4.1 Efficient resource allocation through logical sessions

In MongoDB (version 3.6+), every operation can be linked to a client session,

namely causally consistent sessions. A causally consistent session is represented by a

unique identifier denoted by lsid, which consists of a GUID (Globally Unique ID) and

a user id. It is associated with a client during its communication with a MongoDB

cluster. Every resource that is used by the client is attached to a unique session [21].

In multi-document MongoDB transactions, a single transaction can use multiple

resources before it runs to completion. A centralized system to manage these resources

can become a bottleneck of single-point failure and thus can be very inefficient.

The causally consistent sessions, on the other hand, provide much more flexibility.

These sessions facilitate resource-intensive processes involved with multi-document

transactions such as resource tagging, garbage collection, and resource cancellation.

4.2 Improved read isolation using local snapshots

MongoDB runs queries on the server by acquiring a lock on the documents. Each

query yields after a periodic interval to make sure a single operation does not hold a

resource for too long. A query on the MongoDB server is processed by fetching data

before the query starts and then periodically saving data and locks related to that

13

query at the time of yielding. The server erases the old state of data for the query

and acquires a new state when the query resumes its execution the next time. Local

snapshots provide server an ability to retain all the data and locks when the query

yields [22].

Local snapshots are essential in the context of multi-document transactions

because they provide an ability to keep track of all the resources used by a transaction.

They offer transaction an ability to work on data from a given point in time. It is

a vital feature to guarantee the atomicity of the transaction. When a transaction

starts within a logical session, the client needs to use read concern “snapshot” to use

consistent data until the transaction commits or aborts [6].

4.3 Enhanced synchronization of sharded replica using the hybrid clock

In MongoDB distributed cluster, local clocks for each shard tracks the oplog

entries to provide order. Ordering is achieved by recording the logical timestamp of

each durable write operation. Secondaries fetch these ordered entries and replay them

to synchronize themselves with primary nodes state. Multiple shards with individual

local clocks suffer a considerable cost of synchronization in providing consistent data

to multi-document transactions.

A hybrid clock approach helps to solve this problem by combining the operations

count and system time to create a special type of timestamp called a hybrid

timestamp. This timestamp is then exchanged in the cluster through the gossip

protocol. When a node receives a message containing this timestamp, it updates

its local timestamp with the received timestamp if it is later than its timestamp

[23]. The hybrid timestamp is hashed using the private key of primary nodes for

tamper prevention. The hybrid clock helps multi-document transactions to work on

14

synchronized data spanning across multiple shards. It is crucial because, in most

scenarios, multi-document transactions access data across multiple shards.

4.4 Update-structure of Wired tiger storage engine

Wired tiger is the default storage engine of MongoDB that stores data in a

key-value tree structure. It comes with a mechanism to maintain point-in-time data

for the transaction snapshots. The storage engine maintains an update-structure and

adds a key-value entry to this structure every time a permanent change is made. The

key-value entry holds the timestamp of the update, state of data, and a pointer to the

next update-structure for that same data. These update-structures help MongoDB

transactions to query data at a specific point in time and re-synchronize in case of

rollbacks [24].

The storage engine’s ability to provide point-in-time data and handle multi-

version concurrency control enables multi-document transactions to reduce data locks.

Wired-tiger update structure also facilitates snapshot retention and data rollbacks in

failure cases.

4.5 Durability supported by retryable writes

In MongoDB, when a client performs a write operation, the server has the

responsibility of writing the update on to the database and sending an acknowledgment

back to the client. Acknowledgment is sent back based on the write concern value

provided by the client. If any of the replicas involved with this write operation does

not acknowledge this write due to node failure or a network failure, MongoDB cannot

acknowledge the client. In this situation, the client may resubmit the same write

request considering the previous write failed. If the previous write operation happens

15

to make to the replica, the first and the second writes conflict, and a dirty write

situation can arise.

Retryable write gives the server an ability to retry a failed write automatically.

The primary node in the cluster maintains a special type of table called the transaction

table. The table contains a list of logical session ids, transaction id, and a pointer to

an oplog entry where the operation is recorded. When a write request comes to the

primary node, it checks if the transaction id is already present in the table, if found

the server identifies it as a retryable write.

In the case of multi-document transactions, commit and abort operation are

retryable by default [25]. Transactions maintain their atomicity by retrying the entire

transaction in case of any failure.

4.6 Efficient reading mechanism using safe secondary reads

In a sharded cluster, chunk migration between shards happens as a part of load

balancing across nodes. The load balancing process first identifies the chunks to

migrate and then copies those chunks from source shard to destination shard and then

deletes the data from source shard. A special type of routing table at primaries of

shard identifies and filters out documents that are in the middle of migration. While

this works for queries when routed to primaries of shards, reads from secondaries can

read inconsistent data as they are unaware of the migrating documents.

A safe secondary reads mechanism addresses this issue by copying the routing

table to secondary nodes [26]. Replication of routing tables on secondary nodes helps

to make secondaries aware of chunk migration. The addition of safe secondary reads

helps multi-document transactions read data consistently from the cluster using read

concern local or majority.

16

CHAPTER 5

OLTP benchmarks

Online transaction processing (OLTP) is a type of information processing that

supports transaction-based data manipulation for a database system. It is usually

associated with applications like online-banking, e-commerce, airline reservations,

manufacturing, and shipping systems. OLTP benchmarks, such as TPC-C, TATP,

SmallBank, and SEATS, are most concerned with the atomicity of the database

operations to support concurrent insert, update and delete operation in the system

[27]. The main goal of these benchmarks is to provide a real-world client-server

system where a large group of users can perform essential transactions in a distributed

decentralized database system. Data in OLTP workloads reflects real-life business

interactions in an organization.

The database schema for TPC-C is based on an RDBMS table-based structure.

We choose the TPC-C benchmark to measure the performance of multi-document

transactions as it is an industry-standard OLTP benchmark. It’s complex warehouse-

centric design, and heavy update transactions make it suitable for transaction

benchmarking in MongoDB.

5.1 TPC-C benchmark

TPC-C benchmark consists of multiple transactions that simulate complicated

e-commerce system operations. Transactions in the TPC-C benchmark workload are a

mix of read and heavy update operations. The purpose of this benchmark is to provide

standard guidelines for systems and a set of diverse operations that can simulate an

OLTP application irrespective of underlying hardware configurations. It differs from

other benchmarks that are limited to specific machines or an operating system. The

overall performance of the system is a measure of the number of new orders processed,

17

which is committed transactions per minute denoted by tpmC. With its pervasive mix

of read-write operations and the complexity of the transactions, the throughput is

also considered business throughput. The following factors characterize the TPC-C

benchmark

• Concurrent execution of transactions with varying complexity

A mechanism to stress the system with multiple clients using its 5 different

transactions that exhibit varying read-write load on the database

• Real-time as well as queued execution mode

An ability to defer execution of transactions by queuing them lets the benchmark

simulate realistic transaction events

• A diverse system with a variety of relationships and attributes

A table structure designed with a set of complex attributes and the relationship

between entities

• Transaction integrity through ACID

A Strongly consistent table-based design that maintains atomicity, consistency,

integrity, and durability of transactions

5.2 TPC-C schema design

TPC-C benchmark is composed of a variety of complex operations designed for

portraying a real-world e-commerce system activity [4]. These operations need a

schema design that can support non-uniform data access while working on data with a

variety of relationship and sizes. TPC-C benchmark simulates realistic transaction in

an e-commerce system that uses geographically distributed regional warehouses. The

number of warehouses determines the total data size. Each warehouse stocks 100,000

items and has the responsibility of facilitating sales activities in 10 sales districts.

18

Each of these districts is home to 3000 customers. Figure 3 explains TPC-C’s system

hierarchy.

Figure 3: TPC-C database system heirarchy[4]

5.3 TPC-C Database Schema

The TPC-C database consists of the following nine tables:

1. Warehouse - The warehouse table stores information about each warehouse on

the system.

2. District – The district table stores sales information of a district.

3. Customer - Customer table stores customer’s personal and sales information.

4. History - History table stores past order information of customers.

5. New order - New order table stores order information about every new order

placed.

19

6. Order - Order table stores order information about each order.

7. Order line - The order line table contains information about each item in the

order.

8. Item - Item table represents an instance of stock and stores its information.

9. Stock - Stock table stores information about each item at all the districts and

warehouses.

ER diagram in figure 4 shows the relationship between the 9 tables in the database

system.

Figure 4: TPC-C database system ER diagram [4]

5.4 TPC-C transactions

TPC-C benchmark runs 5 different transactions of varying complexity, as pre-

sented in Table 3. A framework adapting TPC-C should support transaction execution

in real-time as well as deferred mode via queuing. The ability to execute the trans-

action in these modes gives the framework an ability to exercise transactions with

varying read-write distribution. The workload is expected to maintain a minimum

percentage of each transaction type over the run duration.

20

SR.
No Transaction type Minimum percentage

1 Order-status 4 %
2 Delivery 4 %
3 Stock-level 4 %
4 Payment 43 %
5 New-Order No Minimum

Table 3: Minimum percentage of different transaction type [4]

5.4.1 New-Order

This transaction simulates an order placement scenario as a single atomic

database transaction. TPC-C benchmark uses the number of new orders processed

per minute for performance measurement. It is designed to put the system under

variable load to reflect a real order placing scenario in a production system. The

transaction is implemented in a way that one percent of all the new orders contain an

order item that produces a data entry error at the chosen warehouse and thus needs

to be imported from another warehouse. If an order contains items imported from

some warehouse, it is considered remote order. Otherwise, it is considered a local order.

5.4.2 Payment

This transaction updates payment-related data for a randomly chosen customer.

It involves updating customer’s balance, district payment information, and warehouse

payment statistics. It is relatively light weighted as compared to other transactions.

In these transactions, customers can be chosen by their last name to perform

non-primary key access.

21

5.4.3 Order-status

Order-status transaction checks the status of the customer’s last-placed order.

It is a read-only transaction with a shallow frequency. It also retrieves customer

information by a non-primary key access strategy.

5.4.4 Delivery

Delivery transaction runs in a deferred mode. It involves processing up to 10

orders in a batch and delivering them. It works via queuing requests and then

executing in a batch.

5.4.5 Stock-level

It is a read-only transaction that checks if recently sold items are below the user

threshold in the warehouse. It involves a heavy read-load on the system and has a

shallow frequency.

22

CHAPTER 6

Pytpcc framework

Pytpcc is an open source python based TPC-C OLTP framework designed for

NoSQL databases. It was first developed by students from brown university and

then adapted by MongoDB for benchmarking multi-document transaction in 2019

[28]. The framework is extensively designed to support writing new NoSQL drivers

with ease. A new driver can be added by extending frameworks abstract driver

(abstractdriver.py) and implementing functions to load data and run workload specific

to the database system. Pytpcc has drivers for various NoSQL databases, including

MongoDB, Cassandra, HBase, CouchDB, and Redis. The framework is divided into

below 3 packages –

1. Driver -- This package contains driver implementations for different NoSQL

systems.

2. Runtime -- This package contains classes used for loading the data and executing

the workload.

3. Util -- This package contains utility classes used by the benchmark.

The framework executes the benchmark in two phases – a loading phase and an

execution phase.

6.1 Load Phase

In load phase database is populated based on the configuration options provided

to the driver class. If –no-load option is used in the configuration, then the load phase

is skipped; otherwise, the driver’s loadStart() function is executed, which prepares the

driver to start loading. Next, a random number of tuples and a table name is sent to

23

the drivers loadTuples() function to populate the table. loadTuples() can be called

multiple times and runs until all the tuples are loaded. Once all the data is populated

loadFinish() function notifies the controller that loading is finished.

6.2 Execution Phase

In the execution phase, the workload runs a randomly chosen transaction on the

data. Once a transaction type is chosen, the associated method is called that runs

a set of operations as a single transaction. There are two optional functions in this

phase that can be used to prepare and commit the transaction. The activity diagram

in Figure 5 shows a sample pytpcc benchmark execution.

Figure 5: Pytpcc Activity diagram

24

6.3 MongoDB driver

MongoDB driver for pytpcc was improved by a team at MongoDB to

benchmark transaction performance [18]. It extends the abstract driver and

implements its function for the MongoDB database. The driver implements a load

and execute phase for multi-document transactions. It also supports providing

configuration parameters to the driver from both a configuration file and command line.

6.4 Configurations

This section describes the configuration options available in the framework.

These configurations allow the client to provide a custom setting to the workload.

Below is the list of available options and their interpretation.

6.5 Database Schema design for MongoDB

In traditional relational databases, tables are normalized to eliminate various

anomalies caused by duplicate data. Therefore, join operations plays a crucial role

in gathering relevant data from the normalized table. However, join operations

inherently clashes with clustered environments. In distributed NoSQL databases such

as MongoDB, it is costly to join normalized data distributed over multiple servers in a

cluster. Therefore, data are denormalized for queries to find the required data ideally

in one place at the cost of data duplication. In MongoDB, data can be modeled in two

different ways: embedding and referencing. Embedding supports nested documents

and considered the right choice when documents exhibit a one-to-many relationship.

Referencing models data with references between documents and useful for hierarchical

data sets.

TPC-C is a benchmark developed for relational database systems, and therefore,

25

SR.
No Configuration Value Interpretation

1 config string
Used to provide a configuration file for the
driver. If no configuration is provided, default
configurations from the drivers are used

2 warehouses integer Used to set the number of warehouses to be
used in the workload

3 duration seconds Represents the number of seconds for which
the workload should be executed

4 denormalize boolean

If this option is set to true, the system uses
an embedded schema design. By default, this
value is set to false that represents referenced
schema design

5 no-load boolean
Used to skips the loading phase. The frame-
work starts executing the workload on already
populated data

6 no-execute boolean Used to skip the execution phase
7 debug boolean Used to print log messages to console

8 scale-factor float
Used to scale the system size. If a value greater
than 1 is used, it will scale down the database
by that factor

9 clientprocs integer Represents the number of concurrent clients
to be used for the workload

10 clients string Represents ssh client to be used for running
the workload

11 uri string Used to specify MongoDB atlas connection
string

12 print-config boolean Used to print the default configurations of the
framework

13 ddl string This option enables the user to provide a file
for the TPC-C data definition language

14 findAndModify boolean Uses findAndModigy atomic queries instead of
find and update

Table 4: Pytpcc configurations

tables are normalized in the TPC-C database. Pytpcc framework provides both

normalized and denormalized schema for the same data set. The following section

presents details about referenced and embedded schema design in pytpcc.

26

6.5.1 Referenced schema of Pytpcc framework

In the case of referenced schema design, each table is considered as a separate

collection. All the insert, update, and delete operations are done on a single document

at a time. This design is a direct extension of a normalized relational database schema.

Figure 6 depicts the schema and a sample document based on referencing. A Complete

document for the referenced schema is available in Appendix A.

Figure 6: Pytpcc Referenced Schema

6.5.2 Embedded schema of Pytpcc framework

In embedded schema design, information related to a given customer is embedded

in the customer document itself. This related information includes customer orders,

order lines for each order, and history. MongoDB suggests embedding as the preferred

27

denormalization method. Figure 7 depicts the schema and a sample document based

on referencing. A Complete document for embdedded schema is available in Appendix

B.

Figure 7: Pytpcc Embedded Schema

28

CHAPTER 7

Experiment and Results

This chapter presents the benchmarking experiments conducted to evaluate

the performance of multi-document transactions in MongoDB sharded clusters. It

also covers our analysis of the experimental results. The data gathered from these

experiments address the following topics

• Impact of read and write consistency levels on the performance of multi-document

transactions running in a sharded cluster

• Impact of sharding on system scalability

• Schema design preferences for OLTP applications running on a sharded cluster

• Impact of data size on the overall throughput in a sharded cluster

• Impact of atomic findAndUpdate operation on systems performance

7.1 Experiment setup

We performed all the experiments on a c5n.4xlarge instance on AWS with

ubuntu 16.4 LTS (HVM) installed as a client and MongoDB atlas M40 cluster as a

server. M40 cluster tier comes with a server setup consisting of 16GB RAM, 80GB

of storage, and 4 vCPU. It supports network performance bandwidth of 10 Gigabit

with up to 6000 connections. We choose AWS as a background resource provider for

the atlas server. MongoDB atlas enabled us to create clusters with ease and modify

configuration based on the need. The Client machine setup involved cloning pytpcc

framework and installing pymongo, dnspython, execnet, and argparse libraries.

7.2 Experiment 1 - Impact of read-write consistency on throughput

MongoDB provides the user with an option to tune the consistency level by

configuring read and write concern values in the client code. This experiment is to see

29

Figure 8: Impact of read-write consistency on throughput

the impact of read and write consistency level on the throughput of multi-document

transactions. In MongoDB, transaction read_concern can be set to local, majority, or

snapshot where snapshot provides the most consistent data for read operations of

multi-document transactions running across the shards. write_concern can be set

to any numeric value between 1 to N, where N represents the number of nodes in

the cluster. We performed this experiment on systems with 1, 3, 6, and 9 shards

for testing scalability. First, each cluster was populated with 100 warehouses data,

and then the benchmark was executed for 10 minutes by increasing the number of

concurrent clients until throughput saturated. tpmC reading was recorded for each

experiment. Figure 8 shows throughput saturation points for various read-write

consistency settings over the number of shards in the cluster.

Observation 1 – In figure 8, orange line (read_concern = local, w:1) and gray

line (read_concern = snapshot, w:1) show that read concern does not affect the

30

throughput much when write concern value is set to its lowest (w:1).

Rationale – w:1 provides the lowest durability for write operations and acknowledges

to the client as soon as data is written to a single node. During the workload

execution, most transactions are aborted at commit time due to non-durable write

operations. Snapshot read concern also does not increase throughput due to the write

inconsistencies at the commit time.

Observation 2 – An increase in the write concern value increased systems

throughput.

Rationale – In MongoDB multi-document transactions, data is written to the nodes

at commit time, which saves latency in replicating individual writes of the transaction

as and when they happen. This reduction in latency improves systems throughput.

When transactions execute with strongly consistent write concern, at commit time, all

the writes are guaranteed to persist on the disk. The consistent state of the database

boosts overall transaction throughput.

Observation 3 – In Figure 8, yellow-line (read_concern = local, w: majority) and

the blue line(read_concern = snapshot, w: majority) shows that, read concern

has a significant impact on the throughput when majority write concern is used.

Rationale – In cases when w: majority is used, writes are guaranteed to persist

on the majority of the nodes. While read concern = local reads the most recent

data available to the server, it does not provide any guarantee that the data that is

being read is consistent. On the other hand, read_concern = snapshot provides a

guarantee that the read data is consistent across shards. This improves the number

of successfully committing transactions and therefore resulting in improved throughput.

31

Result Analysis - Results obtained from this experiment show us that multi-

document transactions in sharded clusters need a reliable write consistency for

optimal performance. Snapshot reads across shards are an essential addition to

multi-document transactions and can guarantee the highest level of consistency

without compromising throughput. Sharding scales the transaction throughput with

consistent read and write concern.

7.3 Experiment 2 - Impact of schema design on throughput

This experiment tests impact of the design choice on the system’s overall through-

put. We performed this experiment in an M40 sharded cluster with 3 shards and

populated the database with 100 warehouses in both referenced and embedded schema

design. Benchmark was executed for a fixed duration of 10 minutes by increasing the

number of concurrent clients.

In referenced schema design, the system is populated with a separate document

for each customer, order, order line, and history. Orders that belong to a customer

are referenced by customer id in order document. Each order line is represented by a

separate document and contains a reference to the order that it belongs to. Figure 6

of Chapter 6 depicts the database schema and sample document.

In embedded schema design, all the orders belonging to a customer are embedded

in the customer document. The customer document is also embedded with an array of

past orders that belongs to the customer. Figure 7 of Chapter 6 depicts the database

schema and sample document.

32

Figure 9: Impact of schema design on throughput (Ref. Shard: Sharded cluster with
referenced schema, Emb. Shard: Sharded cluster with embedded schema)

Observation 1 – As seen in Figure 9, embedded schema improved throughput by

approximately 12% as compared to the referenced schema.

Rationale – For a new order transaction, an average of 10 order lines are chosen

for each order. Embedded schema design accesses fewer documents as compared to

referenced schema design and therefore increasing overall throughout.

Observation 2 – The throughput of the system saturated at 350 concurrent clients.

Rationale – In experiment 1, when we worked with 100 warehouse data in the

M40 cluster, the system throughput also saturated at 350 concurrent clients, and

we observed that this saturation point increases with adding more shards in the system.

Result Analysis – Results obtained from this experiment show that multi-document

transactions, when used with document embedding design approach, can guarantee

ACID properties for the transaction with improved performance.

33

7.4 Experiment 3 - Impact of sharding on throughput with various data
size

This experiment is focused on finding the impact of sharding on the throughput

of multi-document transactions. We varied the data size of the system in a 3 shard

M40 cluster by changing the number of warehouses in the system. We start with a

system having 1 warehouse and increase the number of warehouses till 500 under the

same cluster settings. We stress the system by the increasing number of concurrent

clients to reach throughput saturation. The graph in Figure 10 shows the throughput

measured from an unsharded and sharded replica set while varying data size

Figure 10: Number of warehouses vs. Throughput

34

Figure 11: Number of warehouses vs. Threads for throughput saturation

Observation 1 - For a small data size (warehouse < 5), a sharded replica set

exhibits less throughput as compared to an unsharded replica set for the same data.

Rationale – When sharding is used in system with less data, it becomes an

overhead. Larger data size benefits from sharding because of more resources and data

distribution therefore improves the throughput.

Observation 2 – Figure 10 and 11 shows that sharded replica set scaled throughput

to 250 warehouses with 370 clients as compared to 100 warehouses of an unsharded

replica set with 300 clients.

Rationale – Sharded replica set scales the system horizontally and thus allowing

more concurrent clients to work on data as compared to an unshdarded replica set.

The difference between the number of concurrent clients operating on the data in

both cases is directly proportional to the relative throughput obtained.

35

Result Analysis - Results from experiment 3 suggest that MongoDB sharding can

improve throughput, working with huge data while complying with ACID guarantees

for the multi-document transactions.

7.5 Experiment 4 - FindAndModify vs find+update

Pytpcc provides a findAndModify configuration option that replaces a combination

of “find and update” queries with a single “find and modify” query. FindAndModify

updates the document that matches query criteria and gives a similar result as that of

separate select and update queries [29]. In the new-order transaction, district update

code can make use of findAndModify query, and we perform this experiment to check

the impact of using findAndModify on the throughput. We used this configuration

option for the referenced schema in an M40 cluster with 100 warehouses and executed

the workload to see its impact on the throughput. Figure 12 shows the relative

comparison between select+update and findAndModify.

36

Figure 12: FindAndModify vs. find+update

Observation 1 – FindAndModify option increases throughput for a sharded cluster

saturating with 350 clients.

Rationale – In new-order transactions, FindAndModify option reduces the number

of queries for updating district information. The code snippet in Figure 13 shows the

new-order transaction with FindAndModify configuration. It reduces the number

of round trips to the database for the transaction, resulting in reduced latency and

increased throughput.

37

Figure 13: FindAndModify new-order code

Result Analysis - Results from this experiment show us that MongoDB’s powerful

atomic updates like findAndModify() reduce the number of a round-trip to the database

for a given query, which subsequently reduces individual operation latency in the

multi-document transaction to boost the performance.

38

CHAPTER 8

Conclusion and future work

MongoDB multi-document transaction is a novel feature, and with ongoing

developments, it has the potential to be used for business-critical scenarios. Our

experiments in benchmarking multi-document transactions in the sharded cluster using

industry-standard benchmark like TPC-C gave us valuable insights about read-write

consistency, system scalability, and schema design choices for MongoDB.

The work our this research is wholly based on driver version 4.2 of the MongoDB

community database. Use cases that require creating new collections, modifying

system databases, and oplog of size more than 16 MB are currently excluded from

MongoDB multi-document transactions. MongoDB is expected to add these features

in its future driver version to encourage developers to use MongoDB transactions.

This research can provide valuable guidelines to the NoSQL community and can be

further extended with recent developments in the MongoDB driver.

39

LIST OF REFERENCES

[1] S. Choudhury, ‘‘Why are nosql databases becoming transactional?’’ Apr
2020. [Online]. Available: https://blog.yugabyte.com/nosql-databases-becoming-
transactional-mongodb-dynamodb-faunadb-cosmosdb/

[2] ‘‘Read concern.’’ [Online]. Available: https://docs.mongodb.com/manual/
reference/read-concern/

[3] ‘‘Write concern.’’ [Online]. Available: https://docs.mongodb.com/manual/
reference/write-concern/

[4] ‘‘Overview of the tpc-c benchmark.’’ [Online]. Available: http://www.tpc.org/
tpcc/detail5.asp

[5] S. Gilbert and N. Lynch, ‘‘Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,’’ ACM SIGACT News, vol. 33, no. 2,
p. 51, 2002.

[6] ‘‘Mongodb multi-document acid transactions,’’ MongoDB.

[7] A. Kamsky, ‘‘Adapting tpc-c benchmark to measure performance of multi-
document transactions in mongodb,’’ Proceedings of the VLDB Endowment,
vol. 12, no. 12, p. 2254–2262, 2019.

[8] ‘‘Couchbase brings distributed document acid transactions to nosql,’’ Jan 2020.
[Online]. Available: https://blog.couchbase.com/couchbase-brings-distributed-
multi-document-acid-transactions-to-nosql/

[9] M. Freels, ‘‘Achieving acid transactions in a globally distributed database,’’
Sep 2017. [Online]. Available: https://fauna.com/blog/acid-transactions-in-a-
globally-distributed-database

[10] B. Calder, J. Wang, and A. Ogus, ‘‘Windows azure storage: a highly available
cloud storage service with strong consistency.’’

[11] ‘‘G-store - a scalable data store for transactional multi key access in the cloud.’’
[Online]. Available: https://qfrd.pure.elsevier.com/en/publications/g-store-a-
scalable-data-store-for-transactional-multi-key-access-

[12] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao, ‘‘Deuteronomy: Transaction
support for cloud data.’’ 01 2011, pp. 123--133.

40

https://blog.yugabyte.com/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/
https://blog.yugabyte.com/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
http://www.tpc.org/tpcc/detail5.asp
http://www.tpc.org/tpcc/detail5.asp
https://blog.couchbase.com/couchbase-brings-distributed-multi-document-acid-transactions-to-nosql/
https://blog.couchbase.com/couchbase-brings-distributed-multi-document-acid-transactions-to-nosql/
https://fauna.com/blog/acid-transactions-in-a-globally-distributed-database
https://fauna.com/blog/acid-transactions-in-a-globally-distributed-database
https://qfrd.pure.elsevier.com/en/publications/g-store-a-scalable-data-store-for-transactional-multi-key-access-
https://qfrd.pure.elsevier.com/en/publications/g-store-a-scalable-data-store-for-transactional-multi-key-access-

[13] D. Peng and F. Dabek, ‘‘Large-scale incremental processing using distributed
transactions and notifications,’’ in Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’10. USA: USENIX
Association, 2010, p. 251–264.

[14] F. Junqueira, B. Reed, and M. Yabandeh, ‘‘Lock-free transactional support for
large-scale storage systems,’’ 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2011.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, ‘‘Bench-
marking cloud serving systems with ycsb,’’ Proceedings of the 1st ACM symposium
on Cloud computing - SoCC ’10, 2010.

[16] A. Dey, A. Fekete, R. Nambiar, and U. Rohm, ‘‘Ycsb+t: Benchmarking web-scale
transactional databases,’’ 2014 IEEE 30th International Conference on Data
Engineering Workshops, 2014.

[17] A. Dey, A. Fekete, and U. Röhm, ‘‘Scalable transactions across heterogeneous
nosql key-value data stores,’’ Proceedings of the VLDB Endowment, vol. 6, p.
1434–1439, 2013.

[18] Mongodb-Labs, ‘‘mongodb-labs/py-tpcc.’’ [Online]. Available: https://github.
com/mongodb-labs/py-tpcc

[19] W. Schultz, T. Avitabile, and A. Cabral, ‘‘Tunable consistency in mongodb,’’
Proceedings of the VLDB Endowment, vol. 12, no. 12, p. 2071–2081, 2019.

[20] M. Keep, ‘‘Mongodb multi-document acid transactions are ga: Mongodb blog,’’
Jun 2018. [Online]. Available: https://www.mongodb.com/blog/post/mongodb-
multi-document-acid-transactions-general-availability

[21] D. Walker-Morgan, ‘‘Logical sessions in mongodb,’’ May 2019. [Online].
Available: https://www.mongodb.com/blog/post/transactions-background-part-
2-logical-sessions-in-mongodb

[22] D. Walker-Morgan, ‘‘Local snapshot reads,’’ Jun 2019. [Online]. Avail-
able: https://www.mongodb.com/blog/post/transactions-background-part-3-
local-snapshot-reads

[23] D. Walker-Morgan, ‘‘The global logical clock,’’ Jun 2019. [Online].
Available: https://www.mongodb.com/blog/post/transactions-background-part-
4-the-global-logical-clock

[24] D. Walker-Morgan, ‘‘Low-level timestamps in mongodb,’’ May 2019. [Online].
Available: https://www.mongodb.com/blog/post/transactions-background-part-
1-lowlevel-timestamps-in-mongodbwiredtiger

41

https://github.com/mongodb-labs/py-tpcc
https://github.com/mongodb-labs/py-tpcc
https://www.mongodb.com/blog/post/mongodb-multi-document-acid-transactions-general-availability
https://www.mongodb.com/blog/post/mongodb-multi-document-acid-transactions-general-availability
https://www.mongodb.com/blog/post/transactions-background-part-2-logical-sessions-in-mongodb
https://www.mongodb.com/blog/post/transactions-background-part-2-logical-sessions-in-mongodb
https://www.mongodb.com/blog/post/transactions-background-part-3-local-snapshot-reads
https://www.mongodb.com/blog/post/transactions-background-part-3-local-snapshot-reads
https://www.mongodb.com/blog/post/transactions-background-part-4-the-global-logical-clock
https://www.mongodb.com/blog/post/transactions-background-part-4-the-global-logical-clock
https://www.mongodb.com/blog/post/transactions-background-part-1-lowlevel-timestamps-in-mongodbwiredtiger
https://www.mongodb.com/blog/post/transactions-background-part-1-lowlevel-timestamps-in-mongodbwiredtiger

[25] D. Walker-Morgan, ‘‘Retryable writes,’’ Jun 2019. [Online]. Available: https://
www.mongodb.com/blog/post/transactions-background-part-6-retryable-writes

[26] D. Walker-Morgan, ‘‘Safe secondary reads,’’ Jun 2019. [Online]. Avail-
able: https://www.mongodb.com/blog/post/transactions-background-part-5-
safe-secondary-reads

[27] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, ‘‘Oltp-bench,’’
Proceedings of the VLDB Endowment, vol. 7, no. 4, p. 277–288, 2013.

[28] Apavlo, ‘‘apavlo/py-tpcc,’’ Jan 2019. [Online]. Available: https://github.com/
apavlo/py-tpcc

[29] ‘‘db.collection.findandmodify().’’ [Online]. Available: https://docs.mongodb.com/
manual/reference/method/db.collection.findAndModify/

42

https://www.mongodb.com/blog/post/transactions-background-part-6-retryable-writes
https://www.mongodb.com/blog/post/transactions-background-part-6-retryable-writes
https://www.mongodb.com/blog/post/transactions-background-part-5-safe-secondary-reads
https://www.mongodb.com/blog/post/transactions-background-part-5-safe-secondary-reads
https://github.com/apavlo/py-tpcc
https://github.com/apavlo/py-tpcc
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

APPENDIX A

Referenced schema documents

1 CUSTOMER: {

2 "C_ID": 1,

3 "C_D_ID": 1,

4 "C_W_ID": 1,

5 "C_FIRST": "John",

6 "C_MIDDLE": "Chris",

7 "C_LAST": "Doe",

8 "C_STREET_1": "2nd Market Street",

9 "C_STREET_2": "1st San carlos",

10 "C_CITY": "San Jose",

11 "C_STATE": "CA",

12 "C_ZIP": "17442",

13 "C_PHONE": "1234567890",

14 "C_SINCE": ISODate ("2019-11-18"),

15 "C_CREDIT": "GC",

16 "C_CREDIT_LIM": 50000,

17 "C_DISCOUNT": 0.4208,

18 "C_BALANCE": 10000,

19 "C_YTD_PAYMENT": 10,

20 "C_PAYMENT_CNT": 1,

21 "C_DELIVERY_CNT": 0,

22 "C_DATA": "Test customer data",

23 }

43

1 ORDER: {

2 "O_ID": 2452,

3 "O_C_ID": 1,

4 "O_D_ID": 1,

5 "O_W_ID": 1,

6 "O_ENTRY_D": ISODate ("2019-11-18"),

7 "O_CARRIER_ID": NumberLong(0),

8 "O_OL_CNT": 13,

9 "O_ALL_LOCAL": 1,

10 }

1 ORDER_LINE: {

2 "OL_O_ID": 3675,

3 "OL_D_ID": 1,

4 "OL_W_ID": 1,

5 "OL_NUMBER": 2452,

6 "OL_I_ID": 67158,

7 "OL_SUPPLY_W_ID": 1,

8 "OL_DELIVERY_D": null,

9 "OL_QUANTITY": 5,

10 "OL_AMOUNT": 354.67,

11 "OL_DIST_INFO": "Santa clara county"

12 }

1 HISTORY: {

2 "H_C_ID": 2,

44

3 "H_C_D_ID": 1,

4 "H_C_W_ID": 1,

5 "H_D_ID": 1,

6 "H_W_ID": 1,

7 "H_DATE": ISODate ("2019-11-18"),

8 "H_AMOUNT": 355.85,

9 "H_DATA": "Sample history data"

10 }

45

APPENDIX B

Embedded schema documents

1 CUSTOMER: {

2 "C_ID": 1,

3 "C_D_ID": 1,

4 "C_W_ID": 1,

5 "C_FIRST": "John",

6 "C_MIDDLE": "Chris",

7 "C_LAST": "Doe",

8 "C_STREET_1": "2nd Market Street",

9 "C_STREET_2": "1st San carlos",

10 "C_CITY": "San Jose",

11 "C_STATE": "CA",

12 "C_ZIP": "17442",

13 "C_PHONE": "1234567890",

14 "C_SINCE": ISODate ("2019-11-18"),

15 "C_CREDIT": "GC",

16 "C_CREDIT_LIM": 50000,

17 "C_DISCOUNT": 0.4208,

18 "C_BALANCE": 10000,

19 "C_YTD_PAYMENT": 10,

20 "C_PAYMENT_CNT": 1,

21 "C_DELIVERY_CNT": 0,

22 "C_DATA": "Test customer data",

23 "ORDERS":

24 [

46

25 {

26 "O_ENTRY_D": ISODate ("2019-11-18"),

27 "O_CARRIER_ID": NumberLong(0),

28 "O_OL_CNT": 13,

29 "O_ALL_LOCAL": 1,

30 "ORDER_LINE":

31 [

32 {

33 "OL_NUMBER": 2452,

34 "OL_I_ID": 67158,

35 "OL_SUPPLY_W_ID": 1,

36 "OL_DELIVERY_D": null,

37 "OL_QUANTITY": 5,

38 "OL_AMOUNT": 354.67,

39 "OL_DIST_INFO": "Santa clara county"

40 }

41]

42 }

43]

44 HISTORY:

45 [

46 {

47 "H_D_ID": 1,

48 "H_W_ID": 1,

49 "H_DATE": ISODate ("2019-11-18T07"),

47

50 "H_AMOUNT": 355.85,

51 "H_DATA": "Sample history data",

52 }

53]

54 }

48

APPENDIX C

Sample benchmark output

ubuntu@ip-172-31-7-168: /pytpcc: sudo python3 coordinator.py mongodb --no-

load --duration 300 --warehouses 100 --clientprocs 200 –debug

1 {’debug ’: True, ’scalefactor ’: 1, ’warehouses ’: 100, ’

print_config ’: False, ’no_execute ’: False, ’clientprocs

’: 200, ’no_load ’: True, ’stop_on_error ’: False, ’

config ’: None, ’system ’: ’mongodb ’, ’ddl ’: ’/home/

ubuntu/pytpcc/tpcc.sql ’, ’reset ’: False, ’duration ’: 60

0}

1 {

2 ’ORDER_STATUS ’: 12492,

3 ’NEW_ORDER ’: 142620,

4 ’PAYMENT ’: 133307,

5 ’STOCK_LEVEL ’: 12175,

6 ’DELIVERY ’: 12512

7 }

1 {

2 ’total ’: 313106,

3 ’tpmc ’: 14262.362589899534,

4 ’write_concern ’: majority,

5 ’DELIVERY ’: {

6 ’total ’: 12512,

7 ’latency ’: {

49

8 ’p90’: 337.73159980773926,

9 ’min ’: 117.76018142700195,

10 ’p75’: 275.5575180053711,

11 ’p99’: 1434.9379539489746,

12 ’p95’: 396.0905075073242,

13 ’max ’: 6966.094732284546,

14 ’p50’: 225.85463523864746

15 },

16 ’retries_txn_total ’: 892

17 },

18 ’batch_writes ’: True,

19 ’NEW_ORDER ’: {

20 ’total ’: 142620,

21 ’latency ’: {

22 ’p90’: 151.6580581665039,

23 ’min ’: 15.34414291381836,

24 ’p75’: 57.973384857177734,

25 ’p99’: 680.8905601501465,

26 ’p95’: 347.49531745910645,

27 ’max ’: 10055.912494659424,

28 ’p50’: 36.026716232299805

29 },

30 ’retries_txn_total ’: 18372

31 },

32 ’ORDER_STATUS ’: {

50

33 ’total ’: 12492,

34 ’latency ’: {

35 ’p90’: 21.37017250061035,

36 ’min ’: 7.789373397827148,

37 ’p75’: 16.183137893676758,

38 ’p99’: 77.51178741455078,

39 ’p95’: 26.871681213378906,

40 ’max ’: 5207.825183868408,

41 ’p50’: 13.137340545654297

42 }

43 },

44 ’causal ’: False,

45 ’aborts ’: 543,

46 ’read_concern ’: ’local ’,

47 ’threads ’: 200,

48 ’find_and_modify ’: False,

49 ’read_preference ’: ’primary ’,

50 ’warehouses ’: ’10’,

51 ’date ’: ’2020-03-11 01:33:04’,

52 ’denorm ’: False,

53 ’STOCK_LEVEL ’: {

54 ’total ’: 12175,

55 ’latency ’: {

56 ’p90’: 17.210960388183594,

57 ’min ’: 7.087469100952148,

51

58 ’p75’: 13.492584228515625,

59 ’p99’: 35.06946563720703,

60 ’p95’: 21.44336700439453,

61 ’max ’: 5094.253778457642,

62 ’p50’: 11.312007904052734

63 }

64 },

65 ’retry_writes ’: False,

66 ’PAYMENT ’: {

67 ’total ’: 12512,

68 ’latency ’: {

69 ’p90’: 2893.8026428222656,

70 ’min ’: 9.449005126953125,

71 ’p75’: 1064.2321109771729,

72 ’p99’: 10702.051639556885,

73 ’p95’: 4633.890628814697,

74 ’max ’: 60109.302282333374,

75 ’p50’: 149.30057525634766

76 },

77 },

78 ’all_in_one_txn ’: False,

79 ’txn ’: True,

80 ’duration ’: 600.01662611961365,

81 ’total_retries ’: 154770

82 }

52

	Benchmarking MongoDB multi-document transactions in a sharded cluster
	Introduction
	Related work
	MongoDB Sharding and Replication
	MongoDB Sharding
	MongoDB Replication
	MongoDB Tunable Consistency
	MongoDB read concern
	MongoDB write concern

	MongoDB multi-document transactions
	Efficient resource allocation through logical sessions
	Improved read isolation using local snapshots
	Enhanced synchronization of sharded replica using the hybrid clock
	Update-structure of Wired tiger storage engine
	Durability supported by retryable writes
	Efficient reading mechanism using safe secondary reads

	OLTP benchmarks
	TPC-C benchmark
	TPC-C schema design
	TPC-C Database Schema
	TPC-C transactions
	New-Order
	Payment
	Order-status
	Delivery
	Stock-level

	Pytpcc framework
	Load Phase
	Execution Phase
	MongoDB driver
	Configurations
	Database Schema design for MongoDB
	Referenced schema of Pytpcc framework
	Embedded schema of Pytpcc framework

	Experiment and Results
	Experiment setup
	Experiment 1 - Impact of read-write consistency on throughput
	Experiment 2 - Impact of schema design on throughput
	Experiment 3 - Impact of sharding on throughput with various data size
	Experiment 4 - FindAndModify vs find+update

	Conclusion and future work
	LIST OF REFERENCES
	Referenced schema documents
	Embedded schema documents
	Sample benchmark output

