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Abstract

Subthreshold stochastic vestibular stimulation (SVS) is thought to enhance vestibular sensi-

tivity and improve balance. However, it is unclear how SVS affects standing and walking

when balance is challenged, particularly when the eyes are open. It is also unclear how dif-

ferent methods to determine stimulation intensity influence the effects. We aimed to deter-

mine (1) whether SVS affects stability when balance is challenged during eyes-open

standing and overground walking tasks, and (2) how the effects differ based on whether

optimal stimulation amplitude is derived from sinusoidal or cutaneous threshold techniques.

Thirteen healthy adults performed balance-unchallenged and balance-challenged standing

and walking tasks with SVS (0–30 Hz zero-mean, white noise electrical stimulus) or sham

stimulation. For the balance-challenged condition, participants had inflatable rubber hemi-

spheres attached to the bottom of their shoes to reduce the control provided by moving the

center of pressure under their base of support. In different blocks of trials, we set SVS inten-

sity to either 50% of participants’ sinusoidal (motion) threshold or 80% of participants’ cuta-

neous threshold. SVS reduced medial-lateral trunk velocity root mean square in the

balance-challenged (p < 0.05) but not in the balance-unchallenged condition during stand-

ing. Regardless of condition, SVS decreased step-width variability and marginally increased

gait speed when walking with the eyes open (p < 0.05). SVS intensity had minimal effect on

the standing and walking measures. Taken together, our results provide insight into the

effectiveness of SVS at improving balance-challenged, eyes-open standing and walking

performance in healthy adults.

Introduction

The vestibular system is important for encoding motion of the head, which contributes to

maintaining an upright posture [1,2]. Age-related vestibular hair cell loss and vestibular

impairments due to injury or disease affect vestibular sensitivity, which may reduce balance

and increase the likelihood of falls [3,4]. To mitigate this problem, researchers are developing
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novel approaches using low levels of electrical stimulation. These techniques are based on a

phenomenon known as stochastic resonance (SR), whereby the addition of noise or random

interference may enhance the capacity to detect a weak signal or process information [5,6].

Indeed, SR can enhance sensory perception and motor function [5–12].

Recently, several groups of researchers have demonstrated that the application of sub-

threshold stochastic vestibular stimulation (SVS), also known as noisy galvanic vestibular stim-

ulation, is associated with improved balance control during standing and changes in walking

patterns [13–20]. For example, SVS results in reduced postural sway length and velocity during

eyes-open quiet standing in young and older adults [15,16] and during eyes-closed quiet stand-

ing in patients with bilateral vestibulopathy [13,17]. In addition, others found increased gait

speed and changes in stride measures with SVS during treadmill and overground walking in

healthy adults and patients with bilateral vestibulopathy [18–20]. If subthreshold SVS provides

noise that increases the sensitivity of the vestibular system to respond to natural vestibular

inputs, then its effectiveness should also be evident in more balance-challenged situations,

when the vestibular system’s contribution to balance is presumably more important. These sit-

uations may include standing and walking on different types of terrain or dealing with pertur-

bations due to physical contact with other people or sudden support surface changes.

Subthreshold SVS may indeed facilitate upright posture when balance is challenged. For

example, some healthy adults show improved balance function in response to SVS while stand-

ing with their eyes closed on a compliant surface [21,22]. In contrast, Pal et al. [23] studied the

effect of SVS on postural sway, with and without vision, while healthy adults and patients with

Parkinson’s disease stood on foam. SVS had no significant overall effect on sway in healthy

participants, and only a small decrease in sway in patients in the eyes-closed condition. How-

ever, these researchers used the same stimulus intensities for all participants (100 μA, 300 μA,

and 500 μA, in different trials), rather than determining the optimal parameters like more

recent work. It is possible that these stimulus intensities fell too much above or below a partici-

pant’s optimal level. As such, only some participants may have experienced a change in pos-

tural sway with SVS, which may partially explain the lack of effects in the eyes-open, balance-

challenged condition. Thus, it is still unclear how SVS affects balance-challenged standing

with the eyes open despite the fact that individuals typically stand (and walk) when visual feed-

back is available.

A similar paucity of studies exists for balance-challenged walking. In one such experiment,

SVS decreased the variability of gait cycle timing and trunk acceleration while participants

walked at a fixed speed on a laterally oscillating treadmill [24]. This supports the notion that

SVS may facilitate balance-challenged walking, but it is important to recognize that many

groups have found that there are significant differences between treadmill walking and more

natural, overground walking. For instance, optic flow patterns are not the same, since there is

little forward-backward motion while on a treadmill. In addition, joint range of motion and

variability, step width and step-width variability, and metrics of local dynamic stability (quan-

tified by maximum finite-time Lyapunov exponents) differ between these walking conditions

[25–27]. Although Temple et al. [28] recently found that SVS resulted in faster completion

time on a mobility course that required overground walking on foam while adapting to a visual

perturbation, they did not report the effects of SVS on measures of balance or gait perfor-

mance. As such, it is unclear whether the improvements in stability reported in Mulavara et al.

[24] translate to overground walking. Therefore, in the present study, we aimed to determine

whether and how SVS affects performance when balance is challenged during eyes-open

standing and overground walking tasks. We hypothesized that SVS, compared to sham stimu-

lation, would reduce trunk motion and measures of variability in both tasks, particularly in the

balance-challenged condition.
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Unfortunately, there is substantial variation in the methods used to assess the efficacy of

SVS on balance control, making the identification of best practices and direct comparisons

between studies problematic. In particular, there is no universal method used to determine the

optimal vestibular stimulation amplitude for individual participants. Two threshold tech-

niques are commonly used in SVS studies: sinusoidal and cutaneous. For the sinusoidal tech-

nique, a 1 Hz sinusoidal waveform with currents ranging from 0–1500 μA is applied to

determine a motion threshold [21,24]; that is, the lowest stimulation intensity that elicits per-

ceived or observable sway of the head or body. Alternatively, for the cutaneous technique,

varying stimulation intensities using a 0–30 Hz stochastic signal are applied in a stepwise man-

ner until a sensation is felt on the skin under the electrode site [17–20]. Both sinusoidal and

cutaneous threshold techniques have proved beneficial, though, as we show in this study, yield

different stimulation intensities. However, because no studies have directly compared these

techniques, it is not known whether one is more effective than the other or if they prompt sim-

ilar responses. Therefore, we also aimed to determine how the effects of SVS differ based on

whether the optimal stimulation amplitude is derived from sinusoidal or cutaneous threshold

techniques. As such, this study represents an initial attempt to provide recommendations for

future work and improve consistency among studies.

Materials and methods

Participants

Thirteen adults (age: 22.3 ± 2.8 years; 7 males, 6 females) with no recent history of head trauma

(within the last year), neurological or musculoskeletal disorders, and no metal or electronic

implants anywhere in their body, participated in this study. The Office of Research Ethics at

Simon Fraser University approved the study (#2018s0046), and all participants gave informed,

written consent before participating in the experiment.

Protocol

All participants performed balance-unchallenged and balance-challenged standing and walk-

ing tasks with SVS (under two different intensities depending on the condition) or with sham

stimulation. Regardless of balance condition, a safety harness system attached to the partici-

pants served to prevent falling to the ground in the event the participant lost balance.

For the standing tasks, we instructed participants to stand with their arms at their sides,

their feet as close together as possible without touching, and their gaze focused directly in

front of them. For the balance-unchallenged condition, participants performed this task with

comfortable walking shoes. For the balance-challenged condition, participants performed the

standing task with inflatable rubber hemispheres (radii: 8.5 cm) attached to the soles of their

shoes to reduce the control afforded by shifting the center of pressure under the base of sup-

port (Fig 1A). We have previously shown this manipulation greatly challenges balance [29].

We ensured that the rubber hemispheres were fully inflated (0.5–1 psi) prior to testing each

participant. Due to the width of the rubber hemispheres, the medial-lateral distance between

the participants feet was greater (~10 cm) in the balance-challenged condition compared to

the balance-unchallenged condition. However, we were interested in the effects of SVS and

threshold techniques and not whether balance was different between conditions. Trials lasted

five seconds. We chose this duration because we found in pilot experiments that it was very

difficult to stand on the rubber hemispheres in the balance-challenged condition for long

durations.

For the walking tasks, participants walked at least six steps along a straight path in the lab

with their gaze focused directly ahead. We instructed participants to walk at a self-selected
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pace, starting with their right foot. For the balance-unchallenged condition, participants per-

formed the walking task in comfortable walking shoes. For the balance-challenged condition,

participants performed the walking task with the abovementioned inflatable rubber hemi-

spheres attached to the soles of their shoes (Fig 1A).

Participants first performed twenty trials (five per task and balance condition) prior to the

experimental trials to familiarize themselves with the protocol. Next, participants performed

both tasks, with either SVS or sham stimulation, and with and without challenged balance, in

blocks of five trials each (for a total of 40 experimental trials, excluding familiarization trials).

This is illustrated in Fig 1B. We randomized the order of these blocks of trials for each partici-

pant. During the standing task, if a participant took a step, engaged the safety harness, or was

Fig 1. Experimental details. (A) Illustrations of the different conditions: standing with and without the balance-

challenging inflatable rubber hemispheres attached to the shoes; walking with and without the balance-challenging

inflatable rubber hemispheres attached to the shoes. (B) An example of the experimental protocol for one participant.

We randomized the blocks of trials within each stimulation protocol. (C) An example of the zero mean, 0–30 Hz

white-noise stimulation applied in the stochastic vestibular stimulation (SVS) blocks of trials.

https://doi.org/10.1371/journal.pone.0231334.g001
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helped by a researcher standing adjacent (thus, indicating a loss of balance), we marked the

trial as incomplete and repeated it. We delivered SVS (or sham stimulation) starting three sec-

onds before the beginning of each trial for a total duration of 10 seconds. Applying SVS for

short durations similar to this can reduce sway in healthy young adults during eyes-open

standing on normal ground [16]. We repeated this protocol for each of the two stimulation

intensity conditions (for a total of 80 experimental trials). We counterbalanced the orders of

the SVS intensities across participants.

An Optotrak Certus motion capture camera (Northern Digital, Waterloo, ON, Canada),

placed perpendicular to the walkway, recorded kinematic data at 120 Hz from infrared-emit-

ting position markers placed on the participant’s head (located at the temple), chest (over the

manubrium of the sternum), and bilaterally on the heel, mid-foot (second-third metatarsal

head), fifth metatarsal, and toe (third metatarsal).

Stochastic vestibular stimulation

We used a battery-driven linear stimulus isolator (A395D, World Precision Instruments, Sar-

osta, FL, USA) to deliver the SVS through square (5 x 5 cm) electrodes (Axelgaard

Manufacturing, Fallbrook, CA, USA) placed over the mastoid processes. We cleaned and dried

the skin under the electrode site and applied a layer of Signa Gel electrode gel (Parker Labora-

tories Corp., Fairfield, NJ, USA) to each electrode before positioning them on the skin surface.

Additionally, we applied sports pre-wrap around the head of the participant to secure the elec-

trodes and ensure a uniform current distribution. We developed the SVS signal, which con-

sisted of zero mean, Gaussian-distributed white noise within a frequency range of 0–30 Hz

[19–22,24], using a custom LabVIEW program (National Instruments, Austin, TX). An exam-

ple of the stimulus is shown in Fig 1C. Electrical vestibular stimulation activates the afferents

of both semicircular canals and otolith organs [30–32].

We used two different techniques to determine the intensity of SVS for each individual par-

ticipant: motion perception due to sinusoidal stimulation and cutaneous perception of a sto-

chastic stimulus. This produced two different stimulation intensities, which we used in

different experimental conditions (Fig 1B). For both techniques, participants sat on a backless

stool facing forward, with their eyes closed and their feet placed flat on the ground.

For the sinusoidal technique, we applied a 1 Hz sinusoidal electrical signal to determine the

motion threshold [21,24]. We instructed participants to report any perceived head motion by

raising their right hand for the duration of the sensation. We delivered an initial 1500 μA peak

current to allow the participant to recognize the type of motion sensation they should expect.

Thereafter, the stimulus consisted of a sinusoidal waveform over a 10 second period. We used

peak amplitudes of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800,

850, 900, 950, 1000, 1100, and 1200 μA. We used 100 μA increments for the higher amplitudes

because, based on past research, we did not expect to see thresholds in this range, and we

wanted to reduce the number of stimulation trials. We randomized the order of each stimula-

tion level and included a rest interval (up to 30 seconds) between each stimulation attempt.

We classified the sinusoidal threshold as the lowest current level where the participant per-

ceived head motion.

For the cutaneous technique, we applied the same 0–30 Hz stimulation that we used during

the experimental trials. The initial stimulation started at 50 μA and increased by 25 μA until

the participant indicated a cutaneous sensation (i.e., tingling under the electrodes). We

included a rest interval (up to 30 seconds) between each stimulation attempt and repeated this

process twice to determine the lowest current level that induced a cutaneous sensation.
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For the sinusoidal-based condition, we set the SVS intensity to 50% of the participant’s

sinusoidal threshold [21,28]. For the cutaneous-based condition, we set the SVS intensity to

80% of the participant’s cutaneous threshold [17,19,20]. We chose the specific threshold per-

centages because these studies have used them and found them to be optimal at improving bal-

ance. The sinusoidal threshold technique (304 ± 81 μA) resulted in significantly greater

stimulation amplitudes (two-tailed paired t test: t12 = -3.36, p = 0.006) in comparison to the

cutaneous threshold technique (249 ± 84 μA), as illustrated in Table 1. We included sham

stimulation to serve as a control for each task and balance condition. Specifically, the sham

waveform consisted of a gradual ramp increase over one second to the relevant intensity used

in the SVS conditions (based on the thresholds), followed by a gradual decrease to zero. This

form of sham stimulation is commonly employed in non-invasive brain stimulation studies

(see, for example, [33]).

Data and statistical analysis

We analyzed kinematic data (filtered using a fourth-order, 6 Hz low-pass Butterworth algo-

rithm) to calculate displacement and velocity profiles of select position markers. We calculated

the measures over the entire trial for the standing tasks and over four heel strikes (i.e., three

consecutive steps or one full stride of each leg) in the middle of the walkway for the walking

tasks. For the walking task, this represented the middle steps, which thus avoids the initial

acceleration to start walking and the deceleration at the end. To assess stability in both tasks,

we calculated the medial-lateral (ML) and anterior-posterior (AP) trunk velocity root mean

square (RMS) using the chest marker. For the standing tasks, we calculated the average mini-

mum distance of the center of the trunk to the edge of the base of support. In the AP direction,

this represented the difference between the chest marker and a toe marker on the right foot. In

the ML direction, this represented the difference between the chest marker and a marker on

the fifth metatarsal of the right foot. For the walking tasks, we also calculated gait speed over a

distance of three meters based on the time it took for the chest marker to move this amount.

Furthermore, we calculated step width using the ML distance between the moment of foot

contact on the ground between the two feet; we defined foot contact as the local minima of the

mid-foot marker vertical velocity profile [34]. We then determined step-width variability as

the standard deviation across three consecutive step widths in a given trial.

We used JMP 14 software (SAS Institute Inc., Cary, NC) with an alpha level of 0.05 for all

statistical analyses. Data for each measure met the assumptions of an ANOVA, that is, the

model residuals were normally and independently distributed with zero mean and constant

variance [35]. For two of our measures, we noted a potential outlier based on the distribution

of studentized residuals. Thus, we ran the ANOVA for these measures with and without the

outlier (see Results for details). For each task, we were interested in determining the effect of

stimulation condition (SVS or sham), balance condition (challenged or unchallenged), and

threshold technique (sinusoidal-based or cutaneous-based) on our measures. Thus, we used

separate three-way (stimulation condition x balance condition x threshold technique) mixed

model ANOVAs for each measure. We included participant as a random effect, and used

Tukey’s post hoc tests when we found a significant interaction. All data used to produce statis-

tical results and figures are available at https://osf.io/dtmaq.

Results

Effects of SVS on stability during standing

Eleven out of thirteen participants lost their balance (engaged the safety harness, took a step,

or required experimenter assistance) at least once while standing on the rubber hemispheres
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during the balance-challenged condition. None of the participants lost their balance during

the normal, balance-unchallenged condition, as to be expected. These results, in conjunction

with our measures of stability (see Fig 2 and Table 2), strongly support the notion that the rub-

ber hemispheres challenged balance while standing.

To determine the effect of SVS on standing, we first analyzed ML and AP trunk velocity

RMS. ML trunk velocity RMS differed depending on the balance condition and presence of

SVS (balance x stimulation condition interaction: F1,84 = 4.5, p = 0.037). Post-hoc tests

revealed a reduction in RMS with SVS in the balance-challenged, but not the balance-unchal-

lenged condition (Fig 2A). In fact, in the balance-challenged condition, we found a 24%

decrease in ML trunk velocity RMS with SVS compared to sham when the mean data from

both cutaneous and sinusoidal conditions were combined. The mixed model analysis revealed

a potential single outlier in this measure’s data (i.e., studentized residual of approximately 4).

Excluding this outlier altered the p-values of the fixed effect tests such that we no longer had a

significant balance x stimulation condition interaction (p = 0.071). Regardless, statistically sig-

nificant main effects of threshold technique, balance condition, and stimulation condition

remained after removing the outlier. In addition, pairwise Tukey post-hoc comparisons con-

tinued to show a significant reduction in ML trunk velocity RMS with SVS in the balance-chal-

lenged, but not the balance-unchallenged condition. Since we found nothing overtly wrong

with the data from the outlier and pairwise post-hoc comparisons were identical, we chose to

keep the outlier in the model (and statistical test results with the outlier in the model are

reported in Table 2). Although ML trunk velocity RMS was greater in the sinusoidal compared

to the cutaneous condition, as reflected by a main effect of threshold technique (F1,84 = 6.8,

p = 0.011), we did not find any significant interaction of the stimulation intensity with other

factors (Table 2).

For AP trunk velocity RMS (Fig 2B), we found no significant effect of stimulation (Table 2).

However, we found a 232% increase in AP trunk velocity RMS in the balance-challenged con-

dition compared to the balance-unchallenged condition (F1,84 = 311.7, p< 0.0001). The mixed

model analysis revealed a potential single outlier in this measure’s data as well (i.e., studentized

Table 1. Stimulation thresholds.

Threshold Amplitude (μA) Stimulation Amplitude (μA)

Participant Sinusoidal Cutaneous Sinusoidal� Cutaneous��

1 750 375 375 300

2 800 375 400 300

3 650 300 325 240

4 800 375 400 300

5 400 150 200 120

6 500 175 250 140

7 700 350 350 280

8 700 400 350 320

9 550 325 275 260

10 250 150 125 120

11 550 475 275 380

12 550 225 275 180

13 700 375 350 300

Mean (SD) 608 (162) 312 (104) 304 (81) 249 (84)

� 50% of threshold.

�� 80% of threshold.

https://doi.org/10.1371/journal.pone.0231334.t001
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residual of approximately 4). Excluding this value altered the p-values of the fixed effect tests

but did not lead to any change in significance. Statistical test results in Table 2 are for the

model with the outlier included.

Next, we compared the minimum distance from the trunk to the ML and AP edges of the

base of support to determine the effect of SVS on stability. Here, larger values suggest greater

stability, as the CoM is further from the edge of the base of support. Participants demonstrated

30% greater minimum ML distance in the balance-challenged condition compared to the bal-

ance-unchallenged condition (Fig 2C; F1,84 = 63.1, p< 0.0001). This larger value is likely a

reflection of the increased ML distance between the participant’s feet in the balance-challenged

condition due to the rubber hemispheres. In contrast, participants demonstrated a 31% decrease

in the minimum AP distance in the balance-challenged versus balance-unchallenged condition

(Fig 2D; F1,84 = 74.5, p< 0.0001). In addition, we found a smaller minimum AP distance for the

sinusoidal condition compared to the cutaneous condition (F1,84 = 9.8, p = 0.002). The

Fig 2. Results for the standing tasks. (A) Medial-lateral (ML) trunk velocity root mean square (RMS). (B) Anterior-

posterior (AP) trunk velocity RMS. (C) The minimum distance between the center of mass (CoM), based on a chest

position marker, and the ML base of support (BoS) during the standing task. (D) The minimum distance between the

CoM and the AP BoS during the standing task. Data are mean ± SE. Individual participant data are superimposed.

Asterisks indicate differences between sham and stochastic vestibular stimulation (SVS) conditions based on post-hoc

tests following a significant balance condition x stimulation condition interaction (p< 0.05). Details of the other

significant effects are reported in Table 2.

https://doi.org/10.1371/journal.pone.0231334.g002
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remaining ANOVA results for each measure are reported in Table 2, which show no significant

effects of SVS.

Effects of SVS on overground walking

The balance-challenged condition affected walking in several ways. As illustrated in Fig 3A,

participants walked significantly slower in this condition (F1,84 = 77.9, p< 0.0001). As illus-

trated in Fig 3B, participants had 31% greater step-width variability in the balance-challenged

condition compared to the balance-unchallenged condition (F1,84 = 30.6, p< 0.0001). We also

found differences in ML (Fig 3C) and AP (Fig 3D) trunk velocity RMS. Specifically, partici-

pants demonstrated 30% greater ML trunk velocity RMS in the balance-challenged condition

compared to the balance-unchallenged condition (F1,84 = 260.2, p< 0.0001). Interestingly,

however, participants exhibited 8% less AP trunk velocity RMS in the balance-challenged con-

dition versus the balance-unchallenged condition (F1,84 = 137.0, p< 0.0001).

SVS led to significant changes in walking performance. Specifically, participants walked 3%

faster with SVS compared to sham stimulation regardless of condition (Fig 3A), as shown by a

main effect of stimulation (F1,84 = 7.2, p = 0.009). Furthermore, participants demonstrated an

11% reduction in step-width variability with SVS compared to sham stimulation regardless of

condition (Fig 3B), as shown by a main effect of stimulation (F1,84 = 6.1, p = 0.016). However,

SVS had no effect on ML (Fig 3C) and AP (Fig 3D) trunk velocity RMS (p> 0.05). The full

results of the ANOVAs for each measure are reported in Table 3.

Table 2. Results of three-way ANOVAs for the standing tasks.

Measure–main effects Threshold Technique Balance Condition Stimulation Condition

ML Trunk Velocity RMS F1,84 = 6.8, F1,84 = 351.8, F1,84 = 19.9,

p = 0.011�� p < 0.0001� p < 0.0001�

AP Trunk Velocity RMS F1,84 = 1.9, F1,84 = 311.7, F1,84 = 0.06,

p = 0.177 p < 0.0001� p = 0.808

Min. Distance: CoM to ML BoS F1,84 = 0.03, F1,84 = 63.1, F1,84 = 3.1,

p = 0.864 p < 0.0001� p = 0.081

Min. Distance: CoM to AP BoS F1,84 = 9.8, F1,84 = 74.5, F1,84 = 0.001,

p = 0.002� p < 0.0001�� p = 0.981

Measure–interactions Threshold x Balance Threshold x Stimulation Balance x Stimulation Threshold x Balance x Stimulation

ML Trunk Velocity RMS F1,84 = 2.0, F1,84 = 2.4, F1,84 = 4.5, F1,84 = 0.9,

p = 0.164 p = 0.128 p = 0.037��� p = 0.356

AP Trunk Velocity RMS F1,84 = 0.9, F1,84 = 0.7, F1,84 = 0.2, F1,84 = 0.3,

p = 0.359 p = 0.415 p = 0.633 p = 0.618

Min. Distance: CoM to ML BoS F1,84 = 0.07, F1,84 = 0.5, F1,84 = 1.7, F1,84 = 1.1,

p = 0.798 p = 0.493 p = 0.196 p = 0.304

Min. Distance: CoM to AP BoS F1,84 = 0.8, F1,84 = 0.2, F1,84 = 0.02, F1,84 = 0.4,

p = 0.382 p = 0.681 p = 0.882 p = 0.532

ML = medial-lateral; AP = anterior-posterior; RMS = root mean square; CoM = center of mass; BoS = base of support; SVS = stochastic vestibular stimulation.

� P < 0.05: cutaneous > sinusoidal or balance-challenged > balance-unchallenged or sham > SVS.

�� P < 0.05: sinusoidal > cutaneous or balance-unchallenged> balance-challenged.

��� P < 0.05; this significance disappears when a single outlier is removed (see text for details).

https://doi.org/10.1371/journal.pone.0231334.t002
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Discussion

Previous research has shown the benefits of SVS in certain standing and walking situations.

Here, we had healthy adults standing and walking under sustained balance-unchallenged and

balance-challenged conditions. The inflated rubber hemispheres clearly challenged balance;

for example, we found greater ML trunk velocity RMS during both standing and walking.

Importantly, we show that when standing balance is challenged, and the eyes are open, sub-

threshold SVS reduces ML trunk velocity RMS. Regardless of condition, we also show that sub-

threshold SVS decreases step-width variability and marginally increases gait speed when

walking with the eyes open. We found similar effects in both tasks regardless of whether the

SVS intensity was based on cutaneous or sinusoidal threshold techniques. Taken together, our

results extend our understanding of the positive effects of SVS to balance-challenged, eyes-

open standing and walking.

Fig 3. Results for the walking tasks. (A) Gait speed. (B) Step-width variability. (C) Medial-lateral (ML) trunk velocity

root mean square (RMS). (D) Anterior-posterior (AP) trunk velocity RMS. Data are mean ± SE. Individual participant

data are superimposed. Gait speed increased and step-width variability decreased with SVS (stimulation condition

main effect, p< 0.05). Details of the main effects of threshold technique, balance condition, and stimulation condition

are reported in Table 3.

https://doi.org/10.1371/journal.pone.0231334.g003
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SVS significantly reduced ML trunk velocity RMS under balance-challenged, but not bal-

anced-unchallenged, quiet standing. The fact that standing on normal ground with the eyes

open is not overly challenging likely explains the lack of SVS effect in our balance-unchallenged

condition. Recently, several research groups have found that, in healthy young adults, SVS leads

to improved standing balance under normal support surface conditions [16,17] as well as while

standing on foam [21,22] with the eyes closed. Most studies of this nature have participants

standing for between 30 to 60 seconds in duration while SVS is applied. Despite using a much

shorter stimulation and trial duration—because of the difficulty of standing on the rubber hemi-

spheres in the balance-challenged condition—we still found effects of SVS. This supports previ-

ous work that used only five seconds of SVS during standing [16]. It is possible that we would

have observed even greater effects of SVS with longer standing and stimulation durations. In

contrast to our study, Pal et al. [23] reported no significant effect of SVS on postural sway

among healthy adults with the eyes open and standing on foam. Apart from challenging balance

in a different manner, the major difference between our studies is that Pal et al. [23] used the

same set of stimulation intensities for all participants. Based on our results, and the results of

others, we argue that finding a participant’s optimal stimulation intensity (using a common

threshold technique) is critical for demonstrating the effectiveness of SVS.

SVS significantly decreased step-width variability and marginally increased gait speed

regardless of walking condition. This supports other studies that reported walking benefits—

including faster gait speed and improved stride measures—observed in healthy adults

[18,20,24] and bilateral vestibulopathy patients [18,19]. Only one other study in addition to

ours has investigated how SVS alters measures of balance during a balance-challenged walking

task. Specifically, Mulavara et al. [24], using a sinusoidal support surface perturbation while

participants walked on a treadmill, reported a reduction in the variability of gait cycle timing

Table 3. Results of three-way ANOVAs for the walking tasks.

Measure–main effects Threshold Technique Balance Condition Stimulation Condition

Gait speed F1,84 = 0.1, F1,84 = 77.9, F1,84 = 7.2,

p = 0.746 p < 0.0001�� p = 0.009���

Step-width variability F1,84 = 4.6, F1,84 = 30.6, F1,84 = 6.1,

p = 0.034� p < 0.0001� p = 0.016�

ML Trunk Velocity RMS F1,84 = 4.1, F1,84 = 260.2, F1,84 = 0.3,

p = 0.045� p < 0.0001� p = 0.615

AP Trunk Velocity RMS F1,84 = 0.1, F1,84 = 137.0, F1,84 = 0.2,

p = 0.730 p < 0.0001�� p = 0.682

Measure–interactions Threshold x Balance Threshold x Stimulation Balance x Stimulation Threshold x Balance x Stimulation

Gait speed F1,84 = 0.2, F1,84 = 1.3, F1,84 = 0.5, F1,84 = 0.3,

p = 0.695 p = 0.266 p = 0.480 p = 0.590

Step-width variability F1,84 = 0.8, F1,84 = 0.4, F1,84 = 3.9, F1,84 = 0.9,

p = 0.380 p = 0.511 p = 0.051 p = 0.345

ML Trunk Velocity RMS F1,84 = 1.7, F1,84 = 0.06, F1,84 = 0.3, F1,84 = 0.6,

p = 0.202 p = 0.808 p = 0.557 p = 0.450

AP Trunk Velocity RMS F1,84 = 0.2, F1,84 = 1.9, F1,84 = 0.01, F1,84 = 0.03,

p = 0.645 p = 0.174 p = 0.906 p = 0.860

ML = medial-lateral; AP = anterior-posterior; RMS = root mean square; SVS = stochastic vestibular stimulation.

� P < 0.05: balance-challenged > balance-unchallenged or SVS < sham or sinusoidal > cutaneous.

�� P < 0.05: balance-unchallenged > balance-challenged.

��� P < 0.05: SVS > sham.

https://doi.org/10.1371/journal.pone.0231334.t003
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and ML linear trunk acceleration with SVS. However, to the best of our knowledge, we are the

first to show how SVS affects balance-challenged overground walking. Thus, given known dif-

ferences between treadmill and overground walking [25–27], it appears that the effectiveness

of SVS is relatively robust between different walking tasks and balance challenges. Although

people do not typically walk with rubber inflatable hemispheres under their shoes, this balance

manipulation may resemble walking across unstable terrain, including terrain with some

degree of compliance, like soggy grass, mud, or snow. Testing how SVS affects balance when

walking across this type of terrain may be a worthwhile future avenue of research.

There are several potential limitations with our walking task that may have minimized the

effects of SVS. First, we only analyzed data across three steps in the middle of an ~6 m walkway

due to limited motion capture volume, as opposed to a greater number of steps (or longer dis-

tance) used in previous studies (e.g., [18,20]). Second, our participants walked at a self-selected

speed that was faster than the majority of studies. Vestibular involvement in gait is stronger

with slower walking (e.g., [36]) and SVS may lead to greater effects with slower speeds [20],

though see Mulavara et al. [24], who show SVS benefits with gait speeds closer to ours. Third,

the vestibular system may play a smaller role when walking with the eyes open, as in our exper-

iment. However, eyes-open walking is more realistic, and arguably more clinically relevant; it

is encouraging that we observed improvements despite this manipulation. Fourth, although

we tested the effects of SVS using amplitudes derived from two different (yet common) thresh-

old methods, it is possible that optimal intensities differ between standing and walking [17,18].

Fifth, SVS may not be powerful enough to fully overcome such a large amount of instability

created by the inflatable rubber hemispheres. And sixth, it is also possible that the benefits of

SVS in overground walking are more prevalent in neurological populations who have greater

capacity for improvement.

What neural mechanisms may be responsible for the improvements in standing and walking

observed in our study? Electrical vestibular stimulation activates the afferents of both semicircu-

lar canals and otolith organs, rather than the end organs themselves, and the brain appears to

process the net sum of this activation through an internal model of Earth’s gravity [30–32,37].

SVS may improve sensory perception [6]. Consequently, SVS may facilitate the detection of

head acceleration, thus allowing for greater balance control through activation of the vestibu-

lospinal tract and its indirect connections to anti-gravity muscles of the legs [38]. Alternatively,

or in conjunction, SVS may affect downstream brain regions via the vestibular nuclei. The ves-

tibular nuclei project to the cerebellum, a region that receives limb and body proprioceptive sig-

nals [38] and is important for balance [39]. The vestibular nuclei also receive input from the

cerebellum, as well as neck and limb somatosensory feedback [38,40,41]. Given the known roles

of cutaneous [42] and ankle proprioception [43,44] in balance control, these nuclei can thus

integrate a variety of input to facilitate balance. Vestibular stimulation also affects a broad range

of cortical and subcortical areas, including frontal, parietal, temporal, and insular cortices, as

well as thalamus, basal ganglia, and cerebellum [45–47]. This is significant given the recent

appreciation of the cortical contribution to standing balance [48–50] and walking [51,52]. Inter-

estingly, electroencephalography-based studies report increased theta power and individual

alpha peak frequency in frontal, central, and parietal cortical areas with greater balance chal-

lenge [48,49]. Ultimately, the exact effects of SVS on brain networks remain unclear.

The choice of threshold technique to determine the stimulation amplitude did not greatly

affect our results despite the fact that they produced different amplitudes. Recent studies in

standing [21,22] and walking [20] that used either one of these techniques demonstrated sig-

nificant improvements in balance, thus supporting our findings. Some groups have also shown

that there are optimal stimulation amplitudes [17,18,22,24], which may differ depending on

the task; the values from these studies match ours relatively well. Overall, our results suggest
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that it does not seem to matter whether a cutaneous or sinusoidal threshold technique is used

to determine stimulus amplitude, though this is predicated on using recommended threshold

percentages (i.e., 50% of sinusoidal motion threshold and 80% of cutaneous threshold). How-

ever, amplitude is just one parameter of the stimulation signal to consider. Different groups

have used frequency ranges of 0.02 to 10 Hz [13,18], 0.1 to 10 Hz [46], 0 to 30 Hz [20–22,24],

which is similar to the present study, and even 0.1 to 640 Hz [16]. At this point, the optimal

stimulation frequency range is unknown. Given the diversity of stimulation frequencies and

intensities in the literature, and the finding that individuals have different optimal intensities

[17,18,22,24], it will be important to determine how different parameters dictate the effective-

ness of SVS in both healthy and neurological populations.

In conclusion, we found performance improvements in eyes-open standing balance and

walking with SVS. Both sinusoidal and cutaneous threshold techniques produced similar effects.

Future research should investigate whether there is a graded effect of SVS based on how much

balance is challenged. Furthermore, this research should also determine whether different fre-

quency ranges are more effective at reducing instability during both standing and walking.
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