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Abstract:  

 

This dissertation examines multiple components of the Oklahoma water balance 

in order to answer three independent research questions:  

 

i) Can long-term soil moisture monitoring data be used to estimate potential groundwater 

recharge rates? Daily drainage rates from the root zone were estimated for 78 sites using 

up to 17 years of soil moisture data from the Oklahoma Mesonet. Mean annual drainage 

rates ranged from 6 to 266 mm yr-1, with a statewide median of 67 mm yr-1. Drainage 

estimates were also modeled for four focus sites using HYDRUS1-D. Soil moisture-

based drainage rates and HYDRUS1-D drainage rates agreed within 10 mm yr-1 at two 

drier sites but had discrepancies of >150 mm yr-1 at two sites with >1000 mm yr-1 

precipitation. 

 

ii) Does incorporating soil moisture information improve seasonal streamflow forecast 

accuracy? A modified version of the standard Natural Resources Conservation Service 

(NRCS) principal component analysis and regression (PCR) model was developed to 

forecast streamflow in four rainfall-dominated watersheds. This model incorporated 

antecedent precipitation and soil moisture data from long-term monitoring networks into 

PCR analysis to predict seasonal streamflow volumes at 0-, 1-, 2-, and 3-month lead 

times. Including soil moisture data improved forecast accuracy by more than 50% over 

precipitation-based forecasts. 

 

iii) Can root zone soil moisture under diverse land cover types be effectively estimated by 

integrating ground-based meteorological data and remotely-sensed vegetation index data? 

Estimates of root zone soil moisture were made for four focus locations – a mixed 

hardwood forest, a loblolly pine plantation, cropland, and tallgrass prairie – by 

integrating ground-based meteorological data and basal crop coefficient curves derived 

from remotely-sensed vegetation index data within a soil water balance model. Results 

show that the model is able to estimate plant available water dynamics moderately well at 

the four focus locations, but needs further improvements before it can be used 

operationally. 
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CHAPTER I 

 

 

 

GENERAL INTRODUCTION 

 

 

Less than one percent of all water on Earth is fresh and accessible for use, and 

these scarce freshwater resources are increasingly threatened by overuse and changes in 

the hydrological cycle due to climate change (Shiklomanov, 1993). These impacts are 

especially clear in Oklahoma, which is located in a region known to have high levels of 

water scarcity, where frequent droughts and occasional severe flooding have the potential 

to cause both economic and ecological losses, as well as the loss of human life 

(Mekonnnen and Hoekstra, 2016). Natural disasters such as drought and floods are 

influenced not only by atmospheric conditions, but also by the soil water status (Berg and 

Sheffield, 2018; Seo et al., 2017). Soil strongly influences hydrological processes such as 

deep drainage (i.e., potential groundwater recharge) and streamflow generation by 

regulating fluxes of water between the deep subsurface, the land surface, and the 

atmosphere (Horton, 1931). Additionally, these fluxes impact and are impacted by plant 

water uptake and vegetation dynamics (Acharya et al., 2017). Because of the influence of 

soil moisture on these important hydrological processes, soil moisture data are able to 

provide important insight into the dynamics of deep drainage and may be used to improve 

streamflow forecasts. Also, due to the influence of vegetation dynamics on soil moisture,
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it is important to understand the dynamics of soil moisture under diverse vegetation 

types. This dissertation seeks to determine how soil moisture influences deep drainage, 

how soil moisture data may be used to improve streamflow forecasts in rainfall-

dominated watersheds, and how soil moisture varies under diverse vegetation types by 

addressing the following issues: 

i) Groundwater levels in the state of Oklahoma have declined in recent years due to a 

number of factors including overpumping and drought (Sallee, 2015). Soil moisture 

levels influence the amount of water that percolates beneath the root zone (i.e., potential 

groundwater recharge), and it has recently been shown that it is possible to use soil 

moisture data to calibrate models used to estimate potential groundwater recharge over 

large areas (Andreasen et al., 2013; Wang et al., 2016). Oklahoma is home to one of the 

world’s longest-running soil moisture monitoring networks, with soil moisture data 

recorded at over 100 locations in the state since 1996 (McPherson et al., 2007). The 

second chapter of this dissertation discusses how these long-term soil moisture 

monitoring data may be used to estimate state-wide potential groundwater recharge rates. 

ii) Streamflow forecasts are essential for providing critical information to surface water 

managers regarding the potential amount of water available for distribution in upcoming 

months. However, unlike the well-established seasonal forecasts used in the snow-

dominated Western U.S., streamflow forecasting methods currently used in the central 

and eastern U.S. are used primarily to predict flash floods at short lead times (i.e., <6 

days) rather than to inform surface water management decisions at long lead times (i.e., 

months in advance). This lack of seasonal forecasts increases the vulnerability of surface 

water resources, which are subject to frequent droughts and an increasingly variable 
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climate (Krueger et al., 2017; Christian et al., 2015). Recent work has shown that 

incorporating antecedent soil moisture data into statistical streamflow forecasts used in 

the snow-dominated West increases forecast accuracy by ~8% (Harpold et al., 2017). The 

third chapter of this dissertation discusses how this method may be used to predict future 

streamflow volumes in rainfall-dominated watersheds, and whether these forecasts are 

able to be made at longer lead times than current forecasting models in the state. 

iii) Current soil moisture monitoring networks have stations installed almost exclusively 

in locations where grasses are the dominant vegetation types, leading to uncertainties 

regarding the soil moisture status under other vegetation types, such as croplands and 

forests. Recent work has shown that there can be significant differences between soil 

moisture measured by sensors under grass and in neighboring winter wheat fields 

(Patrignani and Ochsner, 2018). It has also been shown that it may be possible to estimate 

soil moisture across diverse vegetation types by integrating satellite-based vegetation 

index data and ground-based meteorological data into a soil water balance model 

(Sanchez et al., 2010; Sanchez et al., 2012).  The fourth chapter of this dissertation 

applies this methodology to four study locations to determine how effectively the water 

balance model estimates soil moisture under four different major vegetation types in 

Oklahoma.  
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DISSERTATION ORGANIZATION 

This dissertation consists of a total of five chapters. The first and last chapters are a 

general introduction (Chapter I) and conclusion (Chapter V). These chapters provide a 

broad overview of the topics discussed in the dissertation and its most important findings. 

The remaining chapters address the issues stated above regarding the influence of soil 

moisture on various hydrological processes in Oklahoma. 

Chapter II describes a novel method of estimating potential groundwater recharge using 

17 years of soil moisture monitoring data from 78 Oklahoma Mesonet stations across the 

state. Comparisons are made between soil moisture-based potential groundwater recharge 

rates and recharge rates reported in prior studies, and with drainage rates estimated using 

a calibrated soil water flow model at four focus sites. 

Chapter III discusses the application of a well-known statistical streamflow forecasting 

method in four rainfall-dominated watersheds, and the improvements in streamflow 

forecast resulting from the inclusion of antecedent soil moisture data. 

Chapter IV investigates the potential of integrating remotely sensed vegetation index 

data and ground-based meteorological data into a soil water balance model in order to 

accurately estimate soil moisture in a mixed hardwood forest, a loblolly pine plantation, 

cropland, and tallgrass prairie in Oklahoma.
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CHAPTER II 

 

Manuscript published in Vadose Zone Journal Vol. 16(6), 2017 

 

USEFUL DRAINAGE ESTIMATES OBTAINED FROM A LARGE-SCALE SOIL 

MOISTURE MONITORING NETWORK BY APPLYING THE UNIT-GRADIENT 

ASSUMPTION 

Briana M. Wyatt, Tyson E. Ochsner, Christopher A. Fiebrich, Christopher R. Neel, and  

David S. Wallace 

ABSTRACT 

Groundwater supplies ~20% of global freshwater withdrawals, and accurate 

information regarding groundwater recharge rates is needed for sustainable groundwater 

management. Recharge rates are often limited by the rates of drainage from the soil 

profile, which are influenced by soil moisture conditions.  Soil moisture monitoring has 

expanded dramatically in recent decades with the advent of large-scale networks like the 

Oklahoma Mesonet, which has monitored soil moisture statewide since 1996. Using 

those data with site-specific soil hydraulic properties and a unit-gradient assumption, we 

estimated daily drainage rates at 60 cm for 78 sites for up to 17 years. Our working 

hypothesis is that these drainage rates are indicative of potential groundwater recharge 

rates. Mean annual drainage rates ranged from 6 – 266 mm yr-1, with a statewide median 
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of 67 mm yr-1. These rates agreed well with prior recharge estimates for major Oklahoma 

aquifers. 

To provide a further independent check on our results, drainage was modeled 

using HYDRUS-1D for four focus sites across 17 years. Soil moisture-based drainage 

rates and HYDRUS-1D drainage rates agreed to within 10 mm yr-1 at the drier two sites 

but had discrepancies of >150 mm yr-1 at two sites with >1000 mm yr-1 precipitation. 

Simulations also showed that for a semi-arid site the unit-gradient assumption was likely 

violated at the 60-cm depth, highlighting the need for deeper soil moisture monitoring. 

Despite these limitations, this simple method for estimating drainage through long-term 

soil moisture monitoring shows unique potential to provide valuable information for 

hydrology and groundwater management. 
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INTRODUCTION 

Groundwater aquifers supply approximately 20% of all freshwater withdrawals by 

humans globally, and the increasing number and severity of droughts projected due to 

climate change may lead to a heightened dependence upon these resources for 

agricultural production as well as for domestic, industrial, and municipal uses (World 

Water Assessment Programme, 2009). Plans for management of these vital natural 

resources are often based, in part, on estimates of groundwater recharge rates. However, 

given the complex nature of groundwater systems and the numerous interactions that 

occur in the groundwater-soil-atmosphere system, the quantification of recharge, 

especially over large areas, is difficult. A wide variety of methods have been used to 

estimate groundwater recharge, so recharge rates tend to differ between studies, even 

among those conducted on the same aquifer (Scanlon et al., 2002). Variations in 

estimated recharge rates between studies may also be caused by a number of other factors 

including: data availability, climate of the time period considered, and duration of the 

study. At large spatial scales, natural variations in soil type, climate, and topography also 

cause variability in recharge rates (Qu et al., 2014; Nolan et al., 2006). 

Groundwater recharge estimates for major aquifers are often based upon short-

term studies that only capture information over a few years’ time, and frequently include 

decades-old data that may not reflect current climatological conditions. Additionally, 

ongoing changes in land cover and land use (e.g., woody plant encroachment) may 

impact groundwater recharge rates, making old estimates inaccurate (Kim and Jackson, 

2012; Scanlon et al., 2006; Wine and Zou, 2012). In light of these challenges, methods to 

generate accurate and up-to-date information regarding current recharge rates are needed 
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to facilitate water resources planning and to advance hydrologic understanding of 

groundwater systems. 

Groundwater recharge is often limited by the drainage rate from the soil profile, 

and that drainage rate is strongly influenced by the soil volumetric water content 

(hereafter referred to as soil moisture). Large-scale monitoring of soil moisture has 

expanded dramatically since the 1990’s (Ochsner et al., 2013), yet the resulting data have 

not been widely utilized for estimating drainage rates. Two recent studies have shown 

that data from soil moisture monitoring networks can be used to optimize or calibrate the 

parameters of the soil hydraulic property functions in one-dimensional hydrologic models 

(Andreasen et al., 2013; Wang et al., 2016). The calibrated models can then be used with 

meteorological forcing data to estimate groundwater recharge. Here we add to this body 

of knowledge by demonstrating that the soil moisture data can be used directly to 

estimate drainage, without the complexities arising from reliance on a hydrologic model. 

One of the earliest and most extensive large-scale soil moisture monitoring 

networks is the Oklahoma Mesonet (McPherson et al., 2007). The Oklahoma Mesonet 

has provided hydro-meteorological and soil matric potential data at >100 monitoring sites 

throughout the state since 1996 (Figure 1). Heat dissipation sensors located at depths of 5, 

25, and 60 cm beneath the surface provide matric potential data every half hour (Illston et 

al, 2008; Scott et al., 2013). Using estimated soil hydraulic properties, these matric 

potential data can be converted to soil moisture data and then to hydraulic conductivity 

estimates. Assuming a unit gradient (i.e., gravity-driven flow) at the deepest 

measurement depth, these hydraulic conductivity values are numerically equivalent to the 

drainage rate (Nolan et al., 2006). These drainage rate estimates are expected to be 
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greater than or equal to the rate of groundwater recharge with a time lag that depends on 

vadose zone characteristics and depth to the water table.  

The primary objective of this research was to determine the level of agreement 

between these soil moisture-based drainage estimates and independent estimates of 

drainage and recharge. Our over-arching goal is to create a method for providing long-

term, updatable information on drainage rates, and thus potential groundwater recharge 

rates. To achieve this objective, daily drainage rates at the 60-cm depth were estimated 

using up to 17 years of soil moisture data for each of 78 Oklahoma Mesonet sites. Soil 

moisture was calculated from matric potential measurements made using heat dissipation 

sensors. The working hypothesis of this research was that these soil moisture-based 

drainage rates are indicative of the potential groundwater recharge rates for the 

underlying aquifer at each site, and that calculated drainage rates may act as an upper 

limit for actual recharge.  

The potential benefits of this method over those used previously in the state of 

Oklahoma are three-fold: 1) soil moisture-based drainage rates incorporate long-term 

meteorological and soil moisture data that have been collected since 1996, including the 

effects of several extreme climatic events, 2) drainage estimates can be updated any time 

as long as the soil moisture monitoring system is intact, and 3) in addition to site-specific 

estimates of drainage, the large number of point measurements available may be used to 

indicate the spatial distribution of recharge across the entire state of Oklahoma, as 

opposed to single-aquifer studies that have been done in the past (Nolan et al., 2006). If 

the proposed approach shows merit, then it could be applied to other large-scale soil 

moisture monitoring networks in the US and around the world in future studies. 
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MATERIALS AND METHODS 

Study area 

The Oklahoma Mesonet spans the state of Oklahoma, which has an area of 

approximately 1.8 x 105 km2 (Figure 1). The climate of the state ranges from humid 

subtropical in the southeast to semi-arid in the far west. Mean annual precipitation ranges 

from approximately 1420 mm in the southeast to 430 mm in the western Oklahoma 

Panhandle (Oklahoma Climatological Survey). Dominant land cover types vary from oak 

and pine forests and tallgrass prairies in the eastern portions of the state to shrublands and 

shortgrass prairie in the western portions, and encroachment by eastern redcedar 

(Juniperus virginiana) is pronounced in some areas (Tyrl et al., 2007). Additionally, 

approximately 2.4 x 104 km2 of winter wheat are planted in the state each year, mostly in 

the west-central Oklahoma “wheat belt” (Oklahoma State University Small Grains 

Extension, 2015). The soils of Oklahoma vary from ultisols in the east to alfisols and 

mollisols in the central portion of the state to inceptisols and entisols in the west, with 

mollisols being the most common soil order in the state (Tyrl et al., 2007).  Soil textures 

are highly variable, with sand contents ranging from 0.5% to 90% and clay contents 

ranging from 2.5% to 78% (Scott et al., 2013; Soil Survey Staff). The thickness of the 

vadose zone generally increases from east to west, with rock outcrops and shallow soils 

in the far southeast portion of the state and deep soils in the Panhandle.  

Groundwater aquifers provided 37% of all water withdrawals in Oklahoma in 

2005, with 63% of groundwater withdrawals used for agricultural irrigation (Tortorelli, 

2009). The greatest irrigation withdrawals come from the Ogallala (High Plains) aquifer, 

portions of which underlie the Oklahoma Panhandle region (Luckey and Becker, 1999). 
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Another major source of water for irrigation is the Rush Springs aquifer in west-central 

Oklahoma (Becker and Runkle, 1998). The Garber-Wellington aquifer in central 

Oklahoma is heavily used for public and domestic water supply (Mashburn et al., 2014).  

Other major aquifers in the eastern half of the state, such as the Antlers aquifer in the 

southeast (Morton, 1992), the Arkansas River aquifer in east-central Oklahoma 

(Oklahoma Water Resource Board, 2012), and the Boone aquifer in the northeast 

(Czarnecki et al., 2009), are not heavily used at present; but they may come under 

increasing pressure due to population growth. Pre-existing recharge estimates for the 

above-mentioned major aquifers provide a primary means of evaluating the proposed soil 

moisture-based drainage estimation method. 

 

Soil moisture-based drainage rates 

 Drainage rates were calculated for the years 1998-2014 using output from the 

Oklahoma Mesonet heat dissipation sensors (CS-229, Campbell Scientific, Inc., Logan, 

UT) and soil hydraulic property data for each site published by Scott et al. (2013). Heat 

dissipation sensors under grassland vegetation at each site are located at depths of 5, 25, 

and 60 cm and record the change in temperature that occurs within a porous ceramic 

matrix after a 21-s heat pulse is generated by a heater located inside the matrix. This 

temperature differential is measured and reported every 30 minutes and is normalized to 

account for inter-sensor differences (Illston et al., 2008). The 30-min resolution data were 

used to generate a daily mean reference (i.e., normalized) temperature differential, ΔTref. 

This daily mean was then used to determine the daily matric potential value using an 

empirical calibration equation: 
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where Ψm is the matric potential (kPa), and c and a are calibration constants with values 

of 0.717 kPa and 1.788° C-1, respectively (Illston et al., 2008). The mean percent error for 

matric potential measurement with these sensors over the range from -10 to -35,000 kPa 

is 23% (Flint et al., 2002).   

The daily matric potential data were then converted to soil volumetric water 

content values using the van Genuchten equation: 
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where θ is soil volumetric water content (cm3 cm-3), θr is residual soil water content (cm3 

cm-3), θs is saturated soil water content (cm3 cm-3), α and n are shape parameters 

estimated from the soil water retention curve, and m = 1-1/n (van Genuchten, 1980). 

Daily volumetric water content data at the 60-cm depth were then used to estimate 

hydraulic conductivity values by: 
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where the effective saturation, Se, is calculated by Se = (θ-θr)/(θs-θr), K0 (cm d-1) is a 

matching point conductivity value, and L is a unitless empirical coefficient (Schapp et al., 

2001).  

Values for θr, θs, α, n, K0, and L for each Mesonet site and each sensor depth were 

determined by Scott et al. (2013). They used the most accurate sub-model within the 

Rosetta pedotransfer function to estimate soil hydraulic parameters based on soil texture 

(percent sand, silt, and clay) and bulk density, along with water retention measurements 

at -33 kPa and -1500 kPa (Schaap et al., 2001). The database containing these hydraulic 

parameters is called the MesoSoil database, and the version produced by Scott et al. 
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(2013) is MesoSoil version 1.1. Subsequently, the MesoSoil database has been updated 

with the inclusion of data for additional monitoring stations and improved quality control 

procedures, resulting in newer versions. MesoSoil version 1.2b, which can be 

downloaded at http://soilphysics.okstate.edu/data, was used for this study. 

Assuming unit-gradient flow conditions (i.e., gravity-driven flow), the daily 

drainage rate at 60 cm was set equal to the hydraulic conductivity for that day. While the 

Oklahoma Mesonet does have sensors installed at 75 cm at some sites, there are not 

sensors at this depth at every site. As of 2007, there were 76 sites with sensors at 60 cm 

but only 53 with sensors at 75 cm. Additionally, starting in January 2011, sensors at the 

75-cm depth began to be decommissioned (Scott et al., 2013). For these reasons, we 

chose to use the 60-cm depth. The unit-gradient assumption employed here has been used 

in a number of previous recharge studies that also incorporate Darcian flow methods 

(Chong et al., 1981; Gardner, 1964; Sisson, 1987; Nolan et al., 2006; Ahuja et al., 1988). 

In preliminary studies, we tested a variety of more complex alternative 

approaches for estimating drainage from the soil moisture data that attempted to estimate 

and correct for vertical gradients in matric potential and unsaturated hydraulic 

conductivity. In the first alternative method, the matric potential gradient was 

approximated based on the difference in matric potential between adjacent sensor depths 

(i.e. 5 to 25, and 25 to 60 cm), and the hydraulic conductivity for the soil between two 

adjacent sensor depths was estimated by the arithmetic mean of the hydraulic 

conductivity at those depths.  However, this method yielded unreasonable and widely 

variable results. For example, at the Fittstown Mesonet site in south-central Oklahoma for 

the years 2006-2009, this method produced drainage estimates ranging from -52 to +99 

http://soilphysics.okstate.edu/data
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cm yr-1, neither of which is physically plausible at this site which received 99 cm yr-1 of 

precipitation during that time frame.  

In the second alternative method, the average hydraulic conductivity across two 

depths was estimated using the harmonic mean, as suggested by Darcy’s law for layered 

soils. Although better than the first method, this second method again yielded 

unreasonable and widely variable drainage estimates, ranging from -11.8 to +4.7 cm yr-1 

at the Fittstown site, with an average of -4.4 cm yr-1. Such sustained upward flow is 

extremely unlikely to occur in this context.  The third method used the simple unit-

gradient approach, and was the only evaluated method that proved to produce reasonable 

drainage estimates when compared to previous recharge studies in the region. At the 

Fittstown site the unit-gradient approach resulted in drainage estimates ranging from 5.4 

to 12.7 cm yr-1, with an average of 9.6 cm yr-1. These values are consistent with the 

recharge rate of 11.9 cm yr-1 determined by the Oklahoma Water Resources Board for the 

underlying Arbuckle-Simpson aquifer. Based on these preliminary findings, we chose to 

apply the unit-gradient assumption for the remainder of the study. 

After calculating drainage for all sites with the necessary data, statistical outliers 

in long-term mean annual drainage rates were identified using a box plot, which resulted 

in the exclusion of four sites- Washington, Bixby, Lane, and Foraker- from subsequent 

analyses. Additional quality control included removing site-years with 30 or more 

missing days from analysis. To visualize spatial patterns in drainage, the mean annual 

drainage rate for the state was mapped using ordinary kriging with a 1 km x 1 km grid 

size. A Gaussian model was used for the variogram, with the kriging neighborhood 
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restricted to the ten nearest observation points and a maximum search distance of 300 

km. 

 

HYDRUS-1D model calibration and validation  

Site-specific, independent drainage estimates were developed using HYDRUS-1D 

(PC-Progress, Prague, Czech Republic) for four focus sites: Goodwell, Miami, Tipton, 

and Wister (Figure 1.) These focus sites were selected for modeling because their 

locations represent a substantial portion of the variability in climatic and vegetative 

conditions across the state, with mean annual precipitation totals for years 1998 through 

2014 ranging from 392 to 1144 mm (Table 1). HYDRUS-1D estimates water flow in 

saturated and unsaturated soil according to the Richards equation (Šimůnek et al., 2016; 

Richards, 1931). 

In order to facilitate inverse estimation of soil hydraulic properties, soil profiles at 

each site were simplified and characterized by four soil layers associated with the depths 

of the heat dissipation sensors: 0-10 cm, 10-40 cm, 40-80 cm, and 80-300 cm. Previous 

studies involving inverse estimation of soil hydraulic properties based on in situ soil 

moisture data have also employed simplified soil profiles to limit the uncertainty arising 

from estimating large numbers of parameters (e.g. Scott et al., 2000). The 300-cm profile 

depth was considered adequate because it is unlikely that the root zone extends to 3 m in 

these locations (Sun et al., 1997; Jackson et al., 1996).  

The main processes considered in HYDRUS-1D simulations were water flow and 

root water uptake. The van Genuchten-Mualem model for hydraulic properties (van 

Genuchten, 1980) was used to model water flow throughout the soil profiles. The -2 cm 
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air entry suction option was used at all sites except Tipton. This option is recommended 

for use at sites with fine-textured soils where the n parameter is < 1.2 (Vogel et al., 2001). 

Root water uptake was simulated using the model of Feddes et al. (1978). Critical 

pressure head values in the water stress response function were determined by values for 

pasture from Wesseling (1991). No data regarding root distribution or maximum rooting 

depths were available for these sites, so the Jackson et al. (1996) root density distribution 

model was used (Wang et al., 2016). Within this model, a β value for temperate 

grasslands of 0.943 and depth values from the HYRDUS-1D nodal depth distribution 

were used to calculate the root density. Upper boundary conditions were defined as 

atmospheric conditions with surface runoff, meaning that precipitation in excess of the 

soil’s infiltration capacity would leave the site as runoff and not increase the pressure 

head at the top of the column. Lower boundary conditions were defined as free drainage.  

The FAO Penman-Monteith method (also referred to as the FAO-56 method) was 

used to determine daily potential evapotranspiration values for each site within the 

HYDRUS-1D model (Allen et al., 1998). Meteorological parameters required for this 

calculation included site latitude, site elevation above mean sea level (m), angstrom 

values for short wave radiation, a factor regarding the effect of cloudiness on long wave 

radiation, coefficients for computing the cloudiness factor from solar radiation, 

coefficients for computing the emissivity effect on long wave radiation, and wind speed 

and temperature measurement heights (cm). All values except site latitude, site elevation, 

and wind speed and temperature measurement heights were set equal to suggested values 

given in HYDRUS-1D. Wind speed was measured at 200 cm above the ground surface 

and temperature was measured at 150 cm above the ground surface by the Oklahoma 
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Mesonet stations at each location. Crop data were considered to be constant, with a crop 

height of 150 mm, an albedo of 0.23, a surface cover fraction of 0.5, and a maximum 

rooting depth of 1000 mm. The leaf area index was computed from the surface cover 

fraction using a radiation extinction coefficient of 0.463. No rainfall interception was 

considered in our simulations. 

Meteorological input data used to estimate potential evapotranspiration included 

daily maximum and minimum air temperature (°C), maximum and minimum relative 

humidity (%), precipitation (mm), wind speed (km d-1), incoming solar radiation (MJ m-2 

d-1), and average vapor pressure deficit (Allen et al., 1998). These data, along with daily 

precipitation totals, were collected from the Oklahoma Mesonet. Additional upper 

boundary inputs included a factor termed hCritA, which is the minimum allowed pressure 

head at the soil surface, below which evaporation is decreased from the estimated 

potential evaporation rate. The hCritA value was set equal to -15,000 cm for our 

simulations, which is within the range suggested in the HYDRUS-1D documentation. 

The inverse solution option of the HYDRUS-1D model was used to optimize soil 

hydraulic parameters of the top three soil layers based on daily field-measured matric 

potential data for the years 2006-2007 at each of the four focus sites. The fourth layer 

(80-300 cm) was left uncalibrated because no matric potential data were measured below 

60 cm. The 2006-2007 time period was chosen because these years include extreme 

climatological phenomena (e.g., 2006 was an extremely dry year for Oklahoma, and 2007 

was extremely wet). Calibration simulations also included the year 2005 as a spin-up 

year, but matric potential values for optimization were not included for 2005. Matric 

potential values calculated from the daily output of the heat dissipation sensors at depths 
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of 5, 25, and 60 cm were included in the objective function for the inverse solution. To 

obtain simulated matric potentials for the objective function, the daily output option was 

chosen within HYDRUS-1D, which uses a time-step weighted daily mean calculation. 

Parameter optimization was done by running the inverse solution within the 

HYDRUS-1D model for each of the top three soil layers for each site, beginning with the 

uppermost layer and continuing downward (Turkeltaub et al., 2015; Wang et al., 2016). 

This approach breaks the optimization problem down into more manageable pieces, but it 

has the limitation that precludes possible interactions between parameters in separate 

layers that have the potential to change the optimized parameter values. To overcome this 

limitation, following the optimization of the individual soil layers, an additional 

optimization was done for the uppermost three layers (3 layers X 5 parameters/layer = 15 

total parameters). Also, to reduce the influence of initial parameter values, optimizations 

were carried out twice for each site- once using Rosetta-estimated parameters from the 

MesoSoil database as the initial values and once using parameters values from Carsel and 

Parrish (1988) (Wang et al., 2016).  In both cases, the initial values for L were taken from 

Rosetta. The matching point hydraulic conductivity (K0) was used as the initial value for 

the saturated hydraulic conductivity (Ks) in the optimizations using Rosetta parameters. 

The set of optimized parameter values that led to the greatest agreement between 

measured and Hydrus-estimated matric potentials during the validation period was used 

for forward simulations. As suggested by prior studies, the following upper and lower 

bounds were placed on hydraulic parameters during optimization: θs = 0.3 - 0.5 cm3 cm-3, 

α  = 0.01 – 10 kPa-1, n = 1.01 - 3.0 (-), Ks = 1.0 – 10000 mm d-1, and L = -2.0 – 2.0 (-) 

(Ries et al., 2015). All hydraulic parameters except for residual water content (θs, α, n, Ks, 
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and L) were calibrated for each of the top three layers, resulting in 15 optimized 

parameters per site. The θr parameter was not optimized because it has been shown by 

previous studies that this parameter is typically the least sensitive (Vrugt et. al., 2001; 

Šimůnek et al., 1998).  

After calibrations were complete, validation simulations were carried out for each 

focus site in order to evaluate the soil moisture-based drainage estimates for those sites. 

Validation simulations were run using data for the years 1998-2014 and used the same 

input and boundary condition data as the calibration simulations. HYDRUS-1D outputs 

included, along with many other variables, estimations of pressure head, water content, 

and water flow at observation nodes 5, 25, and 60 cm below the surface. Water flow 

output data were analyzed to determine average annual drainage at the 60-cm depth.  

To investigate the validity of the unit gradient assumption applied in the soil 

moisture-based drainage estimation method, a subset of pressure head profiles at the 

Goodwell site were examined. The Goodwell focus site was chosen for this analysis, as it 

is located in the semi-arid Oklahoma Panhandle region and may be the least likely of the 

focus sites to exhibit a unit gradient condition at the 60-cm depth. For soil profiles 

undergoing free drainage, a unit gradient is expected when the profile is near saturation, a 

condition which rarely, if ever, occurs at the Goodwell site. By default, HYDRUS-1D 

uses a variable time step to simulate soil water dynamics. The model automatically 

adjusts to small time steps (on the order of minutes) during times of sudden changes in 

soil water conditions, such as during rainfall infiltration, while larger time steps (on the 

order of days) are used during times of relatively stable soil water conditions. At each 

time step, model output included water flux at 60 cm.  The outputs for each of these time 
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steps were ranked from largest to smallest in terms of drainage rate (downward flux) at 

the 60 cm depth, and the pressure head profiles corresponding to the top 1% of simulated 

drainage rates were plotted. This approach allowed us to visualize the pressure head 

(matric potential) gradients occurring at the times of maximum drainage to evaluate the 

validity of the unit-gradient assumption. 

 

RESULTS AND DISCUSSION 

Soil moisture-based drainage rates and prior recharge estimates 

 The soil-moisture based drainage estimates from the proposed method agreed well 

with prior recharge estimates.  Mean annual soil moisture-based drainage rates for the 

period from 1998-2014 ranged from 6 mm yr-1 at Boise City in the Oklahoma Panhandle 

to 266 mm yr-1 at Bristow in northeast Oklahoma (Figure 2). This is similar to the range 

of recharge values found by prior studies in Oklahoma, with reported recharge rates 

ranging from 0.8 to 333 mm yr-1 (Pettyjohn and Miller, 1982; Veiux and Moreno, 2008). 

The state-wide median value of the mean annual soil moisture-based drainage rate for the 

years 1998-2014 was 67 mm yr-1, which is approximately 7.7% of the median state-wide 

rainfall of 870 mm yr-1 for the same period. A similar percentage was found by Kim and 

Jackson (2012), who observed that an average of 8.3% of precipitation became recharge 

under grassland systems in their global analysis. Soil moisture-based drainage rates 

generally followed the precipitation gradient of the state, as expected, decreasing from 

east to west (Figure 2).  

The most recent prior state-wide recharge rate map for Oklahoma, published by 

Pettyjohn et al. (1983), corresponds fairly well with the map of soil moisture-based 
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drainage rates (Figures 2 and 3). Although Pettyjohn et al. (1983) used the baseflow 

separation method and data from the 1970’s, the maps are similar in several ways, 

including the trend that drainage and recharge rates decrease from east to west. 

Additionally, the maximum soil moisture-based drainage rate (266 mm yr-1) and 

maximum Pettyjohn et al. (1983) recharge rate (254 mm yr-1) are comparable. However, 

there are also some differences between the two maps. For instance, our calculated 

drainage rates in the Oklahoma Panhandle range from 6 to 27 mm yr-1 and are higher than 

the recharge rate of 2.5 mm yr-1 or less estimated for this region by Pettyjohn et al (1983). 

This difference is reasonable, given that the baseflow method used by Pettyjohn et al. 

(1983) underestimates recharge when there are upstream water losses due to groundwater 

evapotranspiration in riparian areas or groundwater pumping, both of which likely 

influence streamflow in the semi-arid, groundwater-irrigated Panhandle region (Scanlon 

et al., 2002). Also, there is a difference in the location of the maximum estimated 

drainage and recharge rates between the two studies. Pettyjohn et al. (1983) estimated 

that the greatest rates of groundwater recharge occur in the southeast portion of the state, 

near the Oklahoma-Arkansas border (Figure 3), while the maximum soil moisture-based 

drainage rates occurred in two areas: one in the northeast and one in the southeast (Figure 

2). This may be caused, in part, by a relative lack of soil moisture sensors at the 60-cm 

depth in the far southeastern part of the state due to shallow bedrock, which leads to a 

lack of drainage rate estimates in that region. 

Soil moisture-based drainage estimates summarized by aquifer compare well with 

previous recharge estimates for major Oklahoma aquifers (Table 3). These drainage 

values were found by computing the median value of the mean annual drainage rate for 
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aquifers with a minimum of three Mesonet sites above them, resulting in aquifer-scale 

drainage rate estimates for six Oklahoma aquifers. Aquifer-scale median soil moisture-

based drainage rates fall within the range of previous recharge estimates, with the 

exception of the Arkansas River alluvial aquifer, which has only one prior recharge 

estimate. Though only one other study has estimated recharge for the Arkansas River 

alluvial aquifer, the soil moisture-based drainage estimate is within 30% of the estimated 

recharge rate found by that study. These results provide strong evidence that drainage 

estimates from a large-scale soil moisture monitoring network can be indicative of 

potential recharge rates at the spatial scales of an individual aquifer and an entire state. 

 

HYDRUS-1D calibration results 

Optimized soil hydraulic properties varied from the initial estimates in most cases 

and are shown in Table 4. Optimized Ks values were lower than the initial estimates for 

seven out of the twelve calibrated layers, while optimized s values were higher in all but 

two cases. Optimized α values were lower than initial estimates at every site and depth, 

except for at Tipton, where the α and n values did not change during calibration. 

Optimized parameter values were limited in several instances by the upper or lower limits 

specified prior to optimization (e.g. all Goodwell s values, Goodwell 25 cm L value). 

This same non-ideal behavior has been reported in prior studies and likely indicates some 

unresolved problems in the model structure or parameterization (Ries et al., 2015; Wang 

et al., 2016). Some of the deficiencies in the optimized parameters may result from using 

daily average matric potential data in the objective function, meaning that any changes in 

matric potential throughout the day were not captured. This would have the most impact 
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at sites with high sand contents, where rain events may lead to large changes during the 

day being “smoothed over” because of the use of mean daily matric potential data. 

Additionally, optimized parameters may not be physically meaningful because of model 

simplifications, such as a four-layer soil profile, and because of possible non-uniqueness 

issues. 

Matric potential values estimated during the HYDRUS-1D calibration period 

(2006-2007) agreed reasonably well with measured matric potentials at the four focus 

sites (Figure 4). There were however extended periods during 2007, a year with 

unusually high precipitation, when the simulated matric potential at 25 and 60 cm was 

well below the measured matric potential for the Tipton site. The root mean square error 

(RMSE) values ranged from 88 to 329 kPa and generally were larger at the 60-cm depth 

than at the 5-cm depth, suggesting that the ability of the calibrated model to match the 

data decreased as depth increased (Table 5). Mean RMSEs at the 5-, 25-, and 60-cm 

depths were 184, 182, and 268 kPa, respectively.  

The “goodness of fit” of simulated matric potentials can also be evaluated using 

the ratio of the RMSE to the standard deviation of the observed matric potentials. The 

value of this ratio, called the RMSE-observations standard deviation ratio (RSR) by 

Moriasi et al. (2007), can range from zero for a perfect model (RMSE = 0) to a large 

positive value. Moriasi et al. (2007) gave a list of performance ratings that categorize 

model outputs based on this RSR statistic, where 0.00 ≤ RSR ≤ 0.50 indicates a very 

good model fit, 0.50 < RSR ≤ 0.60 indicates a good model fit, 0.60 < RSR ≤ 0.70 

indicates a satisfactory model fit, and RSR > 0.70 indicates an unsatisfactory fit. The 

given RSR ranges are for simulations modeled at a monthly time step, and Moriasi et al. 
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(2007) noted that using smaller model time steps would widen the acceptable ranges. 

RSR values were calculated for matric potential data during the calibration period, and 

only two of the sites and depths were rated satisfactory or better based on the RSR ranges 

listed by Moriasi et al. (2007) (Table 5). The relatively poor RSR values during the 

calibration reflect the difficulty of accurately simulating matric potential, which can vary 

by orders of magnitude, in heterogeneous soil profiles with dynamic meteorological 

forcing. 

The Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) values for 

estimated versus measured matric potential during the calibration period ranged from 

0.581 to 0.685 (Table 5). This range of NSE values is favorable when compared to the 

range from -1.44 to 0.711 that was obtained when HYDRUS-1D was calibrated using 

three years of soil moisture data from monitoring sites in Nebraska (Wang et al., 2016). 

The negative NSE values found by Wang et al. indicate that using a constant value of the 

mean of the matric potential for that particular site and depth would provide a more 

accurate representation of the temporal dynamics than their calibrated model. There was 

a tendency for lower NSE values at 60 cm than at 5 cm, again suggesting that model 

accuracy decreases with depth.  During the calibration period, mean bias in HYDRUS-1D 

estimated matric potential for each site-depth combination ranged from -277 kPa to +169 

kPa (Table 5). The overall mean bias across sites for this period was -50 kPa. All but two 

sites and depths had a negative mean bias, meaning that conditions simulated by the 

model were drier than measured conditions overall, although there were times when the 

model predicted conditions much wetter than measured (Figure 4c, d).  
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One interesting pattern discernible in the measured matric potentials during the 

calibration period at Miami and Wister was the occurrence of prolonged periods of 

wetness during the fall and winter months with matric potentials around -10 kPa, near the 

upper measurement limit of the sensors (Fig. 4b and 4d). These wet periods end each 

spring due to the onset of the growing season and subsequent increases in plant water 

uptake. We hypothesize that these prolonged periods near saturation are partly caused by 

restriction of downward water movement due to the high clay contents (>60%) at the 60-

cm depth at both sites (Table 1). These high clay contents at depth could greatly reduce 

the rate of water leaving the soil profile, producing the prolonged periods of high 

measured matric potential values. Ries et al. (2015) showed somewhat similar patterns at 

a depth of 80 cm after rainfall events, with water contents near saturation (albeit for 

shorter durations) occurring in that case due to a restriction of water flow by underlying 

shallow bedrock. These times of near saturation could potentially lead to errors in the 

estimated drainage rates if the heat dissipation sensors’ upper measurement limit of -8.5 

kPa is exceeded (Illston et al., 2008) or if the hydraulic gradient becomes substantially 

less than the assumed unit gradient.  

 

Comparison of HYDRUS-1D and soil moisture-based drainage rates 

Agreement between simulated and measured matric potential was in most cases 

slightly poorer during the validation simulations (1998-2014) than during calibration, 

with RMSE values ranging from 72 to 426 kPa (Table 5). The RSR values during this 

time ranged from 0.54 to 1.89, with agreement for eight of the twelve layers classified as 

unsatisfactory (RSR > 0.70) according to the categories defined by Moriasi et al. (2007). 
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However, the categories of Moriasi et al. (2007) are for simulations using a monthly time 

step, and they noted that a less strict performance rating is warranted for smaller time 

steps. The NSE values were slightly lower during the validation simulations than they 

were during calibration years, ranging from 0.47 to 0.59.  

The validation period NSE values were generally better than the values ranging 

from -16.9 to 0.754 observed by Wang et al. (2016), who calibrated HYDRUS-1D using 

three years of soil water content data. The bias in simulated matric potential during the 

validation simulations was negative at all but four sites and depths. The mean bias at 60 

cm during the validation period was -93 kPa. This general trend of HYDRUS-1D to 

underestimate matric potential at 60 cm is shown in Figure 4 for all but the Wister site. 

The simulated matric potential at the Wister site displayed a positive bias at every depth. 

As a whole, the statistics for the validation period indicate that our simulations have 

accuracy comparable to those in the most similar recent study (Wang et al., 2016) but still 

explain less than 60% of the variance in measured matric potential. Thus, significant 

uncertainty remains regarding the accuracy of the simulated drainage rates.   

Drainage estimates for the calibration period from the soil moisture-based method 

and from HYDRUS-1D are shown in Figure 5. While there was a general correspondence 

between the methods in the timing of largest drainage events, the magnitudes of 

HYDRUS-1D drainage peaks were larger than those of the SMB method, especially at 

the Wister site, where HYDRUS-1D drainage estimates often exceeded SMB drainage 

rates by ~30 mm d-1. This discrepancy was likely due to the unrealistically high value (62 

mm d-1) of the optimized Ks value for the 60-cm soil layer at Wister, which has a clay 
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content of 74%. Additionally, HYDRUS-1D drainage estimates indicated times of 

upward flow that were not captured by the SMB method. 

Mean annual drainage rates at 60 cm resulting from HYDRUS-1D simulations for 

1998-2014 ranged from 6 mm yr-1 at Goodwell to 301 mm yr-1 at Wister (Table 6). 

Differences between soil moisture-based and HYDRUS-1D mean annual drainage rates 

for the validation period ranged from -239 mm yr-1 at Wister to +158 mm yr-1 at Miami. 

For the two sites with annual precipitation <1000 mm, Tipton and Goodwell, the soil-

moisture based and HYDRUS-1D estimated mean annual drainage rates agreed to within 

10 mm.  Plotting annual drainage rate estimates versus annual precipitation also reveals 

similar relationships for both the soil moisture-based method and HYDRUS-1D estimates 

at Goodwell and Tipton (Fig. 6a, c). This is evidence that both the soil moisture-based 

method and the calibrated HYDRUS-1D model provide reliable drainage estimates at the 

60-cm depth at these sites with annual precipitation <1000 mm. However, the annual soil 

moisture-based drainage rates were consistently higher than the HYDRUS-1D estimates 

across all precipitation levels at Miami and lower at Wister (Fig. 6b, d). It is not 

immediately clear how much of the discrepancy to attribute to errors in the soil moisture-

based drainage estimates and how much to attribute to errors in the simulated drainage. 

At Miami, where the soil moisture-based mean annual drainage rate is 158 mm yr-

1 greater than the HYDRUS-1D estimate, the HYDRUS-1D estimates may be somewhat 

more reliable. The most recent groundwater modeling study encompassing this region, 

Czarnecki et al. (2009), reviewed prior recharge estimates from the literature and 

calibrated a groundwater flow model by adjusting the recharge rates, resulting in a mean 

annual recharge of 46 mm yr-1 for the area encompassing the Miami site. This is 
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consistent with the 59 mm yr-1 drainage rate at 60-cm depth estimated by HYDRUS-1D. 

The pre-existing groundwater recharge map based on the baseflow separation method 

(Fig. 3) puts the estimated recharge at Miami near 152 mm yr-1, approximately mid-way 

between the soil moisture-based and HYDRUS-1D drainage estimates. 

At Wister, where the soil moisture-based mean annual drainage rate is 239 mm yr-

1 less than the HYDRUS-1D estimate, the soil moisture-based estimate may be somewhat 

more reliable. The optimized Ks value of 62 mm d-1 for the 60-cm depth at Wister is 

relatively high for a soil with a clay content of 73%. For comparison, the 60-cm depth at 

the Miami site with 63% clay had an optimized Ks value of only 1.3 mm d-1. If the 

optimized Ks value is too high, then the HYDRUS-1D mean annual drainage rate of 301 

mm yr-1 may be an overestimate. Furthermore, the Richards equation that HYDRUS-1D 

uses to model water flow may not simulate field conditions accurately in soils with high 

clay contents, such as the Wister site (Beven and Germann, 2013; Vereecken et al., 

2016). On the other hand, the pre-existing groundwater recharge map based on the 

baseflow separation method (Fig. 3) puts the estimated recharge at Wister between 203-

254 mm yr-1, between the soil moisture-based and HYDRUS-1D drainage estimates but 

closer to the HYDRUS-1D estimates. As a whole, the simulation results at both Miami 

and Wister suggest increased uncertainty in drainage rates when applying the soil 

moisture-based drainage estimation method at sites with >1000 mm yr-1 annual 

precipitation. 

The unit-gradient assumption applied in the soil moisture-based drainage 

estimates has been evaluated previously and has been shown to be an adequate 

approximation for some but not all situations (Chong et al., 1981; Libardi et al., 1980; 
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Sisson, 1987). Using HYDRUS-1D, we were able to simulate the matric potential profile 

for the focus sites. The matric potential profiles associated with the top 1% of simulated 

drainage rates at 60-cm for the Goodwell are shown in Figure 7. For these model time 

steps, at the 60-cm depth there was a substantial matric potential gradient, which was not 

dissipated until near the 100-cm. The depth at which the unit-gradient condition is 

approached is likely dependent upon the specified rooting depth and distribution. These 

matric potential profiles indicate that the unit gradient assumption was clearly violated 

during times of maximum drainage at the 60-cm depth. Still, the soil moisture-based 

drainage estimate for the site was within 4 mm yr-1 of the HYDRUS-1D simulated value, 

so the soil moisture-based method may not be overly sensitive to violations of the unit-

gradient assumption. 

Overall, the results of the HYDRUS-1D simulations provided further evidence for 

the reliability of the soil moisture-based drainage estimates at the two drier sites, Tipton 

and Goodwell, while indicating potentially large errors in the soil moisture-based 

drainage estimates at wetter sites. At the two simulated sites with annual precipitation 

>1000 mm, the discrepancy between soil moisture-based drainage estimates and 

HYDRUS-1D modeled drainages rates was >150 mm yr-1. The saturated hydraulic 

conductivity estimates from the underlying Rosetta pedotransfer function have an 

uncertainty of approximately one order of magnitude (Schaap et al., 2001), so a relatively 

large uncertainty in mean annual drainage for wet sites is perhaps to be expected. 
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Limitations and advantages of the soil moisture-based drainage estimation method 

Some limitations of the soil moisture-based drainage estimation method include a 

lack of data in places where shallow bedrock prevents sensor installation, such as in the 

southeastern part of Oklahoma. Quality control of the drainage estimates can also be 

challenging if data from a large number of sites are being processed. In this study, a 

simple box plot approach was used to identify sites that were outliers and remove them 

from analysis. Understanding the cause of these outliers would likely require more 

careful examination of the sensor performance and estimated soil hydraulic properties, as 

well as site visits to evaluate possible confounding local factors such as site disturbance 

and site topography. Additionally, the soil moisture-based drainage estimation method is 

prone to overestimate potential groundwater recharge if substantial root water uptake 

occurs below the 60-cm depth or if there is a shallow groundwater table resulting in less 

than unit-gradient conditions in the field. Soil moisture measurements at a deeper depth 

would generally be preferable for estimating drainage, as would collocated measurements 

of water table depth. Finally, the heat dissipation sensors used in this study are not ideal 

for use in estimating drainage because they have limited sensitivity under near-saturated 

conditions. The manufacturer specifies -10 kPa as the upper measurement limit for matric 

potential, although the Oklahoma Mesonet calibration procedures result in a slightly 

higher upper limit of -8.5 kPa. Sensors using other measurement principles might be 

better suited to detect small changes in soil moisture near saturation, leading to improved 

drainage estimates for wet sites.  

Despite these limitations, the benefits of estimating drainage and potential 

groundwater recharge using data from in situ soil moisture monitoring networks are 
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substantial. First, soil moisture-based drainage estimates from networks like the 

Oklahoma Mesonet can incorporate increasingly long-term soil moisture data, 17 years in 

this study. In contrast, many groundwater studies are based on field data collected over 

periods of just a few years, which may be less likely to show the effects of extreme 

climatic events. Second, soil moisture-based drainage estimates can be updated simply, 

frequently, and automatically with minimal recurring cost as long as the soil moisture 

monitoring system is intact.  Other methods for estimating recharge typically cannot be 

readily updated without substantial investment of time and money. Third, the relatively 

large number of measurement sites available within a monitoring network like the 

Oklahoma Mesonet can provide valuable information on the spatial distribution of 

potential groundwater recharge across an entire region.  

 

CONCLUSION 

The results of this study reinforce the insight of Black et al. (1969), who wrote 

“…it is a characteristic of the unsaturated flow equation that fluxes into and out of a 

system may be estimated with surprising precision using very gross approximations…”. 

Soil moisture-based drainage estimates can be made by applying a simple unit-gradient 

assumption to daily soil moisture data from long-term in situ monitoring stations. The 

primary weaknesses of this approach in the present study were: 1) the relatively shallow 

measurement depth used, i.e., 60 cm and 2) the increased uncertainty in the drainage 

estimates for wetter sites. It appears likely that the unit-gradient assumption is often 

violated at 60 cm and that some root water uptake occurs beneath that depth. It also 

appears that uncertainty in saturated hydraulic conductivity values and the limited wet-
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end sensitivity of the heat dissipation sensors used here increase the uncertainty of the 

drainage estimates for wet sites. Despite these weaknesses, our results provide evidence 

that in many cases the drainage rates at 60 cm are estimated with reasonable accuracy and 

that these drainage rates are indicative of potential groundwater recharge rates. Spatial 

patterns of the estimated drainage rates tended to follow the state’s precipitation gradient, 

decreasing from east to west. Additionally, median aquifer-scale drainage rates compare 

well with previous estimates of recharge in all available cases. The map of mean annual 

drainage rates across the state of Oklahoma, as well as yearly drainage maps and other 

maps related to soil moisture conditions in Oklahoma, are available online at 

http://soilmoisture.okstate.edu under the “Projects” tab. Future research should apply, 

evaluate, and refine the method proposed here using data from other large-scale soil 

moisture monitoring networks around the world. Doing so is likely to produce new 

information about potential groundwater recharge rates that will be valuable for 

advancing hydrologic understanding with the ultimate goal of improving management of 

groundwater resources, resources that are increasingly critical for societies worldwide. 
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Table 1. Mean annual precipitation (P), mean annual temperature (T), and soil physical properties for the four focus Mesonet sites at 

which drainage was modeled using HYDRUS-1D. Precipitation and temperature data are averages from 1998-2014. 

Site P T Depth Sand Silt Clay Bulk density 

 mm C cm % g cm-3 

Goodwell 397 12.1 5 36.6 34.6 28.8 1.37 

 
   25 28.2 34.0 37.8 1.51 

 
   60 34.8 29.4 35.8 1.42 

 
Miami 1062 10.0 5 15.6 60.5 23.9 1.20 

   25 23.4 62.2 14.4 1.43 

   60 9.5 28.0 62.5 1.38 

Tipton 573 10.6 5 42.6 41.6 15.8 1.48 

   25 43.9 38.4 17.6 1.58 

   60 43.1 35.4 21.5 1.45 

Wister 1130 8.3 5 17.5 61.8 20.8 1.51 

   25 9.9 61.2 28.9 1.45 

   60 8.8 17.9 73.7 1.34 
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Table 2. Initial values for soil hydraulic parameters for the four focus sites at which drainage was modeled using HYDRUS-

1D. θr is the residual volumetric water content, θs is the volumetric water content at saturation, α and n are shape parameters, 

Ks is the saturated hydraulic conductivity (from Carsel and Parrish), Ko is a matching point hydraulic conductivity (from 

Rosetta), and L is an empirical coefficient related to the pore connectivity. Sites marked with a † indicate locations where 

Carsel and Parrish (1998) initial values resulted in better calibration than the Rosetta initial values. 

 

Site Depth θr θs α n Ko or Ks L 

 cm cm3 cm-3 cm3 cm-3 kPa-1 - mm d-1 - 

Goodwell† 5 0.095 0.410 0.204 1.31 62.4 -0.93 

 25 0.095 0.410 0.204 1.31 62.4 -1.02 

 60 0.095 0.410 0.204 1.31 62.4 -1.73 

 300 0.095 0.410 0.204 1.31 62.4 -1.73 

Miami 5 0.032 0.422 0.043 1.65 22 0.91 

 25 0.028 0.366 0.043 1.65 19 0.61 

 60 0.081 0.510 0.028 1.35 7 0.90 

 300 0.081 0.510 0.028 1.35 7 0.90 

Tipton 5 0.032 0.368 0.139 1.39 66 -0.42 

 25 0.034 0.349 0.194 1.35 88 -0.89 

 60 0.041 0.388 0.238 1.36 116 -0.99 

 300 0.041 0.388 0.238 1.36 116 -0.99 

Wister† 5 0.067 0.450 0.204 1.41 108.0 0.65 

 25 0.089 0.430 0.102 1.23 16.8 -0.38 

 60 0.068 0.380 0.082 1.09 48.0 -1.13 

 300 0.068 0.380 0.082 1.09 48.0 -1.13 
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Table 3. Summary of soil moisture-based drainage rates by aquifer. Aquifer name, number of Mesonet sites located above the 

aquifer, median value of the mean annual soil moisture-based drainage rate, a range of previous recharge estimates, and the 

number of publications contributing to that range. 

Aquifer Sites Drainage Recharge Sources 

  mm yr-1 mm yr-1  

Boone 3 74 2.3-267 4† 

Arkansas River 5 165 127 1‡ 

Garber-Wellington 3 113 0.8-211 4§ 

Rush Springs 5 66 5.1-89 4¶ 

Antlers 4 63 7.6-76 3# 

Ogallala 8 19 1.5-56 4‡‡ 

 

†Czarnecki et al. (2009); Dugan & Peckenpaugh (1985); Imes (1989); Imes and Emmett (1994). 

‡ Oklahoma Water Resources Board (2012). 

§ Pettyjohn and Miller (1982); Mashburn et al. (2014); Parkhurst et al. (1996); Oklahoma Water Resources Board (2011). 

¶ Becker and Runkle (1998); Tanaka and Davis (1963); Pettyjohn et al. (1983); Oklahoma Water Resources Board (2012). 

# Oklahoma Water Resources Board (2012); Hart and Davis (1981); Morton (1992). 

‡‡ Luckey and Becker (1999); Hart et al. (1976); Morton (1980); Oklahoma Water Resources Board (2012). 
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Table 4. Optimized soil hydraulic parameters for the four focus sites at which drainage was modeled using HYDRUS-1D. θr is 

the residual volumetric water content, θs is the volumetric water content at saturation, α and n are shape parameters, Ks is the 

saturated hydraulic conductivity, and L is an empirical coefficient related to the pore connectivity. Sites marked with a † 

indicate locations where Carsel and Parrish (1998) initial parameter values were used. 

Site Depth θr θs α n Ks L 

 cm cm3 cm-3 cm3 cm-3 kPa-1 - mm d-1 - 

Goodwell† 5 0.095 0.500 0.126 1.27 2.5 -0.81 

 25 0.095 0.500 0.061 1.10 623 -2.00 

 60 0.095 0.500 0.039 1.12 18 -1.77 

 300 0.095 0.410 0.204 1.31 62 -1.73 

Miami 5 0.032 0.499 0.036 1.87 29 1.13 

 25 0.028 0.472 0.012 1.98 1.2 0.38 

 60 0.081 0.500 0.010 1.04 1.3 1.78 

 300 0.081 0.510 0.028 1.35 7.0 0.90 

Tipton 5 0.032 0.377 0.139 1.39 24 0.00 

 25 0.034 0.366 0.194 1.35 104 1.11 

 60 0.041 0.500 0.238 1.36 145 -1.19 

 300 0.041 0.388 0.238 1.36 116 -0.99 

Wister† 5 0.067 0.500 0.031 1.82 107 1.99 

 25 0.089 0.484 0.012 2.07 18 -1.05 

 60 0.068 0.302 0.013 1.01 62 -1.68 

 300 0.068 0.380 0.102 1.09 48 -1.13 
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Table 5. Root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Nash-Sutcliffe Efficiency 

(NSE), and bias for measured versus simulated matric potential for the HYDRUS-1D calibration (2006-2007) and validation 

periods (1998-2014). Sites marked with a † indicate locations where Carsel and Parrish (1998) initial parameter values were 

used. 

  Calibration  Validation 

Site Depth RMSE RSR NSE Bias  RMSE RSR NSE Bias 

 cm kPa - - kPa  kPa - - kPa 

Goodwell† 5 238 0.895 0.653 -151  272 1.190 0.527 -203 

 25 324 1.338 0.594 -277  426 1.886 0.484 -384 

 60 168 0.741 0.620 -83  335 1.315 0.466 -241 

Miami 5 140 0.738 0.674 -10  96 0.617 0.558 -21 

 25 99 0.870 0.685 -42  72 0.693 0.587 -26 

 60 315 0.968 0.581 169  158 0.802 0.589 28 

Tipton 5 271 2.230 0.643 -195  238 1.031 0.515 -123 

 25 213 0.839 0.661 -124  309 1.195 0.507 -206 

 60 329 1.060 0.594 -41  332 1.122 0.465 -241 

Wister† 5 88 0.561 0.680 -6  95 0.538 0.573 1 

 25 91 0.601 0.660 -4  107 0.624 0.558 8 

 60 258 0.996 0.622 159  196 0.830 0.550 83 
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Table 6. Mesonet site name, soil moisture-based (SMB) drainage rates, and HYDRUS-1D drainage rates at 60 cm for the 

calibration (2006-2007) and validation periods, and difference for the validation period (1998-2014).  

   Calibration  Validation   

Site SMB HYDRUS  SMB HYDRUS  Difference 

 mm yr-1  mm yr-1  mm yr-1 

Goodwell 19 -12  10 6  4 

Miami 159 55  217 59  158 

Tipton 25 12  26 16  10 

Wister 34 274   62 301 
 -239 
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Figure 1. Mesonet site name abbreviations and locations for sites where drainage 

estimates were made. Labels for three sites (Stillwater, Marena, and Oklahoma City East) 

were excluded for clarity. Modeled focus site locations [Goodwell (GOOD), Miami 

(MIAM), Tipton (TIPT), and Wister (WIST)] are circled. 
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Figure 2. Statewide mean annual soil moisture-based drainage rates for the years 1998-

2014. Drainage rate labels for the Stillwater, Oklahoma City East, Porter, and Marena 

sites were excluded for clarity, but were 214, 82, 166, and 66 mm yr-1, respectively. 
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Figure 3. Previously published state-wide recharge map made using the stream baseflow 

method of recharge estimation. Adapted from original publication by Pettyjohn et al. 

(1983).  
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Figure 4. Mesonet-measured daily matric potential (dots) and HYDRUS-1D simulated matric potential (solid line) at 5, 25, and 60 cm during 

the calibration period for Goodwell (a), Miami (b), Tipton (c), and Wister (d).
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Figure 5. Daily soil moisture-based drainage estimate (dashed line) and HYDRUS-1D estimated drainage for the 60-cm depth during the 

calibration period at Goodwell (a), Miami (b), Tipton (c), and Wister (d). 
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Figure 6. Annual soil moisture-based (SMB) drainage estimates (blue dots) and HYDRUS-1D estimated drainage (orange dots) at the 60-cm 

depth versus annual precipitation during the validation period at Goodwell (a), Miami (b), Tipton (c), and Wister (d).
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Figure 7. Simulated matric potential profiles associated with the top 1% of 

simulated drainage rates at the 60-cm depth for Goodwell focus site from 1998-

2014. 
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IN-SITU SOIL MOSITURE DATA IMPROVE SEASONAL STREAMFLOW 

FORECAST ACCURACY IN RAINFALL-DOMINATED WATERSHEDS 

Briana M. Wyatt, Tyson E. Ochsner, Erik S. Krueger, and Eric T. Jones 

ABSTRACT 

The security and sustainability of surface water resources are threatened by an 

increasingly variable climate and by the growing water demands of a rising world 

population. While seasonal streamflow forecasting methods for snow-dominated regions 

are well-developed, forecasting methods used in rainfall-dominated areas remain less 

skillful, limiting their usefulness for water resource management. Recent work has shown 

that including soil moisture data in a principal component analysis and regression 

forecasting model (hereafter referred to as PCR) can improve seasonal streamflow 

forecasts in snow-dominated catchments, but its impact on forecast performance in 

rainfall-dominated watersheds remains unknown. Therefore, our objective was to 

evaluate the potential improvements gained by including in-situ soil moisture data in 

PCR-based streamflow forecasts in rainfall-dominated watersheds.
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Precipitation and soil moisture data from multiple long-term monitoring watersheds were 

incorporated into a modified PCR model to predict seasonal streamflow totals at 0-, 1-, 2-

, and 3-month lead times.  We found that forecasts derived from antecedent precipitation 

alone were often statistically insignificant, explaining at best 27% of the variability in 

seasonal streamflow. Conversely, forecast models that included soil moisture information 

explained 67% to 83% of seasonal streamflow variability at the 0-month lead time.  Due 

to the incorporation of measured soil moisture data, the PCR method applied here 

produces seasonal streamflow forecasts for rainfall-dominated watersheds with 

accuracies comparable to those previously reported in snow-dominated watersheds. This 

new forecast method shows strong potential for use in surface water management in 

rainfall-dominated regions.  
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INTRODUCTION 

An increasingly variable climate and the growing water demands of a rising world 

population continually threaten the security and sustainability of surface water resources 

essential for agricultural production, domestic and industrial water use, recreation, and 

other beneficial uses (Brekke et al., 2010; Wood, 2007; Garbrecht et al., 2004). These 

threats are amplified by the relatively low skill of many forecasting systems for 

predicting future streamflows (Nash and Sutcliffe, 1970). While operational models 

applied in snow-dominated watersheds have been widely studied and improved (Pagano 

et al., 2004), seasonal forecasting methods (i.e., forecasts which estimate streamflow 

volumes over several months) for rainfall-dominated watersheds remain less skillful, 

reducing their efficacy for water resource management (Cuo et al., 2011; Pagano et al., 

2004). Increasing the accuracy of seasonal streamflow forecasts in rainfall-dominated 

watersheds is critical for improving reservoir operations, drought management, 

sustainable water use, hydropower production, and irrigated agriculture (Raff et al., 2013; 

Maurer and Lettenmaier, 2004).  

Existing operational streamflow forecasting models used in rainfall-dominated 

regions of the U.S. are generally used to produce probabilistic streamflow forecasts at 

short lead times (i.e., < 1 week) and were developed for the purpose of flood forecasting 

rather than for long-term water resource management and planning (Anderson et al., 

2006; Cuo et al., 2004; Sorooshian et al., 1993). The most widely-used streamflow 

forecasting model in this context is the Sacramento Soil Moisture Accounting model 

(SAC-SMA), a lumped model used by the National Weather Service River Forecast 

Centers to predict river flows up to six days in advance (Sorooshian et al., 1993). This 

relatively small lead time makes the model suitable for predicting flooding events, but 
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prevents the model from providing useful seasonal streamflow forecast information. 

Additionally, the conceptual nature of the model requires the use of a generic “soil 

wetness” variable, and there is often a weak correlation between modeled and observed 

soil moisture values (Anderson et al., 2006). This can lead to inaccurate model 

representations of the soil moisture state within the model domain (Koster et al., 2009). 

Because soil moisture is a key variable in determining the rainfall-runoff behavior of 

soils (Castillo et al., 2003), it is especially important that soil moisture data used in 

streamflow forecasting models be accurate. 

An alternative forecasting method commonly used to predict streamflow in the 

snow-dominated, mountainous Western U.S. is principal component analysis and 

regression (or simply principle components regression, hereafter referred to as PCR), a 

statistical method utilized by the Natural Resources Conservation Service (NRCS) 

(Garen, 1992; Garen and Pagano, 2007). The goal of PCR is to find one or more linear 

combination(s) of predictor variables which explains the greatest amount of variability in 

a given response variable (Shlens, 2014), where each of these linear combinations is 

called a principal component. PCR is well-suited for exploring the potential benefits of 

including soil moisture data in streamflow forecasts in rainfall-dominated regions 

because it is far simpler than mechanistic models and because it requires no data from the 

forecast period, allowing forecasts to be made months in advance, providing water 

managers ample time for decision making. PCR has often been employed using snow 

water equivalent (SWE) data as the primary input variable (i.e., predictor) used to predict 

seasonal streamflow volumes (i.e., response) (Garen, 1992). However, Harpold et al. 

(2017) showed that the inclusion of soil moisture data in PCR analysis improved 
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operational streamflow forecast skill in 12 snow-dominated watersheds in the Western 

U.S. 

Soil moisture data are underutilized in streamflow forecasting, despite the well-

understood influence of soil moisture on infiltration capacity, soil profile storage 

capacity, and surface runoff (Aubert et al., 2003; Rosenberg et al., 2013; Akbar et al., 

2018). In the few instances when soil moisture information has been included in 

streamflow forecasting models, the information was often based on model-derived soil 

moisture values, such as those produced by the SAC-SMA model, rather than in-situ 

measurements (e.g., Koster et al., 2010; Maurer and Lettenmaier, 2004). The use of 

model-based soil moisture information may lead to potentially large differences between 

estimated and actual soil moisture and, in turn, streamflow values (Koster et al., 2009). 

Due to recent increases in the number of state- and nation-wide soil moisture monitoring 

networks, in-situ soil moisture data are readily available in many locations throughout the 

U.S. (Ochsner et al., 2013). However, despite the increasing availability of in-situ soil 

moisture data in many areas and the well-known influence of soil moisture on rainfall-

runoff partitioning, these data have not been used operationally by the NRCS, nor is any 

information available regarding the performance of PCR streamflow forecasting models 

using these data in rainfall-dominated watersheds (Rosenberg et al., 2013). 

We seek to address this knowledge gap by incorporating long-term soil moisture 

monitoring data from multiple rainfall-dominated watersheds into a PCR methodology 

similar to that used by Harpold et al. (2017) in order to answer a practical question of 

great importance in hydrology: How does the inclusion of soil moisture data influence 

seasonal streamflow forecast accuracy in regions where rainfall is the primary driver of 
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surface runoff?  Therefore, our objective was to evaluate the potential improvements 

from including in-situ soil moisture data in PCR-based streamflow forecasts in rainfall-

dominated watersheds. To achieve this, we (1) developed and tested a modified PCR 

model which incorporates precipitation and soil moisture data to predict seasonal 

streamflow volumes in several watersheds with differing seasonal streamflow 

characteristics; (2) quantified the forecast accuracy improvement provided by the 

inclusion of soil moisture data, if any; and (3) determined how seasonal streamflow 

forecast improvements vary across different forecast lead times. 

 

MATERIALS AND METHODS 

Site Descriptions 

This study focuses on the analysis of four watersheds in rainfall-dominated 

regions of the U.S.- one in Arizona, two in Oklahoma, and one in Georgia. The Walnut 

Gulch (hereafter abbreviated as AZ-WG) watershed in Arizona is home to the USDA-

Agricultural Research Service (USDA-ARS) Southwest Watershed Research Center, 

which has collected precipitation data at 88 locations and soil moisture data at two soil 

profiles since 1990 (Figure 1a). All data from AZ-WG used in the current study are 

available for download at https://www.tucson.ars.ag.gov/dap/.  

The Little Washita (hereafter abbreviated as OK-LW) and Fort Cobb (hereafter 

abbreviated as OK-FC) watersheds in Oklahoma contain USDA-ARS Micronets, in-situ 

monitoring networks with long-term soil moisture and precipitation measurement stations 

which are overseen by the Grazing Lands Research Laboratory (Figure 1b and 1c). At 

each monitoring location, daily precipitation and soil moisture data have been collected 
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continuously since 2005 (OK-FC) and 2006 (OK-LW). All precipitation and soil 

moisture data from OK-FC and OK-LW used in the current study are available for 

download at http://ars.mesonet.org/form/ars-data-request. 

The Little River (hereafter abbreviated as GA-LR) watershed in Georgia has been 

monitored by the USDA-ARS Southeast Watershed Research Laboratory since 1968, 

with precipitation data available from 46 rain gauges beginning in 1968 and soil moisture 

data from 29 measurement locations beginning in 2001 (Figure 1d). Data for the GA-LR 

watershed are available at http://www.tifton.uGA-LR.edu/sewrl/radio/lrdata.htm. A 

summary of watershed characteristics, instrumentation, and study-specific meteorological 

and hydrological information can be found in Table 1. 

The AZ-WG watershed has an area of 149 km2, a mean elevation of 1428 m a.s.l., 

and soils that range from clay loams to gravelly loams (Keefer et al., 2008). Long-term 

mean annual precipitation in the watershed is 312 mm, with approximately 60% of 

annual rainfall occurring in the summer monsoon months of July, August, and September 

(Goodrich et al., 2008; USDA-ARS Southwest Watershed Research Center webpage). 

The mean annual temperature of the watershed is 18° C and the primary vegetative cover 

types are shrubs and grasses (Keefer et al., 2008). The OK-FC watershed has an area of 

786 km2 (area above the dam, Figure 1b), a mean elevation of 467 m a.s.l., and the 

dominant soil type is Pond Creek fine sandy loam (Moriasi et al., 2014). The long-term 

mean annual precipitation is 816 mm and the long-term mean annual temperature is 16° 

C (USDA-ARS Grazing Lands Research Laboratory). The primary land uses are cropland 

and grassland (Starks et al., 2014b). The OK-LW watershed has an area of 610 km2, a 

mean elevation of 393 m a.s.l., and soils ranging from fine sand to silty loam (Moriasi et 
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al., 2014a; Allen and Naney, 1991). The watershed’s long-term mean annual precipitation 

is 760 mm and its long-term mean annual temperature is 16° C (USDA-ARS Grazing 

Lands Research Laboratory). The primary land uses are range, pasture, and cropland 

(Steiner et al., 2008; Starks et al., 2014b). The GA-LR watershed has an area of 334 km2, 

a long-term mean annual precipitation of 1200 mm, mean annual temperature of 19° C, 

and is dominated by Tifton loamy sand (36%), Alapaha loamy sand (12%), and Kinston 

and Osier fine sandy loam soil types (Bosch et al., 2007a; Sullivan et al., 2007; CEAP 

Project Plan, 2005; Sheridan, 1997). Land use in the watershed is estimated to be 50% 

woodland, 31% row crops, 10% pasture, and 2% water based on Landsat remote sensing 

imagery (Sullivan et al., 2007). 

 

Precipitation Input Data  

In the AZ-WG watershed, precipitation data were collected at one-minute 

intervals using digital rain gauges (Goodrich et al., 2008). These data were combined to 

produce daily precipitation totals. In the OK-FC and OK-LW watersheds, precipitation 

measurements have been collected in 15-minute intervals at each of the monitoring 

stations using tipping-bucket rain gauges since 2000 (Starks et al., 2014a). Precipitation 

measurements were collected every 5 minutes in the GA-LR watershed, using weighing 

rain gauges from the inception of the stations until 1993, when weighing rain gauges 

were replaced with tipping-bucket rain gauges (Bosch et al., 2007b).  

Watershed mean precipitation data were used in the current study for all 

watersheds, with no elevation or area weighting, following the method of Harpold et al. 

(2017). While no precipitation data were missing at the AZ-WG watershed due to the 
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relatively low frequency of rainfall, there were some missing precipitation records in the 

other study watersheds. Quality control procedures for the OK-LW and OK-FC 

watersheds included filling missing precipitation records with data from the nearest 

Oklahoma Mesonet station (McPherson et al., 2007). Quality control procedures for the 

GA-LR watershed included filling in missing precipitation records with data from the 

nearest or second nearest monitoring station with data available on the missing date. If 

the two nearest stations had no data available on the missing date, the mean value of the 

remaining sites in the watershed was used to fill the missing data point. 

 

Soil Moisture Input Data  

At AZ-WG, voltage differential data were collected using a Delta-T ThetaProbe 

(Delta-T Devices, Ltd., Cambridge, UK) at two locations and converted to volumetric 

water content using methods described in Keefer et al. (2008). At both measurement 

locations in the watershed, soil moisture measurements were made at six depths- 5, 15, 

30, 50, 75, and 100 cm; however, only the top three depths were used in our analysis in 

order that the effective soil profile depth be comparable to those of the other study 

watersheds. Daily depth-weighted mean volumetric water content data were calculated by 

assuming soil moisture sensors were located at the center of a given soil layer (i.e., the 

data recorded by the sensor at 5 cm is representative of the condition of the layer from 0-

10 cm, etc.), resulting in an effective soil profile depth of 40 cm for the watershed. 

Quality control procedures for soil moisture data at all sites in all watersheds included the 

removal of any unrealistic volumetric water content values (< 0.0 m3 m-3 or > 0.60 m3 m-

3) and filling gaps using linear interpolation. 
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Soil volumetric water content data for all other watersheds (OK-FC, OK-LW, and 

GA-LR) were collected using Stevens HydraProbe sensors (Stevens Water Monitoring 

Systems, Inc., Portland, Oregon). Sensors were installed at 5-, 25-, and 45-cm depths in 

the OK-LW and OK-FC watersheds. Mean daily volumetric water content data for OK-

LW and OK-FC were downloaded for each sensor depth from 

http://ars.mesonet.org/form/ars-data-request. Data were depth-weighted in the same 

fashion as described above, resulting in an effective soil profile depth of 50 cm for the 

OK-FC and OK-LW watersheds. 

Soil moisture sensors were added at 29 of the existing precipitation monitoring 

locations in the GA-LR watershed beginning in 2001 (Bosch et al., 2007b). Soil moisture 

measurements were collected at 5, 20, and 30 cm below the surface at one-minute 

intervals. One-minute data were summarized by data loggers at each station to provide 

mean soil moisture values every half-hour. Daily volumetric water content data were 

calculated by summing 30-minute data over 24 hours and daily depth-weighted means 

were calculated by assuming data from the 5-cm sensors were representative of the 0-10 

cm layer, and that the mean value of the 20- and 30-cm sensors was representative of the 

layer from 10-40 cm, yielding an effective profile depth of 40 cm. As with the 

precipitation data, mean watershed soil moisture metrics values were calculated with no 

area or distance weighting. 

 

Streamflow Input Data 

Streamflow data in the AZ-WG watershed were measured using specialized 

flumes. Digital runoff records from the flume at the outlet of the watershed began in 2000 
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and were used here (Figure 1a) (Stone et al., 2008). Streamflow data for the OK-LW 

watershed were collected from USGS monitoring gauge #07327550, the gauge in the 

watershed with the largest contributing area (Figure 1b). Gauge #07327550 has reported 

instantaneous streamflow data every 15 minutes from 1992-present. Daily streamflow 

volume totals were calculated from 15-minute data by assuming reported values were 

representative of flow rates for the entire 15-minute time interval prior to measurement 

and summing time-weighted streamflow records for each 24-hour period. Periods of 

missing data, which accounted for ~20% of the daily data record, were filled using an 

area-weighted mean of one upstream gauge (#07327442) and one downstream gauge 

(#07328100), similar to the method described by Shu and Ouarda (2012). Using this 

approach, daily streamflow estimates were unsatisfactory when compared to available 

data from the target gauge (#07327550). However, when the same method was used to 

estimate total monthly streamflow volumes, results showed a strong correlation (R2 = 

0.92) with available measured total monthly streamflow records at the target gauge. Thus, 

estimated monthly streamflow total data were used to infill months with fewer than 25 

days of streamflow records at the target gauge. Since the PCR model is used to predict 

total streamflow during the forecast period, the use of monthly data rather than daily data 

has no effect on the model or its inputs. 

There are several USGS streamflow gauges in the OK-FC watershed, but none 

captures streamflow from the entire watershed area above the Fort Cobb Reservoir. For 

this reason, we used estimated daily inflow volumes to the Fort Cobb Reservoir as a 

proxy for daily streamflow volumes. Daily inflow volume data for the Fort Cobb 

Reservoir are provided by the Army Corps of Engineers and are estimated using a daily 
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reservoir water balance calculation (http://www.swt-wc.usace.army.mil/FCOB. 

lakepage.html). Lake water levels, changes in lake storage, precipitation data, and 

potential evapotranspiration values are used to estimate the total daily inflow to the 

reservoir. Daily reservoir inflow data are available from November 1994 until the present 

at http://www.swt-wc.usace.army.mil/FCOBcharts.html. 

Mean daily streamflow data are collected at several locations in the GA-LR 

watershed by USDA-ARS monitoring gauges. Data from a gauge near the watershed 

outlet (gauge B, Figure 1d) are available for the years 1971-2015 and were used here. 

Precipitation, soil moisture, and streamflow data were gathered for all watersheds and all 

available water years. Data were retained only for water years when all data types were 

available and only for precipitation and soil moisture stations which reported data for the 

entirety of those water years, resulting in 9 water years of data (2009-2017) from 2 soil 

moisture profiles and 88 rain gauges at AZ-WG, 12 water years of data (2007-2018) from 

9 co-located soil moisture and precipitation sites at OK-LW, 13 water years of data 

(2006-2018) from 13 co-located soil moisture and precipitation sites in the OK-FC 

watershed, and 12 water years of data (2004-2015) from 14 co-located soil moisture and 

precipitation sites at GA-LR. Study periods and additional data for each watershed are 

summarized in Table 1. 

 

Soil Moisture Metrics 

In addition to volumetric water content (θv; m
3 m-3), four other soil moisture metrics were 

calculated and included in PCR analyses following the approach of Harpold et al. (2017): 

percent saturation (%), total soil water storage (mm), available storage (mm), and the soil 
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moisture index (SMI; unitless). The procedures described below were used to estimate 

these soil moisture metrics for all study watersheds. 

         Percent saturation was calculated as the ratio of daily θv to the satiated water 

content of the dominant soil type at each soil moisture monitoring location as reported in 

the NRCS SSURGO database. Daily percent saturation values were calculated for each 

soil layer and then depth-weighted according to the procedures described in section 2.2.1. 

Total soil water storage is the depth of water currently stored in a soil profile. Storage for 

each soil layer was calculated by multiplying the daily θv of the layer by the thickness of 

the layer according to the depth-weighting scheme used. Total storage was calculated as 

the sum of storage of each soil layer. 

Available storage was calculated as the maximum available storage minus the 

total depth of water currently stored in the profile. Maximum available storage was 

estimated by multiplying the satiated water content of each soil layer as reported in the 

NRCS SSURGO database by the thickness of the layer and adding together the maximum 

storage values for each soil layer, similar to the calculation for total storage. If SSURGO 

data were unavailable for a certain soil layer, the soil properties were assumed to be the 

same as the overlying layer. If SSURGO data were unavailable for a location, the soil 

properties were estimated using the mean values of soil properties at the other locations 

within that watershed for which SSURGO data were available. 

The SMI was calculated by: 

𝑆𝑀𝐼 =  −5 + 10(𝜃𝑣 −  𝜃𝑤𝑝)/(𝜃𝑓𝑐 − 𝜃𝑤𝑝)    (1) 

where θv was the reported volumetric water content for a given day, θwp is the volumetric 

water content at wilting point (-1500 kPa), and θfc is the volumetric water content at field 
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capacity (-33 kPa) (Hunt et al., 2009). Daily SMI values were found for each soil depth 

and then depth-weighted. θfc and θwp values for each site were taken from the SSURGO 

database and unavailable data were estimated as described above. 

 

PCR Forecasts 

Principal component analysis and regression is a well-known multivariate 

technique for incorporating data from multiple monitoring sites into a statistical model 

while minimizing the effects of intercorrelation between measured variables (Shlens, 

2014). Briefly, principal component analysis finds one or more non-correlated linear 

combination(s) of some intercorrelated predictor variables. Each of these linear 

combinations is called a principal component, and these non-correlated principal 

components are used to develop a linear regression which is then used to estimate the 

value of the response variable given a set of input variables. In terms of linear algebra, 

the fundamental mechanism of PCR is a change of basis and re-projection of some 

orthogonal linear combination(s) of the original predictor variable data into a new phase 

space which, in most cases, captures a large amount of the observed variability in the 

original predictor variables. A thorough introduction to the statistical procedures involved 

in PCR analysis is given by Shlens (2014), a summary of the use of PCR models in 

standard NRCS streamflow forecasts is provided in Garen and Perkins (2011), and 

additional applications of the method in hydrology are discussed in Haan (1977). 

We developed a PCR methodology similar to that used by Harpold et al. (2017), 

which is an adaptation of the standard NRCS forecasting method described by Garen 

(1992). Harpold et al. (2017) incorporated antecedent precipitation, snow water 
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equivalent, and soil moisture data as input data in their PCR analysis of 12 snow-

dominated watersheds in Utah and California. Because snowmelt runoff is negligible in 

our study watersheds, the snow water equivalent input variable used in traditional NRCS 

forecasts and by Harpold et al. (2017) was not used in the present study. Similar to 

Harpold et al. (2017), we chose to use a two-step PCR analysis in order to distinguish the 

presumably first-order control of antecedent precipitation on streamflow from the 

presumably second-order control of soil moisture. In our case, this involved an initial 

PCR analysis using only antecedent precipitation data as inputs (hereafter called the 

“baseline” scenario) to estimate seasonal streamflow totals and a secondary PCR 

(hereafter called the “two-step” scenario) which estimated the residuals between 

estimated and observed streamflow volumes from the baseline scenario using the soil 

moisture metrics described in section 2.3. 

 

Baseline PCR Forecasts 

Baseline PCR forecasts were made for each water year using mean cumulative watershed 

precipitation data accumulated from the beginning of the water year until the forecast 

date (i.e., antecedent precipitation). These data were calculated by averaging the 

cumulative precipitation from the beginning of each water year until the forecast date for 

all precipitation measurement stations within each individual watershed. These 

antecedent precipitation values were used as the predictor variables in the baseline PCR 

analyses. The response variable in the baseline PCR analyses was total streamflow 

volume during the forecast target period. For the three wetter watersheds, the forecast 

target period was the four months of greatest median monthly streamflow (Figure 2b-d). 
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Due to extremely low streamflow volumes in the AZ-WG watershed, the forecast target 

period was the four months of greatest mean monthly streamflow (Figure 2a). This led to 

target forecast periods of September-December for the AZ-WG watershed, April-July for 

the OK-FC watershed, February-May for OK-LW, and January-April in the GA-LR 

watershed (Table 1). In the baseline scenario, principal components were only retained by 

the model if their regression coefficients were positively correlated with the response 

variable (i.e., higher cumulative precipitation leads to greater seasonal streamflow 

volumes) and significantly different from zero based on a t-test (p-value < 0.1). These are 

the same criteria used by Harpold et al. (2017), and forecasts were only considered 

statistically valid if the underlying PCR model satisfied these criteria. 

 

Two-step PCR Forecasts 

         Two-step forecasts were made by adding a second PCR analysis after the baseline 

scenario which utilized mean depth-weighted soil moisture metrics as described in 

section 2.3 to estimate the residuals between predicted and observed seasonal streamflow 

totals from the baseline scenario for each water year. In order to account for the different 

magnitudes of the five soil moisture metrics and to prevent the model from favoring any 

one metric based on its magnitude, all soil moisture metrics were normalized using their 

z-score prior to being input into the PCR model (Haan, 1977). Finally, the baseline 

scenario total streamflow volume estimates and step two streamflow residual estimates 

were summed for each water year, yielding final streamflow volume estimates for each 

year. 
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Because PCR analysis requires a single value of each predictor variable for each 

water year, daily soil moisture metric data must be summarized into a single value which, 

in theory, should represent the general soil moisture condition of each watershed over the 

portion of the year during which soil moisture most strongly influences streamflow 

during the subsequent forecast target period. Here, we chose to use the mean value of 

each soil moisture metric over some optimal time period prior to the forecast date, similar 

to Harpold et al. (2017). To determine which time period provided the best results, eight 

different soil moisture metric averaging periods were tested at the 0-month lead time for 

each watershed. These averaging periods were modeled after those used by Harpold et al. 

(2017). While the length of each averaging period and its temporal relation to the target 

forecast period is the same across all watersheds, the periods were shifted between 

watersheds because of the different target forecast periods. The averaging periods used 

capture a range of soil moisture conditions both near the beginning of the forecast period, 

over longer time periods, and in prior seasons.  

In addition to testing these eight soil moisture averaging periods at the 0-month 

lead time, we also tested using soil moisture metrics from the first day of the forecast 

period (SM1, Figure 3) at all lead times in order to determine whether using data nearer 

the beginning of the forecast period resulted in greater model accuracy. A generalization 

of all averaging time periods relative to the forecast period is shown in Figure 3. For each 

watershed and lead time, results of forecasts made using the soil moisture averaging 

period which included only data prior to the forecast date and which provided the best 

results at the 0-month lead time were compared to model results from forecasts made 

using soil moisture metrics from the first day of the forecast period at all lead times. 
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Forecasts with the highest accuracy were used and are reported in Table 2, as are the soil 

moisture averaging periods used for each watershed/lead time combination. 

Like baseline forecasts, two-step PCR forecasts also retained only principal 

components with a t-test p-value of < 0.1. However, the qualification that regression 

coefficients be positive was not applied in the second step because it is not necessarily 

true that residuals between observed streamflow values and estimated values from the 

baseline forecast must be positively correlated with soil moisture.  

Baseline and two-step forecasts were evaluated for each watershed for all 

available water years with lead times of 0-3 months. Each scenario and lead time 

combination was run independently for each watershed, for a total of 32 model runs (2 

scenarios X 4 watersheds X 4 lead times). All PCR and statistical analyses were carried 

out using a series of custom MATLAB scripts and functions. Forecast accuracy was 

quantified using the root mean square error (RMSE), the coefficient of determination 

(R2), the RMSE to observation standard deviation ratio (RSR), and bias. 

 

RESULTS AND DISCUSSION 

Weather and streamflow during study period 

The markedly differing precipitation and streamflow totals across watersheds 

(Tables 1 and 2) are representative of the watershed characteristics in their respective 

regions, and this diversity was a primary reason for their inclusion in our study. Water 

year precipitation during the study period ranged from 119-388 mm yr-1 at AZ-WG, 320-

1155 mm yr-1 at OK-FC, 360-1328 mm yr-1 at OK-LW, and from 766-1571 mm yr-1 at 

GA-LR (Table 1). Mean water year precipitation during the study period was 307 mm yr-
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1 at AZ-WG, 750 mm yr-1 at OK-FC, 847 mm yr-1 OK-LW, and 1131 mm yr-1 at GA-LR. 

There was substantial variability in annual precipitation levels for OK-FC and OK-LW, 

including a multi-year drought beginning in the fall of 2010 which corresponds to the 

lowest water year total precipitation values of 320 mm and 360 mm for those watersheds, 

respectively. 

Streamflow volumes were normalized by watershed area and are presented here 

as a depth (mm). Seasonal streamflow volumes during the target forecast period ranged 

from 0.0-1.8 mm at AZ-WG, 12-94 mm at OK-FC, 6.6-102 mm at OK-LW, and 8.0-349 

mm at GA-LR with mean seasonal streamflow (Q) values of 0.41 mm at AZ-WG, 31.3 

mm at OK-FC, 33.0 mm at OK-LW, and 187 mm at GA-LR (Table 1). Mean depth-

weighted volumetric soil water content from October 1 to the forecast date for the 0-

month lead time forecast ranged from 0.022-0.033 m3 m-3 at AZ-WG, 0.018-0.097 m3 m-3 

at OK-FC, 0.007-0.116 m3 m-3 at OK-LW, and 0.015-0.152 m3 m-3 at GA-LR, with mean 

values of 0.027 m3 m-3, 0.052 m3 m-3, 0.054 m3 m-3, and 0.062 m3 m-3, respectively. The 

low mean volumetric water contents reported for the watersheds are likely due to the 

relatively high sand contents of the dominant soil mapping units in the watersheds as 

reported by the NRCS SSURGO database (Table 1). 

 

Baseline forecasts 

Baseline forecasts, those based on antecedent precipitation alone, had little 

predictive power. Statistically valid baseline forecasts could be made only for the OK-FC 

and GA-LR watersheds, and only at the 0-month lead time (Table 2, Figure 4b,d). All 

other baseline forecast scenarios resulted in no principal components being retained due 
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to the qualifications for retaining principal components discussed in section 2.4.1. The 0-

month lead time forecasts at OK-FC had an RMSE of 18.2 mm, and an R2 value of 0.27, 

indicating that the forecast had a relatively high amount of error and explained only 27% 

of the variability in observed seasonal streamflow. On average, the model over-predicted 

seasonal streamflow in the OK-FC baseline scenario, with a bias of 2.56 mm and a range 

in annual bias of -45.6 mm to 40 mm. RSR performance criteria described by Moriasi et 

al. (2007) normalize model RMSE by the standard deviation of the observed data, 

allowing comparisons to be made across watersheds. RSR values in the range of 0.00-

0.50 are considered to be very good, 0.51-0.60 to be good, 0.61-0.70 to be satisfactory, 

and >0.70 to be unsatisfactory. Using these criteria, the RSR value of the OK-FC baseline 

forecast was 0.82, which is considered unsatisfactory. 

Similar results were found for the 0-month lead time at GA-LR, which had a 

relatively high amount of error (RMSE = 102 mm), and captured little of the variability in 

observed seasonal streamflow (R2 = 0.19) (Table 2). On average, the model predicted 

seasonal streamflow in the GA-LR baseline scenario without bias, but had a large range 

in annual bias of -212 mm to 113 mm. Additionally, the RSR value of this forecast was 

0.86, which is considered unsatisfactory based on the RSR performance criteria described 

above. 

Observed and estimated seasonal streamflow totals for all baseline forecasts are 

shown in Figure 4, where each point represents the estimated and observed streamflow 

volumes during the forecast period for each water year. While only the OK-FC and GA-

LR watersheds (Figure 4b,d) had statistically valid forecasts in the baseline scenario, 

baseline results are shown for all watersheds in order to demonstrate the inability of 
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antecedent precipitation data alone to produce accurate forecasts and to show the 

improvements gained due to the inclusion of soil moisture data. The deviation from the 

1:1 line and high degree of scatter of data points for AZ-WG and OK-LW (Figure 4a,c) 

are a reflection of the absence of predictive power of baseline forecasts for these 

watersheds. Even when baseline forecasts were statistically significant (Figure 4b,d), the 

model underestimated flow during wet years and overestimated flow during dry years, an 

indication of low baseline forecast skill. 

Our results differ from those of Harpold et al. (2017), whose streamflow forecasts 

without soil moisture data accounted for, on average, 77% of the observed variability in 

streamflow in snow-dominated watersheds. However, those forecasts relied primarily on 

snow water equivalent data, whereas our baseline forecasts rely solely on antecedent 

precipitation data. The low accuracy of the baseline forecast observed here is not entirely 

unexpected, as Garen and Perkins (2011) state that even in the snow-dominated Western 

U.S. the ability of standard operational NRCS streamflow prediction models to produce 

accurate forecasts decreases as snowpack decreases and as precipitation inputs to 

watersheds increase. The general inability of the baseline PCR model to produce 

meaningful streamflow forecasts for the rainfall-dominated watersheds presented here 

suggests that precipitation data alone do not provide adequate information to predict 

streamflow in such environments, and that additional PCR model predictor inputs may be 

necessary to provide accurate forecasts. Thus, the inclusion of soil moisture data may be 

considerably more influential for streamflow forecasts developed in rainfall-dominated 

regions than for those used in snow-dominated ones. 
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Testing soil moisture averaging periods 

Following Harpold et al. (2017), we tested eight different soil moisture averaging 

periods at the 0-month lead time in order to determine which averaging period provided 

the most accurate forecasts. Definitions of the eight soil moisture averaging periods for 

each watershed and the results of testing each averaging period within the two-step PCR 

model are given in Table 3, and the averaging periods are generalized and shown relative 

to the forecast period for each watershed in Figure 3. In addition, we also tested the use 

of soil moisture metrics from the first day of the forecast period at all lead times. The 

results of these forecasts are given for each watershed in Table 4, and the generalized 

averaging periods are shown as gray stars in Figure 3. 

Forecast results at the 0-month lead time varied among the different soil moisture 

averaging periods in each watershed, indicating that the two-step PCR model is sensitive 

to changes in the soil moisture metric inputs (Table 3). The 0-month lead time forecasts 

generally performed best when soil moisture data relatively near the forecast date were 

used (Table 3). At AZ-WG, the period from July-August (averaging period 3) provided 

the best 0-month forecast results. At OK-FC, the period from September-November 

(averaging period 7) provided the best 0-month forecast results. At OK-LW, the day of 

February 1 (averaging period 1) provided the best 0-month forecast results. At GA-LR, 

the day of January 1 (averaging period 1) provided the best 0-month forecast results. 

 

Two-step forecasts 

The inclusion of soil moisture metrics in the two-step forecasts led to at least one 

principle component being retained in all scenarios, which allowed forecasts to be made 
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at all lead times in all watersheds (Table 2). For the 0-month lead time, the soil moisture 

averaging periods which provided the best forecast results in each watershed were used 

(Table 3). At longer lead times, we tested two types of averaging periods: 1) the soil 

moisture averaging period from Table 3 which yielded the most accurate results at the 0-

month lead time and which included only soil moisture data prior to the forecast date, or 

2) the soil moisture metrics on the forecast date (SM1, Figure 3). Whichever of these two 

soil moisture averaging periods provided the most accurate forecast at each lead time was 

used. All watershed/lead time/averaging period combinations are shown in Table 2. 

RMSE was lowest for all watersheds at the 0-month lead time, and generally 

increased as lead time increased at OK-FC and OK-LW. The increases in RMSE seen at 

the 1- and 3-month lead time at AZ-WG may be due to the changes in soil moisture 

averaging period from the averaging period of the prior lead time. The decrease in RMSE 

observed at the 3-month lead time at GA-LR is a result of an increased number of 

retained principle components as compared to the 1- and 2-month lead times (Table 2). 

R2 values were highest at the 0-month lead time for all watersheds and generally 

decreased as lead time increased (Table 2). The 0-month lead time two-step forecasts 

explained, on average, 78% of the variability in seasonal streamflows in the study 

watersheds. The R2 values resulting from the present two-step forecasts are comparable 

to the 0-month lead time results found by Harpold et al. (2017) for snow-dominated 

watersheds. However, the improvement in 0-month lead time forecast accuracy when soil 

moisture data are included was nearly an order of magnitude higher for these rainfall-

dominated watersheds (mean R2 improvement of 0.67) than for the snow-dominated 

watersheds in the Harpold et al. (2017) study (mean R2 improvement of 0.07). 
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Forecast accuracy generally decreased with increasing lead time in all of the study 

watersheds. One-month lead time forecasts explained, on average, 62% of seasonal 

streamflow variability; 2-month lead time forecasts explained, on average, 56% of 

seasonal streamflow variability; and 3-month forecasts explained, on average, 50% of 

seasonal streamflow variability. This trend has also been observed in a number of prior 

streamflow forecasting studies (Pagano and Garen, 2005; Mahanama et al., 2012; 

Mahanama et al., 2008). However, despite the fact that forecast accuracy decreased at the 

longer lead times, the lowest performing two-step forecast still explained more variability 

in streamflow (35%) than the two 0-month lead time baseline forecasts (27% and 19%). 

Bias was zero for all two-step forecasts (Table 2), indicating that on average, the 

PCR model tended to predict seasonal streamflow volumes accurately. However, in all 

watersheds, there is a wide range in bias, with all forecasts having simulation years with 

both negative and positive bias (Table 2). In general, the magnitude of the maximum bias 

is similar to that of the minimum bias, leading to overall bias values of zero. 

Unlike the unsatisfactory results of the 0-month lead time baseline forecasts at 

OK-FC and GA-LR and the insignificant baseline forecasts in other watersheds, all 0-

month lead time two-step forecasts were rated as good or very good based on the RSR 

performance criteria described previously (Table 2). Across all lead times, five two-step 

forecasts (31%) were classified as very good, four (25%) as good, five (31%) as 

satisfactory, and two (13%) as unsatisfactory (Table 2). Thus, 87% of the two-step 

forecasts developed using the current method provide results which are at least 

satisfactory and provide meaningful information regarding future streamflow volumes. 
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In all but the AZ-WG watershed, a considerable decrease in forecast accuracy is 

observed between certain lead times (i.e., OK-FC at 2- to 3-month lead times, OK-LW at 

0- to 1-month lead times, GA-LR at 1- to 2-month lead times). This is most likely due to 

the decrease in the number of principal components retained by the PCR model in all of 

the cases mentioned above (Table 2). This decrease in the number of principle 

components used in the model consequently reduces the amount of predictive 

information included in the model, thus reducing model accuracy. 

Observed and estimated seasonal streamflow totals for all two-step forecasts are 

shown in Figure 4, where each point represents one water year’s streamflow volumes. In 

all watersheds, the inclusion of soil moisture data in the PCR model led to drastically 

improved model accuracy as compared to baseline forecasts. This is especially true for 

years when baseline forecasts had a large residual, regardless of whether the baseline 

forecast overestimated or underestimated seasonal streamflow totals. 

 

Soil moisture averaging periods at longer lead times 

Half of forecasts at lead times of one month or more had the most accurate results 

when using soil moisture averaging period 7 (six and seven months prior to forecast), 

while the other half performed best using either water year mean soil moisture metrics 

(averaging period 8) or soil moisture metrics from the first day of the forecast period 

(averaging period 1, longer lead times) (Figure 3, Table 3, Table 2). Coupling between 

soil moisture, groundwater, and streamflow may provide one pathway by which soil 

moisture conditions 6 to 7 months prior could influence streamflow during the target 
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forecast period. Increases in soil water stored in these watersheds may eventually lead to 

increased groundwater discharge, which would contribute to baseflow later in the year. 

The majority (83%) of soil moisture averaging periods used at lead times of one 

month or greater summarize soil moisture data from a one- or two-month period or from 

a single day, rather than from longer time periods. These results are the opposite of those 

found by Harpold et al. (2017), who found that using a longer soil moisture averaging 

period provided the greatest forecast improvements in their snow-dominated watersheds. 

Our results suggest that there may be relatively short time periods, sometimes months in 

advance of the periods of peak streamflow, when soil moisture data are particularly 

beneficial for inclusion in the current streamflow forecasting method. However, while it 

is plausible that these results may be caused by physical processes as described above, 

due to the purely statistical nature of the PCR model and the relatively small number of 

watersheds studied here, a conclusive physical explanation regarding the importance of 

the soil moisture averaging periods requires further investigation. 

 

Comparison with other forecasting methods 

Our observed increases in model accuracy due to the incorporation of soil 

moisture data align with numerous prior studies which have employed land surface 

models (Crow et al., 2018; Mahanama et al., 2008), conceptual models (Aubert et al., 

2003), and statistical models (Harpold et al., 2017) to demonstrate improved streamflow 

forecast accuracy using soil moisture data. Our results are consistent with a growing body 

of literature showing that the ability of even a small number of in-situ soil moisture 

monitoring locations in a watershed provide beneficial information about antecedent 
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moisture conditions leading to improved streamflow forecasts (Harpold et al., 2017; 

Aubert et al., 2003). However, to the authors’ knowledge, the present study is the first to 

show that incorporating in-situ soil moisture data into a PCR model produces substantial 

improvement in accuracy of seasonal streamflow forecasts in rainfall-dominated 

watersheds. 

 

Limitations 

We recognize that factors not considered in the present analysis may have a 

significant impact on the ability of the PCR model to accurately predict streamflow. For 

example, the relatively poor performance of the PCR model at longer lead times in the 

OK-LW watershed may be due to the relatively large number of surface water retention 

structures located within the watershed (Moriasi et al., 2014b). While the majority of 

these structures are small, the large number of retention dams in the watershed likely has 

a significant impact on observed streamflow volumes. The impact of these structures was 

not considered directly in the present study, but the PCR method still provided accurate 

forecasts at the 0- and 1-month lead times for OK-LW. 

The relatively high sand contents of the soils in the watersheds considered here is 

an additional limitation. The sand content of the study watersheds ranges from 43% to 

84%, and AZ-WG has gravelly soils as well (see Table 1). It is not clear how these high 

sand contents impacted our results or how the PCR model might perform in less sandy 

areas, although some conclusions might be drawn by comparing the two Oklahoma 

watersheds.  Despite being in close geographic proximity and having similar annual 

precipitation and total seasonal streamflow, OK-FC (average sand content of 43%) and 
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OK-LW (84% sand) displayed differing seasonal streamflow patterns (Figure 2) and 

model performance at lead times longer than 0-months (Table 2).  Streamflow in OK-LW 

was higher earlier in the year when soil moisture tends to be higher (Krueger et al., 

2016), whereas peak streamflow was later for OK-FC. Likewise, model performance at 

lead times greater than 0-months was poorer for OK-LW.  Each of these trends are 

indicative of a sandy soil that is able to retain less soil moisture compared with heavier 

textured soils in the OK-FC watershed. Future studies should assess the impact of soil 

type by applying the PCR forecasting methodology used here across watersheds with a 

broader range of soil types. 

Additional hydrological variables such as groundwater contributions to 

streamflow and the groundwater table depth were not considered in the present study, but 

may provide additional skill for PCR forecasts in watersheds where groundwater/surface 

water interactions are known to occur. While the statistical PCR model presented requires 

fewer inputs than a physically-based model would, the results of our analysis suggest that 

this type of model may still provide useful information for predicting future streamflow 

volumes at multiple lead times in rainfall-dominated watersheds. 

 

CONCLUSION 

 The control of soil moisture on rainfall-runoff partitioning is well known, yet 

current operational streamflow forecasting systems have failed to take advantage of 

increasingly available soil moisture data. Harpold et al. (2017) showed that forecast 

accuracy in snow-dominated watersheds was improved by incorporating soil moisture 

data. Even greater improvements were achieved here for rainfall-dominated watersheds, 
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adding to the growing body of evidence in support of the inclusion of soil moisture data 

in operational streamflow forecasts. This study provides clear evidence of the usefulness 

of the PCR streamflow forecasting method in rainfall-dominated regions, as well as proof 

of seasonal streamflow forecast accuracy improvement in these regions due to the 

incorporation of measured soil moisture data. Forecasts which incorporated soil moisture 

were able to provide seasonal streamflow forecasts at lead times up to three months and, 

compared with forecasts including only precipitation data, improved model R2 values by 

0.66 at the 0-month lead time, 0.62 at the 1-month lead time, 0.56 at the 2-month lead 

time, and 0.50 at the 3-month lead time.  

While the present study focused only on four watersheds, those watersheds 

spanned a wide range of hydrological, ecological, and meteorological conditions, 

suggesting that our methods could be broadly applicable to rainfall-dominated watersheds 

worldwide. Future development of this method should include expansion to additional 

watersheds in other geographical, climatological, and physiographic regions. There is 

also potential to explore the use of remotely-sensed soil moisture data, such as those from 

the SMOS or SMAP satellites (Entekhabi et al., 2010; Kerr et al., 2010), in the place of 

in-situ soil moisture data; however, their relatively short data records may be a limitation. 

The results presented here demonstrate that the PCR method can produce accurate 

seasonal streamflow forecasts in rainfall-dominated regions and that including soil 

moisture data in the PCR model increases forecast accuracy over forecasts made using 

antecedent precipitation data alone. 
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Table 1. Watershed area, number of precipitation (P) and soil moisture (SM) stations; watershed soil types, mean SSURGO database 

profile sand contents (standard deviation in parenthesis), and land uses/covers; water years considered in study; mean annual 

precipitation during study years; target forecast period; and mean seasonal streamflow (Q) during study years (minimum and 

maximum values in parentheses). 

Watershed State Area # P # SM Soil Types Sand 
Land 

Use/Cover 

Water 

Years 
Annual P 

Forecast 

Period 
Seasonal Q 

  km2      %   mm   mm 

Walnut 

Gulch 
AZ 149 88 2 

clay loam,  

gravelly loam 
67 (0) 

shrubland, 

grassland 
2009-2017 307 Sep-Dec 0.41  

Fort Cobb OK 786 13 13 
sandy clay, 

sandy loam 
43 (22) 

cropland, 

pasture 
2006-2018 750 Apr-Jul 31.3  

Little 

Washita 
OK 610 9 9 

silty loam, 

fine sand 
84 (4) 

grassland, 

pasture 
2007-2018 847 Feb-May 33.0  

Little River GA 334 14 14 
sandy clay, 

loamy sand 
49 (29) 

woodland, 

cropland 
2004-2015 1131 Jan-Apr 187  



97 
 

Table 2. Root mean square error (RMSE), coefficient of determination (R2), bias, RMSE to observation standard deviation ratio 

(RSR), RSR performance rating, and number of retained principal components for baseline (ΣP) and two-step (ΣP + SM) PCR 

analyses at 0-, 1-, 2-, and 3-month lead times. Dashes indicate no forecast was made because no principal components were retained. 

Watershed Scenario Lead Time SM period RMSE R2 bias (min, max) RSR RSR Performance # PCs 
  months  mm - mm - Rating  

Walnut Baseline 0 - - - - - - 0 
Gulch (AZ)  1 - - - - - - 0 

  2 - - - - - - 0 

  3 - - - - - - 0 

 Two-step 0 Jul-Aug (SM3) 0.30 0.73 0.00 (-0.37, 0.46) 0.49 Very good 1 

 

 

  1 Oct 1- FD (SM8) 0.39 0.52 0.00 (-0.96, 0.51) 0.65 Satisfactory 1 

  2 Oct 1- FD (SM8) 0.32 0.68 0.00 (-0.52, 0.46) 0.54 Good 1 

  3 1-Jun (SM1) 0.42 0.46 0.00 (-0.71, 0.53) 0.69 Satisfactory 1 

Fort Baseline 0 - 18.2 0.27 2.56 (-45.6, 40) 0.82 Unsatisfactory 1 
Cobb (OK)  1 - - - - - - 0 

  2 - - - - - - 0 

  3 - - - - - - 0 

 Two-step 0 Sep-Nov (SM7) 8.80 0.83 0.00 (-14.8, 15.1) 0.40 Very good 2 

  1 Sep-Nov (SM7) 10.85 0.74 0.00 (-20.1, 19.2) 0.49 Very good 2 

  2 Sep-Nov (SM7) 11.47 0.71 0.00 (-19.8, 20.8) 0.52 Good 2 

  3 Sep-Nov (SM7) 15.52 0.47 0.00 (-32.0, 21.8) 0.70 Satisfactory 1 

Little Baseline 0 - - - - - - 0 
Washita (OK)  1 - - - - - - 0 

  2 - - - - - - 0 

  3 - - - - - - 0 

 Two-step 0 Dec-Jan (SM3) 16.0 0.67 0.00 (-34.8, 21.5) 0.55 Good 2 

  1 Jul-Sep (SM7) 20.1 0.48 0.00 (-49.1, 35.4) 0.69 Satisfactory 1 

  2 Jul-Sep (SM7) 21.7 0.39 0.00 (-53.2, 32.3) 0.75 Unsatisfactory 1 

  3 Jul-Sep (SM7) 22.4 0.35 0.00 (-52.2, 28.2) 0.77 Unsatisfactory 1 

Little Baseline 0 - 102 

 

0.19 0.00 (-212, 113) 0.86 Unsatisfactory 1 
River (GA)  1 - - - - - - - 

  2 - - - - - - - 

  3 - - - - - - - 

 Two-step 0 1-Jan (SM1) 41.0 0.87 0.00 (-95.6, 53.9) 0.35 Very good 2 

  1 1-Dec (SM1) 57.51 0.74 0.00 (-91.3, 104) 0.49 Very good 2 

  2 1-Nov (SM1) 83.11 0.46 0.00 (-98.7, 194) 0.70 Satisfactory 1 

  3 1-Oct (SM1) 62.29 0.70 0.00 (-115, 145) 0.53 Good 2 
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Table 3. Soil moisture (SM) averaging periods tested at the 0-month lead time, months in 

each period, RMSE, R2, bias, RSR, and number of retained principal components. Dashes 

indicate that no forecast could be made because no principal components were retained. 

Watershed SM period Months RMSE R2 bias (min, max) RSR # PCs 

    (mm)  - mm  -    

Walnut 1 1-Sep - - - - 0 

Gulch (AZ) 2 Aug 0.34 0.65 0.00 (-0.55, 0.51) 0.56 1 

 3 July-Aug 0.30 0.73 0.00 (-0.37, 0.46) 0.49 1 

 4 June-Aug - - - - 0 

 5 Mar-Aug - - - - 0 

 6 Feb-Mar - - - - 0 

 7 Feb-Apr - - - - 0 

 8 Oct 1- FD 0.35 0.63 0.00 (-0.50, 0.69) 0.57 1 

Fort 1 1-Apr 11.51 0.71 0.00 (-26.7, 12.7) 0.52 2 

Cobb (OK) 2 Mar 13.42 0.60 0.00 (-26.7, 32.6) 0.61 1 

 3 Feb-Mar 15.66 0.46 0.00 (-37.8, 34.9) 0.71 1 

 4 Jan-Mar 14.98 0.51 0.00 (-35.2, 32.6) 0.68 1 

 5 Oct-Mar 15.48 0.47 0.00 (-30.9, 32.4) 0.70 1 

 6 Sep-Oct 14.92 0.51 0.00 (-35.5, 32.2) 0.67 1 

 7 Sep-Nov 8.80 0.83 0.00 (-14.8, 15.1) 0.40 2 

 8 Oct 1- FD 15.48 0.47 0.00 (-30.9, 32.4) 0.70 1 

Little 1 1-Feb 16.0 0.67 0.00 (-36.2, 24.5) 0.55 2 

Washita 

(OK) 
2 

Jan - - - - 0 

 3 Dec-Jan 16.0 0.67 0.00 (-23.8, 32.4) 0.55 2 

 4 Nov-Jan 22.3 0.36 0.00 (-35.9, 39.4) 0.77 1 

 5 Aug-Jan - - - - 0 

 6 July-Aug 21.2 0.42 0.00 (-48.6, 40.7) 0.73 1 

 7 July-Sep 19.7 0.50 0.00 (-44.8, 39.6) 0.68 1 

 8 Oct-FD 19.9 0.49 0.00 (-36.2, 27.8) 0.69 1 

Little 1 1-Jan 41.0 0.87 0.00 (-95.6, 53.9) 0.35 2 

River (GA) 2 Dec 80.8 0.49 0.00 (-201, 88.1) 0.68 1 

 3 Nov-Dec 79.9 0.51 0.00 (-122, 120) 0.67 1 

 4 Oct-Dec 75.5 0.56 0.00 (-139, 131) 0.64 1 

 5 July-Dec 71.9 0.60 0.00 (-144, 100) 0.61 1 

 6 June-July 69.1 0.63 0.00 (-152, 86.0) 0.58 1 

 7 June-Aug 48.1 0.82 0.00 (-102, 58.4) 0.41 2 

 8 Oct-FD 75.5 0.56 0.00 (-139, 131) 0.64 1 
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Table 4. Results of using soil moisture data from the first day of the forecast period in 

two-step simulations at all lead times. Columns show watershed name, lead time, RMSE, 

R2, bias, RSR, and number of retained principal components. Dashes indicate that no 

forecast could be made because no principal components were retained. 

 

Watershed Lead Time SM period RMSE R2 RSR bias (min, max) # PCs 

  (months)  (mm) -   - mm   

Walnut 0 1-Sep - - - - 0 

Gulch (AZ) 1 1-Aug - - - - 0 

 2 1-Jul - - - - 0 

  3 1-Jun 0.42 0.46 0.69 0.00 (-0.71, 0.53) 1 

Fort 0 1-Apr 11.51 0.71 0.52 0.00 (-26.7, 12.7) 2 

Cobb (OK) 1 1-Mar 13.78 0.58 0.62 0.00 (-34.9, 18.0) 2 

 2 1-Feb 15.99 0.44 0.72 0.00 (-31.1, 26.5) 1 

 3 1-Jan - - - - 0 

Little 0 1-Feb 16.0 0.67 0.55 0.00 (-36.2, 24.5) 2 

Washita (OK) 1 1-Jan 22.6 0.34 0.78 0.00 (-34.1, 36.4) 1 

 2 1-Dec 22.7 0.33 0.78 0.00 (-46.5, 24.2) 1 

 3 1-Nov 22.6 0.34 0.78 0.00 (-55.3, 23.7) 1 

Little 0 1-Jan 41.00 0.87 0.35 0.00 (-95.6, 53.9) 2 

River (GA) 1 1-Dec 57.51 0.74 0.49 0.00 (-91.3, 104) 2 

 2 1-Nov 83.11 0.46 0.70 0.00 (-98.7, 194) 1 

 3 1-Oct 62.29 0.70 0.53 0.00 (-115, 145) 2 
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Figure 1. The Walnut Gulch (a) watershed in Arizona (AZ-WG), Fort Cobb (b) and 

Little Washita (c) watersheds in Oklahoma (FC-OK and LW-OK), and the Little River 

watershed in Georgia (d) (LR-GA). Yellow stars represent the locations of co-located 

precipitation and soil moisture monitoring stations, except for in the Walnut Gulch 

watershed, where yellow stars indicate the location of soil moisture monitoring stations 

and black circles indicate the location of precipitation stations. Streamflow gauges are 

indicated by black triangles in all watersheds, except at Fort Cobb where no stream gauge 

data were used and where the Fort Cobb Dam is marked by a black bar. 
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Figure 2. Mean and median monthly streamflow (Q) and the standard deviation of 

monthly streamflow values for AZ-WG (a), OK-FC (b), OK-LW (c), and GA-LR (d) for 

water years 2009-2017, 1994-2018, 1992-2018, and 1971-2015, respectively. 
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Figure 3. Soil moisture averaging time periods (black lines) and their position relative to 

the beginning of the forecast period for each watershed. Specific soil moisture averaging 

periods for each watershed/lead time combination are given in Table 2. The black star 

shown for SM1 indicates that the averaging period is the day of the forecast date for the 

0-month lead time. Gray stars at SM1 indicate that the averaging period is the day of the 

forecast date at 1-, 2-, and 3-month lead times (results shown in Table 4). The dotted line 

shown for SM8 indicates that the total number of months considered in that averaging 

period varies between watersheds due to differing target forecast periods. 
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Figure 4. Observed and predicted seasonal streamflow volumes for baseline (black 

squares) and two-step (triangles) forecasts in the AZ-WG (a), OK-FC (b), OK-LW (c), 

and GA-LR (d) watersheds at the 0-month lead time. Dashed line is 1:1 line. Baseline 

forecasts were based only on cumulative precipitation prior to the forecast date (ΣP), 

whereas two-step forecasts included both ΣP and soil moisture (SM) information.  

Baseline forecasts for the AZ-WG and GA-LR watersheds did not meet the criteria for 

statistical validity, but baseline streamflow predictions are shown here to demonstrate 

improvements due to soil moisture data inclusion. 
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CHAPTER IV 
 

 

INTEGRATING GROUND-BASED METEOROLOGICAL DATA AND REMOTELY-

SENSED VEGETATION INDEX DATA TO ESTIMATE ROOT ZONE SOIL 

MOISTURE ACROSS DIVERSE VEGETATION TYPES 

Briana M. Wyatt, Tyson E. Ochsner, and Chris B. Zou 

ABSTRACT 

Many soil moisture networks monitor only one land cover type, typically 

grassland, and the availability of in-situ soil moisture data in other land cover types is 

severely limited. Thus, spatial patterns and temporal dynamics of soil moisture in regions 

with heterogeneous land cover types remain poorly understood. The objective of this 

research was to determine how effectively root-zone soil moisture, represented as plant 

available water (PAW), can be estimated for diverse land cover types using a water 

balance model driven by high-resolution, remotely-sensed vegetation indices (VI) data 

and in-situ meteorological data. This was done by using VI data as a proxy for the basal 

crop coefficient, which is used to scale estimates of potential evapotranspiration within a 

simple water balance method. Plant available water dynamics under four different 

vegetation types were estimated relatively well using enhanced
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vegetation index (EVI) data and normalized difference vegetation index (NDVI) data as 

proxies for the basal crop coefficient. Values of the correlation coefficients (r) between 

measured and modeled PAW ranged from 0.61 to 0.99 across four sites. Simulations 

were most accurate at the tallgrass prairie location, with mean absolute error (MAE) 

values of <40 mm. However, improved accuracy is needed for the remaining sites, where 

MAE values exceeded 55 mm in all cases. Our results provide preliminary evidence that 

the integration of remote sensing VI data may be usefully applied to estimate the soil 

moisture status under diverse unmonitored vegetation types. 
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INTRODUCTION 

Soil moisture is an essential climate variable affecting near-surface temperature, 

hydrological processes, agricultural production, and the health of ecological systems 

(Ochsner et al. 2013; Wagner et al. 2007; Wagner et al., 2012).  Soil moisture data from 

in-situ monitoring networks have been used to estimate deep drainage (Zhang et al., 

2019; Wyatt et al., 2017), improve streamflow forecasts (Harpold et al., 2017), and 

improve agronomic decision making (Lollato et al., 2016). However, the majority of soil 

moisture data currently available from in-situ monitoring networks reflect conditions only 

under a single land cover type, typically grassland, and soil water conditions under other 

nearby land cover types, such as croplands or forests, may differ significantly from these 

measured values (Patrignani and Ochsner, 2018). 

Unlike in-situ data, remotely sensed soil moisture products from satellites can 

provide global data which capture spatial and temporal variations in soil moisture across 

numerous vegetation types, but these data typically suffer from several limitations, 

including a shallow sensing depth (~5 cm), relatively coarse spatial resolution, and a 

limited ability to sense soil moisture under dense vegetation types such as forests 

(Mohanty et al. 2017; Peng et al. 2017; Kerr et al. 2001). The most accurate satellite soil 

moisture products are based on radiometers, which have footprints of >30 km (Entekhabi 

et al. 2010). Because vegetation types are often intermixed at smaller scales (< 1 km), 

variations in soil moisture caused by contrasting land cover types are not adequately 

captured by current remote-sensing soil moisture products. 

A growing body of research shows the potential of higher resolution, remotely-

sensed vegetation index (VI) data, such as those from NASA’s Moderate Resolution 
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Imaging Spectroradiometer (MODIS) sensors, to close this gap in spatial scale and 

provide new insights into the effects of land cover type on soil moisture. The concept of 

using remotely-sensed VI data in mechanistic water and surface energy balance models 

has been frequently discussed in the literature (Hendrickx et al. 2016; Glenn et al. 2011; 

Glenn et al. 2010; Gonzalez-Dugo et al. 2009; Glenn et al. 2007), but the majority of land 

surface models were not designed to incorporate these data. Incorporating new data types 

into existing mechanistic models may not improve model results (Ford and Quiring 

2013), and may actually decrease model performance due to overfitting issues (Transtrum 

and Qiu 2016). Land surface models which are capable of integrating VI data, such as 

those within the North American Land Data Assimilation System (NLDAS), have a crude 

conceptual representation of soil characteristics, allow only monthly VI inputs, and have 

a maximum resolution of ~1 km (Mitchell et al. 2004; Kumar et al. 2006).  

The current research seeks to overcome these limitations by integrating 

meteorological data measured on the ground and remote sensing VI data into a simple 

water balance model based on the FAO-56 dual crop coefficient method (Allen et al., 

1998) and comparing model-estimated plant available water (PAW) values to measured 

PAW at four in-situ monitoring locations under diverse land cover types. The goals of 

this research are: 1) to determine the effectiveness of using normalized difference 

vegetation index (NDVI) and enhanced vegetation index (EVI) data as proxies for the 

basal crop coefficient in the water balance simulations, 2) to discover which vegetation 

index leads to the most accurate plant available water estimates, and 3) to quantify 

differences in soil water dynamics due to differences in vegetation type. 
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MATERIALS AND METHODS 

Monitoring Stations 

 Four locations throughout Oklahoma, each with a different dominant vegetation 

type, were chosen for modeling and as independent soil moisture monitoring locations to 

be used for model validation (Figure 1). Vegetation types at these sites include a mixed 

hardwood forest, a loblolly pine (Pinus taeda) plantation, rainfed (non-irrigated) 

cropland, and tallgrass prairie. In 2018, according to 500-m MODIS Land Cover Type 2 

data, these locations were classified as grassland, needleleaf evergreen forest, cropland, 

and grassland, respectively. The misclassification of the mixed hardwood forest as 

grassland is likely a result of the small area of the forested site (<5002 m2), which is 

surrounded by grasslands and croplands (Figure 2).  

At each monitoring location, arrays of soil moisture sensors (CS-655, Campbell 

Scientific, Inc., Logan, Utah) were installed in triplicate to monitor soil water storage in 

the profile. At the mixed hardwood forest, loblolly pine plantation, and cropland 

locations soil moisture sensors were installed in three profiles at depths of 5, 25, 60, and 

100 cm. At these sites, sensor profiles were installed 6.1 m away from a central 

datalogger along headings separated by ~120° (Figure 3). This was done in order to 

maximize the distance between sensor profiles to reduce intercorrelation between soil 

moisture measurements. Soil cores were taken at the time of installation in each profile 

and at each depth (3 profiles per site X 4 depths per profile = 12 cores per site).  

At the tallgrass prairie location, CS-655 soil moisture sensors installed for a 

previous project were used. Sensors were installed in triplicate at this location as well, but 

farther apart than at the other three monitoring locations (mean of 449 m apart, Figure 4). 
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At each tallgrass prairie monitoring profile, sensors were installed at 5, 10, 20, and 50 cm 

below the surface. As at the other sites, soil cores were collected from all soil profiles at 

the time of sensor installation and analyzed to estimate the soil volumetric water content 

at field capacity (-10 kPa, θ-10) [m
3 m-3], water content at wilting point (-1500 kPa, θ-1500) 

[m3 m-3], bulk density [g cm-3], and fractions of sand, silt, and clay.  

Measurements of soil apparent dielectric permittivity (Ka) [-], and electrical 

conductivity (EC) [dS m-1] were collected either every hour (tallgrass prairie sites) or half 

hour (all other sites) using the CS-655 sensors. Sensors were calibrated using Coyle-

Lucien complex soil taken from a location near the tallgrass prairie site in 2013. The 

calibration equation used was 

𝜃 = 0.107√𝐾𝑎 − 0.119√𝐸𝐶 − 0.105    (1) 

where θ is the volumetric soil water content [m3 m-3] (T. Ochsner, personal 

communication, December 2019). Using the volumetric water content values resulting 

from Equation 1 and site-specific soil hydraulic properties at each of these locations, we 

calculated mean (i.e., mean of three sensor profiles) daily plant available water (PAW) 

for all available dates. PAW values at these sites and at Oklahoma Mesonet stations were 

calculated by assuming soil moisture sensors were located at the center of a given soil 

layer (i.e., the data recorded by the sensor at 5 cm is representative of the condition of the 

layer from 0-10 cm, etc.), multiplying the reported volumetric water content by the 

thickness of that soil layer, and summing the totals for each layer. Due to datalogger 

storage limitations and remote site connectivity problems, portions of measured data are 

missing after the installation date at each site. Station installation dates are shown in 

Table 1. 
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Soil water balance model 

The dual crop coefficient form of the FAO-56 method is a well-known empirical 

method used to estimate soil evaporation and crop transpiration (together, ETc) using 

meteorological data and tabular crop coefficients (Allen et al., 1998). Inputs for the 

model include daily estimates of reference evapotranspiration (ETo), which are calculated 

from measured wind speed, temperature, rainfall, incoming solar radiation, and relative 

humidity data; a basal crop coefficient (Kcb) curve which describes the daily ratio of the 

actual evapotranspiration to the reference evapotranspiration throughout the simulation 

period; plant height and rooting depth curves; soil sand and clay percentages, field 

capacity, and wilting point values; the fraction of soil covered by residue; and the soil 

moisture content at the beginning of the simulation. Daily ETo values are calculated using 

the Penman-Monteith method as described in the FAO-56 procedure. A water stress 

coefficient (Ks), which reduces vegetation transpiration when the amount of available soil 

water drops below a defined threshold, and a soil evaporation coefficient (Ke), which 

reduces soil evaporation when the water content of the surface soil decreases, are 

calculated daily based on the estimated available soil water storage. Along with the Kcb 

values, the estimated Ks and Ke values are used to scale ETo according to  

𝐸𝑇𝑐_𝑎𝑑𝑗 = (𝐾𝑠 ∗ 𝐾𝑐𝑏 +  𝐾𝑒) 𝐸𝑇0    (2) 

where ETc_adj is the crop evapotranspiration, adjusted for soil water stress conditions 

(Allen et al., 1998).  

ETc_adj values are calculated as part of the daily water balance: 

𝑃 = 𝐷𝑃 + 𝑅𝑂 + 𝐸𝑇𝑐_𝑎𝑑𝑗 + 𝐷𝑟    (3) 
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where P is precipitation, DP is deep percolation, RO is surface runoff, and Dr is root zone 

depletion (i.e., change in root zone water storage) (Allen et al., 1998). Deep percolation is 

non-zero only on days when the soil water content exceeds field capacity and is estimated 

by 

𝐷𝑃 = 𝑃 − 𝑅𝑂 − 𝐸𝑇𝑐𝑎𝑑𝑗
− 𝐷𝑟       (4) 

while Dr is estimated by 

𝐷𝑟 =  𝐷𝑟𝑖−1
− (𝑃 − 𝑅𝑂) + 𝐸𝑇𝑐𝑎𝑑𝑗

+ 𝐷𝑃      (5) 

where Dri-1
 is root zone depletion from the previous day. Additional calculations within 

the model include the estimation of the total available soil water (TAW), which is 

estimated by 

𝑇𝐴𝑊 = (𝜃−10 −  𝜃−1500) ∗  𝑍𝑟     (6) 

where Zr is the rooting depth [mm]. Finally, daily PAW values are estimated as 

𝑃𝐴𝑊 = 𝑇𝐴𝑊 −  𝐷𝑟             (7) 

Irrigation inputs were not considered here because all of the study locations are 

rainfed. Additionally, for the sake of simplicity, surface runoff was assumed to be 

negligible for these nearly-level sites. It would be possible to estimate surface runoff 

using the NRCS curve number method and to incorporate those estimates into the model, 

but this was not done for the current study. Based on measured daily precipitation values 

as well as the hydrologic soil groups and estimated curve numbers of the study locations, 

surface runoff likely occurred on 0.5% of days at the mixed hardwood forest site, on 

1.0% of days at the loblolly pine plantation, on 4.3% of days at the cropland, and on 3.9% 

of days at the tallgrass prairie site during the study period.  
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The FAO-56 method was developed for and has been traditionally applied in 

agricultural cropping systems, but the method has shown potential to estimate vegetation 

water use and soil water dynamics under diverse land covers types by using remote 

sensing vegetation indices data as a proxy for Kcb (Sanchez et al., 2010). Here, we 

applied the method at four locations in Oklahoma with diverse vegetation types for the 

period from January 2000-August 2019. Normalized difference vegetation index (NDVI) 

and enhanced vegetation index (EVI) data from the MODIS instruments aboard NASA’s 

Aqua and Terra satellites and meteorological data from the Oklahoma Mesonet were used 

as the primary model inputs (Figure 1) (Huete et al., 1999; McPherson et al., 2007).  

 

Geographical and Meteorological Inputs 

 Geographical inputs necessary for the model include site UTM coordinates, 

elevation, and longitude and latitude, which are used to adjust the psychrometric constant 

and incoming solar radiation by location. Precipitation records for each monitoring 

station are also required, as are daily estimates of reference evapotranspiration (ETo). 

Estimates of ETo were produced using daily data from the Oklahoma Mesonet station 

nearest each independent soil moisture location. Any missing records were filled using 

data from the next nearest Oklahoma Mesonet station (McPherson et al., 2007). If no data 

were available from the nearest station, remaining missing records were filled in using a 

linear interpolation. The distance between the Mesonet stations and the monitoring 

locations ranged from 0.13 km to 23.1 km (Figure 2, Figures 4-7, Table 1). The effects of 

non-reference (i.e., non-irrigated) ground cover on ETo estimates were accounted for 

using daily dew point temperature and relative humidity data according to the method 
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described by Allen (1996). Dew point temperatures were calculated from daily 

temperature and relative humidity data as follows: 

𝑒𝑠𝑎𝑡 = 6.1365 ∗ 𝑒
(

17.502∗𝑇𝑚𝑖𝑛
240.97+𝑇𝑚𝑖𝑛

)
   (8) 

𝑒 = (
𝑅𝐻

100
) 𝑒𝑠𝑎𝑡     (9) 

𝑇𝑑𝑒𝑤 = 240.97 ∗ log (
𝑒

6.1365

17.502−ln (
𝑒

6.1365
)
)    (10) 

where esat is the saturation vapor pressure [mb] at the minimum daily temperature, e is the 

actual vapor pressure [mb], Tmin is the minimum daily temperature [°C], and RH is the 

relative humidity (Buck, 1981; Allen et al., 1998). This correction was made for days 

when the minimum observed air temperature was >2°C above the calculated dew point 

temperature, and the resulting dew point temperatures and relative humidity data were 

used to calculate adjusted daily maximum and minimum temperature values for use in the 

ETo calculations according to the procedure described by Allen (1996). These corrections 

were necessary on 27% of days across all sites and resulted in a 2.7% decrease in ETo, on 

average. 

In addition to corrections for non-reference ground cover, precipitation records 

used in calculating ETo at the forested sites were adjusted to account for canopy and 

understory interception, assuming 2 mm of interception lost at the onset of every 

precipitation event. This interception value is similar to that found by Zou et al. (2015), 

who reported canopy interception rates of 2.14-3.44 mm in eastern redcedar (Juniperus 

virginiana) woodlands. This adjustment was necessary because all precipitation data 

were collected at the nearest Mesonet station (i.e., outside the forested area) and are not 

necessarily representative of the precipitation experienced at the ground surface under the 
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forest canopy. This adjustment led to a decrease in total precipitation during the 

simulation period of 2782 mm (~141 mm yr-1) at the mixed hardwood forest site and 

3094 mm (~157 mm yr-1) at the pine plantation site. While there may also be significant 

interception at the tallgrass prairie location during certain times of the year (Zou et al., 

2015), due to the dynamic nature of the above ground vegetation, those effects were not 

considered here. 

 

Remote Sensing Inputs 

MODIS NDVI and EVI imagery at a 250-m resolution and 16-day return period 

were used here (MOD13Q1 and MYD13Q1 products). Because these images are 

available from either the Aqua or Terra satellite at 16-day intervals and because the 

satellite’s return intervals are offset from one another by 8 days, a complete image is 

available every 8 days. EVI and NDVI are calculated as (Huete et al., 2008): 

𝐸𝑉𝐼 = 𝐺 (
𝜌𝑁𝐼𝑅− 𝜌𝑟𝑒𝑑

 𝜌𝑁𝐼𝑅 + 𝐶1 ∗ 𝜌𝑟𝑒𝑑 − 𝐶2 ∗ 𝜌𝑏𝑙𝑢𝑒+𝐿
)   (11) 

𝑁𝐷𝑉𝐼 =  
(𝜌𝑁𝐼𝑅− 𝜌𝑟𝑒𝑑)

(𝜌𝑁𝐼𝑅+ 𝜌𝑟𝑒𝑑)
      (12) 

where ρ are corrected or partially atmosphere-corrected surface reflectances of the near 

infrared (ρNIR), red (ρred), and blue (ρblue) bands, L is the canopy background adjustment 

that addresses NIR and red radiant transfer through a canopy, and C1, C2 are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band (Huete et al., 2002). The coefficients adopted in the EVI 

algorithm are, L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5 (Huete et al., 1994; Huete 

et al., 1997).  



115 
 

There is some evidence that EVI may be more suitable than NDVI for the current 

application for a number of reasons, including that EVI images are less likely to saturate 

when considering dense canopies due to the addition of the blue reflectance band (Gao et 

al., 2000). Additionally, EVI is designed to separate the background signal of the soil 

from that of the plant canopy, EVI is more responsive than NDVI to vegetation structural 

variations, and EVI data have been shown to be more highly correlated with ET than 

NDVI data (Gao et al., 2000; Wang et al., 2007).  

All remote sensing data were downloaded using a custom script in the JavaScript 

API within the Google Earth Engine (GEE) Code Editor (Gorelick et al., 2017). This 

script defined a bounding rectangle around each monitoring station which contained only 

the dominant vegetation type based on Google Earth aerial imagery. Mean VI values for 

each area were calculated for each 16-day composite image, and a time series of VI 

values for each location was saved in a text file. After download, VI data were processed 

using a custom MATLAB script. 

Raw EVI values were converted to Kcb values using two different approaches. 

The first was defined by: 

𝐾𝑐𝑏−𝐸𝑉𝐼1
=

𝐸𝑉𝐼− 𝐸𝑉𝐼𝑚𝑖𝑛

𝐸𝑉𝐼𝑚𝑎𝑥 − 𝐸𝑉𝐼𝑚𝑖𝑛
      (13) 

following the method described by Choudhury et al. (1994) and Glenn et al. (2010), 

where EVI is the mean observed EVI value of the defined area for each image, EVImin is 

the minimum EVI for a given location during the study period, and EVImax is the 

maximum EVI value for a given location during the study period. Additionally, a 

secondary EVI normalization was tested: 

𝐾𝑐𝑏−𝐸𝑉𝐼2
=

𝐸𝑉𝐼

𝐸𝑉𝐼𝑚𝑎𝑥 − 𝐸𝑉𝐼𝑚𝑖𝑛
    (14) 
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This normalization is similar to the first, but differs in that it allows for Kcb-EVI2
 values 

greater than one, which is often observed in the original FAO-56 approach. 

Similarly, Kcb values were calculated using NDVI data according to 

𝐾𝑐𝑏−𝑁𝐷𝑉𝐼 = 1.36𝑁𝐷𝑉𝐼 − 0.03      (15) 

as described by Bausch and Neale (1987). Following the calculation of Kcb-EVI1
, Kcb-EVI2

, 

and Kcb-NDVI at 8-day intervals, values were interpolated linearly between image dates to 

produce daily Kcb values for the simulation period similar to the method used by Sanchez 

et al. (2010) and Sanchez et al. (2012a). 

 

Vegetation Characteristic Inputs 

 In addition to the data described above, the model requires the input of daily 

vegetation height and rooting depth data. Vegetation heights for the mixed hardwood 

forest site were assumed to be static and to be equal to 10.0 m, which lies within the 

range of tree heights in the cross timbers of Oklahoma reported by Oklahoma Forestry 

Services (2010). A mean tree height of 9.4 m was reported for the pine plantation 

location used in this study by Dipesh et al. (2014) and was used here, also assuming a 

static vegetation height. Dynamic daily vegetation heights for the tallgrass prairie site 

were estimated using crop growth curves and maximum vegetation heights for pasture 

reported by Allen et al. (1998). Dynamic daily vegetation heights for the cropland site 

were estimated by multiplying daily Kcb values by 2.0 m, the vegetation height for field 

corn reported by Allen et al. (1998). This method allowed the vegetation height to vary 

according to vegetation greenness rather than according to a defined growth curve, which 

was necessary due to the varying crop rotations implemented at the site and due to the 
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lack of crop type data in many years. The same method was used at the tallgrass prairie 

site, using a maximum plant height of 1.0 m based on observations at the field site. 

Rooting depths for the two forested locations and for the cropland site were set 

equal to 1.2 m, the effective soil depth to which soil moisture content is measured by the 

installed sensors. The rooting depth used for the tallgrass prairie site was set to 0.65 m to 

match the soil moisture measurement depths at that location. The true rooting depth at the 

tallgrass prairie site is likely limited by the soil depth, which is < 30 cm in some places 

and commonly < 1.0 m. Vegetation height and rooting depth parameters for each site are 

given in Table 2. 

 

Soil Property Inputs 

Information regarding the soil properties of the modeled area is also required, 

including the depth of soil from which evaporation may occur (Ze), θ-10 at the surface and 

for the full soil profile, θ-1500 at the surface and for the full soil profile, and soil volumetric 

water content on the first date of simulation. Ze was calculated for each location based on 

the sand content of the surface soil as described in Allen et al. (1998) (Table 2). All of the 

necessary soil properties were estimated from soil cores taken at each monitoring site, 

and mean soil properties of the uppermost soil samples (5-cm depth) were used to 

represent the soil surface properties in the model. 

Mean depth-weighted soil properties (i.e., mean values of the triplicate profiles’ 

soil properties) were used to represent the soil physical properties of the full soil profile 

at each site within the model (Table 2). At the mixed hardwood forest, loblolly pine 

plantation, and cropland sites these depth-weighted properties were calculated by 

assuming that each soil moisture sensor was located at the center of a given soil layer 
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(i.e., the data recorded by the sensor at 5 cm is representative of the condition of the layer 

from 0-10 cm, etc.). At the tallgrass prairie site, due to the sensor installation depths, a 

trapezoidal integration was used to estimate profile soil properties to a depth of 65 cm. 

Soil moisture values on the first day of simulation were assumed to be the same as those 

at the nearest Oklahoma Mesonet station, or to be halfway between the depth-weighted θ-

10 and θ-1500 values if no Mesonet data were available. 

 

RESULTS AND DISCUSSION 

ETo estimates 

Mean annual ETo values at each location for the full simulation period are given 

in Table 3 and range from 1209 mm yr-1 in the loblolly pine plantation to 1412 mm yr-1 at 

the cropland site. Daily ETo estimates ranged from 0.24 to 12.0 mm d-1 at the mixed 

hardwood forest location, from 0.29 to 9.55 mm d-1 at the loblolly pine plantation 

location, from 0.30 to 12.3 mm d-1 at the cropland location, and from 0.26 to 10.8 mm d-1 

at the tallgrass prairie location. Smoothed mean daily ETo values for each day of the year 

during the study period are shown in Figure 8. Mean daily ETo peaked on the 192nd day 

of the year (July 10 or 11) in the loblolly pine plantation and peaked slightly later on the 

201st day of the year (July 19 or 20) at the mixed hardwood forest, tallgrass prairie, and 

cropland sites. 

Annual ETo values found for the study sites are similar to those reported by prior 

studies. The mean annual ETo value of 1209 mm yr-1 found at the loblolly pine plantation 

is higher than those reported in a prior study in southeastern Oklahoma, which reported 

ETo values of ~900-1000 mm yr-1 (Hennessey et al., 2004). The ETo values of 1341 mm 
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yr-1 estimated for the tallgrass prairie site and 1390 mm yr-1 for the hardwood forest site 

are significantly lower than the value of 1785 mm yr-1 reported by a study conducted in 

the same county as both stations (Wine and Hendrickx, 2013). The mean annual ETo 

value of 1412 mm yr-1 estimated for cropland our study location is higher than the range 

of growing season (sum of fall, winter, and spring seasons) ETo values of 728-959 mm 

reported by Lollato et al. (2018) for the same location, though the lack of ETo values 

from Lollato et al. (2018) during the summer months may contribute significantly to this 

discrepancy. 

 

Kcb curves 

Kcb-EVI1
 values during the study period ranged from 0.0-1.0 for all vegetation 

types, by definition. Kcb-EVI2
 values ranged from 0.09 to 1.09 for mixed hardwood forest, 

0.11 to 1.11 for the loblolly pine plantation, 0.0 to 0.99 for cropland, and 0.17 to 1.17 for 

tallgrass prairie. Kcb-NDVI values ranged from 0.06 to 1.07 at the mixed hardwood forest, 

from 0.09 to 1.19 at the loblolly pine plantation, from 0.0 to 1.14 in the cropland, and 

from 0.16 to 1.07 at the tallgrass prairie. Mean daily Kcb values, as well as maximum and 

minimum Kcb values for each day of the year, are shown in Figure 9. 

While Kcb trends in the two EVI-derived curves are similar, there are some 

notable differences between these curves and those derived from NDVI data. The loblolly 

pine plantation Kcb values are greater than all other Kcb values during the majority of the 

year in the NDVI-derived Kcb curve. This differs from the EVI-derived curves, where the 

loblolly pine plantation Kcb values were generally lower than those of the other 

vegetation types. Secondly, the shapes of the NDVI-derived curves for mixed hardwood 
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forest, loblolly pine plantation, and tallgrass prairie are different than those of the EVI-

derived curves, with a plateau-like pattern during the late spring and summer rather than 

a brief peak followed by a slow decline like that of the EVI-derived curves. 

There are also some notable similarities between the curves. Each of the three 

curve types show approximately the same rate and magnitude of Kcb increase at the onset 

of the growing season and each has approximately the same magnitude of change in Kcb 

throughout the year. Additionally, the cropland curves for all three Kcb estimation 

methods are remarkably similar, unlike the curves of the other three vegetation types. The 

mean cropland Kcb curve shows little change throughout the calendar year, with small 

peaks near day 100, day 175, and day 320 in all Kcb curves. The relatively constant 

cropland mean Kcb values and multiple small peaks throughout the year in Figure 9 are 

likely due to the production of crops with different peak growth periods during different 

years of the study period (e.g., winter wheat versus sorghum).  

An example of different seasonal Kcb curves for cool season (winter wheat) and 

warm season (sorghum) crops is shown in Figure 10. This figure shows the different 

peaks in Kcb values between crop types, with peak Kcb values for winter wheat occurring 

in late April and early May in all instances and peak Kcb values in early July for sorghum. 

In both crops, Kcb dynamics are similar regardless of the vegetation index data used, with 

the exception of a second peak in Kcb in mid-August for sorghum when considering Kcb-

NDVI. The magnitude of Kcb values is higher for the Kcb-NDVI curves than for the EVI-

derived curves, likely as a result of the use of an empirical Kcb estimation equation rather 

than a normalization. 
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The Kcb curves for the study locations are similar to those in prior studies which 

estimated the basal crop coefficient using VI data. Sanchez et al. (2012a) also used 

Equation 15 to estimate Kcb, and reported values ranging from near zero to ~0.75 for 

barley cropland during a single growing season. In general, the Kcb values found here are 

slightly higher than those reported by Sanchez et al. (2012a). The minimum Kcb value at 

the cropland site was rarely near zero (Figure 9), and the range of maximum cropland Kcb 

values (0.99 -1.14) found here is slightly higher that found by Sanchez et al. (2012a). The 

same study reported Kcb values ranging from zero to ~0.5 for grassland, which is much 

lower than the maximum value of >1.0 found in this current study. However, it is 

important to note that Sanchez et al. (2012a) considered only one growing season, while 

the current study considers nearly 20 years of VI data. Campos et al. (2017) used the soil 

adjusted vegetation index (SAVI) to estimate Kcb for a site under maize and soybean 

rotation and found that Kcb reached a maximum value of 0.95 under maize and 0.90 under 

soybean. These values are more comparable to the maximum Kcb values found for the 

cropland site (Figure 9). 

The dual crop coefficient method has been most commonly applied to cropland 

and grassland locations, and to our knowledge, no comparable studies have been carried 

out in forested ecosystems that would allow for a comparison of Kcb curves at the mixed 

hardwood forest and loblolly pine plantation sites. However, Allen et al. (1998) suggests 

a year-round Kcb value of 1.0 for conifer trees, which is comparable to the maximum Kcb 

values found at the loblolly pine plantation site using the current Kcb estimation methods. 

Additionally, Figure 9 suggests that even for evergreen species the Kcb value is not 
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constant and fluctuates seasonally, which could lead to incorrect estimates of ETc_adj 

when using a constant Kcb value. 

 

ETc_adj estimates 

Smoothed mean daily ETc_adj curves for the study period are shown in Figure 11. 

Annual ETc_adj values estimated using Kcb-EVI1
 ranged from 1114 to 1438 mm yr-1 for the 

mixed hardwood forest site; from 590 to 1166 mm yr-1 for the loblolly pine plantation 

site; from 495 to 1028 mm yr-1 for the cropland site; and from 563 to 893 mm yr-1 for the 

tallgrass prairie site. Annual ETc_adj values estimated using Kcb-EVI2
 ranged from 1048 to 

1318 mm yr-1 for the mixed hardwood forest site; from 584 to 1193 mm yr-1 for the 

loblolly pine plantation site; from 592 to 1020 mm yr-1 for the cropland site; and from 

570 to 928 mm yr-1 for the tallgrass prairie site. Annual ETc_adj values estimated using 

Kcb-NDVI ranged from 960 to 1233 mm yr-1 for the mixed hardwood forest site; from 565 

to 1205 mm yr-1 for the loblolly pine plantation site; from 491 to 998 mm yr-1 for the 

cropland site; and from 571 to 941 mm yr-1 for the tallgrass prairie site. 

Mean estimated annual ETc_adj ranged from 740 mm yr-1 in the tallgrass prairie to 

1198 mm yr-1 in the mixed hardwood forest using Kcb-EVI1
; from 753 mm yr-1 in the 

tallgrass prairie to 1115 mm yr-1 in the mixed hardwood forest using Kcb-EVI2
; and from 

756 mm yr-1 in the tallgrass prairie to 1037 mm yr-1 in the mixed hardwood forest using 

Kcb-NDVI (Table 3). ETc_adj values were greatest using Kcb-EVI1, followed by Kcb-EVI2,
 then 

Kcb-NDVI. The greatest mean annual ETc_adj across all Kcb estimation methods was found 

for the mixed hardwood forest location, which is likely due to the higher Kcb values at 

this location (Figure 9). The lowest ETc_adj values across all Kcb estimation methods were 
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found at the tallgrass prairie location, which may be because the specified rooting depth 

for the tallgrass prairie site was the shallowest among all the study locations (Table 2). 

Current estimates of ETc_adj compare relatively well with prior estimates of 

evapotranspiration (ET) in Oklahoma across vegetation types, with the exception of the 

hardwood forest site, which has unrealistically high ETc_adj values that require further 

investigation. Prior work has estimated annual ET in Oklahoma grasslands ranging from 

to 640-810 mm yr-1 (Burba and Verma, 2005). The current mean annual ETc_adj values 

(740 mm yr-1 to 756 mm yr-1) fall within the range of these prior estimates. Additionally, 

the mean ETc_adj value of 750 mm yr-1 is very similar to that reported by Sun et al. (2018), 

who measured a single-year ET value of 728 mm using an eddy covariance system 

installed nearby the independent tallgrass prairie monitoring site. 

Wagle et al. (2019) reported seasonal ET values ranging from 652-734 mm and a 

single-year total ET value of ~900 mm for a non-irrigated alfalfa field in central 

Oklahoma. These values are fairly similar to the mean annual ETc_adj values found at the 

cropland site, which ranged from 787 mm yr-1 to 796 mm yr-1 (Table 3). Additionally, 

similar ET rates were found under agricultural land in central Oklahoma by Liu et al. 

(2010), who reported an annual value of 778 mm yr-1, and by Burba and Verma (2005), 

who measured ET in winter wheat in north-central Oklahoma using an eddy covariance 

system and found annual values ranging from 710 mm to 750 mm. 

Liu et al. (2010) reported an annual ET value of 854 mm in forest systems in north-

central Oklahoma, which is slightly lower than estimated ETc_adj at the loblolly pine site 

and much lower than estimated ETc_adj estimated for the mixed hardwood forest. Doughty 

et al. (2016) reported ET values estimated from MODIS satellite data of 650 mm yr-1 to > 



124 
 

900 mm yr-1 in evergreen forest in southeast Oklahoma, which is slightly lower than the 

ETc_adj values estimated here for the pine plantation (918 mm yr-1 to 946 mm yr-1). 

Hennessey et al. (2004) reported ET values of ~600-800 mm yr-1 in a loblolly pine 

plantation in southeastern Oklahoma, values which are also slightly lower than those 

found in the present study. 

 

Comparison of modeled and measured PAW 

 Model-estimated PAW for the study period (considering all Kcb estimation 

methods) ranged from 0-59 mm under mixed hardwood forest, from 0-291 mm under 

pine, from 0-247 mm under cropland, and from 0-72 mm under tallgrass prairie. Mean 

daily PAW values estimated by the model for each vegetation type are shown in Figure 

12, and measured and estimated PAW are shown in Figure 13. Mean daily PAW was 

greatest under the mixed hardwood forest when using Kcb-NDVI (12.0 mm), followed by 

Kcb-EVI2
 (11.6 mm) and then Kcb-NDVI (11.4 mm). Mean daily PAW was greatest under the 

loblolly pine plantation when using Kcb-EVI1
 (127 mm), followed by Kcb-EVI2

 (116 mm) 

and then Kcb-NDVI (105 mm). Mean daily PAW was greatest under the cropland when 

using Kcb-EVI2
 (80.0 mm), followed by Kcb-EVI1

 (78.2 mm) and then Kcb-NDVI (67.8 mm). 

Mean daily PAW was greatest under the tallgrass prairie when using Kcb-EVI1
 (26.3 mm), 

followed by Kcb-EVI2
 (23.1 mm) and then Kcb-NDVI (22.1 mm). 

 The model was able to estimate PAW dynamics relatively well at all sites. The 

greatest Pearson correlation coefficient (r) values (considering all Kcb estimation 

methods) were found for the loblolly pine plantation site (mean r = 0.99), and the lowest 

values were found for the mixed hardwood forest site (mean r = 0.61). Values of r for the 
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loblolly pine plantation were 0.99 for all Kcb methods, indicating a high level of 

agreement between model estimated and measured PAW dynamics regardless of the 

vegetation index data type or Kcb estimation method used. However, this high correlation 

value is likely caused, in part, by the short data record used for comparison and a relative 

lack of changes in PAW during that time (Figure 13). Values of r for mixed hardwood 

forest were 0.61 in all cases, indicating moderate levels of agreement between measured 

and estimated PAW (Table 4, Figure 13). Values of r for the cropland site range from 

0.91 to 0.92, indicating good model performance at this site (Table 4, Figure 13). Values 

of r for the tallgrass prairie site range from 0.72 to 0.78, indicating moderately good 

model performance at the site.  

The range of r values seen here is comparable to those found by Schnur et al. 

(2010), who found r values from 0.74 to 0.94 when applying their trained linear 

regression model to estimate 0-50 cm soil moisture values at distant, unmonitored sites 

using NDVI data. Our findings are also similar to those reported by Owe et al. (1988), 

who found an r value of 0.82 for their model, which used microwave brightness 

temperature and NDVI to estimate soil moisture at an unmonitored location. Overall, the 

soil water balance model was able to capture PAW dynamics moderately well regardless 

of Kcb estimation method, but these findings may be a result of the short data records 

available at most of the sites. For example, the loblolly pine plantation has the shortest 

data record available for comparison with the model outputs and has the greatest 

correlation values in all cases, while the tallgrass prairie site has the longest data record 

available and has the second lowest r values in all cases. These comparisons will likely 

become more meaningful in the future as more measured data are collected at each site. 
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While the model was able to predict soil water dynamics relatively well at most 

sites, it was not able to accurately estimate the magnitude of plant available water values. 

NSE values ranged from -4.76 to -0.16, indicating poor model performance at all sites 

(Table 4). Possible NSE values range from -∞ to 1.0, with a value of 1.0 indicating 

perfect model performance and values less than zero indicating that the mean of the 

observed data is a better predictor than the model-estimated values (Moriasi et al., 2007). 

The greatest level of agreement between measured and modeled PAW values based on 

the NSE metric was found for the loblolly pine plantation site (mean NSE across all Kcb 

estimation methods = -0.96), and the worst agreement was found for the mixed hardwood 

forest site (mean NSE across all Kcb estimation methods = -4.69). No NSE values are 

greater than zero, indicating that at all locations the mean observed PAW value is a better 

predictor than model-estimated PAW. As described above, these results are likely 

impacted by the limited data records at each site, and would likely change given a longer 

data record. 

Mean absolute error (MAE) ranged from 37.6 mm to 90.3 mm, with the greatest 

MAE values across all Kcb estimation methods found for the cropland and loblolly pine 

plantation sites (mean MAE = 70.9 mm in both cases) and the lowest mean MAE values 

across all Kcb estimation methods found at the tallgrass prairie site (mean MAE = 39.0 

mm) (Table 4). Mean bias error (MBE) ranged from 33.4 mm to 90.3 mm, with the 

greatest MBE observed for the loblolly pine plantation site (mean MBE = 70.9 mm) and 

the lowest MBE found for the mixed hardwood forest (mean MBE = 33.6 mm). MBE 

values reported here are higher than those found by Patrignani and Ochsner (2018), who 

used the dual crop coefficient method to estimate root zone PAW to a depth of 80 cm 
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under winter wheat in Oklahoma and found MBE values ranging from -7.9 mm to 5.7 

mm. It should be noted that the lower MAE and MBE values found for the tallgrass 

prairie site may be a result of the shallower rooting depth used as this site, since the 

amount of available water calculated within the model is directly related to the rooting 

depth (see Equation 6). Regardless of this distinction, even the current simulations with 

the lowest amounts of error have MBE values greater than those reported by prior work. 

The ratio of the root mean square error to the standard deviation of observed data, 

or RSR, ranged from 1.07 to 2.39 (Table 4). RSR values range from zero to a large 

positive value, where a value of zero indicates no error and therefore perfect model 

simulation. Moriasi et al. (2007) provided the following performance ratings for RSR 

values found for models using a monthly time step: 0.00 ≤ RSR ≤ 0.50 are very good, 

0.05 ≤ RSR ≤ 0.60 are good, 0.60 ≤ RSR ≤ 0.70 are satisfactory, and RSR > 0.70 are 

unsatisfactory. Given these definitions, none of the current model simulations are 

considered to be satisfactory; however, Moriasi et al. (2007) does note that less strict 

criteria should be used when modeling at time step smaller than one month, such as the 

daily simulations considered in the present study. 

 

Comparison of PAW measurements from independent monitoring stations and Mesonet 

 Finally, we compared measured PAW under each vegetation type to measured 

PAW at the nearest Mesonet station in order to determine differences in PAW dynamics 

and magnitude under different land cover types (Table 5). The greatest Pearson 

correlation coefficient (r) value was found for the loblolly pine plantation site (r = 0.91), 

and the lowest value was found for the cropland site (r = 0.48). The low correlation 
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between PAW at the cropland site and the nearby Oklahoma Mesonet station is likely a 

result of the dichotomous nature of soil moisture dynamics under cool-season crops (such 

as winter wheat) and warm-season native grasses growing near the Mesonet station 

(Patrignani and Ochsner, 2018). NSE values ranged from -197 for the cropland site to 

0.56 for the mixed hardwood forest, indicating that PAW measured at Mesonet stations 

and PAW measured under the different vegetation types are more closely related at some 

sites than at others (Table 5). The mixed hardwood forest and tallgrass prairie locations 

had positive NSE values, indicating that there is a meaningful relationship between 

Mesonet PAW and independent station PAW at those locations, but given the small 

amount of measured data currently available, the nature of this relationship is difficult to 

determine. 

 Mean absolute error (MAE) ranged from 22.8 mm to 210 mm, with the greatest 

MAE found for the cropland and lowest MAE found for the mixed hardwood forest site 

(Table 5). Mean bias error ranged from -183 mm to 6.7 mm, with the greatest MBE 

observed for the loblolly pine plantation and the lowest MBE found for the mixed 

hardwood forest. The ratio of the root mean square error to the standard deviation of 

observed data ranged from 0.94 to 19.0 (Table 5). Given the RSR definitions given 

above, none of the Mesonet stations are considered to have satisfactorily reflected PAW 

conditions at the independent monitoring stations. Overall, the dynamics of PAW 

between Mesonet and independent monitoring station are moderately well-correlated, but 

there are often large differences in measured PAW between the stations, which highlights 

the need for improved estimations of soil moisture under these diverse vegetation types. 
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By comparing the results shown in Tables 4 and 5, it is possible to determine 

whether PAW under each vegetation type is better represented by the model estimates or 

by the soil water conditions measured at the nearest Oklahoma Mesonet station. Values 

of r are greater at the mixed hardwood forest and tallgrass prairie sites when comparing 

measured PAW at the independent stations with the nearest Mesonet station, indicating 

that at these sites PAW measured at the independent site is more aligned with PAW data 

from the Mesonet than with model-estimated PAW. However, the r value found for the 

tallgrass prairie site when comparing independent and Mesonet PAW (Table 5) is only 

slightly higher than the r value found for the site when comparing independent PAW and 

model-estimated PAW (Table 4, difference of 0.01). Additionally, model-estimated PAW 

values lead to lower amounts of error than the Mesonet PAW data at this site (mean MAE 

of 39.0 mm [Table 4] versus MAE of 42.6 mm [Table 5]). 

Despite the fact that the soil water balance model is not able to estimate the 

magnitude of PAW accurately, model-estimated PAW is a better indicator of actual 

conditions at the at the loblolly pine plantation and the cropland sites than are PAW data 

from the nearest Mesonet station. At these sites, model-estimated PAW has higher 

correlation coefficients; less negative NSE values; and lower MAE, MBE, and RSR 

values. As mentioned above, the especially low correlation between Mesonet and 

measured PAW values at the cropland location is likely due to the patterns of soil 

moisture dynamics under cool-season crops (such as winter wheat) versus those under 

warm-season native grasses. 
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Impact of Kcb estimation method on accuracy of model-estimated PAW 

Overall, the least model error was observed when using the Kcb-EVI1
 crop 

coefficient curves (Table 4). Mean Pearson correlation values for each Kcb estimation 

method ranged from 0.81 to 0.82, and no single simulation r value was below 0.61, 

indicating that model performance was acceptable for all Kcb estimation methods 

(Moriasi et al., 2007). Mean MAE values were lowest when considering Kcb-EVI1
 (58.1 

mm), followed by Kcb-EVI2
 (60.8 mm), followed by Kcb-NDVI (68.6 mm). The better 

performance observed for simulations using the Kcb-EVI crop curves may be a result of the 

improved performance of EVI data in dense canopy covers, the ability of EVI data to 

separate the soil and plant canopy signals, and the greater responsiveness of EVI data to 

canopy structural variations (Gao et al., 2000; Wang et al., 2007). 

The FAO-56 method has historically been used to estimate ET rather than PAW, 

and for this reason few studies have compared FAO-56 estimated and measured soil 

moisture values. One study in Spain used the Kcb-NDVI relationship (Eq. 15) to estimate 

soil moisture in an area with vegetation types including rainfed cereals, irrigated crops, 

forests, pasture, and vineyards and found r values ranging from 0.68 to 0.91 (Sanchez et 

al., 2010). Another study in Spain used the same Kcb-NDVI method and found r values of 

0.85 for barley and 0.88 for grass (Sanchez et al., 2012a). A third study used Landsat 

NDVI data and the same Kcb-NDVI method over a 1300 km2 area and found that model-

estimated soil moisture and soil moisture measured at 19 monitoring locations were 

highly correlated, with r values ranging from 0.92 to 0.97 (Sanchez et al, 2012b). The 

range of r values reported by these studies (0.68 to 0.97) is comparable to the range of r 

values found by the present study (0.61 to 0.99), but the present simulations require 
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further improvements and testing before the method may be used to accurately model 

PAW under the diverse vegetation types considered here. 

 

CONCLUSIONS AND FUTURE WORK 

In general, model PAW estimates were well-correlated with measured PAW 

values, despite a large discrepancy in PAW magnitude at all study sites. This is 

particularly of note because the FAO-56 method was developed specifically for cropping 

systems, but our results indicate that, with further improvements, the method may be used 

to produce useful estimates of PAW when applied in other vegetation types. In the future, 

we plan to refine the approach developed here and to create a distributed model which 

applies the method over larger areas (i.e., county or state scale). This will involve 

gathering MODIS EVI, NDVI, and land cover type image time series to estimate Kcb 

curves; gathering soil property information and meteorological data from large-scale 

databases; modifying existing programs to handle spatially explicit data and perform 

quality control on these images; and applying the method developed here for each pixel 

within the desired area. 
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Table 1. Site information, including latitude and longitude, distance to the nearest Oklahoma Mesonet station, elevation above sea 

level, long-term mean daily maximum temperature (Tmax), long-term mean daily minimum temperature (Tmin), long-term mean annual 

precipitation (P), and the year in which soil moisture sensors were installed. 

Site Latitude, Longitude Elevation  Distance to Mesonet Tmax, Tmin P Year Installed 

  deg. m km °C mm  

Loblolly Pine Plantation 34.03, -94.82 110 23.1 23.9, 11.0 1159 2019 

Mixed Hardwood Forest 36.00, -97.04 292 1.00 22.3, 9.92 873 2018 

Cropland 35.03, -97.91 328 0.13 23.1, 9.36 812 2018 

Tallgrass Prairie  36.06,  -97.21 327 0.47 22.1, 9.43 884 2012 
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Table 2. Depth of soil subject to evaporation (Ze), soil volumetric water contents at field capacity (θ-10) and wilting point (θ-1500) for 

the surface layer and sub-surface, mean depth-weighted sand and clay contents, maximum vegetation height (hmax), and maximum 

rooting depth (Zr_max) at each monitoring location. 

Site Sand Clay θ-10 θ-1500 Ze hmax Zr_max 

  % % m3 m-3 m3 m-3 m m m 

Loblolly Pine Plantation 36.9 20.9 0.28, 0.33 0.03, 0.09 0.13 10.0 1.20 

Mixed hardwood forest 86.1 4.23 0.09, 0.07 0.02, 0.02 0.11 9.40 1.20 

Cropland 21.3 24.5 0.31, 0.32 0.10, 0.11 0.14 2.00 1.20 

Tallgrass Prairie  11.0 22.5 0.30,0.32 0.13, 0.21 0.13 1.00 0.65 
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Table 3. Mean annual reference evapotranspiration (ETo) and adjusted crop 

evapotranspiration (ETc_adj) for each vegetation type and basal crop coefficient (Kcb) 

estimation method. ETo values are independent of vegetation characteristics 

and do not differ between Kcb estimation methods. 

Kcb method Site ETo ETc_adj 

    mm mm 

Kcb-EVI1
 

Loblolly Pine Plantation 1209 918 

Mixed Hardwood Forest 1390 1198 

Cropland 1412 788 

Tallgrass Prairie  1341 740 

Kcb-EVI2
 

Loblolly Pine Plantation 1209 931 

Mixed Hardwood Forest 1390 1115 

Cropland 1412 787 

Tallgrass Prairie  1341 753 

Kcb-NDVI 

Loblolly Pine Plantation 1209 946 

Mixed Hardwood Forest 1390 1037 

Cropland 1412 796 

Tallgrass Prairie  1341 756 
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Table 4. Pearson correlation coefficient (r), Nash-Sutcliffe Efficiency (NSE), mean 

absolute error (MAE), mean bias error (MBE), and the ratio of the root mean square error 

to the standard deviation of observed data (RSR) calculated by comparing daily plant 

available water estimated by the water balance model using Kcb-EVI1, Kcb-EVI2
, and Kcb-NDVI 

curves and measured plant available water at each independent monitoring site. 

 

Kcb 

method 
Site r NSE MAE MBE RSR 

    - - mm mm - 

Kcb-EVI1
 

Loblolly pine plantation 0.99 -0.16 56.2 56.2 1.07 

Mixed hardwood forest 0.61 -4.76 69.6 33.8 2.39 

Cropland 0.91 -1.03 69.0 37.7 1.42 

Tallgrass prairie  0.78 -1.01 37.6 37.4 1.42 

Kcb-EVI2
 

Loblolly pine plantation 0.99 -0.63 66.2 66.2 1.27 

Mixed hardwood forest 0.61 -4.68 69.1 33.5 2.38 

Cropland 0.91 -0.99 68.3 37.3 1.41 

Tallgrass prairie  0.73 -1.25 39.6 39.3 1.50 

Kcb-NDVI 

Loblolly pine plantation 0.99 -2.07 90.3 90.3 1.74 

Mixed hardwood forest 0.61 -4.63 68.8 33.4 2.37 

Cropland 0.92 -1.36 75.3 41.2 1.53 

Tallgrass prairie  0.72 -1.31 40.0 39.8 1.52 
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Table 5. Pearson correlation coefficient (r), Nash-Sutcliffe Efficiency (NSE), mean 

absolute error (MAE), mean bias error (MBE), and the ratio of the root mean square error 

to the standard deviation of observed data (RSR) calculated by comparing plant available 

water measured under each land cover type and measured plant available water at the 

Oklahoma Mesonet station nearest the monitoring site. 

Site r NSE MAE MBE RSR 

  - - mm mm - 

Loblolly Pine Plantation 0.91 -45.3 186 -183 6.75 

Mixed Hardwood Forest 0.80 0.56 22.8 6.7 1.01 

Cropland 0.48 -197 210 -115 19.0 

Tallgrass prairie  0.79 0.12 42.6 33.8 0.94 
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Figure 1. Map of MODIS land cover types (500-m resolution) and county boundaries in Oklahoma, active Oklahoma Mesonet locations 

(circles), and locations of independent soil moisture monitoring stations under various vegetation types (triangles). 
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Figure 2. Mixed hardwood forest and Perkins Oklahoma Mesonet station locations. 
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Figure 3. Diagram of soil moisture monitoring station layout.
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Figure 4. Tallgrass prairie monitoring locations and Marena Oklahoma Mesonet station location. 
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Figure 5. Loblolly pine plantation monitoring site location. 
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Figure 6. Loblolly pine plantation monitoring site (upper blue marker) and Idabel Mesonet 

(lower blue marker) locations. 
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Figure 7. Cropland monitoring site and Chickasha Oklahoma Mesonet location. 
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Figure 8. Daily mean reference evapotranspiration (ETo) by site, smoothed using a 30-day 

centered moving average.
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Figure 9. Mean daily Kcb-EVI1
 (a), Kcb-EVI2

 (b), and Kcb-NDVI (c) for each vegetation type for Jan 

2000-Aug 2019. The gray shaded areas represent the full range of daily Kcb values. 

  

a) 

b) 

c) 
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Figure 10. Examples of growing season Kcb curves for a cool season crop (winter wheat) and a 

warm season crop (sorghum) derived from Kcb-EVI1
 (a), Kcb-EVI2

 (b), and Kcb-NDVI (c) data. 

c) 

b) 

a) 
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Figure 11. Mean daily evapotranspiration (ETc_adj) as estimated by the FAO-56 dual crop 

coefficient method using Kcb-EVI1
 (a), Kcb-EVI2

 (b), and Kcb-NDVI (c), smoothed using a 30-

day centered moving average. 

a) 

b) 

c) 
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Figure 12. Mean daily plant available water as estimated by the FAO-56 dual crop 

coefficient method using Kcb-EVI1
 (a), Kcb-EVI2

 (b), and Kcb-NDVI (c), smoothed using a 30-

day centered moving average.  

c) 

b) 

a) 
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Figure 13. Daily precipitation (P), measured PAW under each vegetation type, and 

estimated PAW estimated using Kcb-EVI1
 (a), Kcb-EVI2

 (b), and Kcb-NDVI (c). 

a) 

b) 

c) 
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CHAPTER V 

 

 

 

 

GENERAL CONCLUSIONS 

 

Soil moisture is a critical variable influencing groundwater recharge, rainfall-

runoff partitioning, and plant water uptake. In this dissertation, soil moisture data were 

applied to i) estimate potential groundwater recharge over 17 years at 78 locations 

throughout Oklahoma and ii) improve the accuracy of streamflow forecasts in four 

rainfall-dominated watersheds in order to enhance surface water resource management. 

The estimation of soil moisture under diverse vegetation types using a simple water 

balance approach was also demonstrated.  

In the first study I investigated the usefulness of long-term soil moisture data and 

soil physical properties for estimating potential groundwater recharge throughout 

Oklahoma. I found that soil moisture data can be used, along with a unit-gradient 

assumption, to estimate potential groundwater recharge, and that estimates from the 

method align well with estimates of recharge reported in prior publications for several 

major aquifers in the state. Additionally, I used a calibrated soil water flow model to 

verify our findings at four focus sites and found that modeled and estimated potential 

groundwater recharge rates agree more closely at dry sites than at wet ones. The potential 

groundwater recharge rates presented represent the first state-wide estimates of recharge
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since the 1980’s and may be useful for future hydrological studies in the state. 

 In the second study I applied a well-known statistical streamflow forecasting 

model typically used in the snow-dominated West in four rainfall-dominated watersheds 

in order to determine if the inclusion of soil moisture data leads to improved forecast 

accuracy. My results show that forecasts based on precipitation data alone explain, at 

best, 27% of variability in seasonal streamflow, while forecasts which include soil 

moisture data explain 67-83% of variability in seasonal streamflow volumes at the 0-

month lead time. These forecasts have strong potential for improving surface water 

management in rainfall-dominated regions. 

The third study looked at the potential of using remotely-sensed vegetation index 

data and measured meteorological data in a soil water balance model based on the FAO-

56 dual crop coefficient method in order to estimate soil moisture under diverse 

vegetation types. The study focused on four common vegetation types in Oklahoma – 

mixed hardwood forest, loblolly pine plantation, cropland, and tallgrass prairie. My 

results show that the model is able to capture soil moisture dynamics relatively well 

under all of the study vegetation types, but that further adjustments are needed to order to 

improve model accuracy.
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