

Effect of thaw depth on fluxes of CO₂ and CH₄ in manipulated Arctic coastal tundra of Barrow, Alaska

Yongwon Kim^a and Walter C. Oechel^b

b. Global Change Research Group, San Diego State University, USA

a. International Arctic Research Center /University of Alaska Fairbanks, USA,

A06-P01

ABSTRACT

The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH₄ emission by a factor of 4.3 compared to nonflooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO_2 emission in the dry section was 3.9fold higher than in others. CH_4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO₂ emission is not related to thaw depth. Quotients of global warming potential (GWPCO₂) (dry/control) and GWPCH₄ (wet/control) increased by 464 and 148 %, respectively, and GWPCH₄ (dry/control) declined by 66 %. This suggests that CO_2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH₄ emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO_2 and CH_4 , as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH₄ release, and the disappearance of the lakes causes the stimulated CO₂ production

ASKA

Fig. 3. Spatial variations in CH_4 and CO_2 fluxes in (a) dry, (b) control, and (c) wet treatments along each manipulation experiment tramline. Higher CH_{4} emission was produced when soil was saturated and showed deeper thaw depth. On the other hand, higher CO_2 emission showed in dry tramline, suggesting the *differences in production processes of CO₂ and CH₄ in* <u>different</u> condition of standing water in manipulation experiment. **2.3.** CO₂/CH₄ and Environmental factors

1. Site Description & Methods

- Barrow Environmental Observatory (BEO) Station;
- Three 300-m Tramlines of Manipulation Experiment;
- South (Drained), Middle (<u>Control</u>), North (<u>Flooded</u>);
- Measuring items: CO₂ and CH₄ flux-measurements with portable chamber (50 cm OD; 50 cm high), Thaw depth, Temperatures of air and soil; Observation period: September 13-18, 2007

Figure 1. Aerial oblique photograph of the Biocomplexity Experiment

(thick lines) on the polygons during the autumn period of 2007.

station looking north. Boardwalks (thin lines) and three 300-m tramline

North (Flooded)

Barrow

ALASKA

2. Results and Discussion

2.1 Temperature and Thaw Depth

Fig 2. Temporal variation of (a) temperatures in air (red)

Fig 5. Responses of (a) CH_4 flux under control for CO_2 flux under dry treatment, and of CH_4 flux under (b) dry and (c) wet treatments for CO_2 flux under control treatment.

- 1. CO_2 and CH_4 from trapped bubbles: 5,150 and 53,630 ppmv,
- >>> CH_4 ebullition as a process of CH_4 release within the wet treatment (Walter et al., 2008),
- 2. CH₄ abundance from area and freezing period: ca. 2.57 gC/m²/day,
 - >>> 1.98 gC/m²/day in Greenland during onset of freezing (Mastepanov et al., 2008),
- 3. □¹³C and D of CH₄: -73.1 and -329 ‰,
 - >>> Similar to those from ebullition events with ice koshkas in lakes, >>> Main source is CO, reduction (Walter et al., 2008),

1. Estimation of GWP (global warming potential) for 61-day of autumn, >>> GWP (global warming potential) of CH_4 at 25-time that of CO_2 (IPCC., 2014), 2. Quotients of GWP-CO₂ (dry/control) and GWP-CH₄ (wet/control) increased by 464 and 145%, respectively, and 3. Quotients of GWP-CH₄ (dry/control) decreased by 66%, >>> CO₂ emission from the drained is thought to be enhanced by <u>soil</u> <u>and ecosystem respiration</u> and <u>CH₄ uptake</u> compared to the wet section, >>> CH₄ emission from wet is thought to be stimulated by *increased* methanogenatiic activity under an anoxic environmental by saturated standing water.

- 1) Different production processes of CO₂ and CH₄ from manipulated Arctic coastal tundra,
- 2) CO₂ emission in drained section from ecosystem respiration,
- 3) CH_4 production in the inundated section from metanogenesis,
- 4) Expansion of tundra lakes, implying enhanced CH₄ release, a
- 5) Disappearance of lakes, connected to stimulated CO, emission in the Arctic.

ACKNOWLEDGEMENTS

This research was conducted under the JAMSTEC-IARC Collaboration Study with funding provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) under a grant to the International Arctic Research Center (IARC).

Kim, Y., Effect of thaw depth on fluxes of CO, and CH, in manipulated Arctic coastal tundra of Barrow, Alaska, Science in Total Environment, 505, 385-389, 2015.

300