
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Learning Sciences Dissertations Department of Learning Sciences

5-15-2020

A Review and Analysis of Process at the Nexus of Instructional A Review and Analysis of Process at the Nexus of Instructional

and Software Design and Software Design

Eric Sembrat

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_diss

Recommended Citation Recommended Citation
Sembrat, Eric, "A Review and Analysis of Process at the Nexus of Instructional and Software Design."
Dissertation, Georgia State University, 2020.
doi: https://doi.org/10.57709/16872586

This Dissertation is brought to you for free and open access by the Department of Learning Sciences at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Learning Sciences Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/ltd_diss
https://scholarworks.gsu.edu/ltd
https://scholarworks.gsu.edu/ltd_diss?utm_source=scholarworks.gsu.edu%2Fltd_diss%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/16872586
mailto:scholarworks@gsu.edu

ACCEPTANCE

This dissertation, A REVIEW AND ANALYSIS OF PROCESS AT THE NEXUS OF IN-

STRUCTIONAL AND SOFTWARE DESIGN, by ERIC SEMBRAT, was prepared under the

direction of the candidate’s Dissertation Advisory Committee. It is accepted by the committee

members in partial fulfillment of the requirements for the degree, Doctor of Philosophy, in the

College of Education & Human Development, Georgia State University.

The Dissertation Advisory Committee and the student’s Department Chairperson, as representa-

tives of the faculty, certify that this dissertation has met all standards of excellence and scholar-

ship as determined by the faculty.

Brendan Calandra, Ph.D.

Committee Chair

______________________________ _____________________________________

Jonathan Cohen, Ph.D. Lauren Margulieux, Ph.D.

Committee Member Committee Member

Maggie Renken, Ph.D.

Committee Member

Date

Brendan Calandra, Ph.D.

Chairperson, Department of Learning Sciences

Paul Alberto, Ph.D.

Dean

College of Education

& Human Development

AUTHOR’S STATEMENT

By presenting this dissertation as a partial fulfillment of the requirements for the advanced degree

from Georgia State University, I agree that the library of Georgia State University shall make it

available for inspection and circulation in accordance with its regulations governing materials of

this type. I agree that permission to quote, to copy from, or to publish this dissertation may be

granted by the professor under whose direction it was written, by the College of Education and

Human Development’s Director of Graduate Studies, or by me. Such quoting, copying, or pub-

lishing must be solely for scholarly purposes and will not involve potential financial gain. It is un-

derstood that any copying from or publication of this dissertation which involves potential finan-

cial gain will not be allowed without my written permission.

Eric Sembrat

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University library must be used in accordance

with the stipulations prescribed by the author in the preceding statement. The author of this dis-

sertation is:

Eric Scott Sembrat

Learning Technologies

College of Education and Human Development

Georgia State University

The director of this dissertation is:

Brendan Calandra

Department of Learning Sciences

College of Education and Human Development

Georgia State University

Atlanta, GA 30303

CURRICULUM VITAE

Eric Scott Sembrat

ADDRESS: 3724 Donaldson Dr NE

 Brookhaven, GA 30319

EDUCATION:

PROFESSIONAL EXPERIENCE:

2014-present Web Manager

Georgia Institute of Technology

2012-2014 Web Developer

Georgia Institute of Technology

2011-2012 Web Developer

Kennesaw State University

PROFESSIONAL SOCIETIES AND ORGANIZATIONS:

 2018 - 2020 HighEdWeb

 2016 - 2019 WPCampus

 2015 - 2019 DrupalCon Conference Committee

 2013 - 2014 Graduates in Instructional Technology (GrITS)

Ph.D. 2020 Georgia State University

Instructional Technology

Master’s Degree 2011 Kennesaw State University

Information Systems

Bachelor’s Degree 2009 Georgia Institute of Technology

Computer Science

A Review and Analysis of Process at the Nexus of Instructional and Software Design

by

Eric Sembrat

Under the Direction of Brendan Calandra, Ph.D.

ABSTRACT

This dissertation includes a literature review and a single case analysis at the nexus of instructional de-
sign and technology and software development. The purpose of this study is to explore the depth and
breadth of educational software design and development processes, and educational software reuse,
with the intent of uncovering barriers to software development, software re-use and software replica-
tion in educational contexts. First, a thorough review of the academic literature was conducted on a rep-
resentative sampling of educational technology studies. An examination of a 15-year time period within
four representative journals identified 72 studies that addressed educational software to some extent.
An additional sampling of the initial results identified 50 of those studies that discussed software the de-
velopment process. These were further analyzed for evidence of software re-use and replication. Review
results found a lack of reusable and/or replication-focused reports of instructional software develop-
ment in educational technology journals, but found some reporting of educational technology reuse and
replication from articles outside of educational technology. Based on the analysis, possible reasons for
this occurrence are discussed. The author then proposes how a model for conducting and presenting
instructional software design and development research based on the constructs of design-based re-
search and cultural-historical activity theory might help mitigate this gap. Finally, the author presents a
qualitative analysis of the software development process within a large, design-based educational tech-
nology project using cultural-historical activity theory (CHAT) as a lens. Using CHAT, the author seeks to
uncover contradictions between the working worlds of instructional design and technology and software
development with the intent of demonstrating how to mitigate tensions between these systems, and
ultimately to increase the likelihood of reusable/replicable educational technologies. Findings reveal
myriad tensions and social contradictions centered around the translation of instructional goals and re-
quirements into software design and development tasks. Based on these results, the researcher pro-
poses an educational software development framework called the iterative and integrative instructional
software design framework that may help alleviate these tensions and thus make educational software
design and development more productive, transparent, and replicable.

INDEX WORDS: literature review, case study, critical interpretive synthesis, software develop-

ment, programming, replication, reuse, cultural historical activity theory, activity theory

A Review and Analysis of Process at the Nexus of Instructional and Software Design

by

Eric Sembrat

A Dissertation

Presented in Partial Fulfillment of Requirements for the

Degree of

Doctor of Philosophy

in

Instructional Technology

in

The Department of Learning Sciences

in

the College of Education and Human Development

 Georgia State University

Atlanta, GA

2020

Copyright by

Eric Sembrat

2020

 ii

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under

Grant 1433280.

 iii

TABLE OF CONTENTS

LIST OF TABLES…………………………………………………………………………………...VI

LIST OF FIGURES…………………………………………………………………………...VII

Chapter 1 ... 1

A Review of the Literature on Process at the Nexus of Instructional and Software Design .. 1

Problem .. 1

Purpose ... 3

Relevant Literature ... 3

Operational definitions ... 3

Critical interpretive synthesis ... 4

Method ... 5

Research questions .. 5

Inclusion & exclusion criteria .. 5

Databases & Search Terms .. 8

General Inquiry (Phase 1) .. 11

Additional Inquiry (Phase 2) .. 13

Results .. 17

General Inquiry (Phase 1) .. 17

Hardware platforms. ... 17

Software programming languages and tools. .. 19

Software customization or reuse. ... 23

 iv

Software design, development, and process. .. 24

Software developers. ... 27

Re-use Inquiry (Phase 2)... 30

Software re-use components... 31

Software diffusion. .. 33

Software adoption. .. 35

Software adaptation. ... 37

Discussion... 38

RQ1. How is software design and development detailed in IDT literature? 38

RQ2. How does software re-use occur within IDT literature? 40

RQ2.1. How does software diffusion occur? ... 41

RQ2.2. How does software adoption occur? ... 42

RQ2.3. How does software adaptation occur? .. 43

A Perspective Forward ... 44

Limitations & Considerations .. 48

Chapter 2 ... 50

An Analysis of Process at the Nexus of Instructional and Software Design 50

Rationale .. 50

Purpose ... 51

Analytical Frame ... 52

Iterative Categorization .. 52

 v

Activity Theory .. 53

Method ... 56

Researcher’s Position .. 56

Context ... 57

Data Collection .. 58

Data Analysis ... 59

Initial instructional design. .. 66

Gamification as ecommerce. .. 69

Badges and team profiles.. 73

Manual assessment review. .. 76

Results .. 77

Project Team Division of Labor ... 78

Project Team Knowledge Transfer ... 79

Mental Model Discrepancies .. 80

Discussion... 82

RQ1. How did social contradictions and mediations shape the software

development process within a large educational research project? 82

Instructional/technological perspective negotiations. ... 82

Technology-mediated auxiliary support function design. 84

Iterative & Integrative Instructional Software Design (IIISD) 86

Conclusion ... 90

 vi

Limitations and Considerations ... 91

References .. 93

Appendix .. 112

 vii

LIST OF TABLES

Table 1 .. 7

Table 2 .. 18

Table 3 .. 19

Table 4 .. 23

Table 5 .. 24

Table 6 .. 28

Table 7 .. 31

Table 8 .. 33

Table 9 .. 35

Table 10 .. 36

Table 11 .. 37

 viii

LIST OF FIGURES

Figure 1. Bannan-Ritland’s (2003) Integrative Learning Design framework. 14

Figure 2. CHAT model (Engeström, 1987). ... 54

Figure 3. Coding frame sample pages. ... 60

Figure 4. Coding book sample pages. .. 61

Figure 5. Descriptive analysis sample pages focused on badging.................................... 62

Figure 6. Secondary contradiction and mediation visualizations in the activity triangle

model (Engeström, 2000).. 65

Figure 7. All identified contradictions and mediations. ... 66

Figure 8. Initial instructional design import activity system. ... 67

Figure 9. Badge/point gamification decoupling activity system. 69

Figure 10. Cycle 2 ecommerce gamification redesign data changes. 71

Figure 11. Ecommerce instructional design proposal activity system. 71

Figure 12. Cycle 2 ecommerce gamification redesign data changes. 73

Figure 13. Team profile redesign process. ... 74

Figure 14. Team profile redesign activity system. ... 75

Figure 15. Manual experience coin assessment activity systems. 76

Figure 16. Iterative & Integrative Instructional Software Design framework. 86

1

Chapter 1

A Review of the Literature on Process at the Nexus of Instructional and Software Design

Similar research and development methodologies can be found in both software design

and instructional design. One notable example is the parallel design between the waterfall soft-

ware development and ADDIE instructional systems design models (Tripp & Bichelmeyer,

1990). This may be because professionals in both fields tend to focus on establishing orderly and

replicable processes to help solve large and complex problems (Maher & Ingram, 1989). Per-

spectives on and utilization of technology within each field, however, can be quite different.

While software engineers view a given technology through its technical usability and limitations,

instructional designers consider technological affordances as they relate to supporting instruc-

tional strategies and goals (Kirschner, 2004). In the past, this perspective has placed the role of

educational software in the field of Instructional Design and Technology (IDT) more as a vehicle

for the delivery of instructional content, rather than as a research and development goal, or sub-

ject worthy of examination in and of itself (Clark, 1983; Oliver, 2011).

Problem

A lack of transparency into the educational software design process may hinder the field

from advancing and evolving its educational software design and development practices through

the limited ability to replicate successful educational software design and development pro-

cesses, which in turn complicates the duties and tasks of educational software developers and

project managers (Roschelle & DiGiano, 2004). A major premise underlying this review is that

2

reconciling computer science and IDT design perspectives in the existing educational technology

literature may provide a path towards consensus, best-practices, progress, and heuristics in edu-

cational software development. The rationale for this work is to initiate the process of determin-

ing consensus and best-practices at the nexus of instructional and software design.

Software development barriers-to-entry have been identified in educational research. It is

an arduous and costly task - software creation is expensive, time-consuming (de Diana & van

Schaik, 1993; Sanders, Faesi, & Goodman, 2014), and an ubiquitously team-driven endeavor

(Panke, Kohls, & Gaiser, 2007). If a research team does not have software development exper-

tise, searching for assistance with software creation can be challenging. Subject-matter-experts

frequently turn to institutional resources or the technical expertise of a colleague or student,

which may not be sufficient for quality product development (Ormel, Pareja Roblin, McKenney,

Voogt, & Pieters, 2012). The loss of technical expertise or resource presents additional risk, as

replacement requires sufficient documentation, on-boarding, and prior skills to pick up the pro-

ject (Jackson & Brannon, 2018). Lacking availability to external resources or expertise, identify-

ing and selecting existing software through search engines, code repositories, or published arti-

cles that match the instructional goals of a complex project can be an arduous task (Hucka &

Graham, 2018). Identification of consensus between instructional and software design could help

minimize the significant resources required to create educational software from scratch and with-

out guidance.

3

Purpose

This review was conducted in order to explore the breadth and depth of educational soft-

ware design and development processes, and educational software reuse reported in the IDT lit-

erature. The intent of this review is to uncover possible gaps in software development reporting

within the field and to propose solutions for future endeavors that can more accurately report

software development from a reuse perspective.

Relevant Literature

Operational definitions

The term ‘design’ in IDT and computer science are centered in different contexts. For

this reason, the authors will use the terms ‘instructional design’ and ‘software design’ in order to

reduce ambiguity (Oncu & Cakir, 2011). Software design for our purposes, refers to the relation-

ship between a software problem or goal, a developers’ own prior experiences, and the strategy

to solve the problem or goal – the blueprints and resource planning (Gaydos, 2015). Software de-

velopment, alternatively, refers to the nuts-and-bolts of software creation: data structures, algo-

rithms, and computer code (Zhu, 2005) – the consumption of blueprints and resources to create.

For this literature review, software design does not explicitly refer to (but can include) any visual

or user-interface design considerations. Instructional design refers to the activation and support

of learning through a set of events constructed to facilitate learning (Gagné, Briggs, & Wager,

1991) by translating learning principles into instructional materials, activities, and evaluations

(Smith & Ragan, 2005). Reporting and discussion of instructional content is outside the scope of

this literature review.

4

Critical interpretive synthesis

Critical interpretive synthesis (CIS) is a literature review method developing synthesized

results from a wide range of research evidence, both qualitative and quantitative, through an in-

terpretive process (Flemming, 2010). Sourced from meta-ethnology and techniques from

grounded theory (Barnett-Page & Thomas, 2009), literature review in CS pairs induction and in-

terpretation processes in the development of concepts and associated theories (Dixon-Woods et

al., 2006), resulting in an interpretive model of a phenomenon sourced from evidence in existing

literature (Wolgemuth, Hicks, & Agosto, 2017). Search criteria in CIS focuses on the identifica-

tion and selection of a diverse set of sampled articles, intended to represent the variation found in

literature (Morrison, Yardley, Powell, & Michie, 2012) without an exhaustive summary of all lit-

erature, primed for practicality and time availability for unmanageable literature search scopes

(Dixon-Woods et al., 2006).

CIS leverages the concept of synthetic constructs to compare and analyze individual stud-

ies’ reporting to the body of literature. Synthetic constructs define the transformations of evi-

dence within individual studies into more-conceptual forms applicable for generalized compari-

sons, allowing for broader, higher-level interpretations while also pulling in disparate aspects

from individual studies (Barnett-Page & Thomas, 2009). Inherited from meta-ethnography, re-

search questions in CIS are iteratively developed, allowing opportunities for refinement and re-

negotiation during the review process (Flemming, 2010) through the application the lensed anal-

ysis of synthesized constructs to the analyzed literature. The output of CIS results in a synthesiz-

ing argument – a generalized, formalized conceptual framework constructed to help understand a

phenomenon, sourced from synthesized constructs’ interpretations from all reviewed evidence.

5

Method

A thorough literature review guided by CIS was conducted to examine the reporting of

software design and development in instructional design and technology research. Data was col-

lected from peer-reviewed academic journals through the application of the systematic literature

review model (SLRM) synthesized by Kangas, Koskinen, and Krokfors (2017) from prior work.

The SLRM is composed of four phases bounding the literature review: defining research ques-

tions, bounding inclusion and exclusion criteria, selecting databases, and defining search terms.

A visualization of the literature review process is available in Appendix and formatted per the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart vis-

ualization to help provide additional transparency and clarity to the overall review strategy and

an accessible snapshot of the scope, processes, and findings (Liberati et al., 2009). The format of

the PRISMA flowchart follows the work of Mertz, Kahrass, and Strech (2016).

Research questions

The following research questions guided the data collection of the literature review:

● RQ1. How is software design and development detailed in IDT literature?

● RQ2. How is software re-use portrayed within IDT literature?

Inclusion & exclusion criteria

To examine the utilization and analysis of software development in IDT research, papers

published from 2003-2018 in Computers & Education, Educational Researcher, Educational

Technology Research and Development (ETR&D), and International Journals of Designs for

6

Learning were analyzed. All journal articles from these sources were considered for inclusion.

The 15 year selection of 2003 to 2018 corresponded with the establishment and normalization of

online interaction and collaborative learning (Zawacki-Richter & Naidu, 2016). Four specific

journals were chosen to provide a diverse sampling of papers to represent the broad variation

found within literature (Morrison et al., 2012). Extending the literature identification process of

Margulieux, Ketenci, and Decker (2019), specific journals were selected to represent IDT due to

their scientific rigor (articles were peer-reviewed, and peers ranked the journals as top-tier rigor-

ous journals) and to represent separate facets of research foci in its selected journal articles. Ta-

ble 1 outlines the submission criteria, explicit exclusions, and scope for each journal.

7

Table 1

IDT Journal Scope & Perspectives

Journal title Scope Submission criteria Exclusions

Computers &

Education

“[Increasing] knowledge

and understanding of ways

in which digital technology

can enhance education”.

Context of use, user/system interface, usability

issues, user experience evaluations, and im-

pacts on / implications for teaching and learn-

ing.

Detailed infor-

mation on im-

plementation

architecture.

Educational

Researcher

“General significance to the

education research commu-

nity and that come from a

wide range of areas of edu-

cation research and related

disciplines”.

“Major programmatic research and new find-

ings of broad importance widely accessible”, in

the areas of feature articles, reviews, essays,

briefs, and technical comments.

n/a

ETR&D “General significance to the

education research commu-

nity and that come from a

wide range of areas of edu-

cation research and related

disciplines”.

Development: “planning, implementation, eval-

uation and management of […] instructional

technologies and learning environments”.

Research: application of technology or instruc-

tional design in educational settings. Applied

theory, analytical, practical research topics.

Cultural and Regional Perspectives: enhance

learning, instruction, and performance

n/a

International

Journal of

Designs for

Learning

“Design cases documenting

interventions (artifacts, en-

vironments or experiences)

created to promote learn-

ing”.

“Critical and/or interesting decisions made dur-

ing the design process and their results in the

intervention, key aspects of the design process

as they are relevant to the form of the interven-

tion, and transparent discussion of problems

and/or failure analysis relevant to the interven-

tion and its design”.

n/a

Note. Content adopted from journal submission webpages (Computers & Education; Educational

Technology Research and Development; International Journal of Designs for Learning;

Researcher).

Both Educational Researcher and ETR&D provided a scope of general significance to the

educational community from wide areas of disciplines and research, serving as broader-lensed

journals. The submission criteria outlined in ETR&D, unlike the broader criterion found in Edu-

cational Researcher, focused on areas prime for software development studies. The Development

track focused on the creation of instructional technologies and learning environments, whereas

the Research track focused on the application of developed instructional technology or design

8

into practice. Submission criteria found for Computers & Education provided an intersection be-

tween the fields of educational research and computer science, focused on user and system inter-

face designs, contextual use considerations, and usability issues, but explicitly excluding imple-

mentation architecture. Submission criteria found for International Journal of Designs for Learn-

ing mirrored software development processes with the addition of design detail and intervention

documentation to promote learning. The inclusion criterion and scope of each journal suggested

that software development-focused educational research could be published.

Additional journals were not chosen due to two criterion. First, database searches on a

wide swath of educational journals on a topic area or search term rife with ambiguously-scoped

terminology (“software” and “development”) would generate voluminous records unmanageable

to the capacity of the author (Dixon-Woods et al., 2006). Identification of the operational defini-

tions underpinning this research revealed software development-focused terminology ambiguity

and variation, which could not be accurately assessed in a voluminous record set. Secondly, the

goal of the review was to uncover how educational software design and development processes

were detailed in IDT literature, rather than within education and education-adjacent fields. This

consideration bounded careful journal selection adhering to high-quality article review and selec-

tion criterion and journal reputation within IDT.

Databases & Search Terms

Database searches and archival retrievals were conducted for each journal for review and

synthesis. For the International Journal of Designs for Learning, a search was conducted within

the Directory of Open Access Journals database with the following search criteria, returning 5

results:

9

10

• Search query: “software development” in all text

• Content Type: Research Articles

• Publication Date: January 2010 (corresponding to the first edition) to March 2018

For Computers & Education, a database search was conducted within the ScienceDirect

database with the following search criteria, returning 132 results:

• Search query: “software development” in all text

• Content Type: Research Articles

• Publication Date: January 2003 to March 2018

For Educational Researcher and ETR&D, a database search was conducted within the

JSTOR database with the following search criteria, returning 30 results:

• Search query: “software development” in all text

• Content Type: Journals

• Publication Date: January 2003 to December 2014 (the latest date indexed from JSTOR

database)

The searchable JSTOR database excluded articles in a three-year period from search date

for Educational Researcher and ETR&D, leaving a data gap in applicable articles from January

2015 to March 2018. A supplemental search was conducted through the SAGE Journals archive

to obtain journal articles between the exclusion date (January 2015) and the search date (March

2018). Due to SAGE Journals archives’ inability to search through journal articles, all journal ar-

ticles were manually exported. This export resulted in an additional 183 (Educational Re-

searcher) and 253 (ETR&D) articles. A total of 603 articles were obtained from the summation

of all retrieval methods.

11

General Inquiry (Phase 1)

Each of the 603 articles was analyzed using the search, retrieval, and validation process

adapted from Barroso et al. (2003):

1. Read the title, abstract, and metadata for inclusion coding:

a. Does this article deal with the development and usage of software?

i. If not, exclude article

2. Read full article for inclusion in coding book following the research questions.

a. To satisfy RQ1, manually code how the software development process was re-

ported

i. Reported development process: study categorizations as reporting on

(software) development, (software) design, and/or project team process.

ii. Development team: self-reported (explicitly or implicitly) the software

developer.

1. Developer Category: categorize identification of developers into

internal (within the research team), external (consultant, staff

member), or undisclosed.

iii. Evidence of software reuse, satisfying RQ2: summary if the study dis-

cusses re-use in the development, iterative, or future goals of the software.

1. Explicit Reuse: summary if the study explicitly reuses software in

the design and development of the software in the study.

iv. Identify specifically-stated research scope exclusions or boundaries:

summary of any areas that the authors explicitly ignored for the study, due

to additional reporting or paper scope.

12

b. Describe a short description of end-result software: a high-level description

(name, goal) of the software

i. Development language: programming languages or tools leveraged in de-

velopment of the tool, dissected into three additional aspects:

ii. Platform: classifications of the software platform for tablets, personal

computers, mobile devices, web browsers, video game consoles, or

AR/VR.

iii. Custom developed: if the software was custom built rather than repur-

posed from existing software.

iv. Research methodology: overall research methodology guiding the study.

The article was then collated into a coding book. As described by Randolph (2009), a

coding book collects recorded data for each article, including supplemental data that may influ-

ence research. Recorded data includes the presence of CIS’ authorial voice – evidence not visible

or auditable, but interpreted through the author’s lens, background, and expertise (Dixon-Woods

et al., 2006) – present within synthetic constructs and the mapping of software design concepts to

instructional design studies. Coded entries were appended with selected text quotes and summa-

rizing notes to validate coded interpretations and build trustworthiness (Elo et al., 2014).

Seventy-two articles met inclusion criteria. These studies encompassed the following re-

search methodologies: design-based research, experimental design, case study, usability study,

co-design, evaluation study, naturalistic design, formative evaluation, and mixed-methods de-

sign. The educational software products in these studies spanned a wide variety of use-cases, in-

cluding medical simulations, tutor agents, instructional visualizations, integrated learning envi-

ronments, and role-playing games. The full coding book is available as supplemental material.

13

Additional Inquiry (Phase 2)

A large number of studies in the initial analysis phase excluded self-reporting of pro-

gramming language details (40), software developers (32), and the software design, develop-

ment, and process (35) reporting, as compared to the high number of self-reported custom soft-

ware development (68) studies. This gap in detailing the creation of custom developed software

revealed a dichotomy – studies overwhelmingly leveraged custom software in the creation of in-

terventions, yet the traditional software creation inquiries (questions such as ‘who developed?’,

‘what programming language or toolkit?’, or ‘how was the development managed?’) were not

adequately detailed. This exclusion resulted in custom software interventions situated in IDT re-

search which could not be re-created. Additionally, this gap suggested further investigation on

studies which included either evidence of custom software development or software re-use that

also self-reported software design, development, and process. As a consequence, the author ap-

plied an additional iteration of review to further understand custom development or re-use soft-

ware reporting in IDT research.

A need for a strengthened definition of software re-use emerged throughout the prelimi-

nary review phase. The re-use criterion, “discuss[ing] re-use in the development, iterative, or fu-

ture goals of the software”, did not properly bound what software re-use could entail. A frame-

work identified in the preliminary review phase provided an opportunity to refine the concept of

re-use. Cordero et al. (2015) leveraged the Bannan-Ritland (2003) integrative learning design

(ILD) framework as a lens for IDT software development. The ILD framework is a concatena-

tion of product design, usage-centered design, educational research, and innovation development,

and instructional systems design processes (p.22). The consolidated ILD framework is shown in

Figure 1.

14

Figure 1. Bannan-Ritland’s (2003) Integrative Learning Design framework.

The ILD framework separated software re-use into three categories: diffusion, adoption,

and adaptation. Diffusion referred to dissemination of software into a wider audience via the

web. ILD envisioned diffusion as a method to solicit supplemental user feedback, resulting in ad-

ditional design, development, and testing by the original developers (p. 23). The open-source na-

ture of software distribution allows for the software development process to be extended, through

source-code publishing, to any interested person to continue, expand, or reiterate upon. Adoption

referred to the full re-use of the software without any informed exploration – a translation of a

custom-developed software to replication studies. Like adoption, adaptation referred to the re-use

of the software, but with secondary studies exploring a variated re-use.

As RQ2 originally identified educational software re-use in broad terms, ILD’s definition

of re-use as three separate levels (diffusion, adoption, and adaptation) facilitated the addition of

supplemental questions extending the original research questions:

● RQ1. How is software design and development detailed in IDT literature?

● RQ2. How is software re-use portrayed in IDT literature?

○ RQ2.1. How is software diffusion portrayed in IDT literature?

○ RQ2.2. How is software adoption portrayed in IDT literature?

○ RQ2.3. How is software adaptation portrayed in IDT literature?

15

The 72 studies of the first phase were reduced to those which reported software develop-

ment or reported software reuse, which excluded 22 studies. Studies were excluded if no soft-

ware reporting was found in the study (software design, development, or process were all ex-

cluded) and no evidence software re-use was found. These exclusions resulted in 50 studies,

which were re-coded with additional data to answer the RQ2 sub-questions:

1. Diffusion: identification of a (digital) location where the software is available to

download or access.

a. Diffusion as shared ownership: evidence of collaborative, shared development

resulting in shared ownership, open-source software.

b. Diffusion as distribution: the traditional definition of diffusion as defined by

ILD.

c. Post-development abandonment: self-reported evidence of post-development

deprecation of software code.

2. Adoption: identification of rote software re-use within the study.

a. Full software adoption: the traditional definition of adoption as defined by ILD.

b. Additional software adopted during design and development: adoption of a

software module, or additional software.

c. Sourced adopted software: categorization of adopted software as originating

from research, a software application or plugin.

d. Post-development adoption: self-reported evidence of post-development adop-

tion by additional research.

3. Adaptation: identification of variated re-use of existing software within the study.

16

a. Sourced adapted software: categorization of adapted software as inspiration,

module, or software application.

b. Post development adaptation: self-reported evidence of post-development adap-

tation by additional research.

Review of the initial phase of analysis revealed unclear differentiation between adoption

and adaptation when scoped to software modules. The concept of variated re-use is a founda-

tional component of software modules; their incorporation into a larger product can often be var-

iated. Software modules can require additional programming code for enabling basic functional-

ity, while others are intended to be used stand-alone and provide data output to a consuming cus-

tom-developed software application. To clarify this differentiation, the author defined a synthetic

construct for software categorization as an application (standalone software) or module (a piece

of software requiring additional customization to function).

Revised synthetic constructs for adoption and adaptation were provided for software ap-

plications and modules. For software applications, adoption was scoped to research which did

not directly alter the software through additional custom programming code. Adaptation was

scoped to research which extended existing software beyond its original capabilities, requiring

additionally-written software or hardware. Adaptation was additionally scoped to software uti-

lized as inspiration – adaptation through variated replication of its interface or design. This sce-

nario is similar to the video game concept of a ‘spiritual successor’, where a new video game

may replicate components or best-practices of an existing game into a new, un-connected game.

For software modules, adoption was scoped to research which did not require additional custom

code to extend the module functionalities. For example, usage of a third-party software AR/VR

toolkit would be considered adoption if no additional programming code was required to extend

17

the toolkit beyond its current usage. Adaptation was scoped to research which required additional

custom code to extend functionality to a new domain or use-case.

Results

 General Inquiry (Phase 1)

Hardware platforms.

All 72 studies were analyzed for the self-reported hardware platforms of the developed

software. An overview of the platforms is described in Table 2. Each category was identified and

defined as the platform appeared within the review.

18

Table 2

Self-Reported Hardware Platforms

Hardware Platform Studies found

Tablet 6

Video Game Console 1

Web Application 32

Mobile Application 16

Desktop / Laptop Application 23

Augmented / Virtual Reality 8

Total 84

Blank / None 0

IDT research reached a large population of devices – from device-agnostic (web) to de-

vice-dependent (AR/VR, video game console), and all the operating system ecosystems in be-

tween (mobile, tablet, desktop, laptop). The total platform count included software that existed

on more than one hardware platform. Multiple studies included software that utilized augmented

or virtual reality (AR/VR) in order to provide instruction – AV/VR as the visual apparatus paired

to a mobile device or computer. Multiple studies also leveraged both a medium of instruction

(web) and a physical tool such as a tablet or mobile device. The wide range of hardware plat-

forms illustrated the ubiquity of software platform reporting in educational research, but simulta-

neously highlighted low software replication or re-use value. Hardware platform reporting did

not provide meaningful software creation process detail except that it was designed and expected

to work on a specified hardware device. Hardware selection and identification did not necessarily

19

entail any judgements, insights, or detail into the software development process. There is no im-

plication or evidence suggesting any parallelism between software development processes of two

projects sharing similar hardware platforms. Instead, hardware platform reporting defined and

articulated the methods of user-interaction, providing opportunities for a high-level description

of how end-users interact with the software. Uncovering software reporting primed for re-use re-

quired a deeper dive into the software creation process itself.

Software programming languages and tools.

All 72 studies were analyzed for the self-reported programming language. The results of

this analysis is described in Table 3.

Table 3

Self-Reported Software Programming Language or Platform

Software language Studies Found

Software Programming

HTML5 2

Ruby on Rails 1

PHP 1

Objective C / iPhone SDK / related libraries 1

JavaScript 1

Unity3D / Unity 4

C++ 1

Java / Android SDK / related libraries 6

Flash 1

ColdFusion 1

C# / .NET 4

20

Perl 1

Total (Software programming) 24

Database Programming

mySQL 3

Microsoft SQL Server 1

Total (Database programming) 4

Visual Programming Application

Microsoft Agent Environment 1

Vuforia & ManySense 1

NetLogo & Flash 1

SecondLife 1

EmuCV 1

SimQuest, Loquendo, Elcklyc 1

Neverwinter Nights 2 mod 1

eAdventure software framework 1

Macromedia Director 1

Total (Programming Tools) 9

Undefined Programming

“a series of API calls” 1

Total Programming Tools & Languages 38

Total Studies 32

Blank / None 40

Programming language self-reporting within the sample fell into two distinct camps of

identification and absence. Programming tools consisted of pre-existing full-featured software

21

with editor tools (such as SecondLife and Neverwinter Nights) or an assortment of authorware

tools designed to scaffold software development by providing a foundation software framework

and editor user interface (Boyd, 1993). While evidence of a few authorware tools were identified

in the sample, a majority of studies detailed programming language usage. As one study noted,

programming language usage reduced development costs and provided an opportunity for con-

tent experts to be closer-situated to the development environment (Borro-Escribano, Del Blanco,

Torrente, Alpuente, & Fernández-Manjón, 2014). The breadth of programming languages exem-

plified the variation within IDT research. Reported programming language usage spanned from

game development, mobile operating systems-specific, deprecated or abandoned tools, web-

based products, general purpose, and low-level code. Few studies leveraged database storage and

querying, an aspect vital for web-based platforms. No singular programming language or visual

programming application was found to be ubiquitous or preferred across studies. As an example,

game development studies centered around Unity, a library and toolkit providing programming

language shortcuts primed for 3D video game development, whereas web development studies

spanned across a range of programming languages and tools.

The wide range of tools and programming languages provided evidence of a fractured

and segmented development environment, as it severely limited value in reporting code samples

and snippets. Code syntax, libraries, and structure could not be easily translated between visual

programming languages, traditional code-oriented programming languages, and database pro-

gramming. Code snippets would have limited value to researchers primed to replicate or repro-

duce the software – the effort would be akin to an author rewriting a novel based on quoted text

or a paragraph of plot summary. It would be infeasible to expect IDT research standardize on one

platform, toolset, or language, as programming languages were designed to provide shortcuts for

22

particular types and variations of code. Gaudel (1981) and Leupers (2002) detailed the founda-

tional knowledge on the decomposition process of programming languages into shared computer

code. As a summary, standardization to a single programming toolset or language for the field

would, both for software developers and instructional experts, vastly increase the resources and

time required in software creation, requiring a massive amount of additional work added to an

already resource-intensive process. For example, a programming language primed for 3D visual-

izations (such as Unity) provided unique libraries and shared code components built for that pri-

mary purpose. Rewriting those libraries, for example, within a web-oriented programming lan-

guage would be unrealistic and wasteful.

While programming language reporting did not provide any real detail of a software de-

velopment process, it highlighted the increasing pace of standards and deprecation in software

development. Multiple studies worked with historically relevant programming languages (Flash,

ColdFusion, Perl, Ruby on Rails) that had fallen out-of-favor for more modern-day mobile-ori-

ented programming languages (Android SDK, Java, Objective C). Even programming tools

themselves (Macromedia Director, Neverwinter Nights 2, Microsoft Agent Environment) dated

themselves into obsolescence. Comparatively, while base-level programming languages (HTML,

PHP, C++, JavaScript), were historically relevant, those components also served as foundations

for modern programming language framework such as Node, Symfony, React, and VueJS. Con-

sistency in reporting on programming languages could provide best-practices on effective pro-

gramming languages for particular types of educational software development. However, that

self-reporting would provide only traces of software development. To understand more about re-

porting software development, it was valuable to examine the extent of custom software develop-

ment comparative to existing software analysis.

23

Software customization or reuse.

Studies were analyzed for the self-reported re-use or custom development of software in

each study. An overview of the customization is described in Table 4.

Table 4

Self-Reported Software Creation Method

Software re-use Studies found

Reuse of Existing Code 7

Custom Development 68

Total 75

Blank / None 0

There was no reliable pattern or standard definition of custom software development. To

assess presence of custom development, a study met the minimum requirement for categorization

if software development descriptions contained any permutation of “researchers developed the

[environment]”, as seen in studies such as Huang and Huang (2015) and Paek, Hoffman, and

Black (2016). Out of the seven studies re-using existing code, only three studies used a combina-

tion of pre-existing software and custom plugin development. These studies identified two com-

bination scenarios:

• Existing software that provided a native authoring tool (Chen, Wong, & Wang, 2014)

• Existing software that provided programming-level hooks or work-arounds (H.-M. Sun

& Cheng, 2009; van der Schaaf et al., 2017)

The wide presence of custom development over explicit re-use highlighted a foundational

struggle in the field – the plight of replication studies in academic research. This plight is mired

24

by multiple factors: fears of recreating ‘exact’ replication (Loui, 2015), limited extensions for ex-

isting research (Plonsky, 2015), an over-emphasis of ‘gadgeteering’ over practical theory and

practice (Finn, 1953), and a combination of institutional, editorial, curricular, and personal per-

spectives (Porte, 2013). These fears stoked an environment primed for custom developed soft-

ware, facilitating usage of novel, new ‘gadgeteered’ solutions rather than extending or confirm-

ing already-created educational software. This perspective stymied the 3 R’s defined by Gage

and Stevens (2018), rigor, replication, and reproducibility, to increase research relevancy in sci-

entific domains and society. Additional analysis was needed to evaluate the context of custom

developed educational software. It was possible that custom software afforded more opportuni-

ties for discussion, detail, and analysis of the development process, affording more generalizable

data on the software creation process; this guided the next aspect of inquiry.

Software design, development, and process.

All 72 studies were analyzed for reporting of software design, development, and process

within each study. The results are described in Table 5.

Table 5

Self-Reported Software Design, Development, or Process

Software development self-reporting Studies found

Software Design 28

Software Development 16

Software Team and Process 13

Total Studies Reporting 37

Total Studies Not Reporting 35

25

A synthetic construct was established to gauge the reporting of the software design, de-

velopment, and team process based on the study’s creative process (Dixon-Woods et al., 2006).

The construct was guided by the amalgamation of the following aspects:

• Construct of ‘software design’: visual design considerations.

o Included any discussion of user interface, screenshots, high-level software design

models, and user experience detail, as these aspects detailed how the programmed

software was presented to its target audience.

o Excluded any high-level overview of software features or goals.

• Construct of ‘software development’: programming-related coding.

o Included any discussion and process regarding information architectures, code

samples, low-level system modeling, and UML diagrams - as these aspects de-

tailed the programming perspective and strategy.

• Construct of ‘software team and process’:

o Included any discussion of the design and development timeline or iterative de-

velopment process.

• Construct of ‘No reporting’: the study presented the software as if it was spontaneously

acquired or developed. Tergan (2006) described this perspective as a singular focus on

instructional-focused analysis, forgoing any considerations to the development of the

software.

The terms software design and development were not explicitly scoped or defined within

any individual article. This limitation revealed that ill-defined and ambiguous definitions may

hinder software reporting aspects. Visual software design was widely utilized as a meaningful

perspective into the inner-workings of the software development process. A majority of articles

26

which reported an aspect of the software development process showcased software design as a

reflection of the software’s creation. This was not too surprising, as there are fields of research

such as user experience, usability, and accessibility, which focused on design language and their

translations to end-users. These fields of research examined how end-users interpret and use the

software, and examined barriers or scaffolds to locate and consume instructional design. Simi-

larly, because design is primarily visually-attuned, it was easily-translatable to a journal article or

paper. Screenshots, design documents, and interface mockups served as “gadgeteered” results,

highlighting aesthetic appeal over underlying functionality. Prior to the first iteration of analysis,

there were considerations for software design to exclude visual design. However, software de-

sign was defined as primarily focusing on visual aspects like user interfaces, rather than data

structural design or project goal design. An effort to consolidate and frame these concepts from

an educational perspective would be incredibly valuable, if only to properly guide analysis and

reporting for re-use across IDT using a standardized vocabulary.

A large number of studies explicitly reported that software development fell outside the

scope of this review, deferring to either external documents (Winters & Mor, 2008) or prior re-

search (Depradine & Gay, 2004; Hirumi et al., 2016; Khan, 2008; Leenaars, van Joolingen,

Gijlers, & Bollen, 2014; Liu, 2013; S. W. Park & Kim, 2014, 2016; Verdú et al., 2017; Waight,

Liu, & Gregorius, 2015; Winters & Mor, 2008). The prior sections of analysis highlighted the

small presence of software development reporting: code samples and information architectures

would not be able to describe the software development process – they only described aspects of

the resulting software output. Moreover, Computers & Education explicitly excluded journals

highlighting information architecture-like analyses in its submission criterion, as seen in Table 1.

This explicit exclusion implied two considerations: information architectures had very narrow

27

value to the larger field of research, or/and its usefulness fell outside of the scope of educational

research. Code visualizations like UML diagrams and information architectures would be com-

parable to a table of contents. Code descriptions were heavily generalized but broadly scoped

across the project. From the perspective of re-use, information architectures provided little value

beyond a high-level review of programmable components. Additionally, there was evidence that

educational research did not prioritize software efficiency. Developed software was found to not

be stable (Laine, Nygren, Dirin, & Suk, 2016) or flexible for real-world use (Modell, 2014), or

too early in development due to ineffective choices in programming languages (Laine et al.,

2016), limited project scope (Dagdilelis, Evangelidis, Satratzemi, Efopoulos, & Zagouras, 2003),

or just preliminary findings (de Jong et al., 2012; Wei, Weng, Liu, & Wang, 2015). These qual-

ity-control issues forced reconsiderations of the value of full software development sharing in

cases of inefficient or buggy code. Stepping away from code examination, it was crucial to ex-

amine who was developing the software to better understand how software development was sit-

uated alongside IDT expertise.

Software developers.

All 72 studies were analyzed for self-assessment of who developed the software. The re-

sults are described in Table 6.

28

Table 6

Self-Reported Software Developer(s)

Self-Reported Developer Role Studies Found

Internal Developers 30

External Developers 10

Total Studies Disclosing Developers 40

Total Studies Reporting an Undisclosed Developers 32

Data coding was bound to set criteria, noting ambiguity in identifying a software devel-

oper as internal or external to the research project. Studies were coded as reporting internal de-

velopers only if the study explicitly self-reported the authors or a member of the research team as

the developers. Beyond explicit declarations of external software developers, references to am-

biguously-scoped software programmers were categorized as external developers, as their rela-

tionship between the researchers could not be determined. Studies failing to include a reference

to who developed the software were coded as containing undisclosed developers. Reporting of

software developers was closely divided between those that disclosed and those that did not.

However, multiple studies cited software developers solely as part of the supplemental acknowl-

edgement, which provided very little context and knowledge of how developers interfaced with

the project team members. Exclusion of software developers within research about the software

deprived similar studies (defined by either scope, scale, research topic, or instructional goals)

valuable data of the researcher/developer relationships and knowledge negotiations. Detail and

analysis into software developers would provide value to cite or situate knowledge and expertise

from a complementary field (like computer science) into the study. More importantly, the place-

ment of software developers within the study writing process itself would allow their voice (and

29

by association, their knowledge and expertise from that complementary field) to sit alongside ed-

ucational-research, providing additional evidence and validity to the software creation process.

Framing analysis from this perspective, however, may prove to be a challenge within IDT. Ref-

erencing software development knowledge from textbook publications to kick-start development

highlighted the difficulty.

The extent of reporting for studies leveraging external developers varied extensively. Ex-

ternal developers included colleagues across multiple fields within an institution, paid develop-

ment roles, computer science experts, an international project team of programmers, individual

members with undefined relationships to the research project, and generically-defined external

programmers. As described earlier, the software development process was a non-trivial process

that was team-work driven, time-consuming, and expensive. Given the resources required, the

variation in external development resources was surprising. If external developers were solely

scoped to software agencies and other ‘think-tank’ subject-matter-expert vendors, an argument

could be made about external developers bringing in a vast swath of expertise given a cost value

(either as resource, time, or monetary). However, external developers encompassed a larger field

of academic expertise, international scaled experts, and institutional colleagues. This highlighted

a possible gap that the cost for software agencies may be a barrier-of-entry as compared to free-

lance-scoped developers. The knowledge in order to validate this possibility, however, would be

impossible to obtain without additional detail on the software development processes in each

study.

30

Re-use Inquiry (Phase 2)

Further analysis was needed to understand how studies leveraged software adoption, ad-

aptation, and diffusion. Synthetic constructs of adoption, adaptation, and diffusion were estab-

lished, grounded in ILD’s structural steps, defined by Bannan-Ritland (2003), to bound identifi-

cations within each study:

1. Diffusion: evidence of diffusion only if the author(s) provided a digital presence for

the project and the developed software.

2. Adoption: evidence of adoption in two scenarios: (1) leveraging existing software in

the creation of the software, or (2) explicitly-defined evidence of post-development

adoption of the developed software.

3. Adaptation: evidence of adaptation in three scenarios: (1) repurposing components,

content, design from other software, products, or studies in a new scenario, (2) explic-

itly-defined evidence of during-development adaptation of software, or (3) explicitly-

defined evidence of post-development adaptation of the developed software.

ILD’s definitions of adoption and adaptation were adjusted to scope its presence to en-

compass both within a study (during-development) and outside the original study (post-develop-

ment), with the premise that a study could either/both frame its software development as a con-

sumer or producer. Studies framed from software consumption allowed for ILD’s original defini-

tions of adoption and adaptations, where the study acted upon previously-created software in its

own creation. On the other end, studies framed from software production allowed for the emer-

gence of adoption and adaptation evidence in post-study discussions. In addition, software devel-

opment analysis could be framed both production and consumption. Software could simultane-

ously be modular and componentized, and adopt many small software packages in the creation of

31

unique, larger-scaled software. Individual software components, or modules, are commonly

shared (disseminated), repurposed (adaptation), and applied (adoption) within software commu-

nities such as open-source software. Understanding the nesting doll-like capacity of software de-

velopment, where a new product could be produced from the adoption and adaptation of existing

software, was crucial to properly bound the synthetic constructs.

Software re-use components.

50 studies were analyzed for presence of software re-use as defined by the above syn-

thetic constructs. The results are described in Table 7.

Table 7

Software Re-use as Defined by the Integrative Learning Design Framework (n=50)

Software re-use Studies found

Adoption 18

Adaptation 15

Diffusion 9

Adoption and Adaptation 3

Diffusion and Adoption 2

Diffusion and Adaptation 0

Adoption, Adaptation, & Diffusion 4

Total studies reporting 29

- Reporting only one aspect 20

- Reporting only two aspects 5

- Reporting all three aspects 4

No reporting 21

32

 The sampled articles were grouped into studies reporting re-use and not. Coupled with

the instances within the sample of re-use aspect combinations, these findings provided insight

into the difficulties for IDT software to persist and evolve within a learning ecology – configura-

tion sets of activities, resources, and relationships situated within co-located spaces which pro-

vided learning opportunities (Barron, 2004). While the second phase of articles inclusion crite-

rion were bounded to software development reporting, this schism of re-use and no reporting

provided evidence that software development-focused research does not maximize re-use. The

fewer instances of software diffusion, compared to adoption and adaptation, highlighted the

problem of locating similarly-developed software as described by Hucka and Graham (2018).

Their research focused on locating applicable software for scientific research, finding a large

presence of “look[ing] in the scientific literature to find what authors use in similar contexts”

alongside web searches and colleague advice. Diffusion was defined to situate within both scien-

tific literature and web searches, in that the process placed a breadcrumb trail from the study to

the applicable website or repository.

Similar findings of adoption and adaptation evidence were found within the sample size,

mirroring the structure of academic research. Academic research served as an appendix, exten-

sion, and expansion of the existing learning ecology (Cobb, Confrey, diSessa, Lehrer, &

Schauble, 2003). It was not surprising that adoption and adaptation were the most prevalent as-

pects of re-use, as these software projects were the digital products of a growing learning ecol-

ogy within IDT. However, additional analysis was necessary to understand and situate the pres-

ence of adoption and adaptation, as the synthetic constructs provided multi-faceted bounds by

which to collect applicable data across the software development lifecycle.

33

Software diffusion.

50 studies were analyzed for presence of software diffusion. Sub-types emerged from

analysis to categorize and group similar diffusion types. The results are described in Table 8.

Table 8

Self-Reporting of Software Diffusion (n=50)

Diffusion sub-types Studies found

Shared ownership 2

Software distribution 8

Post-diffusion abandonment 1

Total studies reporting 9

No reporting 41

Diffusion was categorized into two areas: 1) evidence of shared ownership as diffusion,

and 2) the software distribution itself. ‘Shared ownership’ referred to collaborative, open-source

opportunities afforded by distributing software on the web. While the presence of diffusion as

shared ownership was rare, the findings reflected the opportunities and affordances gained by

diffusing software. Bug testing, submitting change requests (Branon, Wolfenstein, & Weiss,

2016), and applying open-source software licensing (Salas-Morera, Arauzo-Azofra, García-

Hernández, Palomo-Romero, & Hervás-Martínez, 2013) encouraged software re-usage by facili-

tating additional iterations, forks, and updates by a wider community – even if there was no call-

to-action to do so.

‘Software distribution’ was defined to either the explicit intent (post research) or action

(during research) to provide the software for public access and usage. All instances of software

34

distribution actions provided a web URL to locate the software or a project page listing the soft-

ware, reflecting a coupling between the hosted software and the accompanying communications.

Finally, a curious outlier study self-identified what can best be described as post-diffusion aban-

donment: evidence of software code stagnation and deprecation occurring after its diffusion, go-

ing so far as its authors referring to code as “withering” (Branon et al., 2016). This finding high-

lighted two barriers of software development not commonly considered: (1) software develop-

ment best practices can move exceedingly quickly, and (2) writing good, solid software can re-

quire multiple iterations. Certain fields of software development are situated on shifting best-

practices, toolkits, and development frameworks that historically stay in vogue for only a handful

of years. For example, web development best-practices shifted significantly in the fifteen year

timespan of analysis from platform- and system-centric to framework-centric development.

Additionally, software testing and refactoring was shown to be a time-intensive, exhaus-

tive, and heavily-iterative process. Potential risks in the process of changing software not in its

external behavior but its internal structure, or refactoring, included creating subtle software bugs,

scope creep, and additional resources required to optimize code (Fowler, 2018). Refactoring

would provide opportunities to develop easily-readable and -modifiable code for diffusion. The

process of software testing, composed of software verification and validation, would require in-

sight from domain knowledge experts who would validate the requirements, specifications, and

artifacts of the created software (Myers, Badgett, Thomas, & Sandler, 2004). Software testing

would be crucial to delivering validated, bug-minimized software.

However, there existed value in diffusion despite the barriers defined above. The choice

of platforms, languages, or best-practices for software development did not have to be in vogue

35

to be beneficial in authentic, real-world scenarios. Integrations of new technology in higher edu-

cation commonly occurred as late-adopters. Positioning the Internet as a global and universal

tool harnessed by learners and users across broad spectrums of socio-economic statuses, it would

be naïve to assume that the global Internet audience moved in-step to platform changes, provid-

ing opportunities for longer shelf-lives for produced software from a global lens.

Software adoption.

50 studies were analyzed for presence of software adoption. Sub-types emerged from

analysis to categorize and group similar adoption types and to categorize additional metadata.

The results are described in Table 9 and Table 10.

Table 9

Software Adoption Presence (n=50)

Adoption sub-types Studies found

Full Adoption of Software 8

Adoption of Additional Software 9

Evidence of after-development adoption 2

Total studies reporting 18

No reporting 32

36

Table 10

Software Adoption Sources (n=50)

Software sources Studies found

Academic research 5

Software application 7

Software module 6

Total studies reporting 17

No reporting 33

 Two studies self-identified post-development adoption, providing evidence of software

portability and the speed-of-adoption from originating research into new projects. Software

adoption evidence emerged into two sub-types: a full adoption of software, and adoption of soft-

ware as part of research and development. Full adoption of software encompassed research re-

purposing existing software in its entirety. This perspective focused research lenses on instruc-

tional design related to, or analysis of, the pre-existing software, rather than software develop-

ment itself. Discussion of software development adoption situated around its re-use would be

valuable in confirming or validating the existing research and extending the scope or analysis of

previous research, thereby extending the learning ecology within IDT.

Each study was coded to emergent synthetic constructed categories of software sourcing:

as a product of previous academic research, general software product with no identified sourcing

context, or a software module. Both attributes were valuable to discover the context to which

adoption occurred and to define the types of adopted software, which were discussed in further

detail with an additional layer of analysis.

37

Software adaptation.

50 studies were analyzed for presence of software adaptation. Sub-types emerged from

analysis to categorize and group similar adaptation types. The results are described in Table 11.

Table 11

Software Adaptation presence (n=50)

Adaptation sub-types Studies found

Software inspiration adaptation 5

Software module adaptation 6

Software application adaptation 5

Post-diffusion adaptation 0

Total studies reporting 15

No reporting 35

Software adaptation evidence categorized into three sub-types: adaptation of software,

adaptation of software module into a larger product, and adaptation as inspiration: an adaptation

of ideas, content, user-interface into a new context. A nearly parallel count of studies which self-

reported adaptation (between software applications, software modules, and software inspiration)

paired with a lack of overlap between adaptation sub-types: only one study provided evidence of

more than one adaptation type. This provided evidence that research leveraging adaptation pri-

marily focused on one aspect – repurposing of software, content, or a module. Evidence of stud-

ies extending multiple software types during development were not found except in a singular

instance.

38

Inspiration serving as evidence of adaptation, relative to findings of adaptation of soft-

ware and software modules, revealed a low-technology threshold available for research to iden-

tify and document software re-use. The inspiration evidence took two primary forms: content in-

spiration (instructional storylines or content) and development inspiration (high-level software

overviews or goals). Both forms applied adaptation in that the self-identified inspiration directed

and influenced project software development outside of the original scope of the referenced

source. This aspect would be valuable for researchers that may be uncomfortable with more tech-

nically-lensed software analyses by self-identifying prior work influence and inspiration evi-

dence. This evidence provided a bookmark for tracking the evolution of content or development

inspiration through the application of adaptation, as well as crediting a previously-developed

product for an attribute, aspect, of software worthy of adaptation. Unlike adaption and diffusion,

no evidence of post-diffusion evidence of adaptation emerged. This finding was not early unan-

ticipated, as it seemed unlikely that other research would locate the created software for adapta-

tion prior to publication. Evidence of post-diffusion adaptation would presumably have a longer

timeline than adoption and diffusion reporting, as adaptation would need to extend the software

in new context or a new perspective and report back to the original developers before the re-

search was complete.

Discussion

RQ1. How is software design and development detailed in IDT literature?

An initial round of inquiry detailed the scope of basic software development concepts and

attributes within IDT research. Educational software platforms are well-reported (see Table 2),

39

likely owing to the focus on learning outcomes within research. Gaps in software development

self-reporting emerged as the technical requirements intertwined with the topic area increased,

owing to the instructional research focus. This could be sourced from recommendations for soft-

ware design and development to be reported within conference proceedings rather than journal

articles. The current state of software design and development in IDT research educational soft-

ware development was not well-reported for re-use. The primary method of analyzing develop-

ment was through user-interface decisions - Table 5 highlighted the prevalence of interface- and

graphic design. Only a few studies represented software development as high-level functionality

(what does the software do?) and workflow (what major components, either hardware or soft-

ware, does the developed software interact with?). Detail and analysis of software development

was largely absent (Tables 4-6), with little emphasis or clarity on who developed, how the devel-

opment occurred, and overall detail of the software’s construction. An additional round of analy-

sis (Tables 7-11) revealed the lack of software re-use evidence within existing literature using

refined definitions of re-use components. The high number of undisclosed software developers

(Table 6) strengthened the argument of Oliver (2011), in that the examination of technology in

ILD would benefit from socially- and culturally-angled perspectives in order to examine technol-

ogies embedded within research, in order to understand the biases, influences, and perspectives

that influenced the resulting software. As software developers were found to be unidentifiable

(32) or outside the research team (10) compared to self-reporting of internal developers (30),

more transparency and detail on the development process and team would aid the transfer of pro-

ject and software development-focused knowledge both within the research team and to similar

research.

40

Research has reiterated that individual programmer contributions (and their historical and

cultural backgrounds) provided evidence for the functionality and design of the software

(Shavelson, Phillips, Towne, & Feuer, 2005; Wang, Nieveen, & van den Akker, 2007). Knowing

these areas of concern, it was pertinent to examine how the field of computer science has han-

dled similar considerations. Computer science research has spent considerable resources evaluat-

ing and testing re-use and replication studies on software development, which routinely focused

on a documentation plight. Kernebeck (1997) described ‘reusable’ computer code as a combina-

tory pairing of source code, documentation, and any aiding utilities. One potential avenue to help

mediate this issue was embedding documentation within code comments, which would be writ-

ten within the source programming code. However, code comment documentation remained a

persistent and common problem within computer science, finding that the resulting documenta-

tion was out-of-date, broadly-focused, or inaccessible to other developers (Forward &

Lethbridge, 2002; Marcus & Maletic, 2003; Moreno, 2014; Tan, Yuan, Krishna, & Zhou, 2007).

Efforts to automate or generate documentation was a continual effort of research (McBurney &

McMillan, 2014; Robillard, 1989). Computer science-focused research found that the broad que-

ries of ‘why’ and ‘how’ we interpret computer source code persisted within both individual de-

velopers and teams (Ko, DeLine, & Venolia, 2007). A solution for IDT, then, would need to look

to aid re-use and replication from a different perspective.

RQ2. How does software re-use occur within IDT literature?

Table 3 reviewed software re-use within the literature, locating 9.7% (7) studies which

explicitly detailed software re-use. However, ILD’s decomposition of re-use provided a detailed

frame-of-reference by which to analyze research, finding 40.2% (29) of studies reporting a re-use

41

component in Table 7. The discrepancy in findings between the two phases highlighted a dichot-

omy within the field. Framing and detailing software development analysis and detail was non-

standardized, which in turn made self-reporting software re-use difficult without pre-established

consensus and best-practices. This finding revealed that 30% of studies (22) implicitly identified

and detailed software re-use, whether the authors intended or not. The implicit nature of the de-

tail revealed that knowledge applicable for re-use may be lost in this implicit declaration without

clearer identifiers and benefits for framing analysis from software re-use. Table 7 highlighted the

difficulty in reporting on re-use components defined by ILD, where 27% of studies (20) reported

one component of re-use and only 12.5% of studies (9) reported two or more components.

RQ2.1. How does software diffusion occur?

12.5% of studies (9) reported software diffusion through distribution (11.1%) or distrib-

uted software ownership (2.7%), revealing the rarity of software sharing within the field when

compared to the ubiquity of custom developed software (94.4%). Finding a sizeable presence of

internal developers (41.6%) embedded within research projects revealed that projects already had

a subject-matter expert that would be expected to have technical knowledge to diffuse the soft-

ware onto the Internet. This finding revealed some difficulty in diffusing software and research

projects and the best-practices and consensus for doing so. Additional detail and analysis within

each study on how software was diffused for re-use could help establish best-practices for re-

search to share software code and ownership. Diffusion could be impeded by buggy, unstable, or

early software – and the hesitations in releasing software in that state. The distributed model of

software diffusion, and shared ownership, provided an opportunity for other developers (and

adoption or adaptation projects) to iterate the software and potentially fix those issues. There

42

may be pre-existing notions of questionable value for sharing source code, due to difficulty in

locating similarly-developed software (Hucka & Graham, 2018). Source code was not a reliable

method of determining the functionality and design philosophies of software, but could be valua-

ble in facilitating stricter software adoption and adaptation, thereby building consensus and best-

practices through distributed, iterative software development practices. Adaptation could provide

a suitable outlet for reconfiguring, customizing, and extending the source code into different con-

texts.

Following the prescriptions laid out in software searching mechanisms analyzed by

Hucka and Graham (2018), the search and retrieval process for locating software was a need-

driven endeavor across a number of sources including public software repositories, web searches,

socially-focused help websites, mailing list discussion threads, social media communications,

and software indexes. Diffusion would not need to facilitate the communications for potential

searchers, but rather focus on making the developed software easy to locate. Additional written

information would provide valuable context that can take the form of documentation, historical

data, point-of-contacts, or software metadata. Just as important, however, would be that the same

written information provide context clues to search engines and other web aggregator services to

locate, index, and then serve the URL to visitors conducting searches using similar search terms.

That is, the content accompanying the software would not only benefit those who locate the soft-

ware, but also help maximize opportunities for discovery.

RQ2.2. How does software adoption occur?

Tables 9 and 10 found 25% of studies (18) reported software adoption of additional

(12.5%) or the primary (11.1%) software. Comparatively, only 9.7% of studies self-identified

43

code re-use (Table 3). This dichotomy, much like in RQ2, provided evidence for a lack of con-

sistent definitions and frames-of-analysis for describing software in IDT. The findings of soft-

ware sourced from academic research (6.9%), software packages (9.7%), and software tools

(8.3%) revealed the breadth of software adoption, in that software both within (academic re-

search) and outside (software packages and tools) IDT contributed to software development re-

search. The identification and categorizations of software adoption sub-types – primary and addi-

tional software – revealed that software adoption occurred for entire software as well as individ-

ual software components. These findings, while a comparatively low percentage to the full

breadth of custom development (94.4%) reviewed, provided real-world instances of software

adoption as well as identification of sources to locate applicable software. This discrepancy re-

vealed the incidental and ubiquitous nature of reporting software adoption, in that research may

be subconsciously adopting software. Modern-day software development methodologies steered

their design towards piecemeal software components. Web content-management systems, such

as WordPress and Drupal, contained software module ecosystems acting much like LEGO

bricks, where a developer could combine several modules into a functioning web application.

RQ2.3. How does software adaptation occur?

Table 11 found 20.8% of studies (15) reported software adaptation as inspiration (6.9%)

or sourced from full software (8.3%) or a software tool (6.9%). This discrepancy provided addi-

tional evidence for the value in research oriented from perspectives of software development in

developing software best-practices. This aspect was especially crucial in software adaptation to

trace the growths and evolution of software between projects. Much like design-based research,

these software projects would be guided by iterations, distributed through separate teams and

44

project-goals. Rather than an upstream increase in complexity and fidelity between iterations,

software adaptation would result in a series of software forks appearing more like a spider-web

of derivations of the original software, branching into unanticipated scopes and directions. While

this series of software forks would make it harder for iterative changes to scaffold back down to

the original design, it instead would facilitate a library of similar software meeting a wider varia-

tion of needs. More importantly, each forked software would provide confirmation or rejection

of a choice in a previous generation, routing best-practices through an evolutionary-like ap-

proach. However, this perspective would be reliant on wider usage of adaptation in IDT research,

which was not evident in the findings.

A Perspective Forward

During the literature review, a recurring theme emerged: the placement of software as a

tool with a singular role within IDT research. Research methodologies and tools centered analy-

sis around instructional goals rather than a software creation processes. Some considerations out-

lined earlier, such as unstable and early software, were posited by their authors to be mitigated

by additional development cycles and continued research. Pre-existing expertise in complimen-

tary fields such as computer science, however, cannot be easily mitigated. Studies routinely

glossed over, ignored, or excused any detail of the software development process, which an addi-

tional development cycle or continued research could not resolve. Missing analysis on the pro-

cess or development could do additional harm to the software, as those underlying issues could

be compounded through software refinement and additional cycles, which would increase the

complexity and scope. Instead, a realistic and robust approach to re-orienting educational soft-

ware development reporting in IDT needs to provide a methodological toolset analyzing research

45

from the perspectives of the processes, decisions, and developers. A combination of socially-cen-

tered research methodologies highlighting software developers, and reporting tools highlighting

detail and process, could provide software development process reporting for replication and re-

use.

The literature review provided ample evidence to locate rationale for conducting research

from the perspective of the software developers (see Table 5, Table 6). Software developers are

the instrumental connection to translate instructional goals onto a wide range of platforms (Table

2), programming languages, and tools (Table 4) - and doing so with largely custom software de-

velopment (Table 3). Therefore, it is imperative that IDT research captures the contributions, de-

cisions, and negotiations of software developers within the research. A methodology combining

design-based research (DBR) and cultural-historical activity theory (CHAT) serves to accom-

plish this perspective.

DBR’s original scope addressed the difficulty in software replication and re-use, focusing

on cyclical design construction (a reversed complexity un-layering) where a project becomes

more complex with each iteration. DBR research should provide sharable results to both practi-

tioners and designers, and provide documentation that is aimed at study replication (The Design-

Based Research Collective, 2003). Recursive development, defined by DBR to include both the

educational software and its corresponding theoretical underpinnings, allowed for documentation

creation embedded within research (Penuel, Fishman, Cheng, & Sabelli, 2011), centering the

software as the subject of research. DBR focused design considerations to ease-of-adoption, dis-

semination, and reusability (Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004), forcing

considerations beyond the original project regarding scope, scale, and applicability (Veletsianos,

Beth, Lin, & Russell, 2016) for early and unstable software.

46

DBR was expected to answer long-standing questions between software and research

(Amiel & Reeves, 2008) by extending and solidifying a learning ecology - a combination tool-set

of tasks, problems, tools, and implementations (Cobb et al., 2003). The emergent learning ecol-

ogy would introduce a synthesized foundation of technological processes and best-practices

(Amiel & Reeves, 2008) between similar software, providing a path towards consensus, best-

practices, progress, and heuristics in educational software development. This utopia did not come

to pass. Recent DBR research lacked re-use (Fishman et al., 2004). A wide majority of DBR

software design projects, spanning multiple subject areas, only reported a single iteration (Ormel

et al., 2012). Contrary to cyclical design concepts, DBR projects frequently did not report on the

entirety of a research procedure (Vanderhoven, Schellens, Vanderlinde, & Valcke, 2016). Re-

search highlighted, not addressed, perspective gaps between researchers and practitioners within

a project (McKenney & Reeves, 2013). What DBR was able to accomplish was to provide a sys-

temic methodology to scaffold software development – from humble planning, goals, to proto-

types, and finally to software deliverable – through cycling stages of increasing complexity.

Many of the resulting gains, such as replicability and reuse considerations, would trickle down

from a more strict DBR interpretation.

Analysis of the research questions revealed that framing discussion, process, and detail

about software development was hard. To properly leverage DBR, defined from its original

scope, project analysis would need to be situated through a software developer perspective. How

do IDT researchers then provide that perspective? Researchers could include computer science

experts in each software development-focused research project. However, the review provided a

cautionary case, as a study reported computer science experts describing the software develop-

ment process as ‘trivial’ (Borro-Escribano et al., 2014). It would be very possible that a software

47

application could be viewed by computer scientist experts as a trivial creation comparative to

modern-day areas of research. Additionally, it would be unrealistic to expect a computer scientist

to be embedded in every software-centered IDT project. Instead, IDT needs a process to talk

about perspective gaps between experts in different fields. Those perspective gaps still would ex-

ist within a project regardless if a computer science expert is embedded. The value in these

knowledge gaps, instead, would be how the contradictions in understanding differing perspec-

tives is resolved; of how primary researchers, practitioners, graduate students, and external mem-

bers make individual meaning of translations of instructional goals to software plans, and how

those translations reconcile in a team-centric setting.

Those meaning-makings, and the contradictions that exist between those stakeholders,

can be represented and documented using activity theory – specifically cultural-historical activity

theory (CHAT). Activity theory’s original subject-tool-object triad, as defined by Leont'ev

(1974) and Vygotsky (1978), was expanded to CHAT, which was composed of six components

identifying societal influences on collaborative activity completion (subject, tools, rules, object,

community, division of labor). This expanded analysis mapped the relationships of an activity’s

goal between stakeholders and team members (Engeström, 1996). CHAT’s decomposition of an

activity into its structural components and connections, including individual internalized social-,

personal-, and historically-derived practices and assumptions (Hadjistassou, 2012), make it a

powerful tool to examine group activities (Karasavvidis, 2009) like software development.

CHAT facilitates the reporting of social decisions and processes intertwined within software de-

velopment (Collis & Margaryan, 2004) through contradictions and change negotiations

(Engeström, 1996). As with any software project, software decisions do not scope to only a sin-

gular level – it shifts from high-level data decisions to low-level programming code debate and

48

discussion. CHAT accommodates focused analysis based on the scope and scale of the activity

observed (Karanasios et al., 2013), with all activities constructing a joined activity system – an

activity network (David & Victor, 2002). This activity network provides an negotiated-centric

profile of the developed software. This allows for CHAT analysis to sway between scope and

scale per activity, while also producing an overall roster of project contradictions and resolu-

tions.

Limitations & Considerations

The professional and educational background in computer science of the primary author

afforded a unique perspective for approaching the review of literature through CIS. The search,

selection, categorization, coding, and quality-determination were influenced by experiences and

expertise in software project management, open-source software community contributions, and

variation between programming language features and functionality. A replication study leverag-

ing the search and selection criterium would invariably produce varied categorization and coding

methods by way of cultural, historical, and personal influences.

Future research could build upon the review of literature regarding software re-use in

IDT. Replication studies could consider additional methods of determining database-friendly

queries for locating developed software as a response to the ambiguity of terminologies for de-

sign and development between the fields of IDT and computer science (Oncu & Cakir, 2011).

Future research could focus on the generation of synonym pairings for how software develop-

ment is described by researchers in both computer science and IDT, in the creation of a shared

syntax vocabulary which identifies the presence of software development. Future research could

49

approach this topic from the perspective of the methodologies of the literature, as a wide major-

ity of studies did not primarily focus on the development process of the software. A review of the

literature on software maturity (preliminary versus well-iterated, or long-lived) would provide an

additional perspective on software dissemination in the field.

50

Chapter 2

An Analysis of Process at the Nexus of Instructional and Software Design

The study presented in this chapter was the result of recommendations derived from a

systematic review of literature on IDT software re-use presented in Chapter 1 of this manuscript.

The intent of Chapter 1 was to uncover processes, strategies, and best-practices that might facili-

tate IDT software replication and re-use. An examination of a 15-year time period within four

representative journals identified 72 studies that addressed IDT software to some extent. An ad-

ditional sampling of the initial results identified 50 studies that discussed software development.

These studies were further analyzed for evidence of software re-use. Review results found a lack

of reusable and/or replication-focused reports of instructional software development in IDT jour-

nals, but found some reporting of IDT reuse and replication from articles outside of the field.

Based on the analysis, possible reasons for this occurrence were discussed. The researcher then

proposed how a model for conducting and presenting IDT research based on the constructs of de-

sign-based research (DBR) and cultural-historical activity theory (CHAT) might help mitigate

this gap.

Rationale

Closing the knowledge gap uncovered by Sembrat (2020) is critical for a cross-discipli-

nary area of study such as IDT that finds itself at the nexus of computer science-driven perspec-

tives of software design and development and the learning and instruction driven strategies and

goals of IDT. Historically, IDT research has sacrificed substantial analysis of the technological

creation process in lieu of heavy emphasis on its utilization (De Boeck & Minjeong, 2018),

51

masking perspectives of the creation process that would be beneficial for researchers and practi-

tioners who aim to extend similar research and development, and potentially leaving a steep

adoption curve for each new research and development team without the advantage of educa-

tional software reusability and replicability. IDT software is not spontaneously or arbitrarily pro-

duced; rather, its creation is a combination of myriad choices and considerations (Oliver, 2011)

that are embedded within individual and cultural decisions and contributions (Dennehy &

Conboy, 2017). These projects are expensive to carry out, and they are too often constrained by a

narrow selection of technologies that given research teams might be familiar or comfortable

with, rather than what works best for project goals, thus greatly limiting the power of careful se-

lection (Schuch, 2001). This goal of this study is to uncover strategies for IDT software design

and development in a way that makes it more mutually understandable and replicable in a fash-

ion similar to how the academic literature itself grows, that is, by building on the work of others.

It is hoped that the design principles and framework introduced in this article – the Iterative and

Integrative Instructional Software Design (IIISD) model - may inform those conducting IDT

software design and development research as well as shine a light on reporting and analytical

strategies for future similar projects.

Purpose

The qualitative, single-case study presented here incorporated Iterative Categorization

(IC) for data analysis and Cultural-Historical Activity Theory (CHAT) as an analytical lens to

examine a process of team-based software development within a large IDT design-based project.

The units of analysis were the digital communicative artifacts generated from the collaborative

creation of a web software application for supporting middle school students’ learning how to

52

code in an urban after-school program. Analysis involved deconstructing social decisions and

processes intertwined within the software development process in question (Collis & Margaryan,

2004) by uncovering contradictions and mediations (Engeström, 1996). The deconstruction de-

picted in this chapter mapped one strand of the software creation process, the development of an

online badging system, through the activities of various subject-matter experts at pivotal project

points. The study was guided by the following research question:

• How did social contradictions and mediations shape the software development

process within a large educational research project?

Analytical Frame

Iterative Categorization

Founded in addiction-focused qualitative studies within health sciences (Plummer, 2018),

IC is a data analysis method that focuses on the reduction of raw observational data into data vis-

ualizations for broad theme-focused interpretations through analyses at three levels: descriptive,

interpretive, and summative (Neale, 2016). Prior to data analysis, researchers construct a coding

book and frame. Each piece of data is coded through a ‘systematic order and sort’ method out-

lined by Neale (2016). In this method, deductive codes are derived from observed topic areas in

collected data, which are placed under broadly-defined, general headings. Then, inductive codes

are appended and existing codes are supplemented based on emergent findings. Next, researchers

conduct the three levels of analysis.

In the first level of analysis, descriptive analysis, researchers select pertinent coding

frame categories. Copies of the coding frame Word document file are created for each category.

53

Researchers then record topic identifications, themes, conflicts between other codes, applicable

quotations and diagrams for every piece of data within the coding book. Additionally, research-

ers may record mental observations such as spontaneous thoughts, mind maps, and ideas from

the consumption and analysis of data. This phase of coding produces frame-specific coding

books along with self-reported observations. In the second level of analysis, interpretive analysis,

researchers identify associations, explanations, and patterns within the data for each descriptive

analysis category. The mental observations noted in the descriptive analysis are tested and ex-

panded for applicability and validity. Additionally, identification and exploration of data and

their relationships to common assumptions in IDT are examined, referencing additional litera-

ture, theory, or practices. This phase produces truncated coding books focused on connecting

data points and identifying and sourcing patterns and outliers. The resulting document also pro-

duces supplemental data and knowledge to respond to researcher observations. Finally, summary

analysis constructs executive reports of descriptive and interpretive analyses for the selected

codes from the coding frame. These transparent and repeatable translations maximize external

validity for analysis conducted by a single researcher (Neale, 2016).

Activity Theory

Founded in the works of German philosophers (Kant and Hegel), the works of Marx and

Engels, and Soviet Russian cultural-historical psychology (e.g., Vygotsky, Leont’ev, and Luria),

activity theory (AT) is a lens for the analysis and interpretation of a human behavior process,

such as learning, through the lens of a social activity (Engestrom, Miettinen, & Punamaki, 1999).

An activity is a long-term project directed towards transformation of an object (Matthews,

Rattenbury, & Carter, 2007) through multiple, interconnected actions (Peña-Ayala, Sossa, &

54

Méndez, 2014). Cultural-Historical Activity Theory (CHAT) is a third iteration of AT, permu-

tated to model a social activity as an activity system of interacting, interconnected environmental

components towards completion to an outcome (Engeström, 1987). Historically- and culturally-

formed artifacts shape the actions, both conscious and subconscious, which compose an activity

(Postholm, 2015). The model activity system for CHAT contains six components by which to ex-

amine those artifacts. See Figure 2. Subjects are individuals (or groups of individuals) involved

in an activity. Objects are the directions, sharable materials to be transformed or modified by the

participants in, or abstractions (plans or ideas) of an activity. Instruments are anything utilized to

help to carry out activities or to serve as models or experiences (physical objects such as comput-

ers and pens, psychological concepts such as languages or ideas). Rules govern social behaviors

of community members within an activity (customs, relationships, or processes). Division of la-

bor are the roles and responsibilities of subjects within an activity. Community are the people in-

teracting within the environment of the activity (Choi & Kang, 2010). This study followed the

philosophical positioning of CHAT analysis as defined by Sannino and Engeström (2018).

Figure 2. CHAT model (Engeström, 1987).

55

These components aid in identifying contradictions, which are the breakdowns, problems,

tensions, or conflicts between components and within subsystems. Identified contradictions are

categorized as resolved, in that a consensus is reached through mediation; or unresolved, mean-

ing the contradiction persists in the end-result of the activity. Contradictions and mediations are

categorized by their activity scope: within elements within a single activity system between roles

within the same component (primary), between roles with differing components (secondary), an

evolution of an activity system over time (tertiary), or within an interconnected combination of

activity systems – an activity network (quaternary) (Engeström, 1987). These permutations allow

visualizations and mapping of activity system evolutions and action motivations (Barab, Barnett,

Yamagata-Lynch, Squire, & Keating, 2002), which can become complex and concentric. Activ-

ity systems can be analyzed and permutated from alternate or multiple perspectives throughout a

single project, shifting from primary, secondary, tertiary, or quaternary scopes based on the ac-

tivity analyzed (Barab et al., 2002). Nested activities and corresponding actions can commonly

be expanded into their own separate activity systems (Korpela, Mursu, & Soriyan, 2002), owing

to the underlying complexity and scaffolding of social activity.

Activity systems have been utilized across educational disciplines to better understand

activities - digital records (Karanasios et al., 2013), information systems (Iyamu & Shaanika,

2019), instructional activities (Çakıroğlu, Kokoç, Kol, & Turan, 2016), lesson design (Lewin,

Cranmer, & McNicol, 2018), professional peer knowledge sharing (Trust, 2017), serious games

analysis and design (Carvalho et al., 2015), system design (Korpela et al., 2002), and web appli-

cation development (Uden, Valderas, & Pastor, 2008). CHAT’s flexibility and fluidity allows ac-

tivity systems to more accurately reflect the inherent complexity and hierarchy embedded within

56

an activity, such as internalized social-, personal-, and historically-derived practices and assump-

tions (Hadjistassou, 2012), in examinations of group activities (Karasavvidis, 2010) such as soft-

ware development.

CHAT’s flexibility to focus and variate analysis based on the scope and scale of the ac-

tivity observed allows for contradiction identification on a macro- or micro-level (Karanasios et

al., 2013). These activity-scoped analyses can be grouped together into an encompassed activity

system (David & Victor, 2002) or an activity network (Peña-Ayala et al., 2014), depicting the

overall activity and allowing for segmented deeper dives into micro-activities. This fluidity al-

lows for the contributors, decisions, and perspectives, which have shaped the software’s develop-

ment (Panke et al., 2007) to be reflected within the activity systems, potentially extending IDT

software analysis beyond merely being a vehicle for instruction (Dennehy & Conboy, 2017), and

thus potentially making it easier for future similar projects to examine, incorporate, and replicate

what has been done in the past (Lamb & Johnson, 2006). Doing this could resolve the issue

pointed out by Carvalho et al. (2015), that existing instructional models, frameworks, and meth-

odologies “do not fully answer the question on how the concrete components of the [system]

have to be structured to support learning” (p. 166).

Method

Researcher’s Position

The identification of the lead researcher’s position followed formatting of Wade-Jaimes,

Cohen, and Calandra (2019). The lead researcher for this project is a middle-class, White male

working full-time as a web developer for a neighboring higher-education institution. He brought

57

two cultural and historical perspectives to the project. First, he carried historical experiences of

similar and previous projects, programming language usage, and acquired best practices as part

of his work history. His historical knowledge lensed best-practices from two fields of study: he

completed a computer science undergraduate program, and he was an active doctoral IDT stu-

dent. Second, he carried cultural perspectives positioned solely as a subject-matter expert team

member within the project. He was not an active team member in non-technical project meetings,

project implementations, subject selection, or instructional design. The project team positioned

his role and presence as a mediator between instructional project team considerations and the

end-result technological intervention. Data analysis was positioned from his dual-lens under-

standings of computer science and IDT. The lead researcher is referred onwards as the ‘web de-

veloper’.

Context

This study was embedded within a design-based research (DBR) project that took place

at a public research university in a large, southeastern city in the United States. The project in-

cluded the creation, implementation, and evaluation of a unique, technology-rich, informal learn-

ing environment for middle school youth. Participants were middle school students from 10

schools in the an inner-city public school system in the southeastern United States who were par-

ticipating in a free, after-school program for roughly 2600 students at the time this study took

place. The intervention involved participants working on computer science activities in media

centers, computer labs, classrooms, and online. Activities consisted of: a) A guided series of pro-

gramming steps that led to the creation of pre-designed mobile apps using a block-based inter-

face; b) more gently guided problem-based tasks that allowed participants to continue working

58

on, tweak, troubleshoot, or remix existing mobile apps; and c) opportunities for participants to

work on their own original ideas for mobile apps.

Activities were presented to participants in a flexible, modularized fashion, and based on

gradual increases of difficulty. Participants could submit completed activities in exchange for

new activities of their choice, and for digital badges called experience coins. Activity submis-

sion, coin redemption, communication with others, and access to digital resources were all possi-

ble within a custom-built web software leveraging the Drupal content management system.

The research team was composed of three faculty members and two research assistants.

One research assistant served as the web software instructional designer, creating lessons and ac-

tivities. The second research assistant served as the web developer subject-matter-expert and was

in charge of all web development. The research and development process involved four itera-

tions: initial development, pilot study, beta test, and production phases. The current study is em-

bedded within the project’s initial development phase and pilot study phases, which were con-

ducted in one of the middle schools. The web software creation process depicted here lasted 19

months.

Data Collection

This study involved the collection of qualitative data related to the instructional technol-

ogy project management process of the project described in the previous section. The primary

format of data collected was digital communications surrounding the development of a piece of

IDT software. Data sources included email communications, documents gathered from Base-

camp (online project management software), and notes plus photo captures of whiteboard dia-

grams from in-person meetings. Email was purposed for one-to-one communication. Basecamp

59

was purposed for full research-team communication. A digital archive of all Basecamp pages in-

cluding tasks, file uploads, and comments was created. All project emails on which the web de-

veloper was included were exported. For in-person meetings, both physical notes and mobile

phone screenshots of whiteboard drawings were utilized. These data were then embedded into

Basecamp for dissemination and storage. Collected data included 156 email threads (which con-

tained 27 email-attached files), 164 tasks created in the online project management software ap-

plication Basecamp (which contained discussion threads from team members), and 165 file at-

tachment uploads attached to project tasks.

Data Analysis

The researcher analyzed all qualitative data following guidelines from IC for categoriza-

tion of the data and using CHAT as a lens for further analysis and presentation. Data were anon-

ymized and categorized in order to aid coding and reporting. This resulted in single-letter aliases

associated with each qualitative data type. Document data were renamed to D001-D027, emails

from E001-E156, Basecamp tasks from T001-T164, and Basecamp uploads from U001-U165.

Data referencing a team member were anonymized similarly to R01-R13. Using the newly la-

beled data, the researcher established a coding book and analytical frame. All data were coded

leveraging the ‘systematic order and sort’ method borrowed from Neale (2016). Deductive cod-

ing was first used to established each of multiple cycles of software development: Planning, pro-

totype, development, review and suggested changes, deployment, and debugging. More general

labels were then created that were related to design and development processes: site components,

concerns/problems, conflicts/contradictions. Next, the inductive codes were appended to the cod-

60

ing frame. During this process, the researcher categorized and ordered all project meetings, de-

constructed the web software into components-of-focus, constructed a timeline for Basecamp

tasks and their interconnections, and anonymized project team member codes for all correspond-

ing roles. Additionally, inductive coding provided subcategories for deductive code placeholders.

All data were collated into a coding frame. See Figure 3 for a sample of the coding frame. Data

applicable to the software development process were copied into a code book. The resulting cod-

ing book contained 182 pages. See Figure 4 for a sample from the code book.

Figure 3. Coding frame sample pages.

61

Figure 4. Coding book sample pages.

Next, the researcher examined the coding frame for elements relevant to the software de-

velopment process in question. During this process, the implementation of badging emerged as a

prominent design aspect of the software within each of the four development cycles, thus provid-

ing an exemplary focus representative of the design and development process. Data analysis

identified multiple instances of contradictions and mediations related to digital badges through-

out the web software development, providing sufficient insight into the general software devel-

opment processes during the initial project cycles. The researcher next conducted descriptive

analysis of the coding book focusing on the badging function of the software (frame code

05.01.01). A sample of the descriptive analysis is shown in Figure 5.

62

Figure 5. Descriptive analysis sample pages focused on badging.

The researcher made two deviations from the original scope of descriptive analysis to ac-

commodate the data. Unlike the IC process reported by Neale (2016), where interview data was

generalized into common themes, qualitative data within this study were categorized contextu-

ally, and related to their creation date. The presence of the date-of-creation provided context by

which to map the qualitative data pieces to larger activities. In order to understand the procedural

steps taken in between dates of qualitative data, the researcher organized the data chronologically

after an initial round of descriptive summaries and think-aloud notes. The researcher also ex-

tended IC by conducting an additional, subsequent round of analysis after the chronological reor-

dering in order to confirm and extend think-aloud notes, as well as to combine date-equivalent

63

descriptive summations. The researcher defined this additional process as chronological analy-

sis: A descriptive analysis iteration implemented when qualitative data is primarily organized

and correlated chronologically.

Additionally, the researcher kept individual pieces of data intact in order to better identify

emergent narratives, rather than grouping them into common generalized themes with qualifiers

as outlined in the original scope of IC. This consideration facilitated the identification of the so-

cial contradictions and mediations during interpretive analysis. This consideration also maxim-

ized the presence and role of dialogue within AT to inform context (Wells, 2002). To aid the

identification of researcher comments for interpretive analysis, the researcher placed visual iden-

tifiers on think-aloud notes (highlighted yellow and appended with “THINK_ALOUD” text) and

identified candidates within the data for social contradictions and mediations (highlighted pur-

ple). This study applied the think aloud concept from the synthesized definition by Birch and

Whitehead (2020), which captured problem-solving and decision-making data situated as in-

event cognitions through immediate verbal reporting. Think aloud notes served as qualitative re-

porting of the mental observations (spontaneous thoughts, mind maps, and ideas from the con-

sumption and analysis of data) by the web developer, as defined by Neale (2016).

Interpretive analysis was reported below as a series of activity systems driving the con-

secutive design and development of badging within the web software system. CHAT facilitated

the “redirect[ion of] our gaze from what is going on inside the individual to what happens be-

tween human beings, their objects, and their instruments when they pursue and change their pur-

poseful collective activities […] by means of cultural artifacts” (Sannino & Engeström, 2018).

CHAT’s positioning of a blended cultural and historical lens is best illustrated by an analysis of

64

janitorial cleaning summarized by Sannino and Engeström (2018), where vacuum cleaning meth-

ods were subconsciously influenced both by their past frequent at-home mopping activities (his-

torical) and social, ritual home cleaning instilled by European culture and propaganda as an eco-

nomic status symbol (cultural). This positionality facilitated analysis which could explore how

and where intersections between a web developer with a computer science background – with its

embedded cultural (software development culture, best-practices) and historical (precedent con-

scious or unconscious habits or on previous experiences) – shaped an instructional design request

towards its enaction and completion.

Analysis employed CHAT to decompose and visualize potential contradictions and medi-

ations identified within data in order to better understand tensions between the two distinct in-

structional design and software development design perspectives. Analysis distilled activity sys-

tems into broad-scoped activities in order to facilitate combinations of primary and secondary

contradictions (Postholm, 2015). Analysis constrained scope to primary and secondary contradic-

tions to minimize the complexity of the activity systems. The researcher depicted contradictions

as two-headed lightning shaped arrows, similar to Engeström (2000). See Figure 6. The re-

searcher used two-headed lightly-shaded arrows to depict mediated contradictions. Unresolved

contradictions were depicted as two-headed lightning shaped arrows with dashes. Additionally,

primary contradictions were depicted as circular arrows mirroring the same criterion above.

65

Figure 6. Secondary contradiction and mediation visualizations in the activity triangle model

(Engeström, 2000).

Ambiguous definitions of ‘mental models’ (Kankuzi & Sajaniemi, 2016) facilitated the

creation of a bounding definition to help frame contradiction mediation. In this definition, mental

models reflected a user’s understanding of three components of a real object from three perspec-

tives: what it contains, how it works, and why it works that way (Carroll & Olson, 1987). Addi-

tionally, the definition positioned these models as a specialized subset of an individual’s entire

knowledge on a subject framed by a self-identified perspective of appropriateness (Kankuzi &

Sajaniemi, 2016). Mental models situated from the web developer subject, as the primary author,

were more accurate reflections of the specialized subset of knowledge for the activity. Mental

models situated within activities for other subject roles were interpreted by the primary author

from existing qualitative data that contained impressions of cultural and historical perspectives.

No additional accommodations were made to extend or validate the interpreted impressions, as

the study was situated from retrospective analysis after both the completion of the project and

creation of all collected data.

66

Interpretive analysis uncovered four major areas of design and development negotiations

that were decomposed as activity systems: initial instructional design, gamification as ecom-

merce, badges and team profiles, and qualitative assessment review. See Figure 7 for a represen-

tation of all uncovered contradictions and their formats.

Figure 7. All identified contradictions and mediations.

Initial instructional design.

During development cycle 1, the faculty members and web developer developed an initial

web software prototype guided by the project description: “…each team would learn how to do

the development work by having their team members all complete a certain number of modular-

ized curricular tasks related to using the app building platform (earning badges for completion).

When a team has earned a sufficient number of badges, they will be ‘certified’. Badges were

67

awarded, and tallied to gain certification as competency…”. The faculty members and web

developer identified and scoped initial badge design from two in-person meetings, which the

researcher then developed into the web software system. Concurrently, the instructional designer

developed a separate badge design sourced from proposed instructional categories, which

resulted in two conflicting gamification schemas. The full research team identified this schism

during the implementation phase of initial instructional design into the web software. Analyses

revealed three contradictions and mediations in the activity of developing and integrating the ini-

tial instructional activities into the web software. See Figure 8.

Figure 8. Initial instructional design import activity system.

First, analysis uncovered a secondary resolved contradiction between the subject (web

developer and instructional designer) and instrument (two conflicting gamification mental mod-

els). The web developer developed the web software following a gamification mental model de-

rived from a December 2015 meeting that closely mirrored gamification implementations found

in video games. In this model, a singular leaderboard collected and ranked user teams based on

scores associated with claimed badges. Simultaneously, the instructional designer designed the

68

instruction based on a separate, instruction-focused mental model of tightly-coupled leader-

boards, badges, and levels. In this design, leaderboards were designed for each badge type and

ranked by levels which could be achieved for completing particular goals. This contradiction was

resolved through an additional round of instructional design by the instructional designer that

paired the leaderboard concepts of instructional design to those outlined by the faculty members

and web developer for the initial development cycle.

Second, analysis uncovered a primary resolved contradiction within instruments

(badge/leaderboard mental models embedded within the web software and instructional design).

Leaderboards were organized in the initial instructional concept by specific badge and levels per

badge. Leaderboards were organized in the web software by a total sum of badge points per

team, with no mention of levels. Badges were defined in the instructional content as singular ob-

jects representing a proficiency level based on points awarded. Badges were defined in the web

software without levels and as a multiple-entity object, where one badge could virtually contain

multiple variants containing similar attributes. This contradiction was resolved by centrally de-

fining the leaderboard, badge, and user level concepts across the entire research team to a singu-

lar mental model of individual badge objects and a singular leaderboard.

Third, a secondary resolved contradiction was discovered between the instrument (gami-

fication mental model from instructional design) and object (the web application implementation

of instructional data formatting). This contradiction resulted in issues importing the instructional

gamification placeholders into the web software’s gamification implementation. This was re-

solved through the congruence of instructional design gamification examples to match the design

present in the web software, facilitating import of instructional lessons and gamification ele-

ments.

69

Gamification as ecommerce.

Late in development cycle 1, faculty members posited whether the web software could

“give points for small accomplishments that can lead to badges, and thus give out fewer badges”

and convert the gamification process into an ecommerce design. In the proposed ecommerce de-

sign, faculty members proposed a new in-software currency, experience coins, which would be

redeemed to obtain badges. Analyses revealed two contradictions and mediations in the activity

of incorporating experience coins into the web software as an ecommerce function to obtaining

badges. See Figure 9.

Figure 9. Badge/point gamification decoupling activity system.

First, analysis uncovered a secondary unresolved contradiction between subject (faculty

members and web developer) and instrument (the proposed ecommerce mental model and the

existing badge mental model). The faculty member ecommerce proposal decoupled points from

badges into experience coins, which conceptualized both entities as independent data objects

where experience coins could be submitted for badges. The existing web developer mental model

of gamification configured points as a badge component, which was used to drive further web

70

development. No mediation was made on how experience coins would interact with the existing

badge designs.

Second, analysis uncovered a primary unresolved contradiction within instruments (the

proposed experience coin design mental model and the existing web software gamification data

schema). Neither instrument concept was compatible with the other. No mediation was made on

how the web software badge model would be reconfigured to meet the activity transformation

process.

The two unresolved contradictions halted the activity process. The identified unresolved

contradictions in the previous activity system were resurrected in development cycle 2 as a gami-

fication redesign. During the development process of cycle 2, faculty and instructional designer

team members proposed manual and automatic assessment scoring to the web developer, who

would interpret the proposals from a software development perspective and respond with addi-

tional probing questions to situate the proposed changes within the web software. Initial email

discussions between faculty members, the instructional designer, and the web developer resulted

in the web developer drafting an updated gamification design which included a placeholder for

experience coins that could be submitted for badges. See Figure 10. The drafted gamification de-

sign restarted the ecommerce experience coin proposal activity.

71

Figure 10. Cycle 2 ecommerce gamification redesign data changes.

Analyses revealed two contradictions and mediations in the activity of incorporating up-

dated gamification elements (coins, badges, levels) into the web software. See Figure 11.

Figure 11. Ecommerce instructional design proposal activity system.

First, analysis uncovered a primary resolved contradiction between subject (web devel-

oper and faculty/instructional design members) and instrument (existing gamification mental

model, and the ecommerce experience coin mental model). This tension resulted in an unclear

understanding from team members on how points and experience coins were incorporated with

badges. The web developer was unclear on the process of redeeming experience coins for

72

badges, using their pre-established mental model as a foundation. The instructional designers and

faculty resurrected the mental model of experience coins that could be redeemed for digital

badges. This tension was mediated by the faculty members agreeing to a simplified ecommerce

mental model meshing both perspectives for the web software. From this point on, badges were

reframed as experience coins that could be redeemed for real-world prizes throughout the pro-

ject.

Second, analysis uncovered a secondary resolved contradiction between instrument (ex-

perience coin mental model) and object (ecommerce instructional design implementation for

manually-assessed coins). The pre-existing instructional design implementation paired assess-

ment completion to receive experience coins. The instructional design object had not standard-

ized a pairing process of immediate rewarding mental model for both automatically assessed and

manually assessed experience coins. In the proposed instructional design model, all experience

coins would be immediately rewarded whether the assessment was manually or automatically

scorable. For manually-scorable experience coins, an automatically awarded experience coin

value could change after an administrative manual review. This tension was mediated by a pro-

ject team decision to move away from the proposal to automatically give all experience coins im-

mediate feedback and obtainment. Instead, the research team relied on the existing web applica-

tion system which separated automatic and manual feedback assessments. Automatic assess-

ment-configured experience coins would be automatically redeemed at assessment completion.

However, experience coins paired with manual assessment would be individually redeemed by a

team member. See Figure 12 for the mediated experience coin design. This mediated design and

73

its scaffolded consequences prompted an additional contradiction activity, manual assessment

review, analyzed further below.

Figure 12. Cycle 2 ecommerce gamification redesign data changes.

Badges and team profiles.

Faculty members proposed an implementation of the refined gamification elements out-

lined above into the web software’s student team profiles during cycle 2 development. The origi-

nal profile design did not showcase any experience coin information for team members. The pro-

posal updated team profiles to show experience coin counts within each domain category for

each team member. The researcher developed profile design prototypes, refined through multiple

rounds of research team feedback, seen in Figure 13. Subsections 1 and 2 were team profiles af-

ter cycle 1 development. Subsection 3 was a prototyped user profile before the ‘gamification as

ecommerce’ activity above. Subsections 4 and 5 were mediated low-fidelity design prototypes

74

developed by the web developer within the activity, which were converted to increased fidelity

in subsections 6 and 7.

Figure 13. Team profile redesign process.

Analyses revealed two contradictions and mediations in the activity of re-designing team

profiles within the web software. See Figure 14.

75

Figure 14. Team profile redesign activity system.

First, analysis uncovered a secondary resolved contradiction between subject (web devel-

oper and faculty members) and instrument (design mockups and design mental models). Design

mockups shifted between multiple web developer-created prototypes through faculty feedback,

as detailed above. This contradiction was mediated through iterations of analysis, feedback, and

refinement, which blended contradicting mental models into a design mockup which met project

needs for both subjects.

Second, analysis uncovered a secondary resolved contradiction between subject (web de-

veloper and faculty/instructional designers) and object (technical profile implementation and in-

structional implementation). The instructional implementation proposed by faculty and instruc-

tional design members included customized, per-coin ribbon graphics of increasing ‘quality’

(bronze, silver, and gold) to designate experience coin proficiency in a domain area. The web de-

veloper had cautioned that this request would require three additional graphics variants for each

76

of the 13 coin types. This contradiction was mediated through repurposing already-made experi-

ence coin graphics rather than additionally creating new ribbon graphics, placing a counter below

each experience coin.

Manual assessment review.

As described above, cycle 2 implemented open-ended, manually-scored experience coins

that were not automatically assessed by the web software. The web developer created a manual

experience coin assessment process and administrative page for team members to approve or de-

cline manually-scored experience coins. After piloting the design in cycle 2, cycle 3 was focused

on a broader, longer implementation of the instructional design and web software. Analyses re-

vealed two contradictions in the activity of developing and deploying manual experience coin

assessment for cycle 3 implementation. See Figure 15.

Figure 15. Manual experience coin assessment activity systems.

First, analysis uncovered a resolved secondary contradiction between subject (instruc-

tional designer and web developer) and division of labor (manual assessment scoring delega-

tion). The web developer constructed an administrative page for reviewing and scoring manual

77

experience coin assessments. The web developer did not delegate any team member role as the

point-of-contact for scoring the requests, implicitly expecting the instructional designer to fulfill

this role. However, the instructional designer was not familiar with how to locate and confirm

manually-scored experience coin requests. This contradiction was resolved through explicit defi-

nitions of division of labor between subjects and defining manual experience coin request expec-

tations for each subject role. The instructional designer was delegated to review and approve

manual experience coin requests. The web developer had no formal role definition.

Second, analysis uncovered a secondary resolved contradiction between division of labor

(manual coin process delegation) and object (the website implementation of manual coins). The

initial cycle 2 design of manual experience coins focused on passive checks of the web software

to locate new manual request submissions. Building on the mediation from the first contradic-

tion, the delegated instructional designer proposed a process change to have the web software ac-

tively notify administrative users upon new manual experience coin requests. This mediation was

resolved through the creation of an email notification process within the transformation process

by the web developer.

Results

In the current study, the researcher identified a series of activity system tensions that en-

hanced these difficulties during software development for a large IDT project. Analysis of identi-

fied contradictions and mediations revealed three main sources of tension within project activi-

ties during three cycles of development: Division of Labor, Knowledge Transfer, and Mental

Model Discrepancies.

78

Project Team Division of Labor

Division of labor activity negotiations uncovered difficulties with software-mediated ad-

ministrative processes and tasks which could not be automated. Figure 14 highlighted the contra-

dictions present in the manual experience coin approval process, which required scaffolded noti-

fications and emails to alert team members of new submissions. This analysis supported findings

of Domínguez et al. (2013) that more-immediate feedback for gamification must not only occur

for learners but also for instructors and facilitators. While automation may be alluring to mini-

mize this problem, technology has not yet perfected automated, open-answer assessment review.

At the time of writing, assessment of ill-structured problems with no single correct solution re-

quired scaffolds, such as rubrics or criterion, to construct assessment and feedback – and most

software packages currently facilitating this level of assessment are constructed for a particular

flavor or subject area of activity feedback (von Wangenheim et al., 2018). Mirroring the findings

of Douce, Livingstone, and Orwell (2005), software systems should aim to support, not replace,

human assessment. IDT software design and development processes should approach considera-

tions to minimizing the operational burdens of ill-structured assessment.

As an example, a novel and inexpensive solution could, rather than scaffolding an auto-

matic assessment technology, leverage the existing software application to reduce the manual as-

sessment process. This perspective would position its activity around the goal of identifying

manual assessment needs and redirecting the appropriate division of labor to complete the task as

efficiently as possible. Process reductions could include responsive notification creation and dis-

tribution, visually-distinct administrative quick links, in-application notification messages, or

role-based processes or workflows. This perspective would minimize additional technical debt

burdens in order to implement or design an automatic assessment platform. Additionally, this

79

perspective would refocus effort on the primary, underlying need – a prompt turn-around and

well-defined workflow between assessment submission and feedback.

Project Team Knowledge Transfer

Toader and Kessler (2018) posited that teams faced difficulties when trying to transfer

knowledge between ill-structured problems and tasks. Activity negotiations presented in this

chapter strengthened that argument, identifying contradictions in team knowledge transfer be-

tween subject roles. Knowledge transfer contradictions were solely constrained between the in-

tersection of IDT and computer science: instructional designer/web developer (see Figures 8, 11,

and 15) and faculty/web developer (see Figures 9, 11, and 14). This finding echoed the need for

greater cross-pollination between the two fields, as proposed by Adnan and Ritzhaupt (2018).

Additionally, knowledge transfer paired to mental model discrepancies, where mediations facili-

tated the transfer of knowledge throughout project team roles. Secondary contradictions between

subject roles and instruments were the most common contradiction observed (see Figure 7).

This commonality does not suggest that knowledge transfer was absent between roles.

Rather, it demonstrated the difficulties of knowledge transfer accessibility, as investigated by

Persky and Murphy (2019), where transferred knowledge could be reactivated in new contexts as

a product of fluency. DBR provided opportunities to situate knowledge transfer and fluency as

lensed from project phases. Within this study, analysis uncovered the presence of mediated

knowledge transfer delay which resulted from the project phase within a DBR cycle, as seen in

Figures 9 (unresolved) and 11 (resumed). The activity transformation was determined by the pro-

ject team to better situate within DBR cycle phases which were appropriate for a successful me-

80

diation process. This scenario highlighted the rigid implementations of broadly-scoped DBR pro-

ject phases, where testing phases (as seen in Figure 9) were not positioned for large-scale soft-

ware changes compared to planning phases (as seen in Figure 11). This scenario extended the

findings of Getenet (2019), who strengthened DBR’s role to situate knowledge transfer between

project team members, by positioning the accessibility of knowledge transfer within DBR cycle

phases.

Mental Model Discrepancies

Activity negotiations presented in this chapter uncovered difficulties in consolidating

conceptual understandings between instructional goals and software implementation, as seen in

Figures 8, 9, and 11. Mental models constructed to design the underlying software proved inflex-

ible after their translation into reality. Badging software design mental models failed to quickly

adapt to instructional models that invoked flexible and interchangeable conceptual models, ideas,

and proposals in order to satisfy better-defined instructional goals or outcomes. Identified contra-

dictions were in part resolved by delaying major changes in mental models until future develop-

ment cycles, bolstering evidence for the time-consuming nature of software development

(Sanders et al., 2014). This delay leveraged iterative development concepts, found within rapid

prototyping and design-based research (The Design-Based Research Collective, 2003; Tripp &

Bichelmeyer, 1990), to explore (see Figure 9) or implement (see Figure 11) feedback-prompted

software changes during subsequent planning and development cycles. This should be expected,

as previous research found instructional analysis of a designed system in authentic contexts re-

sulted in successive refinements and analysis (Kali & Ronen-Fuhrmann, 2011). However, these

81

considerations approached contradictions in a reactive context, in that identification of these in-

congruences occurred at critical moments of implementation (see Figure 8) or wind-down (see

Figure 9). Both scenarios outlined project phases where retroactive analysis would realistically

begin to take shape, which limited mediation opportunities. Affordances should be made to pro-

actively identify and facilitate incongruences throughout all phases of design and development

process, as its effects would scaffold throughout the project.

Analyses uncovered multiple shifts of the underlying gamification design in an effort to

mirror continually-refined instructional goals, seen in Figures 8, 9, and 11. To alleviate this reac-

tive context, project team members could process instructional software requests through dual-

impact design considerations: (1) impact to the developed software component, and (2) impact

on the broader intersection of software and instructional design. This multi-faceted instrument

analysis of developed IDT research software would situate technology implementations along-

side instructional design for analysis (Oliver, 2011) and unmask the software development pro-

cess (Shavelson et al., 2005), facilitating opportunities for software replication or re-use. This

perspective echoed the premise of instructional development research explored by Richey

(1997), in that instructional software approaches should position the software in a similar dual-

impact consideration: (1) a multi-faceted instrument housing both the physical instrumentation

(software itself), as well as (2) the conceptual models making up the instructional design (soft-

ware data structures of instructional design). Both instructional and software development should

take proactive care to ensure both elements remain in-sync throughout the project.

82

Discussion

RQ1. How did social contradictions and mediations shape the software development pro-

cess within a large educational research project?

Social contradictions and mediations shaped the software development process through

two primary design considerations: instructional/technological perspective negotiations and tech-

nology-mediated auxiliary support function design. This section applied each consideration as

design principles to guide broad-scoped application into future IDT software development pro-

jects and more-broadly distribute best-practices (The Design-Based Research Collective, 2003).

Design principles followed the formatting of T. Park and Lim (2019).

Instructional/technological perspective negotiations.

The negotiations between instructional- and technological-focused perspectives, as seen

in project team knowledge transfer and mental model discrepancies, revealed issues in

knowledge and mental model transfer. Echoing the findings by Adnan and Ritzhaupt (2018), dis-

cussions between team members about non-functional requirements (NFRs) were crucial to the

quality of the software development process. NFRs, the understandings of a software’s quality

attributes, provide blueprints for project team members to apply within their perspective do-

mains, which bound the project’s scope for software design and development (Mahmoud &

Williams, 2016). NFRs act much like user journeys in web development, providing broad, non-

technical explanations of what the designed software should operate as, such as “student team

members should be able to access their team profile and view their badges, scores, and ranking

for every member”. Findings revealed schisms in the reporting of NFRs as evidenced by conse-

83

quential mental model and knowledge transfer gaps, as team member roles attempted to self-con-

struct their own NFRs. Those self-constructed and self-contained NFRs, seen from CHAT as a

mental model instrument, clashed when paired with another self-constructed NFR on the same

activity.

Findings revealed that knowledge transfer of individualized NFRs were positioned reac-

tively the presence of contradictions. This positioning situated contradictions not as a mediative

purpose, but purposed as knowledge distribution which facilitated mediation. There are multiple

pathways to alleviate this reactive perspective. One option would be to call on project leads –

usually principal investigators – to facilitate the creation of NFRs. However, this option does not

facilitate the presence of emergent NFRs throughout the project and does not situate its continual

communication to all team members throughout the project. Rather than tasking project leads to

specifically that purpose, the ‘continual communication’ concept can be implemented from a

project-wide standpoint. Project management tools should shift to better situate active communi-

cation strategies for either constructing or identifying NFRs early and throughout the project.

DBR positioned itself as a research methodology to foster collaboration between disciplines, but

failed to situate the pairing of knowledge transfer and effective collaboration. This active com-

munication would mitigate effects of a dysfunctional organizational climate or a recently-estab-

lished team interaction (Nielsen & Cappelen, 2014), and cut through the knowledge transfer bar-

riers of cultures of the individual, team, organization, and inter-organization (P. Y.-T. Sun &

Scott, 2005). Placement of this continual communications strategy within the project manage-

ment would alleviate the task of soliciting and communicating NFRs from and to individual

members. Instead, the placement would embed itself both as a central tenant throughout each

84

member’s role in the project, and within the project management itself, pre-mediating emergent

cultural contradictions.

Principle of Continual Communications: Provide continual, proactive communi-

cations - situated within project management – to centrally facilitate and assess

software non-functional requirements and knowledge sharing throughout the

team.

Technology-mediated auxiliary support function design.

The presence of cycle 3 contradictions regarding manual assessment review revealed is-

sues with technology-mediated auxiliary function’s placement within the IDT software project.

Findings revealed one identified auxiliary support function design – manual assessment scoring –

and the mediating creation of active notifications to replace passive status checks. The presence

of a contradiction from support subject roles expands NFR’s lens beyond primary learner roles to

include auxiliary roles and functions. The auxiliary function roles are intended to minimize oper-

ational burdens supporting the software’s instruction, rather than piling technological debt on top

of the realized-software development to accommodate automation. The presence of these auxil-

iary functions forces project considerations of downstream support issues introduced by the crea-

tion of interventions and components. Considerations should be made from two perspectives as

found by Kultur, Oytun, Cagiltay, Ozden, and Kucuk (2004): new roles and responsibilities, and

changes in work practices.

New roles and responsibilities should be actively communicated to both the applicable

subjects and the project team. Applicable subjects should have a clear awareness of the expected

duties associated with new roles and responsibilities. This awareness provides an opportunity for

the applicable subjects to also shape the intended support structures to match their historical and

85

cultural experiences, as seen within Manual Assessment Review. Additionally, the communica-

tion to the project team can facilitate knowledge transfer of the auxiliary support process

throughout the team to better situate any future development cycles, feature requests, or support

role backups.

Change in work practices should be situated to minimize passive functions and maximize

on-demand active functions. As seen in the Manual Assessment Review, passive auxiliary sup-

port functions presented two problems. First, the passive component extended auxiliary function

turnaround time by tying a request to the most recent role check-in to the system. The system

should, whenever possible, instead approach active scaffolds to provide notifications, alerts, or

messages to applicable subjects in order to reduce the turnaround time. Second, the passive com-

ponent tacked on unnecessary time spent on checks, which is doubly impactful if the applicable

subjects are also embedded in additional project roles. The unnecessary time allotment also pre-

sents concerns for building support expertise if process repetition is stifled by unsuccessful pas-

sive checks. Auxiliary support mechanisms should focus administrative actions on quick turn-

around time to reduce operational burden.

• Principle of Mediated Auxiliary Support: Design and develop educational

software administrative and support functions, paired to instructional de-

sign and development, in order to minimize burdens of new roles/responsibil-

ities and in changes to work practices.

86

Iterative & Integrative Instructional Software Design (IIISD)

Figure 16. Iterative & Integrative Instructional Software Design framework.

To mitigate contradictions found within the software development from the perspectives

of division of labor, knowledge transfer, and mental model discrepancies, the researcher pro-

poses a revised software development framework as seen in Figure 15 - the Iterative & Integra-

tive Instructional Software Design framework (IIISD) - to accommodate and direct knowledge

communication throughout the development process. The IIISD was founded in the integrative

work of Bannan-Ritland (2003) and the Integrative Learning Design (ILD) framework and the

stymied progress of software reuse in IDT research uncovered by the researcher in Chapter 1.

Additionally, IIISD mediated socially-aware context to consciously and systematically distribute

project, task, and domain knowledge through continuous team communication.

IIISD redefined re-use previously defined by ILD into a modern-day software develop-

ment context. ILD defined diffusion as the distribution of code or design to a wider audience for

re-use and replication. ILD situated adaptation and adoption involving the consumption of out-

side code or design within a project – adaptation required customizations for usage, while adop-

tion was intended for more plug-and-play context. As realized in Sembrat (2019), software re-

87

use could take the form of either small components or large-scale software projects, so the terms

of adaptation and adoption were mutated slightly to accommodate this broader scope. In order to

accommodate the modern software development best-practices, IIISD separated internal re-use

from external re-use, as familiarity with the written code differed greatly between the two

scopes. In internal re-use, the code had historical, cultural, and social context by which the intent

and meaning is more easily understood. In essence, internal re-use would be implemented simply

as an additional development iteration. External re-use, however, was the embedded action of ad-

aptation or adoption from outside the project scope into a new and unfamiliar environment.

There would be no expected code familiarity, resulting in code that would be written, com-

mented, designed, and understood from a different social context, echoing Panke et al. (2007).

To accommodate this, re-use is re-situated to be imported throughout the development process to

satisfy the limitless opportunities in the development process to re-use software or design. Addi-

tionally, these changes could impact succeeding or proceeding steps, requiring a fluid and inter-

connected development process.

Adnan and Ritzhaupt (2018) identified agile project management as an opportunity for

educational research to learn from software engineering. Specifically, the researchers expressed

value in the agile practices of recurring and frequent meetings (scrum meetings), periodic devel-

opment deliverable timelines (sprints), and continual knowledge transfer and collaboration

across team members. This knowledge transfer was defined as ‘cross-functionality through

cross-fertilization’ (Barke & Prechelt, 2018). Rather than requiring each project adhere to strict

agile methodological management philosophy, iterative design philosophies such as design-

based research (DBR) provided scaffolds by which to embed communication strategies. IIISD’s

88

central and continuous communications focused on three communication pillars with the ex-

pressed intent of knowledge sharing: 1) periodic, strictly-defined, recurring meetings following a

quick agile methodology, 2) short-term development iteration cycles for review and refinement,

and 3) centralized communications strategies. Each pillar applies the discussion from Instruc-

tional/Technological Perspective Negotiations above.

Periodic, strictly-defined recurring meetings would provide each team member a project

status update and the ability to identify project-blockers. While this aspect is not intended to

strictly adhere to the daily scrum standup as detailed in Sonya Zhang and Dorn (2012), the gen-

eral format emulated the scrum design. Each meeting member would provide a three-pronged

update: 1) “what have you been working on?”, 2) “what do you plan on working on next?”, and

3) “what issues or problems have you encountered that prevent you from completing your

tasks?”. These queries intend to promote short status-updates which can foster additional com-

munications to rectify issues. Additionally, the meeting would facilitate the distribution of task

and project knowledge across all meeting attendees, affording each member a higher-level pro-

ject understanding and the tasks and projects of their peer team members. Finally, these meetings

would situate and provide a progress update for the iterative development cycles from each con-

tributor.

Short-term development iteration cycles mirrored the combinations of micro-cycles into a

meso-cycle in DBR (Pool & Laubscher, 2016), in that simultaneous aspects of a project are inter-

twined in the process of exploration-construction-evaluation towards a completed iteration

(Parmaxi & Zaphiris, 2015). A project lead would determine the length and goals of each itera-

tion cycle, with the understanding that shorter-term iterations would allow for movement, explo-

89

ration, and analysis of new ideas without the full invested resources of carrying a prototyped de-

sign to fruition. This shorter-termed timeline also would encourage a design philosophy of proto-

typed designs interacting with activity components in its transformation into a mediated, negoti-

ated design decision – itself an activity system in action. This design philosophy would focus re-

view and feedback not on completely integrated and realistic prototypes, but multiple prototypes

of increasing fidelity and realism as they process through approvals and feedback towards a ne-

gotiated design. This would afford a development strategy primed to identify issues and potential

blockers as the prototype evolves into greater fidelity.

Finally, the usage of central communication strategies would accomplish two main goals.

First, the usage of observable and recommended communication channels would facilitate trans-

parency and knowledge-building for team members to build competency and expertise in an

area. This idea would better facilitate the distribution of knowledge from expertise member(s)

across the entire team. Second, the usage would provide defined outlets for team members to ask

questions, solicit feedback, or showcase a deliverable to the project team. This central, continu-

ous communication strategy would encourage and facilitate collaboration while also preserving

knowledge for reference or additional (or new) team members. No specific tool is purposefully

identified to accommodate adapting communication strategies to team size, preferences, availa-

ble tools, and timelines. This process would only require that a team member serve as the com-

munication lead for recurring meetings and directing discussion-oriented communications, a role

that can naturally coincide with a project lead.

IIISD positions project evaluation and distribution from two transitional perspectives.

First, the project transition approaches re-use in order to expand the literature. As stated above,

re-use was redefined to match the broader interpretations defined in Chapter 1’s second analysis

90

phase. These updated definitions focus extensions of the literature either through explicit code

diffusion, adoption, or adaptation, or a broader, academic examination of the software (as com-

monly seen in IDT research, per Chapter 1). Second, the project transition focuses on the devel-

oped software as it pertains to the auxiliary support, as described in Technology-mediated Auxil-

iary Support Function Design above. IIISD does not explicitly position the application of the de-

veloped software to deliver instruction to learners within the framework, applying the argument

of Oliver (2011) that instructional software should be positioned as an instrument worthy of its

own examination. However, this does not discount that instruction is an expected outcome of de-

veloped software within IDT. As such, the framework needs to accommodate the software devel-

opment life-cycle for the ongoing auxiliary services in order to reduce technical debt and maxim-

ize instructional value for learners within its production (authentic) environment. This compo-

nent pairs with the production phases mapped in the evolution of the software development life

cycle (Kneuper, 2017), which identified the post-development production phases throughout 60

years of software development.

Conclusion

This case study analyzed the social influences and contradictions of gamification imple-

mentation situated within an IDT software development project through CHAT. Findings re-

vealed social contradictions of mental model, knowledge transfer, and labor division negotia-

tions, each centered around the translation of instructional goals and requirements to software

implementations and designs. The identification and analysis of social contradictions prompted

the creation of two design principles to better communicate software development best-practices.

91

These design principles were applied in the creation of a design framework, IIISD, to better situ-

ate socially-conscious project team activities into software development. IIISD is designed to

better represent the current software development landscape within IDT research and facilitate

the social negotiations impacting and influencing software development. Additionally, IIISD is

positioned as a response to more than decade of software development studies in IDT research as

analyzed by Sembrat (2019) and as an evolution of ILD to modern-day software development

practices to better position the software development process from social lenses. IIISD’s pur-

poseful abstraction is intended to provide flexibility with both IDT methodologies and successful

software development best-practices outside of the field.

Limitations and Considerations

This main limitation of this study is that its CHAT analyses is positioned from a singular

web developer role of the primary author. Future IDT studies could conduct CHAT analyses

from software developers within other IDT software case studies would be valuable to validate

or refute the method. Additional analyses would produce additional or supportive design princi-

ples, in order to extend the literature through positioning validated findings into design patterns.

Construction of synthesized design patterns from aggregated design principles, as suggested by

The Design-Based Research Collective (2003), could help to more-broadly distribute best-prac-

tices at the intersection of IDT and computer science. Future IDT studies using IC for data cod-

ing would validate or refute its analytical framework, given its limited usage outside of health

sciences. Additionally, additional studies applying the IC deviations outlined in the data analysis

would be valuable to validate or refute the adjusted methodology and the chronological analysis

phase for qualitative project data.

92

The researcher hopes additional studies will incorporate the IIISD framework into au-

thentic contexts to understand its situation of IDT software development projects. IIISD is not

intended as an end-product model – rather, it should evolve through successive adoption and ad-

aptation to validate or refute its findings as a process towards construction of design principles

and best-practices. Considerations should be taken into how to properly revision a framework to

match environmental evolutions, noting ambiguity in generational activity theory terminology as

shown in Sannino and Engeström (2018). Similar to the evolution of ILD into IIISD, considera-

tion should be taken within future studies to ensure that IIISD is compatible with future-state

software development and project management best-practices, as both areas are evolving along-

side technological advances outside the field of IDT research. From historical observation of

older software studies as seen in Sembrat (2019), these advances would influence development

tools and platforms utilized within the study.

93

References

Adnan, N. H., & Ritzhaupt, A. D. (2018). Software engineering design principles applied to

instructional design: what can we learn from our sister discipline? TechTrends: Linking

Research and Practice to Improve Learning, 62(1), 77-94.

Amiel, T., & Reeves, T. (2008). Design-based research and educational technology: rethinking

technology and the research agenda. Journal of Educational Technology & Society,

11(4), 29-40.

Bannan-Ritland, B. (2003). The role of design in research: the integrative learning design

framework. Educational Researcher, 32(1), 21-24. doi:10.3102/0013189x032001021

Barab, S. A., Barnett, M., Yamagata-Lynch, L., Squire, K., & Keating, T. (2002). Using activity

theory to understand the systemic tensions characterizing a technology-rich introductory

astronomy course. Mind, Culture & Activity, 9(2), 76-107.

doi:10.1207/S15327884MCA0902_02

Barke, H., & Prechelt, L. (2018, 27 May-3 June 2018). Some reasons why actual cross-

fertilization in cross-functional agile teams is difficult. Paper presented at the 2018

IEEE/ACM 11th International Workshop on Cooperative and Human Aspects of

Software Engineering (CHASE).

Barnett-Page, E., & Thomas, J. (2009). Methods for the synthesis of qualitative research: a

critical review. BMC Medical Research Methodology, 9(1), 59. doi:10.1186/1471-2288-

9-59

Barron, B. (2004). Learning ecologies for technological fluency: gender and experience

differences. Journal of Educational Computing Research, 31(1), 1-36.

doi:10.2190/1N20-VV12-4RB5-33VA

94

Barroso, J., Gollop, C. J., Sandelowski, M., Meynell, J., Pearce, P. F., & Collins, L. J. (2003).

The challenges of searching for and retrieving qualitative studies. Western Journal of

Nursing Research, 25(2), 153-178. doi:10.1177/0193945902250034

Birch, P. D. J., & Whitehead, A. E. (2020). Investigating the comparative suitability of

traditional and task-specific think aloud training. Perceptual & Motor Skills, 127(1), 202-

224.

Borro-Escribano, B., Del Blanco, Á., Torrente, J., Alpuente, I. M., & Fernández-Manjón, B.

(2014). Developing game-like simulations to formalize tacit procedural knowledge: the

ONT experience. Educational Technology Research and Development, 62(2), 227-243.

doi:10.1007/s11423-013-9321-6

Boyd, D. W. (1993). The new microcomputer development technology: implications for the

economics instructor and software author. The Journal of Economic Education, 24(2),

113-125. doi:10.1080/00220485.1993.10844785

Branon, R., Wolfenstein, M., & Weiss, C. (2016). MASLO: a mobile learning development

system. International Journal of Designs for Learning, 7(3).

doi:10.14434/ijdl.v7i3.13116

Çakıroğlu, Ü., Kokoç, M., Kol, E., & Turan, E. (2016). Exploring teaching programming online

through web conferencing system: the lens of activity theory. Journal of Educational

Technology & Society, 19(4), 126-139.

Carroll, J. M., & Olson, J. R. (1987). Mental models in human-computer interaction: research

issues about what the user of software knows: National Academy Press.

Carvalho, M. B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C. I., Hauge, J. B., . . .

Rauterberg, M. (2015). An activity theory-based model for serious games analysis

95

and conceptual design. Computers & Education, 87, 166-181.

doi:10.1016/j.compedu.2015.03.023

Chen, M.-P., Wong, Y.-T., & Wang, L.-C. (2014). Effects of type of exploratory strategy and

prior knowledge on middle school students’ learning of chemical formulas from a 3D

role-playing game. Educational Technology Research and Development, 62(2), 163-185.

doi:10.1007/s11423-013-9324-3

Choi, H., & Kang, M. (2010). Applying an activity system to online collaborative group work

analysis. British Journal of Educational Technology, 41(5), 776-795. doi:10.1111/j.1467-

8535.2009.00978.x

Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational

Research, 53(4), 445-459. doi:10.2307/1170217

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in

educational research. Educational Researcher, 32(1), 9-13.

doi:10.3102/0013189X032001009

Collis, B., & Margaryan, A. (2004). Applying activity theory to computer-supported

collaborative learning and work-based activities in corporate settings. Educational

Technology Research and Development, 52(4), 38-52. doi:10.1007/BF02504717

Computers & Education. Computers & education journal. Retrieved from

https://www.journals.elsevier.com/computers-and-education/

Cordero, K., Nussbaum, M., Ibaseta, V., Otaíza, M. J., Gleisner, S., González, S., . . . Carland, C.

(2015). Read create share (RCS): a new digital tool for interactive reading and writing.

Computers & Education, 82, 486-496. doi:10.1016/j.compedu.2014.12.006

https://www.journals.elsevier.com/computers-and-education/

96

Dagdilelis, V., Evangelidis, G., Satratzemi, M., Efopoulos, V., & Zagouras, C. (2003). DELYS:

a novel microworld-based educational software for teaching computer science subjects.

Computers & Education, 40(4), 307-325. doi:10.1016/S0360-1315(02)00133-1

David, H., & Victor, T. (2002). Learning within the context of communities of practices: a re-

conceptualization of tools, rules and roles of the activity system. Educational Media

International, 39(3-4), 247-255. doi:10.1080/09523980210166468

De Boeck, P., & Minjeong, J. (2018). Perceived crisis and reforms: issues, explanations, and

remedies. Psychological Bulletin, 144(7), 757-777. doi:10.1037/bul0000154

de Diana, I., & van Schaik, P. (1993). Courseware engineering outlined: an overview of some

research issues. Educational and Training Technology International, 30(3), 191-211.

doi:10.1080/0954730930300302

de Jong, T., Weinberger, A., Girault, I., Kluge, A., Lazonder, A. W., Pedaste, M., . . . Zacharia,

Z. C. (2012). Using scenarios to design complex technology-enhanced learning

environments. Educational Technology Research and Development, 60(5), 883-901.

doi:10.1007/s11423-012-9258-1

Dennehy, D., & Conboy, K. (2017). Going with the flow: An activity theory analysis of flow

techniques in software development. Journal of Systems and Software, 133, 160-173.

doi:10.1016/j.jss.2016.10.003

Depradine, C., & Gay, G. (2004). Active participation of integrated development environments

in the teaching of object-oriented programming. Computers & Education, 43(3), 291-298.

doi:10.1016/j.compedu.2003.10.009

Dixon-Woods, M., Cavers, D., Agarwal, S., Annandale, E., Arthur, A., Harvey, J., . . . Sutton, A.

J. (2006). Conducting a critical interpretive synthesis of the literature on access to

97

healthcare by vulnerable groups. BMC Medical Research Methodology, 6(1), 35.

doi:10.1186/1471-2288-6-35

Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz, L., Pagés, C., &

Martínez-Herráiz, J.-J. (2013). Gamifying learning experiences: Practical implications

and outcomes. Computers & Education, 63, 380-392.

doi:10.1016/j.compedu.2012.12.020

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of

programming: A review. J. Educ. Resour. Comput., 5(3), 4.

doi:10.1145/1163405.1163409

Educational Technology Research and Development. Educational technology research and

development. Retrieved from

https://www.springer.com/education+%26+language/learning+%26+instruction/journal/1

1423

Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014). Qualitative

content analysis: a focus on trustworthiness. SAGE Open, 4(1), 2158244014522633.

doi:10.1177/2158244014522633

Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to

developmental research (2nd ed.). Cambridge, MA: Cambridge University Press.

Engeström, Y. (1996). Developmental work research as educational research: looking ten years

back and into the zone of proximal development. Nordisk pedagogik, 16(3), 131-143.

Engeström, Y. (2000). Activity theory as a framework for analyzing and redesigning work.

Ergonomics, 43(7), 960-974. doi:10.1080/001401300409143

https://www.springer.com/education+%26+language/learning+%26+instruction/journal/11423
https://www.springer.com/education+%26+language/learning+%26+instruction/journal/11423

98

Engestrom, Y., Miettinen, R., & Punamaki, R.-l. (1999). Perspectives on activity theory (Y.

Engeström, R. Miettinen, & R.-L. Punamäki Eds.). Cambridge, MA: Cambridge

University Press.

Finn, J. D. (1953). Professionalizing the audio-visual field. Audio Visual Communication

Review, 1(1), 6-17.

Fishman, B., Marx, R., Blumenfeld, P., Krajcik, J., & Soloway, E. (2004). Creating a framework

for research on systemic technology innovations. The Journal of the Learning Sciences,

13(1), 43-76. doi:10.1207/s15327809jls1301_3

Flemming, K. (2010). Synthesis of quantitative and qualitative research: an example using

Critical Interpretive Synthesis. Journal of Advanced Nursing, 66(1), 201-217.

doi:10.1111/j.1365-2648.2009.05173.x

Forward, A., & Lethbridge, T. C. (2002). The relevance of software documentation, tools and

technologies: A survey. Paper presented at the Proceedings of the 2002 ACM symposium

on Document engineering, McLean, Virginia, USA.

Fowler, M. (2018). Refactoring: improving the design of existing code: Addison-Wesley

Professional.

Gage, N. A., & Stevens, R. N. (2018). Rigor, replication, and reproducibility: Increasing the

relevance of behavioral disorders research. Education & Treatment of Children, 41(4),

567-588. doi:10.1353/etc.2018.0029

Gagné, R. M., Briggs, L. J., & Wager, W. W. (1991). Principles of instructional design (4th ed.).

Forth Worth, TX: Harcourt Brace Jovanovich College Pub.

99

Gaudel, M. C. (1981). Compiler generation from formal definition of programming languages: a

survey. In Lecture Notes in Computer Science (Vol. 107, pp. 96-114). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Gaydos, M. (2015). Seriously considering design in educational games. Educational Researcher,

44(9), 478-483. doi:10.3102/0013189x15621307

Getenet, S. (2019). Using design-based research to bring partnership between researchers and

practitioners. Educational Research, 61(4), 482.

Hadjistassou, S. K. (2012). An activity theory exegesis on conflict and contradictions in

networked discussions and feedback exchanges. CALICO Journal, 29(2), 367-388.

Hirumi, A., Kleinsmith, A., Johnsen, K., Kubovec, S., Eakins, M., Bogert, K., . . . Cendan, J.

(2016). Advancing virtual patient simulations through design research and interPLAY:

part I: design and development. Educational Technology Research and Development,

64(4), 763-785. doi:10.1007/s11423-016-9429-6

Huang, Y.-M., & Huang, Y.-M. (2015). A scaffolding strategy to develop handheld sensor-based

vocabulary games for improving students’ learning motivation and performance.

Educational Technology Research and Development, 63(5), 691-708.

doi:10.1007/s11423-015-9382-9

Hucka, M., & Graham, M. J. (2018). Software search is not a science, even among scientists: A

survey of how scientists and engineers find software. Journal of Systems and Software,

141, 171-191. doi:10.1016/j.jss.2018.03.047

International Journal of Designs for Learning. Submissions. Retrieved from

https://scholarworks.iu.edu/journals/index.php/ijdl/about/submissions#authorGuidelines

https://scholarworks.iu.edu/journals/index.php/ijdl/about/submissions#authorGuidelines

100

Iyamu, T., & Shaanika, I. (2019). The use of activity theory to guide information systems

research. Education & Information Technologies, 24(1), 165-180. doi:10.1007/s10639-

018-9764-9

Jackson, S., & Brannon, S. (2018). In-house software development: Considerations for

implementation. The Journal of Academic Librarianship, 44(6), 689-691.

doi:10.1016/j.acalib.2018.10.008

Kali, Y., & Ronen-Fuhrmann, T. (2011). Teaching to design educational technologies.

International Journal of Learning Technology, 6(1), 4-23.

doi:10.1504/IJLT.2011.040147

Kangas, M., Koskinen, A., & Krokfors, L. (2017). A qualitative literature review of educational

games in the classroom: the teacher’s pedagogical activities. Teachers and Teaching,

23(4), 451-470. doi:10.1080/13540602.2016.1206523

Kankuzi, B., & Sajaniemi, J. (2016). A mental model perspective for tool development and

paradigm shift in spreadsheets. International Journal of Human-Computer Studies, 86,

149-163. doi:10.1016/j.ijhcs.2015.10.005

Karanasios, S., Thakker, D., Lau, L. L., Allen, D., Dimitrova, V., & Norman, A. (2013). Making

sense of digital traces: an activity theory driven ontological approach. Journal of the

American Society for Information Science & Technology, 64(12), 2452-2467.

doi:10.1002/asi.22935

Karasavvidis, I. (2009). Activity Theory as a conceptual framework for understanding teacher

approaches to Information and Communication Technologies. Computers & Education,

53(2), 436-444. doi:10.1016/j.compedu.2009.03.003

101

Karasavvidis, I. (2010). Understanding wikibook-based tensions in higher education: An activity

theory approach. E-Learning and Digital Media, 7(4), 386-394.

doi:10.2304/elea.2010.7.4.386

Kernebeck, U. (1997). Component libraries for software re-use. Microprocessors and

Microsystems, 21(1), 49-54. doi:10.1016/S0141-9331(97)00019-7

Khan, S. (2008). The case in case-based design of educational software: A methodological

interrogation. Educational Technology Research and Development, 56(4), 423-447.

doi:10.1007/s11423-006-9028-z

Kirschner, P. A. (2004). Design, development, and implementation of electronic learning

environments for collaborative learning. Educational Technology Research and

Development, 52(3), 39-46. doi:10.1007/BF02504674

Kneuper, R. (2017). Sixty years of software development life cycle models. IEEE Annals of the

History of Computing, 39(3), 41-54. doi:10.1109/MAHC.2017.3481346

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software

development teams. Paper presented at the International conference on software

engineering, Washington, DC.

Korpela, M., Mursu, A., & Soriyan, H. A. (2002). Information systems development as an

activity. Computer Supported Cooperative Work, 11(1), 111-128.

doi:10.1023/A:1015252806306

Kultur, C., Oytun, E., Cagiltay, K., Ozden, M. Y., & Kucuk, M. E. (2004). Moving toward scorm

compliant content production at educational software company: Technical and

administrative challenges. Paper presented at the Association for Educational

Communications and Technology Annual Meeting.

102

Laine, T. H., Nygren, E., Dirin, A., & Suk, H.-J. (2016). Science spots ar: a platform for science

learning games with augmented reality. Educational Technology Research and

Development, 64(3), 507-531. doi:10.1007/s11423-015-9419-0

Lamb, R., & Johnson, S. (2006). Social aspects of digital information in perspective:

introduction to a special issue. Journal of Digital Information, 5(4).

Leenaars, F. A. J., van Joolingen, W. R., Gijlers, H., & Bollen, L. (2014). Gearsketch: an

adaptive drawing-based learning environment for the gears domain. Educational

Technology Research and Development, 62(5), 555-570. doi:10.1007/s11423-014-9345-6

Leont'ev, A. N. (1974). The problem of activity in psychology. Soviet psychology, 13(2), 4-33.

doi:10.2753/RPO1061-040513024

Leupers, R. (2002). Compiler design issues for embedded processors. IEEE Design & Test of

Computers, 19(4), 51-58. doi:10.1109/MDT.2002.1018133

Lewin, C., Cranmer, S., & McNicol, S. (2018). Developing digital pedagogy through learning

design: an activity theory perspective. British Journal of Educational Technology, 49(6),

1131-1144. doi:10.1111/bjet.12705

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., . . .

Moher, D. (2009). The prisma statement for reporting systematic reviews and meta-

analyses of studies that evaluate health care interventions: explanation and elaboration.

Annals of Internal Medicine, 151(4), W-65-W-94. doi:10.1371/journal.pmed.1000100

Liu, J. (2013). The assessment agent system: design, development, and evaluation. Educational

Technology Research and Development, 61(2), 197-215. doi:10.1007/s11423-013-9286-5

Loui, M. C. (2015). Replication, taxonomy, and thanks. Journal of Engineering Education,

104(4), 363-363. doi:10.1002/jee.20103

103

Maher, J. H., & Ingram, A. L. (1989). Software engineering and isd: Similarities,

complementarities, and lessons to share. Paper presented at the Association for

Educational Communications and Technology, Dallas, TX.

Mahmoud, A., & Williams, G. (2016). Detecting, classifying, and tracing non-functional

software requirements. Requirements Engineering, 21(3), 357. doi:10.1007/s00766-016-

0252-8

Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code traceability links

using latent semantic indexing. Paper presented at the Proceedings of the 25th

International Conference on Software Engineering, Portland, Oregon.

Margulieux, L., Ketenci, T. A., & Decker, A. (2019). Review of measurements used in

computing education research and suggestions for increasing standardization. Computer

Science Education, 29(1), 49-78. doi:10.1080/08993408.2018.1562145

Matthews, T., Rattenbury, T., & Carter, S. (2007). Defining, designing, and evaluating peripheral

displays: an analysis using activity theory. Human-Computer Interaction, 22(1-2), 221-

261.

McBurney, P. W., & McMillan, C. (2014). Automatic documentation generation via source code

summarization of method context. Paper presented at the Proceedings of the 22nd

International Conference on Program Comprehension, Hyderabad, India.

McKenney, S., & Reeves, T. C. (2013). Systematic review of design-based research progress: Is

a little knowledge a dangerous thing? Educational Researcher, 42(2), 97-100.

doi:10.3102/0013189x12463781

Mertz, M., Kahrass, H., & Strech, D. (2016). Current state of ethics literature synthesis: a

systematic review of reviews. BMC Medicine, 14, 1-12. doi:10.1186/s12916-016-0688-1

104

Modell, M. G. (2014). Iterating over a method and tool to facilitate equitable assessment of

group work. International Journal of Designs for Learning, 4(1), 39-53.

Moreno, L. (2014). Summarization of complex software artifacts. Paper presented at the

Companion Proceedings of the 36th International Conference on Software Engineering,

Hyderabad, India.

Morrison, L., Yardley, L., Powell, J., & Michie, S. (2012). What design features are used in

effective e-health interventions? A review using techniques from critical interpretive

synthesis. Telemedicine and e-Health, 18(2), 137-144. doi:10.1089/tmj.2011.0062

Myers, G. J., Badgett, T., Thomas, T. M., & Sandler, C. (2004). The art of software testing (Vol.

2): Wiley Online Library.

Neale, J. (2016). Iterative categorization (ic): a systematic technique for analysing qualitative

data. Addiction, 111(6), 1096-1106. doi:10.1111/add.13314

Nielsen, C., & Cappelen, K. (2014). Exploring the mechanisms of knowledge transfer in

university-industry collaborations: A study of companies, students and researchers.

Higher Education Quarterly, 68(4), 375-393. doi:10.1111/hequ.12035

Oliver, M. (2011). Technological determinism in educational technology research: some

alternative ways of thinking about the relationship between learning and technology.

Journal of Computer Assisted Learning, 27(5), 373-384. doi:10.1111/j.1365-

2729.2011.00406.x

Oncu, S., & Cakir, H. (2011). Research in online learning environments: Priorities and

methodologies. Computers & Education, 57(1), 1098-1108.

doi:10.1016/j.compedu.2010.12.009

105

Ormel, B. J. B., Pareja Roblin, N. N., McKenney, S. E., Voogt, J. M., & Pieters, J. M. (2012).

Research–practice interactions as reported in recent design studies: still promising, still

hazy. Educational Technology Research and Development, 60(6), 967-986.

doi:10.1007/s11423-012-9261-6

Paek, S., Hoffman, D. L., & Black, J. B. (2016). Perceptual factors and learning in digital

environments. Educational Technology Research and Development, 64(3), 435-457.

doi:10.1007/s11423-016-9427-8

Panke, S., Kohls, C., & Gaiser, B. (2007). Participatory development strategies for open source

content management systems. Innovate: Journal of Online Education, 3(2), 8.

Park, S. W., & Kim, C. M. (2014). Virtual Tutee System: a potential tool for enhancing academic

reading engagement. Educational Technology Research and Development, 62(1), 71-97.

doi:10.1007/s11423-013-9326-1

Park, S. W., & Kim, C. M. (2016). The effects of a virtual tutee system on academic reading

engagement in a college classroom. Educational Technology Research and Development,

64(2), 195-218. doi:10.1007/s11423-015-9416-3

Park, T., & Lim, C. (2019). Design principles for improving emotional affordances in an online

learning environment. Asia Pacific Education Review, 20(1), 53-67. doi:10.1007/s12564-

018-9560-7

Parmaxi, A., & Zaphiris, P. (2015). Developing a framework for social technologies in learning

via design-based research. Educational Media International, 52.

doi:10.1080/09523987.2015.1005424

106

Peña-Ayala, A., Sossa, H., & Méndez, I. (2014). Activity theory as a framework for building

adaptive e-learning systems: a case to provide empirical evidence. Computers in Human

Behavior, 30, 131-145. doi:10.1016/j.chb.2013.07.057

Penuel, W. R., Fishman, B. J., Cheng, B. H., & Sabelli, N. (2011). Organizing research and

development at the intersection of learning, implementation, and design. Educational

Researcher, 40(7), 331-337. doi:10.3102/0013189x11421826

Persky, A. M., & Murphy, K. (2019). Investigating whether transfer of learning in pharmacy

students depends more on knowledge storage or accessibility. American Journal of

Pharmaceutical Education, 83(6), 1274-1281.

Plonsky, L. (2015). Quantitative considerations for improving replicability in call and applied

linguistics. CALICO Journal, 32(2), 232-244. doi:10.1558/cj.v32i2.26857

Plummer, M. (2018). Lived experiences of grooming among australian male survivors of child

sexual abuse. Journal of Interpersonal Violence, 33(1), 37.

Pool, J., & Laubscher, D. (2016). Design-based research: is this a suitable methodology for

short-term projects? Educational Media International, 53(1), 42-52.

doi:10.1080/09523987.2016.1189246

Porte, G. (2013). Who needs replication? CALICO Journal, 30(1), 10-15.

doi:10.11139/cj.30.1.10-15

Postholm, M. B. (2015). Methodologies in cultural–historical activity theory: The example of

school-based development. Educational Research, 57(1), 43-58.

doi:10.1080/00131881.2014.983723

Randolph, J., J. (2009). A guide to writing the dissertation literature review. Practical

Assessment, Research & Evaluation, 14(13). doi:https://doi.org/10.7275/b0az-8t74

https://doi.org/10.7275/b0az-8t74

107

Researcher, E. Educational researcher. Retrieved from https://us.sagepub.com/en-

us/nam/journal/educational-researcher

Richey, R. C. (1997). Research on instructional development. Educational Technology Research

and Development, 45(3), 91-100. doi:https://doi.org/10.1007/BF02299732

Robillard, P. N. (1989). Automating comments. ACM SIGPLAN Notices, 24(5), 66-70.

doi:10.1145/66068.66073

Roschelle, J., & DiGiano, C. (2004). Escot: Coordinating the influence of r&d and classroom

practice to produce educational software from reusable components. Interactive Learning

Environments, 12(1-2), 73-107. doi:10.1080/1049482042000300904

Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., & Hervás-

Martínez, C. (2013). PpcProject: An educational tool for software project management.

Computers & Education, 69, 181-188. doi:10.1016/j.compedu.2013.07.018

Sanders, N. E., Faesi, C., & Goodman, A. A. (2014). A new approach to developing interactive

software modules through graduate education. Journal of Science Education and

Technology, 23(3), 431-440. doi:10.1007/s10956-013-9474-4

Sannino, A., & Engeström, Y. (2018). Cultural-historical activity theory: founding insights and

new challenges. Cultural-Historical Psychology, 14(3), 43-56.

doi:10.17759/chp.2018140304

Schuch, D. (2001). The research assistant. TechTrends, 45(2), 17-18. doi:10.1007/bf02763493

Sembrat, E. S. (2020). A review of the literature on process at the nexus of instructional and

software design Manuscript in preparation.

Shavelson, R., Phillips, D. C., Towne, L., & Feuer, M. (2005). On the science of education

design studies. Educational Researcher, 32(1), 25-28. doi:10.3102/0013189X032001025

https://us.sagepub.com/en-us/nam/journal/educational-researcher
https://us.sagepub.com/en-us/nam/journal/educational-researcher
https://doi.org/10.1007/BF02299732

108

Smith, P. L., & Ragan, T. J. (2005). Instructional design: John Wiley & Sons.

Sonya Zhang, X., & Dorn, B. (2012). Accelerating software development through agile

practices-a case study of a small-scale, time-intensive web development project at a

college-level it competition. Journal of Information Technology Education, 11.

doi:10.28945/1545

Sun, H.-M., & Cheng, W.-L. (2009). The input-interface of Webcam applied in 3D virtual reality

systems. Computers & Education, 53(4), 1231-1240. doi:10.1016/j.compedu.2009.06.006

Sun, P. Y.-T., & Scott, J. L. (2005). An investigation of barriers to knowledge transfer. Journal

of Knowledge Management, 9(2), 75-90. doi:10.1108/13673270510590236

Tan, L., Yuan, D., Krishna, G., & Zhou, Y. (2007). /*icomment: bugs or bad comments?*.

SIGOPS Oper. Syst. Rev., 41(6), 145-158. doi:10.1145/1323293.1294276

Tergan, S.-O. (2006). Checklists for the evaluation of educational software: Critical review and

prospects. Innovations in Education and Training International, 35(1), 9-20.

doi:10.1080/1355800980350103

The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm

for educational inquiry. Educational Researcher, 32(1), 5-8.

doi:10.3102/0013189x032001005

Toader, A. F., & Kessler, T. (2018). Task variation and mental models divergence influencing

the transfer of team learning. Small Group Research, 49(5), 545-575.

doi:10.1177/1046496418786429

Tripp, S. D., & Bichelmeyer, B. (1990). Rapid prototyping: An alternative instructional design

strategy. Educational Technology Research and Development, 38(1), 31-44.

doi:10.1007/bf02298246

109

Trust, T. (2017). Using cultural historical activity theory to examine how teachers seek and share

knowledge in a peer-to-peer professional development network. Australasian Journal of

Educational Technology, 33(1), 98-113. doi:10.14742/ajet.2593

Uden, L., Valderas, P., & Pastor, O. (2008). An activity-theory-based model to analyse web

application requirements. Information Research, 13(2).

doi:10.1016/j.compedu.2015.03.023

van der Schaaf, M., Donkers, J., Slof, B., Moonen-van Loon, J., van Tartwijk, J., Driessen, E., . .

. Ten Cate, O. (2017). Improving workplace-based assessment and feedback by an e-

portfolio enhanced with learning analytics. Educational Technology Research and

Development, 65(2), 359-380. doi:10.1007/s11423-016-9496-8

Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2016). Developing educational

materials about risks on social network sites: a design based research approach.

Educational Technology Research and Development, 64(3), 459-480.

doi:10.1007/s11423-015-9415-4

Veletsianos, G., Beth, B., Lin, C., & Russell, G. (2016). Design principles for thriving in our

digital world: A high school computer science course. Journal of Educational Computing

Research, 54(4), 443-461. doi:10.1177/0735633115625247

Verdú, E., Regueras, L. M., Gal, E., de Castro, J. P., Verdú, M. J., & Kohen-Vacs, D. (2017).

Integration of an intelligent tutoring system in a course of computer network design.

Educational Technology Research and Development, 65(3), 653-677.

doi:10.1007/s11423-016-9503-0

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., Cruz Alves, N., Barbosa,

H., & Azevedo, L. F. (2018). Codemaster - automatic assessment and grading of app

110

inventor and snap! programs. Informatics in Education, 17(1), 117-150.

doi:10.15388/infedu.2018.08

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes.

Cambridge, MA: Harvard University Press.

Wade-Jaimes, K., Cohen, J. D., & Calandra, B. (2019). Mapping the evolution of an after-school

STEM club for African American girls using activity theory. Cultural Studies of Science

Education, 14(4), 981-1010. doi:10.1007/s11422-018-9886-9

Waight, N., Liu, X., & Gregorius, R. M. (2015). Understanding the life cycle of computer-based

models: the role of expert contributions in design, development and implementation.

Educational Technology Research and Development, 63(6), 831-859.

doi:10.1007/s11423-015-9402-9

Wang, Q., Nieveen, N., & van den Akker, J. (2007). Designing a computer support system for

multimedia curriculum development in Shanghai. Educational Technology Research and

Development, 55(3), 275-295. doi:10.1007/s11423-006-9017-2

Wei, X., Weng, D., Liu, Y., & Wang, Y. (2015). Teaching based on augmented reality for a

technical creative design course. Computers & Education, 81, 221-234.

doi:10.1016/j.compedu.2014.10.017

Wells, G. (2002). The role of dialogue in activity theory. Mind, Culture, and Activity, 9(1), 43-

66. doi:10.1207/S15327884MCA0901_04

Winters, N., & Mor, Y. (2008). IDR: A participatory methodology for interdisciplinary design in

technology enhanced learning. Computers & Education, 50(2), 579-600.

doi:10.1016/j.compedu.2007.09.015

111

Wolgemuth, J. R., Hicks, T., & Agosto, V. (2017). Unpacking assumptions in research synthesis:

A critical construct synthesis approach. Educational Researcher, 46(3), 131-139.

doi:10.3102/0013189x17703946

Zawacki-Richter, O., & Naidu, S. (2016). Mapping research trends from 35 years of publications

in Distance Education. Distance Education, 37(3), 245-269.

doi:10.1080/01587919.2016.1185079

Zhu, H. (2005). Software design methodology: From principles to architectural styles. Oxford:

Butterworth-Heinemann.

112

Appendix

Records identified through database searching
(n = 167):

Educational Technology
Research and Development
and Educational Researcher
(January 2003 until December
2014)

n = 30

International Journal of
Designs for Learning (January
2010 – March 2018)

n = 5

Computers & Education
(January 2003 – March 2018)

n = 132

Records exported through journal
archives (not database searchable; n =
436):

Educational Researcher
(January 2015 – March
2018)

n = 183

Educational Technology
Research and
Development (January
2015 – March 2018)

n = 253

SC
R

EE
N

IN
G

ID
EN

TI
FI

C
A

TI
O

N
 Journals identified to represent broad variation found within literature (Morrison, Yardley,

Powell, & Michie, 2012) based on exclusion/inclusion criteria (n = 4):
Computers in Education
Educational Researcher
Educational Technology Research and Development
International Journal of Designs for Learning

EL
IG

IB
IL

IT
Y

Full-text articles assessed for eligibility based on search, retrieval, validation process (Barroso et.
al., 2003; n = 72):

Matching RQ1/RQ2 criteria: n = 72

IN
C

LU
D

ED

Final included articles (n = 15)
Matching reporting of either software design, development, process; software
programming language or tool; software developers or programmers

n = 15

Reviews excluded after full-text assessment (n = 57),
according to the following explicit exclusion analysis:

No report of either software design,
development, process:

n = 35

No report of software programming
language or tool:

n = 15

No report of software programmers or
developers:

n = 7

	A Review and Analysis of Process at the Nexus of Instructional and Software Design
	Recommended Citation

	tmp.1584390390.pdf.wONRm

