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ABSTRACT 

Due to the poor understanding of features defining cross-immunoreactivity among 

heterogeneous epitopes, vaccine development against the hepatitis C virus (HCV) is trapped. The 

development of vaccines against HCV and human immunodeficiency virus, which are highly 

heterogeneous viruses (HIV) is significantly vulnerable due to variant-specific neutralizing 

immune responses. The novel vaccine strategies are based on some assumptions such as 

immunological specificity which is strongly linked to the epitope primary structure, by increasing 

genetic difference between epitopes cross-immunoreactivity (CR) will decline [1]. In this study 

first, we checked the hamming distance and statistic evaluation associating HVR1 sequence and 

CR based on the sequence of the immunogen and antigen pairs then generated five different 

machine learning models. Also, we implemented deep learning models like Convolutional Neural 

Network to predict CR. As a result we could provide 90% accuracy by using the CNN model. 

INDEX WORDS: HCV, Cross-immunoreactivity, Hamming distance, Machine learning, Deep 

learning, CNN 
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1 INTRODUCTION  

Hepatitis C virus (HCV) belongs to the Flaviviridae family [2] and is a single-stranded 

RNA virus. 3.0% of the world’s population is infected by HCV, and it is a significant cause of 

liver disease in the world [3]. HCV infection growths to chronicity in 70%–85% of infected adults 

[4]. Per year, it is estimated that 476,000 deaths are because of hepatitis C. As current anti-viral 

therapy is not much effective for patients [5], there is a big need for HCV vaccine. Genetically, 

HCV is very heterogeneous and is classified into six genotypes and numerous sub-genotypes [6]. 

To control infectious diseases, vaccines are the most efficacious. But the problem is that the 

development of vaccines against highly heterogeneous viruses like HCV and human 

immunodeficiency virus (HIV) is significantly vulnerable by variant-specific neutralizing immune 

responses. A major obstacle for formulating broadly protective vaccines is that these viruses have 

an unlimited capacity to quickly mutate and escape from immune neutralization [7][8].  It is 

estimated that 130 million and 33 million individuals are infected in the world with HCV and HIV, 

respectively [3][8]. The number of viral variants circulating in the world is immense because each 

infected host has a large variety of viral variants. Developing vaccines against this big range of 

viral variants is challenging. We used hamming distance which is the number of positions at which 

corresponding symbols are different to see the relationship between hamming distance and CR. 

Modeling supervised machine learning models like SVM, Naive Bayes, and Logistic Regression 

are another way to check the accuracy of CR. We also implemented Decision tree model which is 

implemented by another study to compare our results. Although, we got better performance by 

using machine learning models, but the main benefit of deep learning techniques is automatic 

features extraction and regulation of performance in a continuous fashion. So, those has been 

increasingly used to solve many challenging problems in biology in the past few years. 
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2 RELATED WORKS 

Classical vaccine development approaches are still producing broadly protective vaccines 

against HCV and HIV [7][9]. Recently, to cope with viral antigenic diversity, novel vaccine 

strategies developed. These strategies focus on using epitopes with restricted heterogeneity [10], 

the center of tree variants, or phylogenetic ancestors [11], generating a concoction of 

heterogeneous epitopes [12][13] or mimotopes [14][15], or predicting consensus sequences. But 

regard to properties of highly heterogeneous epitopes, these strategies are based on some 

assumptions such as immunological specificity is strongly linked to the epitope primary structure, 

by increasing genetic difference between epitopes cross-immunoreactivity (CR) will decline, and 

that by diversifying evolution resulting from an ‘‘arms race’’, the viral sequence space is shaped 

[1]. However, the conditional relevance of these assumptions has not been methodically validated. 

A quantitative analysis of the HVR1 CR is modeled, which used synthetic peptides and 

mouse immunization, in conjunction with a network analysis of the HVR1, sequence space showed 

significant immunological and structural HVR1 convergence. The findings suggest tractability of 

the HVR1 immunological specificity and offer a novel framework for HCV vaccine development, 

which is applicable to other heterogeneous viruses [16]. 

There are several studies which have considered machine learning in classification 

problems. Based on the type of problem. In our case, based on our data and labels, we need a 

supervised learning model to do classification and prediction. We focused mainly on five types of 

classification technics, (i) Support Vector Machine (SVM), (ii) Naive Bayes (NB), (iii) Logistic 

Regression(LR), (iv) K Nearest Neighbors, and (v) Decision Tree(DT). 

Campo DS et al.[16] found a significant functional and structural convergence that shows 

in the occupied sequence space the same HVR1 properties evolved frequently and independently. 
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They are tractable and highly amenable to predictive modeling because of their regular occurrence 

of the limited number of immunological specificities. So, they generated a decision tree associating 

HVR1 sequence and CR, which, based on the sequence of the immunogen and antigen pairs, can 

predict CR [16]. They used 10-fold cross-validation and got an average testing accuracy of 92.5%. 

But they have done oversampling, and they did not mention anything. Also, different manual 

settings are applied in their decision tree model. They have not explained their model clearly and 

just reported their results. 
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3 MATERIALS AND METHODS 

3.1 Dataset 

We are using serum specimens from mice immunized with 103 synthetic peptides 

representing different HVR1 variants (referred to as immunogens) to model HVR1 CR. We 

will use a set of 261 HVR1 peptides as antigens in an enzyme immunoassay. We used the 

HVR1 variants, which all randomly selected from major branches of a phylogenetic tree  

(from GenBank). We would have 26,883 unique immunogen antigen pairs in total for training. 

Also, we have a matrix of ones (CR happened) and zeros (CR not happened) as our 

labels, which means we will have a binary classification problem. The number of columns 

of this matrix is equal to the number of antibodies sequences, and the number of rows is 

equal to the number of antigens sequences.  

3.2 Implementation 

Prediction of cross-reactivity using a decision tree has done before[16]. We tried five 

different machine learning algorithms, SVM, KNN, LR, NB, and, DT. In addition, we used the 

advantages of CNN to predict CR. We used CNN to conduct feature extraction and dimensionality 

compression and classification. 

3.2.1 Preprocessing 

To implement our models, we need to do preprocessing as a first step. In this stage, 

we did some preprocessing techniques to prepare our data as an input of machine learning 

and deep learning models. There is no confident evidence that can show the structure of 

protein sequences when CR happened, and it was a challenging part of the preprocessing 

part. So, we assumed some structures and will progress the preprocessing part based on those 
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assumptions. An excellent first step when working with sequences is to split it into words or 

in terms of sequences, breaking those to the smaller lengths.  

We have tried different preprocessing technics to get the best performance. First, we 

considered a pair of the 29-length sequences from antibodies and antigens datasets and 

concatenated them, and then we broke those final 58 length sequences to length 2 

subsequences. In total, we have 29 subsequences for each concatenated sequence, Figure1.  

 

Figure 1:A sample of Preprocessing 

 

Each subsequence is getting a string of zeros and ones which is based on a dictionary of 

premutation of pair characters. 

In the second approach, instead of placing each pair of antigen and antibody back to back, we 

placed one sequence below another and then broke those final 58 length sequences to length 2 

subsequences. Then we used the dictionary to assign zeros and ones strings to them. 

In the third approach, after getting 29 subsequences in the second stage of preprocessing, 

the whole dataset is split into two parts, 75 percent of data for training, and 25 percent for 

testing. Then we used Keras as high-level APIs of neural networks. It supports multiple 

backend neural network computation engines and is written in Python. Ease of learning, ease 

of model building, and supporting multiple backend engines are the reasons which we used 

Keras, and also, it is user-friendly. We used Keras with TensorFlow backend, which is its 

primary backend to do its low-level operations. 
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As we need to know if there is any meaning in how the characters are placed side to 

side, word embedding is very handy for us. We know that word embedding deals with dense 

vectors so, we should vectorize sequences into a list of integers. We used Keras word 

embedding method, which is much more accurate than previous methods such as bag of 

words. Keras word embedding is the library function that allows the use of the embedding 

for the word semantically and syntactically, and we need here the semantic word embedding. 

So, we need to tokenize sequences. By using Keras Tokenizer, the numbers do not 

represent counts but rather correspond to the word values from the dictionary  word index.  

Each value of the dictionary that encodes the total dataset with the keys in the dictionary 

maps to one of each integer in our vectorized sequences. Those would be our vocabulary 

terms. In other words, “fit_on_texts” updates internal vocabulary based on a list of 

sequences. Here the vocabulary index is creating based on word frequency. So, if we give it 

something like, "it is rainy." It will create a dictionary, word_index["it"] = 1; 

word_index["is"] = 2, etc. which is a word index dictionary. So, every subsequence gets a 

unique integer value. Index 0 is reserved for padding. Lower integer means more frequent 

subsequence. “texts_to_sequences” of Tokenizer transforms each sequence in sequences to a 

sequence of integers. So, it takes each subsequence in the sequences and replaces it with its 

corresponding integer value from the word_index dictionary. 

By using Tokenizer, the length of the resulting vectors is equal to the length of each 

sequence, Figure2. 

 



7 

 

Figure 2:Example of Tokenization result 

 

Keras is doing these two parts separately because we almost always fit once and convert to 

sequences many times. To convert actual text into sequences and feed them to the network, we 

will fit on our training corpus one time and will use that same word_index dictionary at training, 

evaluation, testing, or prediction time.  

One problem that we have is that in each sequence, we will have multiple repetitions 

of subsequences, and we would have different lengths for our integer vectors. To solve this 

problem, we have used sequence padding, which simply pads the sequence of integers with 

zeros. We may prepend zeros or append them. As it does not matter whether we prepend or 

append zeros, we preferred to prepend zeros. We specified the fixed length of our sequences 

by adding a maximum length parameter. This parameter cuts sequences that surpass that 

number. So, our data is now ready as our model input, Figure3. 

 

 

Figure 3:Sequence padding 

 

In the fourth approach, k-mers is implemented to get different subsequences of each 

concatenated sequence which here is a different combination of k-length subsequences. 
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Choosing k was another challenging part. We decided to consider k=5, which means different 

5-length combinations of each sequence. In total, there are 54 subsequences, Figur4. Then 

we used Keras Tokenizer to tokenize sequences.  

 

Figure 4:K-mers, Five-mers 

 

In the next step of preprocessing, oversampling is implemented, which is due to imbalanced 

data. It will duplicate examples from the minority class. In our dataset, we have class one (cross-

immunoreactivity) and zero (not cross-immunoreactivity), and we had severe skew in the class 

distribution. So, we needed to handle this situation to prevent bias in the training dataset. Even 

SVM and some of other machine learning algorithms can handle unbalanced data but we wanted 

to find the hiest accuracy. Therfore we decided to use the SMOTE (Synthetic Minority Over-

sampling Technique) oversampling method among different methods of oversampling. This 

method generates synthetic data based on the feature space similarities between existing minority 

instances. In order to create a synthetic instance, it finds the K-nearest neighbors of each minority 

instance, randomly selects one of them, and then calculate linear interpolations to produce a new 

minority instance in the neighborhood [17]. We decided to check how the accuracy metric will 

change.  

3.2.2 Evaluation based on hamming distance 

Hamming distance is the measure of dissimilarity between two sequences, i.e., the no. of 

positions at which the corresponding character is different. So, for each pair of antigen and 
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antibody hamming distance is calculated, and then we checked if the hamming distance is between 

ten to twenty-four and made a matrix with a size equal to the label matrix. If the value of both were 

the same in the same positions, it means hamming distance has an important role in CR. However, 

this method is not applicable and trustable for too much data. So, other methods are implemented. 

3.2.3 Classification models 

Most of the classifiers, such as decision trees and neural networks, can only take input data 

as a vector of features. However, there are no explicit features in sequence data. So, it is 

challenging to find features. First, we built our machine learning models and made a comparison. 

Then we implemented the deep learning model and compared our results. 

3.2.3.1 Support Vector Machine (SVM) 

A practical method for sequence classification is SVM [18]. This is because to separate 

two classes, SVMs are designed to maximize the margin. It means the trained model generalizes 

well on unseen data. Most other computer programs implement a classifier through the 

minimization of error occurred in training, which leads to poorer generalization. Because of this, 

SVMs have been widely applied to many areas of bioinformatics, including protein function 

prediction, protease functional site recognition, transcription initiation site prediction, and gene 

expression data classification[19]. In this study, SVM is implemented for all four previous 

preprocessing methods. The SVM model, which we used, is from sklearn library of python 

(svm.SVC()), which has different kernels and regularization parameters, e.g., parameter C, which 

is for minimizing the norm of the weights and controls the trade-off between achieving a low error 

on the training data. We have tried different kernels and parameter C values by a grid search to 

find what is the best for each preprocessing method and then the training data is fitted to the SVM 
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model, and for 10-fold we got different accuracies, and the best result belongs to the C = 6.0  and 

kernel: 'rbf' which was 86.25%. Table 1. 

3.2.3.2 Naïve Bayes 

Usually, a model is defined based on some assumptions, and the probability distributions 

are described by a set of parameters. In the training step, the parameters of M are learned. In the 

classification step, a new sequence is assigned to the class with the highest likelihood. The simplest 

generative model is the Naive Bayes sequence classifier [20]. It makes the assumption that, given 

a class, the features in the sequences are independent of each other. The conditional probabilities 

of the features in a class are learned in the training step. Due to its simplicity, Naïve Bayes has 

been widely used from text classification [21] and genomic sequences classification [22]. Here we 

used GaussianNB from sklearn which the likelihood of the features is assumed to be Gaussian. For 

first and second preprocessing methods, we got 80.9% accuracy, and for third and fourth methods, 

we got 78.5% and 56.04% accuracy, respectively, Table 1. 

3.2.3.3 K Nearest Neighbors (KNN) 

In classifying sequences, the major problem is that they are a mixture of characters and 

words. We need numerical representation of those words to feed them into our K-NN algorithm to 

compute distances and make predictions. That is the reason when we used third and fourth 

preprocessing methods, which are tokenizing methods, we got more accuracy. Here we tried a 

different number for K by grid search to find the best K for each preprocessing model and then 

applied KNN. The KNN model is from skit-learn (kNeighborsClassifier()), and the best result 

belongs to the third preprocessing method and K=15, which was 85.21% after 10-folds. Table 1.  
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3.2.3.4 Logistic Regression 

One of the most simple and commonly used Machine Learning algorithms for two-class 

classification is Logistic Regression. It is easy to implement and has different parameters to tune 

C=c, solver=Solver, penalty=Penalty, max_iter=Max_iter). We tried different parameters by grid 

search and found the best parameters for each preprocessing method and then applied the 

LogisticRegression(), which is from skit-learn library of python. The best accuracy belongs to the 

third preprocessing method and 'C': 12, 'max_iter': 10, 'penalty': 'l1', 'solver': 'saga', which gave us 

81.29% accuracy. Table 1. 

3.2.3.5 Decision Tree 

Decision tree is one of the classification techniques that uses branches method to 

illustrate each feasible result of a decision making in each possible outcome. Decision trees are 

great for their simplicity and interpretation. In this study, we used DecisionTreeClassifier() from 

skit-learn library of python and tried different max_depth parameters for our different 

preprocessing methods and find max_depth=12 and the SVM for the third preprocessing method 

as the best model which provided accuracy equal to 85.22%. Table 1. 

Table 1: Accuracy comparison, using different models and preprocessing methods 

 

  Preprocessing    

Models First method Second method Third method Fourth method 

SVM 81.25% 81.24% 86.84% 84.96% 

Naïve Bayes 80.97% 80.98% 78.55% 56.04% 

K Nearest Neighbor 81.12% 81.12% 85.21% 84.74% 

Logistic Regression 81.10% 81.10% 81.29% 81.18% 

Decision Tree 81.23% 81.20% 85.22% 84.69% 
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Based on our results from different machine learning models, the SVM classifier had the 

best accuracy in CR prediction. 

3.2.3.6 CNN 

In this section, we will build our model, which is CNN in the first step. CNN can extract 

features from images and using them in neural networks. So, it has developed image classification 

and computer vision. The properties that made CNN useful in image processing makes them also 

useful for sequence processing. We can imagine CNN as a specialized neural network that can 

detect specific patterns. 

Predicting CR is a binary classification problem. We decided to use deep learning models 

to solve this problem. The protein sequences contain much valuable information. They also contain 

too much noise. In order to get a more accurate representation, we use the CNN algorithm to extract 

protein sequences features. In a layer-by-layer manner, CNN can effectively avoid the interference 

of human factors and extract the advanced features of protein sequences information automatically 

and objectively. The following, we used Keras to build our deep learning model. This stage was 

another challenging part of this study for us because we had to understand each part of Keras 

carefully. 

 One of the main models in Keras is the Sequential model, which we used here. A linear 

stack of layers built the Sequential model, and each layer has its own size that is customizable and 

its activation function. In each step, we can add a layer to our model by using model.add(). The 

first layer is the embedding layer which has three arguments: 

i. ‘input_dim’, which is the size of the vocabulary in the text data. Our data is integer encoded 

to values between 0-400 so, the size of our vocabulary is 401 words. 
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ii. ‘output_dim’ that is the size of the vector space that words are embedded. This layer defines 

for each word the size of the output vectors, and for our model, it is 29. 

iii. ‘input_length’ that we defined the input layer of our model which its length is equal to the 

length of our input sequences.  

The computations of the Embedding layer is multiplying a one-hot vector with 

an embedding matrix in constant time. So, one 2D vector with one embedding for each 

subsequence in the input sequence of subsequences would be the output of the Embedding layer.  

The next layer is Conv1D, which is a one-dimensional convolution layer. We work with 

one-dimensional convolution due to our sequential data. Patterns in the sequence become more 

sophisticated by adding each convolutional layer, and we want to pick on those patterns and detect 

specific features. One dimensional convolution considers the size of the filter kernel and starts to 

take a patch of input features. Then it computes the dot product of the input and weights of the 

filter, Figure 5. One dimensional ConvNet is helpful for specific patterns in sequences; certain 

sequences can be recognized at a different position because it is invariant to translations. 

 

 

Figure 5:1 Dimensional Convolution 
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The Conv1D layer has three arguments,  the number of filters, the kernel size,  and the 

activation function. In our model architecture, Figure 6, we added three Conv1D layers to our 

model, and for each of them using 128 filters, kernel size of 3 and ‘ReLU’ activation function. 

In the next step, due to our unbalanced dataset, we added a batch normalization layer in 

which the activations of the previous layer at each batch will become normalized by that, i.e. 

applies a transformation that maintains the mean activation close to 0 and the activation standard 

deviation close to 1. The benefits of that are faster network training, which gives us much more 

quickly convergence, using higher learning rates, easier initialization of weights, having viable 

activation functions, and as a result, will give better results. We used batch normalization layers 

after the convolution layer and before max-pooling layers. 

After the batch normalization layer, we reduced the dimensionality from 3D to 1D by using 

the GlobalMaxPooling1D layer, and its output is one response for every feature map. To get a 

shape that works with dense layers it is often used at the end of the backend of a convolutional 

neural network. 

In the end, we have 2 Dense layers, which the first one had a ReLU activation function and 

reduce the dimension from 128 to 10. The second fully connected layer reduced the ten dimensions 

to 1 dimension, which means class 1 or 0 for our classification problem. 
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Figure 6:Model Architecture 

 

4 RESULTS 

After running the model for 20 epochs and considering the batch sizes equal to 20, the 

accuracy and loss are two parameters that we considered and evaluated our model. The accuracy 

of the training set was 97%, and for the testing set was 90%, Figure 7. The loss for the training set 

was 0.1, and for test set was 0.35, Figure 7. 
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Figure 7: CNN Training and validation accuracy and loss, epochs:20, batch size:20 

 

In this study, the same model CNN is implemented with different numbers of epochs 

and batch sizes. We have tried epochs = 100 and batch size = 32 and got 90.17% accuracy 

for the testing set, Figure 8.  

 

Figure 8: CNN Training and validation accuracy and loss, epochs:100, batch size:32 

 

Another was epochs = 10 and size = 5, and the test accuracy was 89.53%, Figure 9.  
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Figure 9: CNN Training and validation accuracy and loss, epochs:10, batch size:5 

 

For epochs = 50 and size = 10 test accuracy was 89.69%, Figure 10. 

 

Figure 10: CNN Training and validation accuracy and loss, epochs:50, batch size:10 

 

In the future, we have the plan to implement the LSTM model with attention, tuning 

hyperparameters more carefully, and Use the parameter grid, which we believe will make this 

prediction more accurate. Also, we want to extract sequence information by Position Specific 

Scoring Matrix to see is there any sign to show us how we should bind the sequences in the 

preprocessing part to get better results.  
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5 CONCLUSIONS 

Elucidation of CR among variable antigenic epitopes is crucial for vaccine development. 

Most of the previous studies are based on biology assumptions, and they didn’t consider how 

antigen and antibody sequences bind. Just One study considered the combination of these 

sequences, and they used a decision tree to model this problem. But they have used manual settings 

to predict CR, e.g., cut-off = 0.85.  In this study, we modeled the HVR1 CR in sequence space by 

different machine learning algorithms and tuned hyperparameters for each model and 

preprocessing method. We found SVM and our third preprocessing method as the best, which 

provides 86.25% accuracy. Then we modeled the HVR1 CR in sequence space by CNN for the 

first time and got 90.39% accuracy, which is significant. 
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