
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

5-8-2020

Machine Learning and Deep Learning to Predict Cross-Machine Learning and Deep Learning to Predict Cross-

immunoreactivity of Viral Epitopes immunoreactivity of Viral Epitopes

Zahra Tayebi

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Recommended Citation Recommended Citation
Tayebi, Zahra, "Machine Learning and Deep Learning to Predict Cross-immunoreactivity of Viral Epitopes."
Thesis, Georgia State University, 2020.
https://scholarworks.gsu.edu/cs_theses/96

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/322920517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

MACHINE LEARNING AND DEEP LEARNING TO PREDICT CROSS-

IMMUNOREACTIVITY OF VIRAL EPITOPES

by

ZAHRA TAYEBI

Under the Direction of Pavel Skums, PhD

ABSTRACT

Due to the poor understanding of features defining cross-immunoreactivity among

heterogeneous epitopes, vaccine development against the hepatitis C virus (HCV) is trapped. The

development of vaccines against HCV and human immunodeficiency virus, which are highly

heterogeneous viruses (HIV) is significantly vulnerable due to variant-specific neutralizing

immune responses. The novel vaccine strategies are based on some assumptions such as

immunological specificity which is strongly linked to the epitope primary structure, by increasing

genetic difference between epitopes cross-immunoreactivity (CR) will decline [1]. In this study

first, we checked the hamming distance and statistic evaluation associating HVR1 sequence and

CR based on the sequence of the immunogen and antigen pairs then generated five different

machine learning models. Also, we implemented deep learning models like Convolutional Neural

Network to predict CR. As a result we could provide 90% accuracy by using the CNN model.

INDEX WORDS: HCV, Cross-immunoreactivity, Hamming distance, Machine learning, Deep

learning, CNN

MACHINE LEARNING AND DEEP LEARNING TO PREDICT CROSS-

IMMUNOREACTIVITY OF VIRAL EPITOPES

by

ZAHRA TAYEBI

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2020

Copyright by

Zahra Tayebi

2020

MACHINE LEARNING AND DEEP LEARNING TO PREDICT CROSS-

IMMUNOREACTIVITY OF VIRAL EPITOPES

by

ZAHRA TAYEBI

Committee Chair: Pavel Skums

Committee: Alex Zelikovsky

Robert Harrison

Electronic Version Approved:

Office of Graduate Services

College of Arts and Sciences

Georgia State University

May 2020

iv

DEDICATION

This thesis is dedicated to my husband Vahid and my parents whose unyielding love,

support, and encouragement have excited my soul and inspired me to peruse and complete this

research.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Doctor Pavel Skums, who guided

me throughout this study. I would also like to thank my friends and family who supported me

and offered deep insight into the study.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... V

LIST OF TABLES .. VII

LIST OF FIGURES .. VIII

1 INTRODUCTION ...1

2 RELATED WORKS ..2

3 MATERIALS AND METHODS ...4

3.1 Dataset ...4

3.2 Implementation ...4

3.2.1 Preprocessing ..4

3.2.2 Evaluation based on hamming distance ..8

3.2.3 Classification models ...9

3.2.3.1 Support Vector Machine (SVM)..9

3.2.3.2 Naïve Bayes ... 10

3.2.3.3 K Nearest Neighbors (KNN) ... 10

3.2.3.4 Logistic Regression .. 11

3.2.3.5 Decision Tree ... 11

3.2.3.6 CNN ... 12

4 RESULTS .. 15

5 CONCLUSIONS .. 18

vii

REFERENCES .. 19

LIST OF TABLES

Table 1: Accuracy comparison, using different models and preprocessing methods 11

viii

LIST OF FIGURES

Figure 1:A sample of Preprocessing ..5

Figure 2:Example of Tokenization result ...7

Figure 3:Sequence padding ...7

Figure 4:K-mers, Five-mers ..8

Figure 5:1 Dimensional Convolution ... 13

Figure 6:Model Architecture ... 15

Figure 7: CNN Training and validation accuracy and loss, epochs:20, batch size:20 16

Figure 8: CNN Training and validation accuracy and loss, epochs:100, batch size:32 16

Figure 9: CNN Training and validation accuracy and loss, epochs:10, batch size:5 17

Figure 10: CNN Training and validation accuracy and loss, epochs:50, batch size:10 17

1

1 INTRODUCTION

Hepatitis C virus (HCV) belongs to the Flaviviridae family [2] and is a single-stranded

RNA virus. 3.0% of the world’s population is infected by HCV, and it is a significant cause of

liver disease in the world [3]. HCV infection growths to chronicity in 70%–85% of infected adults

[4]. Per year, it is estimated that 476,000 deaths are because of hepatitis C. As current anti-viral

therapy is not much effective for patients [5], there is a big need for HCV vaccine. Genetically,

HCV is very heterogeneous and is classified into six genotypes and numerous sub-genotypes [6].

To control infectious diseases, vaccines are the most efficacious. But the problem is that the

development of vaccines against highly heterogeneous viruses like HCV and human

immunodeficiency virus (HIV) is significantly vulnerable by variant-specific neutralizing immune

responses. A major obstacle for formulating broadly protective vaccines is that these viruses have

an unlimited capacity to quickly mutate and escape from immune neutralization [7][8]. It is

estimated that 130 million and 33 million individuals are infected in the world with HCV and HIV,

respectively [3][8]. The number of viral variants circulating in the world is immense because each

infected host has a large variety of viral variants. Developing vaccines against this big range of

viral variants is challenging. We used hamming distance which is the number of positions at which

corresponding symbols are different to see the relationship between hamming distance and CR.

Modeling supervised machine learning models like SVM, Naive Bayes, and Logistic Regression

are another way to check the accuracy of CR. We also implemented Decision tree model which is

implemented by another study to compare our results. Although, we got better performance by

using machine learning models, but the main benefit of deep learning techniques is automatic

features extraction and regulation of performance in a continuous fashion. So, those has been

increasingly used to solve many challenging problems in biology in the past few years.

2

2 RELATED WORKS

Classical vaccine development approaches are still producing broadly protective vaccines

against HCV and HIV [7][9]. Recently, to cope with viral antigenic diversity, novel vaccine

strategies developed. These strategies focus on using epitopes with restricted heterogeneity [10],

the center of tree variants, or phylogenetic ancestors [11], generating a concoction of

heterogeneous epitopes [12][13] or mimotopes [14][15], or predicting consensus sequences. But

regard to properties of highly heterogeneous epitopes, these strategies are based on some

assumptions such as immunological specificity is strongly linked to the epitope primary structure,

by increasing genetic difference between epitopes cross-immunoreactivity (CR) will decline, and

that by diversifying evolution resulting from an ‘‘arms race’’, the viral sequence space is shaped

[1]. However, the conditional relevance of these assumptions has not been methodically validated.

A quantitative analysis of the HVR1 CR is modeled, which used synthetic peptides and

mouse immunization, in conjunction with a network analysis of the HVR1, sequence space showed

significant immunological and structural HVR1 convergence. The findings suggest tractability of

the HVR1 immunological specificity and offer a novel framework for HCV vaccine development,

which is applicable to other heterogeneous viruses [16].

There are several studies which have considered machine learning in classification

problems. Based on the type of problem. In our case, based on our data and labels, we need a

supervised learning model to do classification and prediction. We focused mainly on five types of

classification technics, (i) Support Vector Machine (SVM), (ii) Naive Bayes (NB), (iii) Logistic

Regression(LR), (iv) K Nearest Neighbors, and (v) Decision Tree(DT).

Campo DS et al.[16] found a significant functional and structural convergence that shows

in the occupied sequence space the same HVR1 properties evolved frequently and independently.

3

They are tractable and highly amenable to predictive modeling because of their regular occurrence

of the limited number of immunological specificities. So, they generated a decision tree associating

HVR1 sequence and CR, which, based on the sequence of the immunogen and antigen pairs, can

predict CR [16]. They used 10-fold cross-validation and got an average testing accuracy of 92.5%.

But they have done oversampling, and they did not mention anything. Also, different manual

settings are applied in their decision tree model. They have not explained their model clearly and

just reported their results.

4

3 MATERIALS AND METHODS

3.1 Dataset

We are using serum specimens from mice immunized with 103 synthetic peptides

representing different HVR1 variants (referred to as immunogens) to model HVR1 CR. We

will use a set of 261 HVR1 peptides as antigens in an enzyme immunoassay. We used the

HVR1 variants, which all randomly selected from major branches of a phylogenetic tree

(from GenBank). We would have 26,883 unique immunogen antigen pairs in total for training.

Also, we have a matrix of ones (CR happened) and zeros (CR not happened) as our

labels, which means we will have a binary classification problem. The number of columns

of this matrix is equal to the number of antibodies sequences, and the number of rows is

equal to the number of antigens sequences.

3.2 Implementation

Prediction of cross-reactivity using a decision tree has done before[16]. We tried five

different machine learning algorithms, SVM, KNN, LR, NB, and, DT. In addition, we used the

advantages of CNN to predict CR. We used CNN to conduct feature extraction and dimensionality

compression and classification.

3.2.1 Preprocessing

To implement our models, we need to do preprocessing as a first step. In this stage,

we did some preprocessing techniques to prepare our data as an input of machine learning

and deep learning models. There is no confident evidence that can show the structure of

protein sequences when CR happened, and it was a challenging part of the preprocessing

part. So, we assumed some structures and will progress the preprocessing part based on those

5

assumptions. An excellent first step when working with sequences is to split it into words or

in terms of sequences, breaking those to the smaller lengths.

We have tried different preprocessing technics to get the best performance. First, we

considered a pair of the 29-length sequences from antibodies and antigens datasets and

concatenated them, and then we broke those final 58 length sequences to length 2

subsequences. In total, we have 29 subsequences for each concatenated sequence, Figure1.

Figure 1:A sample of Preprocessing

Each subsequence is getting a string of zeros and ones which is based on a dictionary of

premutation of pair characters.

In the second approach, instead of placing each pair of antigen and antibody back to back, we

placed one sequence below another and then broke those final 58 length sequences to length 2

subsequences. Then we used the dictionary to assign zeros and ones strings to them.

In the third approach, after getting 29 subsequences in the second stage of preprocessing,

the whole dataset is split into two parts, 75 percent of data for training, and 25 percent for

testing. Then we used Keras as high-level APIs of neural networks. It supports multiple

backend neural network computation engines and is written in Python. Ease of learning, ease

of model building, and supporting multiple backend engines are the reasons which we used

Keras, and also, it is user-friendly. We used Keras with TensorFlow backend, which is its

primary backend to do its low-level operations.

6

As we need to know if there is any meaning in how the characters are placed side to

side, word embedding is very handy for us. We know that word embedding deals with dense

vectors so, we should vectorize sequences into a list of integers. We used Keras word

embedding method, which is much more accurate than previous methods such as bag of

words. Keras word embedding is the library function that allows the use of the embedding

for the word semantically and syntactically, and we need here the semantic word embedding.

So, we need to tokenize sequences. By using Keras Tokenizer, the numbers do not

represent counts but rather correspond to the word values from the dictionary word index.

Each value of the dictionary that encodes the total dataset with the keys in the dictionary

maps to one of each integer in our vectorized sequences. Those would be our vocabulary

terms. In other words, “fit_on_texts” updates internal vocabulary based on a list of

sequences. Here the vocabulary index is creating based on word frequency. So, if we give it

something like, "it is rainy." It will create a dictionary, word_index["it"] = 1;

word_index["is"] = 2, etc. which is a word index dictionary. So, every subsequence gets a

unique integer value. Index 0 is reserved for padding. Lower integer means more frequent

subsequence. “texts_to_sequences” of Tokenizer transforms each sequence in sequences to a

sequence of integers. So, it takes each subsequence in the sequences and replaces it with its

corresponding integer value from the word_index dictionary.

By using Tokenizer, the length of the resulting vectors is equal to the length of each

sequence, Figure2.

7

Figure 2:Example of Tokenization result

Keras is doing these two parts separately because we almost always fit once and convert to

sequences many times. To convert actual text into sequences and feed them to the network, we

will fit on our training corpus one time and will use that same word_index dictionary at training,

evaluation, testing, or prediction time.

One problem that we have is that in each sequence, we will have multiple repetitions

of subsequences, and we would have different lengths for our integer vectors. To solve this

problem, we have used sequence padding, which simply pads the sequence of integers with

zeros. We may prepend zeros or append them. As it does not matter whether we prepend or

append zeros, we preferred to prepend zeros. We specified the fixed length of our sequences

by adding a maximum length parameter. This parameter cuts sequences that surpass that

number. So, our data is now ready as our model input, Figure3.

Figure 3:Sequence padding

In the fourth approach, k-mers is implemented to get different subsequences of each

concatenated sequence which here is a different combination of k-length subsequences.

8

Choosing k was another challenging part. We decided to consider k=5, which means different

5-length combinations of each sequence. In total, there are 54 subsequences, Figur4. Then

we used Keras Tokenizer to tokenize sequences.

Figure 4:K-mers, Five-mers

In the next step of preprocessing, oversampling is implemented, which is due to imbalanced

data. It will duplicate examples from the minority class. In our dataset, we have class one (cross-

immunoreactivity) and zero (not cross-immunoreactivity), and we had severe skew in the class

distribution. So, we needed to handle this situation to prevent bias in the training dataset. Even

SVM and some of other machine learning algorithms can handle unbalanced data but we wanted

to find the hiest accuracy. Therfore we decided to use the SMOTE (Synthetic Minority Over-

sampling Technique) oversampling method among different methods of oversampling. This

method generates synthetic data based on the feature space similarities between existing minority

instances. In order to create a synthetic instance, it finds the K-nearest neighbors of each minority

instance, randomly selects one of them, and then calculate linear interpolations to produce a new

minority instance in the neighborhood [17]. We decided to check how the accuracy metric will

change.

3.2.2 Evaluation based on hamming distance

Hamming distance is the measure of dissimilarity between two sequences, i.e., the no. of

positions at which the corresponding character is different. So, for each pair of antigen and

9

antibody hamming distance is calculated, and then we checked if the hamming distance is between

ten to twenty-four and made a matrix with a size equal to the label matrix. If the value of both were

the same in the same positions, it means hamming distance has an important role in CR. However,

this method is not applicable and trustable for too much data. So, other methods are implemented.

3.2.3 Classification models

Most of the classifiers, such as decision trees and neural networks, can only take input data

as a vector of features. However, there are no explicit features in sequence data. So, it is

challenging to find features. First, we built our machine learning models and made a comparison.

Then we implemented the deep learning model and compared our results.

3.2.3.1 Support Vector Machine (SVM)

A practical method for sequence classification is SVM [18]. This is because to separate

two classes, SVMs are designed to maximize the margin. It means the trained model generalizes

well on unseen data. Most other computer programs implement a classifier through the

minimization of error occurred in training, which leads to poorer generalization. Because of this,

SVMs have been widely applied to many areas of bioinformatics, including protein function

prediction, protease functional site recognition, transcription initiation site prediction, and gene

expression data classification[19]. In this study, SVM is implemented for all four previous

preprocessing methods. The SVM model, which we used, is from sklearn library of python

(svm.SVC()), which has different kernels and regularization parameters, e.g., parameter C, which

is for minimizing the norm of the weights and controls the trade-off between achieving a low error

on the training data. We have tried different kernels and parameter C values by a grid search to

find what is the best for each preprocessing method and then the training data is fitted to the SVM

10

model, and for 10-fold we got different accuracies, and the best result belongs to the C = 6.0 and

kernel: 'rbf' which was 86.25%. Table 1.

3.2.3.2 Naïve Bayes

Usually, a model is defined based on some assumptions, and the probability distributions

are described by a set of parameters. In the training step, the parameters of M are learned. In the

classification step, a new sequence is assigned to the class with the highest likelihood. The simplest

generative model is the Naive Bayes sequence classifier [20]. It makes the assumption that, given

a class, the features in the sequences are independent of each other. The conditional probabilities

of the features in a class are learned in the training step. Due to its simplicity, Naïve Bayes has

been widely used from text classification [21] and genomic sequences classification [22]. Here we

used GaussianNB from sklearn which the likelihood of the features is assumed to be Gaussian. For

first and second preprocessing methods, we got 80.9% accuracy, and for third and fourth methods,

we got 78.5% and 56.04% accuracy, respectively, Table 1.

3.2.3.3 K Nearest Neighbors (KNN)

In classifying sequences, the major problem is that they are a mixture of characters and

words. We need numerical representation of those words to feed them into our K-NN algorithm to

compute distances and make predictions. That is the reason when we used third and fourth

preprocessing methods, which are tokenizing methods, we got more accuracy. Here we tried a

different number for K by grid search to find the best K for each preprocessing model and then

applied KNN. The KNN model is from skit-learn (kNeighborsClassifier()), and the best result

belongs to the third preprocessing method and K=15, which was 85.21% after 10-folds. Table 1.

11

3.2.3.4 Logistic Regression

One of the most simple and commonly used Machine Learning algorithms for two-class

classification is Logistic Regression. It is easy to implement and has different parameters to tune

C=c, solver=Solver, penalty=Penalty, max_iter=Max_iter). We tried different parameters by grid

search and found the best parameters for each preprocessing method and then applied the

LogisticRegression(), which is from skit-learn library of python. The best accuracy belongs to the

third preprocessing method and 'C': 12, 'max_iter': 10, 'penalty': 'l1', 'solver': 'saga', which gave us

81.29% accuracy. Table 1.

3.2.3.5 Decision Tree

Decision tree is one of the classification techniques that uses branches method to

illustrate each feasible result of a decision making in each possible outcome. Decision trees are

great for their simplicity and interpretation. In this study, we used DecisionTreeClassifier() from

skit-learn library of python and tried different max_depth parameters for our different

preprocessing methods and find max_depth=12 and the SVM for the third preprocessing method

as the best model which provided accuracy equal to 85.22%. Table 1.

Table 1: Accuracy comparison, using different models and preprocessing methods

 Preprocessing

Models First method Second method Third method Fourth method

SVM 81.25% 81.24% 86.84% 84.96%

Naïve Bayes 80.97% 80.98% 78.55% 56.04%

K Nearest Neighbor 81.12% 81.12% 85.21% 84.74%

Logistic Regression 81.10% 81.10% 81.29% 81.18%

Decision Tree 81.23% 81.20% 85.22% 84.69%

12

Based on our results from different machine learning models, the SVM classifier had the

best accuracy in CR prediction.

3.2.3.6 CNN

In this section, we will build our model, which is CNN in the first step. CNN can extract

features from images and using them in neural networks. So, it has developed image classification

and computer vision. The properties that made CNN useful in image processing makes them also

useful for sequence processing. We can imagine CNN as a specialized neural network that can

detect specific patterns.

Predicting CR is a binary classification problem. We decided to use deep learning models

to solve this problem. The protein sequences contain much valuable information. They also contain

too much noise. In order to get a more accurate representation, we use the CNN algorithm to extract

protein sequences features. In a layer-by-layer manner, CNN can effectively avoid the interference

of human factors and extract the advanced features of protein sequences information automatically

and objectively. The following, we used Keras to build our deep learning model. This stage was

another challenging part of this study for us because we had to understand each part of Keras

carefully.

 One of the main models in Keras is the Sequential model, which we used here. A linear

stack of layers built the Sequential model, and each layer has its own size that is customizable and

its activation function. In each step, we can add a layer to our model by using model.add(). The

first layer is the embedding layer which has three arguments:

i. ‘input_dim’, which is the size of the vocabulary in the text data. Our data is integer encoded

to values between 0-400 so, the size of our vocabulary is 401 words.

13

ii. ‘output_dim’ that is the size of the vector space that words are embedded. This layer defines

for each word the size of the output vectors, and for our model, it is 29.

iii. ‘input_length’ that we defined the input layer of our model which its length is equal to the

length of our input sequences.

The computations of the Embedding layer is multiplying a one-hot vector with

an embedding matrix in constant time. So, one 2D vector with one embedding for each

subsequence in the input sequence of subsequences would be the output of the Embedding layer.

The next layer is Conv1D, which is a one-dimensional convolution layer. We work with

one-dimensional convolution due to our sequential data. Patterns in the sequence become more

sophisticated by adding each convolutional layer, and we want to pick on those patterns and detect

specific features. One dimensional convolution considers the size of the filter kernel and starts to

take a patch of input features. Then it computes the dot product of the input and weights of the

filter, Figure 5. One dimensional ConvNet is helpful for specific patterns in sequences; certain

sequences can be recognized at a different position because it is invariant to translations.

Figure 5:1 Dimensional Convolution

14

The Conv1D layer has three arguments, the number of filters, the kernel size, and the

activation function. In our model architecture, Figure 6, we added three Conv1D layers to our

model, and for each of them using 128 filters, kernel size of 3 and ‘ReLU’ activation function.

In the next step, due to our unbalanced dataset, we added a batch normalization layer in

which the activations of the previous layer at each batch will become normalized by that, i.e.

applies a transformation that maintains the mean activation close to 0 and the activation standard

deviation close to 1. The benefits of that are faster network training, which gives us much more

quickly convergence, using higher learning rates, easier initialization of weights, having viable

activation functions, and as a result, will give better results. We used batch normalization layers

after the convolution layer and before max-pooling layers.

After the batch normalization layer, we reduced the dimensionality from 3D to 1D by using

the GlobalMaxPooling1D layer, and its output is one response for every feature map. To get a

shape that works with dense layers it is often used at the end of the backend of a convolutional

neural network.

In the end, we have 2 Dense layers, which the first one had a ReLU activation function and

reduce the dimension from 128 to 10. The second fully connected layer reduced the ten dimensions

to 1 dimension, which means class 1 or 0 for our classification problem.

15

Figure 6:Model Architecture

4 RESULTS

After running the model for 20 epochs and considering the batch sizes equal to 20, the

accuracy and loss are two parameters that we considered and evaluated our model. The accuracy

of the training set was 97%, and for the testing set was 90%, Figure 7. The loss for the training set

was 0.1, and for test set was 0.35, Figure 7.

16

Figure 7: CNN Training and validation accuracy and loss, epochs:20, batch size:20

In this study, the same model CNN is implemented with different numbers of epochs

and batch sizes. We have tried epochs = 100 and batch size = 32 and got 90.17% accuracy

for the testing set, Figure 8.

Figure 8: CNN Training and validation accuracy and loss, epochs:100, batch size:32

Another was epochs = 10 and size = 5, and the test accuracy was 89.53%, Figure 9.

17

Figure 9: CNN Training and validation accuracy and loss, epochs:10, batch size:5

For epochs = 50 and size = 10 test accuracy was 89.69%, Figure 10.

Figure 10: CNN Training and validation accuracy and loss, epochs:50, batch size:10

In the future, we have the plan to implement the LSTM model with attention, tuning

hyperparameters more carefully, and Use the parameter grid, which we believe will make this

prediction more accurate. Also, we want to extract sequence information by Position Specific

Scoring Matrix to see is there any sign to show us how we should bind the sequences in the

preprocessing part to get better results.

18

5 CONCLUSIONS

Elucidation of CR among variable antigenic epitopes is crucial for vaccine development.

Most of the previous studies are based on biology assumptions, and they didn’t consider how

antigen and antibody sequences bind. Just One study considered the combination of these

sequences, and they used a decision tree to model this problem. But they have used manual settings

to predict CR, e.g., cut-off = 0.85. In this study, we modeled the HVR1 CR in sequence space by

different machine learning algorithms and tuned hyperparameters for each model and

preprocessing method. We found SVM and our third preprocessing method as the best, which

provides 86.25% accuracy. Then we modeled the HVR1 CR in sequence space by CNN for the

first time and got 90.39% accuracy, which is significant.

19

REFERENCES

[1] I. Sheridan, O. G. Pybus, E. C. Holmes, and P. Klenerman, “High-resolution phylogenetic

analysis of hepatitis C virus adaptation and its relationship to disease progression.,” J.

Virol., vol. 78, no. 7, pp. 3447–54, Apr. 2004.

[2] G. Kuo et al., “An assay for circulating antibodies to a major etiologic virus of human

non-A, non-B hepatitis.,” Science, vol. 244, no. 4902, pp. 362–4, Apr. 1989.

[3] J. Torresi, D. Johnson, and H. Wedemeyer, “Progress in the development of preventive

and therapeutic vaccines for hepatitis C virus,” J. Hepatol., vol. 54, no. 6, pp. 1273–1285,

Jun. 2011.

[4] A. Alberti, L. Chemello, and L. Benvegnù, “Natural history of hepatitis C,” J. Hepatol.,

vol. 31, pp. 17–24, Jan. 1999.

[5] D. G. Bowen and C. M. Walker, “Adaptive immune responses in acute and chronic

hepatitis C virus infection,” Nat. 2005 4367053, vol. 436, no. 7053, pp. 946–952, Aug.

2005.

[6] P. Simmonds, “Genetic diversity and evolution of hepatitis C virus - 15 years on,” J. Gen.

Virol., vol. 85, no. 11, pp. 3173–3188, Nov. 2004.

[7] M. Houghton, “Prospects for prophylactic and therapeutic vaccines against the hepatitis C

viruses,” Immunol. Rev., vol. 239, no. 1, pp. 99–108, Jan. 2011.

[8] S. P. McBurney and T. M. Ross, “Viral sequence diversity: challenges for AIDS vaccine

designs,” Expert Rev. Vaccines, vol. 7, no. 9, pp. 1405–1417, Nov. 2008.

[9] S. Rerks-Ngarm et al., “Vaccination with ALVAC and AIDSVAX to Prevent HIV-1

Infection in Thailand,” N. Engl. J. Med., vol. 361, no. 23, pp. 2209–2220, Dec. 2009.

20

[10] O. O. Yang, “Candidate Vaccine Sequences to Represent Intra- and Inter-Clade HIV-1

Variation,” PLoS One, vol. 4, no. 10, p. e7388, Oct. 2009.

[11] T. Hamano et al., “Determination of HIV Type 1 CRF01_AE gag p17 and env-V3

Consensus Sequences for HIV/AIDS Vaccine Design,” AIDS Res. Hum. Retroviruses, vol.

20, no. 3, pp. 337–340, Mar. 2004.

[12] K. H. Kang et al., “Synthetic Antigens Representing the Antigenic Variation of Human

Hepatitis C Virus,” Viral Immunol., vol. 23, no. 5, pp. 497–508, Oct. 2010.

[13] K. Yusim et al., “Genotype 1 and global hepatitis C T-cell vaccines designed to optimize

coverage of genetic diversity,” J. Gen. Virol., vol. 91, no. 5, pp. 1194–1206, May 2010.

[14] L. M. R. El-Attar, C. D. Partidos, and C. R. Howard, “A peptide mimotope of hepatitis C

virus E2 protein is immunogenic in mice and block human anti-HCV sera,” J. Med. Virol.,

vol. 82, no. 10, pp. 1655–1665, Sep. 2010.

[15] R. Roccasecca et al., “Mimotopes of the hyper variable region 1 of the hepatitis C virus

induce cross-reactive antibodies directed against discontinuous epitopes,” Mol. Immunol.,

vol. 38, no. 6, pp. 485–492, Dec. 2001.

[16] D. S. Campo et al., “Hepatitis C Virus Antigenic Convergence,” Sci. Rep., vol. 2, no. 1, p.

267, Dec. 2012.

[17] “Fighting Imbalanced Data Set with code Examples - Towards Data Science.” [Online].

Available: https://towardsdatascience.com/fighting-imbalance-data-set-with-code-

examples-f2a3880700a6. [Accessed: 09-Mar-2020].

[18] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM SIGKDD

Explor. Newsl., vol. 12, no. 1, p. 40, 2010.

21

[19] Z. R. Yang, “Biological applications of support vector machines.,” Brief. Bioinform., vol.

5, no. 4, pp. 328–338, 2004.

[20] D. D. Lewis, “Naive(Bayes)at forty: The independence assumption in information

retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 1998, vol. 1398, pp. 4–15.

[21] S. H. Myaeng, K. S. Han, and H. C. Rim, “Some effective techniques for naive bayes text

classification,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 11, pp. 1457–1466, 2006.

[22] B. Y. M. Cheng, J. G. Carbonell, and J. Klein-Seetharaman, “Protein classification based

on text document classification techniques,” Proteins Struct. Funct. Genet., vol. 58, no. 4,

pp. 955–970, Mar. 2005.

	Machine Learning and Deep Learning to Predict Cross-immunoreactivity of Viral Epitopes
	Recommended Citation

	MANUSCRIPT TITLE

