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Abstract 

This dissertation presents the initial findings of the SYMBIOME project; which attempts to 

combine the objective and subjective aspects of musculoskeletal pain to develop a prognostic 

clinical phenotype.  Chapter 2 presents a moderator analysis of functional outcomes (pain 

interference and pain severity).  Psychosocial moderators can affect the relationship between 

biomarkers and pain.  For pain severity, TNF-α, TGF-β1, and CRP were moderated by 

employment status, pre-existing psychopathology, and sex.  For pain interference, IL-1β, 

cortisol, TGF-β1, CRP, and IL-6 were moderated by pre-existing pain, peri-traumatic fear, 

region of injury, and peri-traumatic stress.  Chapter 3 presents a latent growth curve analysis 

in determining the recovery trajectories of acute non-catastrophic musculoskeletal pain in the 

context of pain interference and severity over the course of 12 months.  For pain interference, 

3 distinct trajectories emerged: rapid recovery, delayed recovery, or minimal/no recovery.  

Pain severity favored a 2-trajectory model with rapid recovery or minimal/no recovery.  

Classification of recovery group depended on both baseline symptoms and relative rate of 

symptom decline.  Recovery outcomes appeared to stabilize after a period of 3 months.  

Chapter 4 presents latent class analysis and growth mixture modeling as applied to a panel of 

8 biomarkers (TNF-α, IL-1β, IL-6, CRP, IL-10, cortisol, BDNF, and TGF-β1).  These 

markers may have the potential to discriminate between functional recovery outcomes.  

Using these markers, 3 meaningful groups or classes were identified.  These groups could be 

adequately defined by using only 3 of the 8 markers (IL-1β, BDNF, and TGF-β1) where 

classes were organized by low concentration of markers in serum, average concentration, or 

high concentration of BDNF and TGF-β1.  Those with high concentration of BDNF/TGF-β1 

were more likely to score higher on self-report measures of pain and disability in their 6-

month outcomes. These results support the claim that physiological factors are tied to pain 

through more than simple bivariate relationships.  The context of the musculoskeletal trauma, 

both personal and social, can affect the behavior of biological systems. 

Keywords 

Musculoskeletal, trauma, pain, chronic, acute, recovery, trajectory, biomarker, prognosis   
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Summary for Lay Audience 

Pain is a complex process that occurs in our body.  It involves psychology, genetics, and a 

combination of the immune, nervous and endocrine systems.  Short-term pain is important 

because it helps us survive.  However, when something goes wrong in one of those systems, 

it can become a long-term problem.  As pain goes on, it begins to affect the quality of life.  

For the 20% of Canadians who struggle with chronic pain, everything begins to suffer 

including health, finances, relationships, and work.  Because pain is such a personal 

experience, it is very difficult to understand and treat.   

The SYMBIOME project stands for the SYstematic Merging of BIOlogy, Mental Health, 

and Environment.  The purpose of this project is to understand how pain develops over time.  

After a traumatic accident or injury, people are invited into this year-long study.  By using 

questionnaires and collecting tissue samples, we have monitored their recovery.  After one 

year, some people fully recover while others develop chronic pain.  When we compare the 

mental and physical changes that occur between these people, it helps us understand how 

pain becomes chronic.  Your work status, education level, mental health, and physical 

injuries all contribute to how your body deals with trauma.  These factors can influence your 

healing responses in a way that either increases or decreases your levels of inflammation and 

stress in the short-term.  In the long-term, it may also affect your ability to recover as people 

tend to recover in 1 of 3 ways.  Some people recover quickly and are functioning normally by 

6 months.  Some are delayed in their recovery but still reach normal function.  And some 

people still struggle with pain and disability even after 12 months.  Analyzing various groups 

of blood proteins may also shed some light on who tends to recover and who does not.  With 

this information, it will be possible to develop new treatments that can help people who 

suffer from chronic pain.  It may also help us treat pain in unique ways before it has a chance 

to become a chronic problem.    
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Preface 

Dear Reader,  

 

This thesis is being submitted during a turning point in modern history as we are currently in 

the midst of an unprecedented health crisis.  Due to the gravity of this event, I do not believe 

it to be out of place to say a few words here for the sake of posterity.  

 

This dissertation was completed shortly after the World Health Organization declared the 

novel coronavirus (COVID-19) a pandemic on Mar 11, 2020.  Many countries around the 

world are struggling to survive as hospitals are being overrun.  The infection continues to 

spread at an alarming rate and resources are quickly being depleted.  Governments are calling 

for former healthcare workers to come out of retirement and companies are being asked to 

repurpose their production facilities to meet the increasing demand for medical supplies.  

Thousands of people have already succumbed to this virus and this number increases by the 

day.  Non-essential businesses have been forced to shut down and a nationwide protocol of 

self-isolation and social distancing has been put into effect.   

 

We are still in the early days of this pandemic, but I have already seen some of the extremes 

of human nature.  People have tried to hoard supplies and some refuse to isolate or 

quarantine themselves.  Some are in complete denial of this entire situation and insist on 

indulging in their regular social pleasures despite the risk of infecting others.  This has 

become a problem among so many that the government has had no choice but to make 

isolation a legal obligation.  But then there is the other extreme.  I have seen acts of heroic 

courage as healthcare workers voluntarily put themselves in harm’s way for the sake of those 

who suffer and for those who are still unaffected.  Thousands of retirees have answered their 

government’s call to enter the fray and support their colleagues.  Teachers and parents have 

demonstrated incredible compassion and resourcefulness as they continue to find ways to 

educate and provide for the younger generations.  Countless volunteers have arisen to support 

frontline workers, employees work tirelessly to keep essential services running, and as 

scientists are toiling to develop a vaccine, they are volunteering themselves as test subjects to 

ensure its safety.    



 

xiv 

 

 

Although the world is trying to remain optimistic, it is uncertain how this will all end.  Our 

lives have been disrupted in ways we could never have imagined, and this test has only 

begun.  But even as I write this, I am reminded of a message written by a child on the 

sidewalk: “Stronger together”.  We may not have seen the worst of this crisis, but our hope is 

greater still.  People have united under these dire circumstances to work together, suffer 

together, cry together, and fight together.  The world, it seems, has decided to teach us all a 

very important lesson.  It is my sincere hope that the world in which you are reading this is 

better because we have learned it.   

 

With hope, 

 

Joshua Lee 

 

“I remain confident of this: I will see the goodness of the Lord in the land of the living.”  

–Psalm 27:13 
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Chapter 1  

1 Introduction 

1.1 Preamble 

The focus of this dissertation is to explore the biopsychosocial mechanisms which drive 

the transition from acute to chronic pain in non-catastrophic musculoskeletal trauma.  

The exploratory studies presented herein may help to characterize the complexity of pain 

to inform future research targeted towards prognostication and early intervention.  The 

following introduction provides background information that will be necessary to 

understand relevant details behind each of the subsequent chapters.  It will outline the 

burden of chronic pain and pain management, briefly describe the psychological and 

physiological processes of pain, and identify relevant dimensions for testing.    

 

1.2 The Burden of Chronic Pain  

Although pain is an important mechanism for survival, it is the persistence of pain that 

has a universal impact on our quality of life.  Pain is by no means a stand-alone issue as it 

often carries financial, clinical and social consequences1.  The effects of chronic pain are 

far-reaching as those affected also tend to struggle with depression, isolation, anxiety and 

anger; which, in turn, have detrimental effects on personal relationships and vocational 

roles1, 2.  Taking into account both direct and indirect costs, the economic burden of pain 

has reached a staggering $125 billion per year in the US alone2.  Currently, chronic pain 

affects 20% of all Canadian adults with an increasing prevalence in our aging population 

that exceeds even such well-known conditions as diabetes mellitus and asthma2.    

Medical interventions such as opioid drugs have seen a 347% increase in therapeutic use 

in the USA3.  This, however, is only a temporary measure as studies have shown that 

opioids seem to be ineffective as a long-term solution to chronic, non-cancer pain; 

especially with the risk of complications such as tolerance, addiction and abuse4, 5.  

Furthermore, studies have shown that patients taking opioids were also susceptible to 

more severe pain resulting in a greater reliance on health care compared to patients who 
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were not taking opioids6.  This myriad of complications is due, in part, to the complexity 

of chronic pain. Existing at the nexus between biology, mental health, and environment, 

pain has proven to be resistant to traditional medical and pharmaceutical treatments that 

seek to eliminate symptoms 7. In the past, pain was regarded as the fifth vital sign, which 

created an increased emphasis on treating pain intensity 8. This precipitated a program of 

management whereby opioid treatments were disproportionately prescribed in order to 

adequately address symptoms 9. Treating patients based on pain intensity has not 

increased the quality of pain management 10, but has instead contributed to a crisis of 

opioid-related overdose and death 11. Although much of the research in the fallout of this 

crisis has been directed towards reducing opioid use 12, research has begun to make the 

shift towards a more circumspect approach to pain.     

 

1.3 Barriers to management   

Despite the ongoing research in the field, the nature of pain is still fairly misunderstood 

and a number of professional organizations have agreed that the best course of action is 

to approach this issue from a multidisciplinary perspective 2, 13, 14.  Studies performed by 

Choinière et al13 have provided a fairly recent picture of the issues surrounding pain 

management for people attempting to access multidisciplinary pain treatment facilities 

across Canada.  Their findings have indicated that some clients were placed on wait-lists 

for months, even years before they were finally admitted to one of these facilities.  

Additionally, for many of these clients, the natures of their specific clinical needs were 

unclear and therefore, not adequately defined 2, 13, 14.  Since pain is both a sensory and 

emotional experience, it is highly variable between individuals15; which is perhaps what 

contributes to a lack of concrete, generalizable strategies for pain management and 

treatment.  It may also explain why painkillers only function as an effective “magic 

bullet” in a select few populations of people.    

 

Within the rehabilitation community, there is a wealth of literature that documents the 

psychological experiences of people who suffer from chronic pain.  Although the validity 

of these studies is not in question, pain is a subjective experience and has thus remained a 
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fairly controversial condition 16.  This negativity is quickly transmitted to the public 

where it develops into stigmatization and stereotyping of individuals who suffer from 

chronic pain 17.  This has proven to be a difficult barrier to overcome as the concrete 

presence of pain is contested by co-workers, communities, friends, and even family 18.  

As a result of this pervasive societal doubt, people with chronic pain experience a 

substantial decrease in both self-efficacy and willingness to seek treatment 18, 19.  From a 

biological standpoint, pain has become a well-established subject through intense and in-

depth study.  Current theories in Systems Biology suggest that pain is the result of a well-

orchestrated balance between the nervous, endocrine, and immune systems.  However, 

when one or more of these systems fails to resolve itself, the pain response (which 

normally promotes survival) falls into discord and becomes a chronic problem 20.   

  

1.4 A Biopsychosocial Approach 

With pain management becoming such a complex problem, researchers have begun 

investigating mechanisms that focus on the activity of entire systems, rather than specific 

areas.  Although the development of drug targets still continues, there have been an 

increasing number of studies devoted to the understanding of structural and functional 

changes in the brain.  This is of particular importance as pain involves a number of 

cognitive processes which are intimately linked with the perception of noxious stimuli.  

Over the years, a number of studies which have employed non-invasive brain imaging 

techniques have discovered a series of changes which occur in people who suffer from 

pain.  While global functioning of the brain is still being defined, the involvement of 

higher neurological processes in chronic pain is undeniable.     

 

One of the earliest accounts of pain control residing in the brain comes from surgical 

reports of soldiers on the battlefield.  In 1946, Beecher published a number of intriguing 

findings from his experiences with soldiers that have suffered major wounds including 

compound fractures of lower limbs and penetrating wounds to the chest and thorax 21.  It 

was found that most of the severely wounded, but mentally alert soldiers, declined the 

offer of pain relief therapy upon admission to an army hospital.  This was described as a 
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“puzzlingly low incidence of pain”.  Beecher goes onto describe how as with athletes 

who do not feel pain till after the competition, it is not uncommon for wounds received 

during fighting and anger to go unnoticed.  Alternatively, it was suggested that being 

severely wounded represents an escape from all the horrors of the battlefield; which 

resulted not in the absence of pain, but the dismissal of its presence.  In other words, 

strong emotional responses have the capacity to modulate pain.  Additionally, Beecher 

criticized the automatic administration of morphine under the assumption of pain, rather 

than actual need.  Soldiers experiencing excitement or hyperactivity upon admission were 

calmed significantly upon receiving a sedative, rather than an analgesic.  It was also 

noted that small doses of sedative given in combination with small doses of analgesic 

provide both the mental depression and pain depression that the soldier actually needs.  

This treatment was much more effective than large doses of either treatment given 

individually.   

 

Building upon years of foundational research in pain perception and emotional 

regulation, Melzack proposed the Neuromatrix theory 22; that consolidated the pain 

experience into three different but integrated systems of mental functioning: cognitive-

evaluative (attention or anticipation of a noxious stimulus), sensory-discriminative 

(intensity and location of a particular nociceptive input), and motivational-affective 

(emotional responses such as anxiety or fear).  This revolutionary model depicted the 

formation of a “pain experience” that is specific to each individual and is dependent upon 

both innate and experiential information. Melzack was one of the first to elaborate on the 

concept that pain was more than a mere reflexive response to certain sensory inputs 

alone.     

 

1.5 Stress-system reactivity  

The Hypothalamic-pituitary-adrenal (HPA) axis, connects cognitive impulses in the brain 

with endocrine glands and hormonal control mechanisms in the body 23.  This 

neuroendocrine stress pathway represents an emotional nerve center for chronic pain, 

anxiety and depression 24.  Normally during stress, HPA axis activity involves the 
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hypothalamic release of corticotropin releasing hormone (CRH), which acts on nearby 

structures such as the locus coeruleus (LC - a brainstem nucleus and primary site for 

noradrenaline synthesis) the amygdala, and the pituitary 25.  Once it stimulates the 

pituitary, adenocorticotropic hormone (ACTH) is released into the bloodstream 24, 25.  

ACTH causes the production and release of glucocorticoids (GCs) from the adrenal 

cortex to modulate immune responses, increase blood glucose, elevate blood pressure and 

activate the CNS 25, 26.  GCs stimulate the amygdala to release CRH, which is linked to 

elevated anxiety and fear 27.  Cortisol, a steroid hormone, is one of the primary GC 

products of the human HPA axis activity and is increased during both chronic and 

experimentally-induced pain 28.  Early-life stress also has long-lasting consequences for 

HPA axis activity.  A recent review suggests that early-life adversity is linked to a long-

term hypersensitivity to stress, elevated GCs and increased depression and anxiety-like 

behaviors 29.  Consistently high levels of GCs are potentially damaging to the 

hippocampus as they reduce its neurological structure 30 and prevent plasticity 31.  One of 

the primary ways this is thought to occur is through a reduction in brain-derived 

neurotropic factor (BDNF).  This key protein, which is related to nerve growth factor 

(NGF), is active in the cortex and hippocampus and is vital for neuronal plasticity and 

long-term memory formation 32.  Reductions in hippocampal BDNF have been implicated 

in experimental pain 33, stress 34, and major mood disorders 35.  These changes suggest 

that early-life trauma, chronic pain and stress may prevent appropriate physiological 

responses to stressors later in life.  

 

 

1.6 Immunity and pain  

There is a significant link between the nervous system and the immune system especially 

in response to tissue damage and repair. The body's innate immune cells respond to injury 

with an inflammatory response that activates pain pathways.  Infiltration of inflammatory 

cells, as well as activation of resident immune cells in response to nervous system 

damage, leads to subsequent production and secretion of various inflammatory mediators.  

Soluble mediators (particularly cytokines and chemokines) released by immune and glial 
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cells act on nociceptors (nerve fibers responsible for transmitting noxious stimuli), 

increasing synaptic strength, modulating sensitivity, and sensitizing primary afferents 36. 

 

Once released, cytokines drive inflammation and are capable of influencing cell 

differentiation, gene transcription, and even cell survival 37, 38.  They can bind to specific 

receptors with such potency that only a handful of receptors need to be activated in order 

to initiate a massive signaling event 39.  Some of the most well-studied examples of pro-

inflammatory cytokines are Tumor Necrosis Factor alpha (TNF-α), Interleukin-1 beta 

(IL-1β) and Interleukin-6 (IL-6).  These cytokines function synergistically and are 

substantially elevated peripherally and centrally during injury, inflammation, and chronic 

pain 40.  They are extensively involved in the development of hyperalgesia 

(hypersensitivity to pain) and allodynia 41-43, generation of noxious nerve transmissions 

44-46, prolonging pain sensitivity 40, 47, and neural degeneration and remodeling 48, 49.   

 

Anti-inflammatory cytokines such as Interleukin-10 (IL-10) are crucial regulators of pain 

development.  IL-10 50 is a potent inhibitor of TNF-α, IL-1β, and IL-6 and it has been 

recognized for its ability to counter the sensitizing actions of the pro-inflammatory 

cytokines 51, 52.  These cytokine responses have been extensively studied in multiple 

animal models of injury, stress and chronic illness, and many of these observations have 

been verified in humans (reviewed in 53, 54).   

 

1.7 Chapter overview  

This dissertation represents the initial findings of an ambitious exploratory study to 

investigate the mechanisms that contribute to the transition from acute to chronic pain.  

Since pain is very much an intersectional phenomenon between psyche and soma, the 

overarching theme throughout this body of work is an emphasis on deep clinical 

phenotyping.  We have chosen to operate under the assumption that the body in pain is a 

complex system that demonstrates emergent properties that cannot be explained by single 

subsystem functions alone.  To that end, the core of this dissertation will be presented in 

3 distinct parts.   
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The aim of chapter 2 is to identify relationships between blood-based biomarkers and 

psychosocial dimensions of functioning.  This provides a more inclusive look at 

physiological stress and immunity in an effort to go beyond simple bivariate relationships 

between biomarkers and pain.  In this chapter, we outline an exploratory moderator 

analysis and hierarchical regression to find meaningful associations between cytokines 

and person-level variables such as sex, stress, fear, socioeconomic status, pre-existing 

comorbidity, and location of injury.   

 

The aim of chapter 3 is to provide a longitudinal model of pain progression and recovery 

over the course of 12 months.  Using latent growth curve modeling, statistically 

meaningful trajectories of recovery are identified in the context of both pain interference 

(a.k.a. functional disability) and pain severity (a.k.a. pain intensity).  With pain 

interference as the primary functional outcome, people fall into 1 of 3 groups (or 

“recovery classes”) where they demonstrate either a rapid recovery, delayed recovery, or 

minimal/no recovery by 12 months.  With pain severity, people tended to fall into 1 of 2 

groups where people either had a rapid recovery or minimal/no recovery.  This work falls 

in line with previous studies of recovery trajectory modeling.   

 

The aim of chapter 4 is to explore the potential of biomarkers to be used as prognostic 

tools for functional recovery outcomes.  We introduce a panel of 8 different biomarkers, 

each with a previously identified association with pain.  Using a similar analysis to 

chapter 3, latent class analysis and growth mixture modeling are used to identify 3 

statistically meaningful classes based on biomarker concentration (low, average, and high 

concentration).  For the sake of parsimony, this model is adequately represented by 3 of 

the 8 markers including IL-1β, BDNF, and TGF-β1.  Although recovered groups do not 

tend to differ in their biomarker concentrations, those with persisting pain and disability 

may have higher levels of BDNF and TGF-β1 present in serum.   

 

The objective of the overall SYMBIOME project is to use rigorously collected data and 

advanced longitudinal modeling techniques to identify and explore biopsychosocial 
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pathways of biological and cognitive functioning that can explain the transition from 

acute to chronic musculoskeletal pain.  Also, by connecting the more personal indices of 

pain with biological mechanisms, we may gain a deeper understanding of this truly 

unique experience while identifying novel therapeutic targets.  It is our hope that in doing 

so, we will provide biological evidence for the subjective, lived experience. 
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Chapter 2  

2 An exploration of blood marker-x-environment 
interaction effects on pain severity and interference 
scores in people with acute musculoskeletal trauma 

2.1 Introduction 

Pain is a complex experience that goes beyond simple sensory information.  The 

neuromatrix model suggests that pain is not just a physical response.  Through a 

combination of sensory, affective, and cognitive inputs, pain is the experience that is the 

end-result of a determination of actual or potential threat or harm 1.  The theory that pain 

goes beyond simple physical dimensions is also illustrated in the diathesis-stress model 2; 

which suggests that certain psychosocial or physiological elements may render an 

individual more vulnerable to pain in the event of trauma.  Due to the multifaceted nature 

of this experience, it is notoriously difficult to diagnose and treat 3.  Within the 

rehabilitation community, there is a wealth of literature that documents the psychological 

experiences of pain.  Although the validity of these studies is not in question, pain in 

humans is measured largely through subjective self-report and has thus remained a highly 

debated condition 4. 

 

From a biological standpoint, current theories in systems biology suggest that pain is the 

result of a well-orchestrated balance between the nervous, endocrine, and immune 

systems.  The physiological stress response represents a powerful link between cognitive 

perception and biological action.  A crucial regulator of this response is the 

Hypothalamic-pituitary-adrenal (HPA) axis, which connects cognitive impulses in the 

brain with key endocrine glands in the body 5.  This pathway incorporates such finely-

tuned control mechanisms that even brief, experimentally-induced stress is sufficient to 

alter pain sensation and cause allodynia in healthy people 6.  Cortisol, a steroid hormone, 

is the primary product of HPA axis activity and people with either chronic or 

experimentally-induced pain show changes in cortisol production 7.  Another integral 

component of the pain experience is the involvement of the inflammatory response.  
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Inflammatory proteins such as c-reactive protein (CRP) have been implicated in 

modulating pain sensitivity and have been linked to other major health conditions such as 

diabetes, asthma and cardiovascular disease 8.  Other examples of inflammatory proteins 

in pain are pro-inflammatory cytokines Tumor Necrosis Factor alpha (TNF-α), 

Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6).  These cytokines function 

synergistically and are substantially elevated during injury, inflammation, and chronic 

pain 9.  They appear to be involved in the development of hyperalgesia and allodynia 10-

12, generation of noxious nerve transmissions 10, 13, 14, prolonging pain sensitivity 9, 15, and 

neural degeneration and remodeling 16, 17.  Anti-inflammatory cytokines Interleukin-10 

(IL-10) and Transforming Growth Factor-beta (TGF-β1) also appear to play critical roles 

in pain development.  Both IL-10 18 and TGF-β1 19 have been recognized for their ability 

to counter the pain-inducing actions of pro-inflammatory cytokines 20, 21.  The pain and 

sensitivity brought about by these proteins is relayed from the peripheral afferents to the 

spinal dorsal horn by factors such as brain-derived neurotrophic factor (BDNF); which is 

an essential neuropeptide involved in nerve growth, plasticity and sensitization 22.   

 

As mentioned previously, the existence of pain does not rely solely on biological 

mechanisms.  There are many examples of pain that exist in the absence of any obvious 

tissue damage or pathology 23.  There is enough research now to suggest that many 

chronic pain syndromes stem from a phenomenon known as sensitization; which involves 

dysregulation of the neural activity involved in pain perception 23, 24.  Many of the neural 

pathways of pain are shared by mood, depression, anxiety and fear, which are influenced 

by a variety of psychosocial variables 24.  Studies have demonstrated that socioeconomic 

status (SES) can affect levels of pain perception, where those with lower SES tend to 

report higher levels of pain intensity25.  Even with the same level of pain intensity, those 

with lower SES may report anywhere from 2 to 3 times more perceived disability 

compared to those in a higher socioeconomic bracket 26.  Combining both the internal 

physiology and the external environment, pain is truly a complex phenomenon that 

requires balance between each system involved.  When one or more of these systems fails 

to resolve itself, the whole response falls into discord and can become a chronic problem 

27, 28.  What triggers this dysregulation, however, is still a topic of debate as the 
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transitional mechanisms between acute to chronic pain involves multiple domains that 

have not been definitively identified in humans 29, 30.  Current research emphasizes an 

interdependence of biopsychosocial domains such that pain may result from a 

combination of underlying biological vulnerability and/or induction via psychological or 

social triggers 31.  Prior work in the field of biomarkers indicates, for example, that 

processing of nociceptive information may occur through different receptors or pathways 

in males and females such that the magnitude of association between certain markers and 

pain could be moderated by sex 32, 33.  

Therefore, the purpose of this paper was to add to this pool of knowledge by exploring 

potential interaction effects between relevant psychosocial variables and physiological 

mechanisms of pain (via biomarkers of stress, inflammation, and pain sensitivity) and 

perceived levels of pain within the acute stages of post-traumatic musculoskeletal injury.    

 

2.2 Methods 

2.2.1 Participant recruitment 

Data for this study were drawn from the SYMBIOME (Systematic Merging of Biology, 

Mental Health and Environment) longitudinal cohort and data-banking study 

(clinicaltrials.gov ID no. NCT02711085).  Appendix C outlines the overall data 

collection process for the study.  Eligible participants were those presenting at an Urgent 

Care Centre in Ontario, Canada for reasons of non-catastrophic MSK trauma. Non-

catastrophic referred to those with injuries that did not require surgery or hospitalization. 

Eligible participants presented to the centre within 3 weeks of the injury, were at least 18 

years old, and could speak and understand conversational English.  Study participants 

were admitted with injuries from a motor vehicle collision, fall/slip injuries, impact from 

another person or object, awkward lift/twist, or other context-specific causes that led to 

non-catastrophic (no surgery or inpatient admission required) injuries of the MSK 

system.  Participants were free to indicate multiple areas of involvement.  Participants 

were also asked to report whether they were taking any medications during the time of 

intake into the study.  Excluded from this analysis were those with significant systemic or 
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neuromuscular comorbidity that would have been expected to affect physiological 

response to trauma or recovery, including active cancer, rheumatic conditions or other 

systemic inflammatory processes, significant organ disease, those with 

immunocompromised conditions (e.g. HIV/AIDS) or taking immunomodulatory drugs 

(e.g. high-dose steroids or disease-modifying anti-rheumatic drugs). Pregnancy was not 

an exclusion criterion, but no participant was pregnant during the study.   

 

After being medically cleared and discharged, interested participants gave permission for 

a member of the research team to describe the study, answer questions, and enroll prior to 

leaving the hospital. Participants were provided a package of self-report questionnaires 

and serum samples were collected on-site from the median cubital vein by a phlebotomy-

trained member of the research team.  The questionnaires included tools to measure pain 

severity (Brief Pain Inventory - BPI, severity subscale 34),  pain-related functional 

interference (BPI, interference subscale 35), and several questions pertaining to patient 

metadata (age, sex, work status, educational attainment, medicolegal status, household 

income and family status), and pre-existing health conditions (medications, 

comorbidities) variables.    The BPI is one of the most widely used pain scales globally 36 

and has adequate evidence of validity across many clinical populations including 

musculoskeletal pain 37.  Psychological and social elements have also been identified as 

influential outcomes in musculoskeletal trauma 38. Key mental health dimensions 

including depressive symptoms and post-traumatic distress were captured in the 

SYMBIOME cohort.  All participants provided informed, written consent prior to 

participation, and the study was approved by the local institutional review board prior to 

initiation. 

 

2.2.2 Capture and analysis of serum biomarkers  

The biomarkers chosen for this study are those associated with stress, pain, sensitivity, 

and inflammation (Table 2). Eight markers were chosen for this analysis: BDNF, TGF-

β1, CRP, TNF-α, IL-1β, IL-6, IL-10 and cortisol. Analyte concentration in plasma (ng/g) 

was assayed using multiplexed biomarker immunoassay kits according to manufacturer 
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protocol for BDNF (Human Premixed Multi-Analyte Kit, R&D Systems Inc. cat. no. 

LXSAHM), TGF-β1 (TGFΒ11 Single Plex Magnetic Bead Kit, EMD Millipore cat. no. 

TGFΒ1MAG-64K-01), IL-1β, IL-6, IL-10 and TNF-α (Human High Sensitivity T Cell 

Magnetic Bead Panel Multiplex Kit, EMD Millipore cat. no. HSTCMAG-28SK).  A 

BioPlexTM 200 readout System was used (Bio-Rad Laboratories, Hercules, CA) with 

Luminex® xMAPTM fluorescent bead technology (Luminex Corp., Austin, TX). Levels 

are automatically calculated from standard curves using Bio-Plex Manager software 

(v.4.1.1, Bio-Rad). Cortisol (Cortisol Enzyme Immunoassay Kit, Arbor Assays cat. no. 

K003-H1/H5), and CRP (C-Reactive Protein (human) ELISA Kit, Cayman Chemical 

Company cat. no. 10011236) were assayed following manufacturer protocol for Enzyme-

Linked Immunosorbant assay (ELISA). All assays were performed in duplicate with the 

value for analysis being the mean concentration of the two. For the first 50 samples, 

assays were also conducted on two separate aliquots from each participant to monitor 

consistency in technique.  Biomarker data were first explored for fidelity, removing any 

concentrations that, after duplicate runs, were not detectable or out of range of the kit. As 

correlations are sensitive to extreme values, we also identified any biomarker 

concentration that was >3SD above or below the sample mean and removed it to avoid 

spurious findings. 

 

2.3 Analysis 

Normality (skew and kurtosis) of biomarker data was statistically tested through 

Kolmogrov-Smirnov tests, and data were centered about the mean and square-root 

transformed where necessary. Descriptive statistics for the patient metadata were 

explored descriptively (mean, median, range).  

 

For the first pass analysis a correlation matrix was created to estimate the simple bivariate 

associations between concentration of each of the 8 blood markers and scores on the two 

primary outcomes (pain and interference subscales of the BPI). As an exploratory 

analysis, the sample was then split into two sub-categories based on the level of 

participant metadata being explored (e.g. male/female, young/old age, high/low SES). 
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Where continuous data were used as a grouping variable (e.g. household income, body 

mass index, age), either a median split was used, or in the case of household income, the 

median Ontario income level as reported by StatsCan for 2016 of $80,000/year was used. 

The operationalization for each level of independent variable along with their definitions 

are outlined in Table 3.  With the database split by level of moderator, bootstrapped 

linear correlations were again conducted.  Bootstrapping using the n=1000 random sub-

selection procedure in SPSS provided 95% confidence intervals for each of the 

correlation coefficients. Where the magnitude of correlation coefficient for one variable 

was outside of the confidence intervals of its categorical counterpart, that metadata 

variable was then retained for further analysis.  Only those metadata variables for which 

each level included more than 10% of the total sample (minimum n = 8) were explored.   

 

More rigorous exploration of potential moderators from the prior step occurred through 

hierarchical multiple regression analyses. Independent variables were (in order of entry): 

the individual biomarker for which the interaction may have been present, the metadata 

variable, and then the marker x metadata variable interaction term. After ensuring that 

assumptions of regression were satisfied, moderator analysis was conducted according to 

the methods previously described by Kraemer and colleagues 39. This included centering 

the biomarker data on its mean to avoid multicollinearity and over-fitting of the models. 

Where the addition of the interaction term led to a significant change in F (significant 

improvement in model fit) after first controlling for the biomarker and metadata variable, 

the metadata variable was deemed a moderator of the association between biomarker and 

clinical pain or interference rating.  If the inclusion of the interaction term led to 

significant change in model fit while the two base variables did not, the metadata variable 

was deemed to fully moderate the association. Where the interaction term was significant 

in addition to one of the two base variables, the moderation was considered partial.  

Appendix D depicts a simple schematic for moderator variables.  All statistical analyses 

were performed with IBM SPSS Statistics 25.0 software. 
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2.3.1 Sample size estimation 

Previous studies investigating biomarkers of pain performed by Cantón-Habas and 

colleagues have calculated their sample size based on a small to moderate potential 

correlation (r = 0.3) 40.  A power analysis was conducted using G*Power v3.1 41 

indicating that a total sample of 81 participants would be required to detect moderate 

effects (f2 = 0.10) with β = 80% using multiple regression with α = 0.05.    

 

2.4 Results 

From 2016 to 2018, a total of n = 109 participants provided blood samples used in the 

current analysis. Participant characteristics are reported descriptively in Table 1. When 

grouped by region as axial (head, neck or back) or peripheral (upper or lower 

extremities), 29.2% of the sample indicated axial injuries.  Only 61.3% of participants 

reported taking medications, and 21.3% reported taking one or more medications for pain 

including NSAIDs, opioids, gabapentin, or pregabalin.  Out of 109 participants, 3 

participants were removed as all analytes were undetectable. Of the remaining 106 

participants, some provided an incomplete data set as certain biomarkers were considered 

out-of-range. The proportion of assays that led to out-of-range results for the biomarkers 

were: IL-10 (3.7%), IL-1β (4.6%), TNF-α (2.8%), BDNF (0.9%), Cortisol (2.8%), TGF-

β1 (0%), CRP (11.9%), IL-6 (11.9%).  These values were >3SD beyond the mean and 

removed from the analyses. The results of Kolmogrov-Smirnov testing on the remaining 

data revealed significant deviation from normality in 6 of the 8 biomarkers, mostly due to 

positive skew. A square-root transformation was therefore applied to all 8 markers that 

significantly reduced the skew and saw all 8 markers achieve adequate normality for 

correlational analysis. Medicolegal Status was excluded from moderator analysis due to 

the number of participants involved in litigation on entry into the study (<3 weeks from 

injury) being below 10% of the sample.  All other metadata variables could be split into 

two groups each of which included greater than 10% of the sample.  Based on a priori 

sample size calculations, this required each group to contain more than 8 participants.    
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The first rows of Table 4 and 5 present the simple bivariate correlation coefficients 

between the 8 biomarkers and 2 clinical outcomes. None of the biomarkers on their own 

demonstrated a significant correlation with either BPI pain severity or interference. The 

Tables also present the correlation coefficients when the sample was first split by level of 

each of the 16 metadata variables. Bolded values are those that were explored through 

formal regression-based moderator analysis based on the difference in magnitude of 

correlation coefficient between the two levels.   

 

2.4.1 Moderator analyses for Pain Severity 

Results for the significant moderators are reported in Table 6A. Employment prior to 

trauma (Employed for pay/not employed for pay) fully moderated the association 

between TNF-α and pain severity, as the inclusion of the interaction term accounted for a 

significant 4.4% of the total variance in pain severity (F(1, 90) = 4.39, p = 0.04) (Figure 

1A).  Pre-existing psychopathology (diagnosed yes/no) fully moderated the association 

between TGF-β1 and pain severity (F(1, 91) = 7.95, p < 0.01) with the interaction term 

explaining 8.0% of the total variance (Figure 1B).  Sex (male/female) fully moderated 

the association between CRP and pain severity (F(1, 86) = 5.98, p = 0.02), explaining 

6.3% of the total variance (Figure 1C).   

 

2.4.2 Moderator analyses for Pain Interference 

Results for the significant moderators are reported in Table 6B.  Reports of a pre-existing 

pain condition (yes/no) partially moderated the effect of IL-1β on pain interference, as it 

accounted for an additional 7.2% of variance beyond IL-1β alone (F(1, 89) = 6.88, p = 

0.01).  Inclusion of the interaction term accounted for an additional 6.9% (Figure 2A).  

Peri-traumatic fear (frightened at the time of the traumatic event, yes/no) also partially 

moderated the effect of IL-1β on pain interference, as it accounted for an additional 6.5% 

of variance beyond IL-1β alone, F(1, 90) = 6.45, p = 0.01 and the interaction term 

accounted for an additional 6.4% (Figure 2B).  Region of injury fully moderated the 

effect of cortisol on pain interference, as the addition of the interaction term accounted 
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for 4.5% of the total variance, F(1, 90) = 4.30, p = 0.04 (Figure 2C).  Region of injury 

also fully moderated the effect of TGF-β1 on pain interference, as the inclusion of the 

interaction term accounted for an additional 4.5% of the total variance, F(1, 92) = 4.37, p 

= 0.04 (Figure 2D).  Peri-traumatic stress (general, life stress prior to the event) partially 

moderated the effect of TGF-β1 on pain interference, as it accounted for 8.9% of the total 

variance alone, F(1, 91) = 8.91, p <0.01 and the interaction term explained an additional 

4.4% (Figure 2E).  Region of injury also fully moderated the effect of CRP on pain 

interference, as the inclusion of the interaction term accounted for an additional 10% of 

the total variance, F(1, 87) = 10.28, p < 0.01 (Figure 2F).  Peri-traumatic fear partially 

moderated the effect of IL-6 on pain interference, as it accounted for 5.5% of the total 

variance alone, F(1, 91) = 5.30, p = 0.02 and the interaction term explained an additional 

5.4% (Figure 2G).   

 

2.5 Discussion 

The purpose of this study was to determine whether various biological, psychological and 

social factors were associated with immune and neurological biomarkers in 

musculoskeletal trauma.  The secondary purpose was to evaluate the extent to which 

these factors moderated any associations between biomarkers and pain.  Similar to other 

research in the field of biomarkers, our study demonstrates the potential for psychological 

and social variables to influence agents of immunity.  Our results showed that TNF-α, 

TGF-β1, and CRP form potentially meaningful associations with pain severity and IL-1β, 

cortisol, TGF-β1, CRP and IL-6 form associations with pain interference (disability) but 

only in the presence of important metadata variables.  These associations were either 

partially or fully moderated by factors such as employment status, sex, pre-existing 

psychopathology, pre-existing pain, region of injury, peri-traumatic fear, and peri-

traumatic stress.   

 

Unlike prior work in pain biomarkers, none of the biomarkers on their own revealed a 

significant correlation with pain severity or interference.  This is perhaps unsurprising as 

many of the studies indicating elevated levels of biomarkers in humans are shown under 
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chronic, not acute pain conditions 42.  It is also important to note that the present study 

analyzed serum levels of stress and inflammatory biomarkers.  It is possible that trauma-

related inflammation and stress in the acute phase may have been localized to the site of 

the injury.  One of the few studies that measured biomarkers in acute pain and 

inflammation was performed by Angst and colleagues via microdialysis to track tissue-

level cytokine changes after 24 hours 43.  Experimentally-inflamed skin did not affect 

TNF-α levels, but IL-1β, IL-10, and IL-6 were all significantly increased.  They also 

found that administration of 400mg of the non-steroidal anti-inflammatory drug, 

ibuprofen, significantly increased heat and mechanical pain thresholds, while 800mg 

caused a decrease in IL-1β and IL-6 levels in the tissue.  The microassays, along with 

experimental inflammation, both occurred in the thigh of their study participants which 

may suggest that the detected increase in cytokines was due to the proximity of the 

assayed tissues to the site of irritation.   

  

The concept of external influences on biomarkers of stress and inflammation has been 

studied previously in the context of pain.  Sibille and colleagues compiled a “risk factor 

composite” which included BMI, fibrinogen, CRP, and triglyceride levels 44.  Their 

results showed that generalized chronic pain was a significant predictor of this composite, 

but it was also significantly influenced by factors such as age, sex, education level, 

smoking habit, exercise, and alcohol consumption.  Sterling and colleagues found that 

CRP and TNF-α were significantly different between severity groups in whiplash.  They 

also showed that CRP was significantly different between acute and chronic phases of 

whiplash.  However, in addition to IL-1β, those authors show that biomarkers were not 

significantly correlated with post-traumatic stress disorder or pain catastrophizing.  In the 

study, they suggest that inflammatory biomarkers may be more associated with pain and 

disability rather than psychological constructs 45.  Our findings seem to be in agreement 

with previous studies in this area, however, we go on to suggest that the association 

between biomarkers and pain may actually depend on the presence of certain 

biopsychosocial factors.   
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Pain severity showed significant associations with only 3 different biomarkers, and these 

associations were dependent on specific variables.  The relationship between TNF-α and 

pain severity was dependent on employment status prior to the trauma.  Prior work 

suggests that inflammatory status can be influenced by productive activities such as 

employment and in particular, volunteering, can reduce the systemic inflammatory profile 

later in life 46.  Along a similar vein of research, Steptoe and colleagues reported 

differences in TNF-α and IL-6 blood levels between those in different grades of 

employment (high, intermediate, and low socioeconomic class).  Their results suggested 

that intermediate grades have slightly elevated levels of TNF-α compared to high grade 

employees 47.  Results from the present study appear to agree with these findings as TNF-

α displays other potential dichotomous relationships with pain severity in the context of 

return-to-work status, and with pain interference in the context of household income.    

 

The relationship between TGF-β1 and pain severity was dependent on the presence or 

absence of psychopathology.  Previous studies have suggested that psychopathologies 

such has depression and dementia involve a balance between 2 different classes of 

cytokines and that the TGF-β family (which represent a group of regulatory cytokines) 

can potentially influence this balance 48.  Those diagnosed with major depressive 

disorder, for example, have shown significant decreases in their TGF-β levels 49, and anti-

depressive treatments for this disorder are associated with an increase in TGF-β 50.  With 

its anti-inflammatory properties, TGF-β1 has also been identified for its potential to 

influence key pathways associated with pain 51.   

 

The relationship between CRP and pain severity seemed to be influenced by sex 

differences.  It has been shown previously that men and women present differently with 

respect to pain.  In osteoarthritis, for example, women experience a greater severity of 

pain and disability, and they appear to display more pain-related behaviors as well 52.  

These differences may also extend to the levels of CRP in the blood as mean 

concentrations are also higher in females 53.         
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Pain interference, or disability showed significant associations with 5 different 

biomarkers, and once again these associations were dependent on the presence or absence 

of certain metadata variables.  The relationship between IL-1β and disability was 

influenced by both pre-existing pain and peri-traumatic fear.  Increases in IL-1β have 

been associated with allodynia (a feature of pathological pain), neuropathic pain, 

cognitive deficits and depression 54, 55.  As a well-known pro-inflammatory cytokine, this 

relationship has been fairly well-established in the literature so it comes as no particular 

surprise.  What is interesting however is that IL-1β has also been implicated in 

conditioned fear memory 56 and enhancing the fear-learning response under stress 57.  

These findings suggest that it is not unusual that IL-1β is influenced by both pain and 

fear.  Peri-traumatic fear also influenced the association between IL-6 and disability.  

Like IL-1β, IL-6 is a pro-inflammatory cytokine that has also been shown to influence 

fear conditioning 58 and fear memory 59, along with being a key regulator of pathological 

pain states 60.  Both IL-1β and IL-6 have been shown to be involved with anxiety and 

fear-related pathologies such as PTSD and generalized anxiety disorder 61.   

 

Another factor that appeared to be particularly influential in disability was the region of 

injury.  The location of the trauma, either axial (head, neck or back) or peripheral (limb 

involvement), moderated the associations of cortisol, TGF-β1, and CRP with pain-related 

disability.  Previous studies have shown that traumatic injuries involving axial structures 

result in more than twice the functional disability than peripheral injuries 62.  This may 

explain why the region of injury can influence these biomarkers of stress and 

inflammation.  Cortisol, a primary stress hormone, is regulated by circadian rhythms, 

where dysfunctions in these rhythms have been associated with pain, fatigue, and coping 

in non-specific low back pain 63.  CRP has also been linked to chronic low back pain 

along with insomnia, which is a key contributor to disability 64.  With regard to TGF-β1, 

more recent studies have begun to investigate its role as a potential target for preventing 

degenerative disc disease, which can involve both the neck and back.  It is has been 

shown to activate genes related to tissue growth and repair in the intervertebral discs, 

making it a potential therapeutic target in the future 65.   
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The regulatory role of TGF-β1 appears to extend even further as peri-traumatic stress also 

influenced its association with disability.  Through a series of elegant experiments, Zhang 

et al showed that chronic stress has an immunosuppressive effect which is modulated by 

the TGF-β1 signaling pathway.  A stress-induced imbalance of pro- and anti-

inflammatory mediators was restored by blocking this pathway 66.  Taken together, each 

of these studies, along with our findings suggest that both pain and disability are fairly 

nuanced constructs that involve more than a simple binary association with immune and 

neurological biomarkers.                                           

 

Some limitations to the present study will be addressed here.  First, blood was drawn 

within the same time-frame that participants presented to the urgent care or emergency 

medical centres.  This represents an important potential confound as it did not allow for 

consistency in sample collection times.  Different biomarkers have known diurnal 

variations in their activity and these variations could not be accounted for as extraction 

occurred at various times throughout the day.  Second, although we were able to 

demonstrate moderator effects of different variables between biomarkers and pain, the 

nature of these effects is still unknown.  Based on an a priori sample calculation, we were 

sufficiently powered to show moderate effects, but within a single variable, some of the 

sample sizes may have been too small to detect the magnitude and direction of the 

different associations.  For example, the region of injury group was approximately 

divided into 29.2% spinal and 70.8% peripheral injury.  The medicolegal status group 

was excluded for this exact reason, despite being a potentially relevant moderator.   

 

In conclusion, we have presented an exploratory study that demonstrates the potential 

involvement of biopsychosocial factors and their ability to influence the relationship 

between biomarkers and pain.  This was done in the context of non-catastrophic 

musculoskeletal trauma using correlational analysis and regression.  Our results show that 

employment status, pre-existing psychopathology, and sex emerge as relevant moderators 

of TNF-α, TGF-β1, and CRP respectively with regard to pain severity.  Other factors 

such as pre-existing pain, peri-traumatic fear, region of injury, and peri-traumatic stress 

are relevant moderators of IL-1β, cortisol, TGF-β1, CRP, and IL-6 with regard to pain 
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interference/disability.  This study adds to a pre-existing body of knowledge that suggests 

that the mere presence or absence of biomarkers is insufficient to adequately capture their 

effects on pain as their activity may be contextual.  Studies that do not take these 

moderator variables into consideration may be at risk of underreporting the involvement 

of stress and inflammation in pain.  Future research may involve investigating the 

downstream consequences of these psychophysical associations.  Longitudinal studies 

may provide some insight into which associations are relevant in predicting the 

development of chronic pain in the future.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

2.6 References 

 

1. Melzack R. Pain and the neuromatrix in the brain. J Dent Educ. Dec 

2001;65(12):1378-1382. 

2. Turk DC. A diathesis-stress model of chronic pain and disability following 

traumatic injury. Pain Res Manag. Spring 2002;7(1):9-19. 

3. Guerriere DN, Choiniere M, Dion D, et al. The Canadian STOP-PAIN project - 

Part 2: What is the cost of pain for patients on waitlists of multidisciplinary pain 

treatment facilities? Can J Anaesth. Jun 2010;57(6):549-558. 

4. Kowalski PC, Dowben JS, Keltner NL. Biological perspectives: pain: it's not all 

in your head. Perspect Psychiatr Care. Jan 2014;50(1):3-6. 

5. Evers AW, Verhoeven EW, van Middendorp H, et al. Does stress affect the 

joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and 

short-term disease and symptom fluctuations in rheumatoid arthritis. Ann Rheum 

Dis. Jul 9 2013. 

6. Crettaz B, Marziniak M, Willeke P, et al. Stress-induced allodynia--evidence of 

increased pain sensitivity in healthy humans and patients with chronic pain after 

experimentally induced psychosocial stress. PLoS One. 2013;8(8):e69460. 

7. Muhtz C, Rodriguez-Raecke R, Hinkelmann K, et al. Cortisol response to 

experimental pain in patients with chronic low back pain and patients with major 

depression. Pain Med. Apr 2013;14(4):498-503. 

8. Afari N, Mostoufi S, Noonan C, et al. C-reactive protein and pain sensitivity: 

findings from female twins. Ann Behav Med. Oct 2011;42(2):277-283. 



 

31 

 

9. Sacerdote P, Franchi S, Moretti S, et al. Cytokine modulation is necessary for 

efficacious treatment of experimental neuropathic pain. J Neuroimmune 

Pharmacol. Mar 2013;8(1):202-211. 

10. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular 

mechanisms of pain. Cell. Oct 16 2009;139(2):267-284. 

11. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1beta-mediated induction 

of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 

Mar 22 2001;410(6827):471-475. 

12. Luo JG, Zhao XL, Xu WC, et al. Spinal nuclear factor-kappa B (NF-kappaB) p65 

activation contributes to peripheral inflammation and hyperalgesia in rat adjuvant-

induced arthritis. Arthritis Rheum. Dec 24 2013. 

13. Bhang SY, Kim K, Choi SW, Ahn JH. Do levels of brain-derived neurotrophic 

factor (BDNF) in plasma correlate with psychopathology in healthy subjects? 

Neurosci Lett. Mar 23;512(2):72-77. 

14. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-

inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 

May 2011;1813(5):878-888. 

15. Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in 

the early- and late-phase development of neuropathic pain. Nat Med. Mar 

2008;14(3):331-336. 

16. Okada S, Nakamura M, Mikami Y, et al. Blockade of interleukin-6 receptor 

suppresses reactive astrogliosis and ameliorates functional recovery in 

experimental spinal cord injury. J Neurosci Res. Apr 15 2004;76(2):265-276. 



 

32 

 

17. Murakami T, Kanchiku T, Suzuki H, et al. Anti-interleukin-6 receptor antibody 

reduces neuropathic pain following spinal cord injury in mice. Exp Ther Med. 

Nov 2013;6(5):1194-1198. 

18. Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. 

Neurochem Int. Jul-Aug 2004;45(2-3):389-395. 

19. Roberts AB, Sporn MB. Physiological actions and clinical applications of 

transforming growth factor-beta (TGF-beta). Growth Factors. 1993;8(1):1-9. 

20. Milligan ED, Sloane EM, Langer SJ, et al. Controlling neuropathic pain by adeno-

associated virus driven production of the anti-inflammatory cytokine, interleukin-

10. Mol Pain. 2005;1:9. 

21. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. 

Importance of glial activation in neuropathic pain. Eur J Pharmacol. Sep 15 

2013;716(1-3):106-119. 

22. Sikandar S, Minett MS, Millet Q, et al. Brain-derived neurotrophic factor derived 

from sensory neurons plays a critical role in chronic pain. Brain. Apr 1 

2018;141(4):1028-1039. 

23. van Wilgen CP, Keizer D. The sensitization model to explain how chronic pain 

exists without tissue damage. Pain Manag Nurs. Mar 2012;13(1):60-65. 

24. Harte SE, Harris RE, Clauw DJ. The neurobiology of central sensitization. 

Journal of Applied Biobehavioral Research. 2018;23(2):e12137. 

25. Feldman CH, Dong Y, Katz JN, Donnell-Fink LA, Losina E. Association between 

socioeconomic status and pain, function and pain catastrophizing at presentation 

for total knee arthroplasty. BMC Musculoskelet Disord. Feb 7 2015;16:18. 



 

33 

 

26. Dorner TE, Muckenhuber J, Stronegger WJ, Rasky E, Gustorff B, Freidl W. The 

impact of socio-economic status on pain and the perception of disability due to 

pain. Eur J Pain. Jan 2011;15(1):103-109. 

27. Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective: 

reciprocal neural, endocrine, and immune interactions. J Pain. Feb 2008;9(2):122-

145. 

28. Firouzian S, Osborne NR. Chronic pain: breaking free from stickiness. Pain 

Reports. 2019;4(3):e746. 

29. Price TJ, Basbaum AI, Bresnahan J, et al. Transition to chronic pain: 

opportunities for novel therapeutics. Nat Rev Neurosci. Jul 2018;19(7):383-384. 

30. Young Casey C, Greenberg MA, Nicassio PM, Harpin RE, Hubbard D. Transition 

from acute to chronic pain and disability: a model including cognitive, affective, 

and trauma factors. Pain. Jan 2008;134(1-2):69-79. 

31. Wippert PM, Wiebking C. Stress and Alterations in the Pain Matrix: A 

Biopsychosocial Perspective on Back Pain and Its Prevention and Treatment. Int J 

Environ Res Public Health. Apr 18 2018;15(4). 

32. Gu C, Wang F, Hou Z, et al. Sex-related differences in serum matrix 

metalloproteinase-9 screening non-calcified and mixed coronary atherosclerotic 

plaques in outpatients with chest pain. Heart Vessels. Dec 2017;32(12):1424-

1431. 

33. Franconi F, Campesi I. Sex Impact on Biomarkers, Pharmacokinetics and 

Pharmacodynamics. Curr Med Chem. 2017;24(24):2561-2575. 

34. Cleeland CS, Ryan K. The brief pain inventory. Pain Research Group. 1991. 



 

34 

 

35. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity. 

Journal of manipulative and physiological therapeutics. 1991;14(7):409-415. 

36. Cleeland C, Ryan K. Pain assessment: global use of the Brief Pain Inventory. 

Annals, Academy of Medicine, Singapore. 1994. 

37. Keller S, Bann CM, Dodd SL, Schein J, Mendoza TR, Cleeland CS. Validity of 

the brief pain inventory for use in documenting the outcomes of patients with 

noncancer pain. The Clinical journal of pain. 2004;20(5):309-318. 

38. Vranceanu AM, Barsky A, Ring D. Psychosocial aspects of disabling 

musculoskeletal pain. J Bone Joint Surg Am. Aug 2009;91(8):2014-2018. 

39. Kraemer HC, Wilson GT, Fairburn CG, Agras WS. Mediators and moderators of 

treatment effects in randomized clinical trials. Arch Gen Psychiatry. Oct 

2002;59(10):877-883. 

40. Cantón-Habas V, del Pilar Carrera-González M, Moreno-Casbas MT, Quesada-

Gómez JM, Rich-Ruiz M. Correlation between biomarkers of pain in saliva and 

PAINAD scale in elderly people with cognitive impairment and inability to 

communicate: descriptive study protocol. BMJ open. 2019;9(11). 

41. Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. 

Behavior research methods, instruments, & computers. 1996;28(1):1-11. 

42. DeVon HA, Piano MR, Rosenfeld AG, Hoppensteadt DA. The association of pain 

with protein inflammatory biomarkers: a review of the literature. Nurs Res. Jan-

Feb 2014;63(1):51-62. 

43. Angst MS, Clark JD, Carvalho B, Tingle M, Schmelz M, Yeomans DC. Cytokine 

profile in human skin in response to experimental inflammation, noxious 



 

35 

 

stimulation, and administration of a COX-inhibitor: a microdialysis study. Pain. 

Sep 30 2008;139(1):15-27. 

44. Sibille KT, Steingrimsdottir OA, Fillingim RB, et al. Investigating the Burden of 

Chronic Pain: An Inflammatory and Metabolic Composite. Pain Res Manag. 

2016;2016:7657329. 

45. Sterling M, Elliott JM, Cabot PJ. The course of serum inflammatory biomarkers 

following whiplash injury and their relationship to sensory and muscle measures: 

a longitudinal cohort study. PLoS One. 2013;8(10):e77903. 

46. Kim S, Ferraro KF. Do Productive Activities Reduce Inflammation in Later Life? 

Multiple Roles, Frequency of Activities, and C-Reactive Protein. The 

Gerontologist. 2013;54(5):830-839. 

47. Steptoe A, Owen N, Kunz-Ebrecht S, Mohamed-Ali V. Inflammatory cytokines, 

socioeconomic status, and acute stress responsivity. Brain Behav Immun. Dec 

2002;16(6):774-784. 

48. Leonard BE. Inflammation, depression and dementia: are they connected? 

Neurochemical research. 2007;32(10):1749-1756. 

49. Musil R, Schwarz M, Riedel M, et al. Elevated macrophage migration inhibitory 

factor and decreased transforming growth factor-beta levels in major 

depression—no influence of celecoxib treatment. Journal of affective disorders. 

2011;134(1-3):217-225. 

50. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine 

alterations in major depression. J Affect Disord. Oct 2005;88(2):167-173. 



 

36 

 

51. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. Spring 

2007;45(2):27-37. 

52. Keefe FJ, Lefebvre JC, Egert JR, Affleck G, Sullivan MJ, Caldwell DS. The 

relationship of gender to pain, pain behavior, and disability in osteoarthritis 

patients: the role of catastrophizing. Pain. Sep 2000;87(3):325-334. 

53. Perruccio AV, Chandran V, Power JD, Kapoor M, Mahomed NN, Gandhi R. 

Systemic inflammation and painful joint burden in osteoarthritis: a matter of sex? 

Osteoarthritis Cartilage. Jan 2017;25(1):53-59. 

54. Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain 

Res Rev. Apr 2009;60(1):57-64. 

55. Gui WS, Wei X, Mai CL, et al. Interleukin-1beta overproduction is a common 

cause for neuropathic pain, memory deficit, and depression following peripheral 

nerve injury in rodents. Mol Pain. 2016;12. 

56. Song C, Phillips AG, Leonard B. Interleukin 1 beta enhances conditioned fear 

memory in rats: possible involvement of glucocorticoids. Eur J Neurosci. Oct 

2003;18(7):1739-1743. 

57. Jones ME, Lebonville CL, Paniccia JE, Balentine ME, Reissner KJ, Lysle DT. 

Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential 

role for astrocyte-derived interleukin-1beta. Brain Behav Immun. Jan 

2018;67:355-363. 

58. Hao Y, Jing H, Bi Q, Zhang J, Qin L, Yang P. Intra-amygdala microinfusion of 

IL-6 impairs the auditory fear conditioning of rats via JAK/STAT activation. 

Behav Brain Res. Dec 15 2014;275:88-95. 



 

37 

 

59. Wei H, Chadman KK, McCloskey DP, et al. Brain IL-6 elevation causes neuronal 

circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta. 

Jun 2012;1822(6):831-842. 

60. Zhou YQ, Liu Z, Liu ZH, et al. Interleukin-6: an emerging regulator of 

pathological pain. J Neuroinflammation. Jun 7 2016;13(1):141. 

61. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation 

in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. 

Neuropsychopharmacology. Jan 2017;42(1):254-270. 

62. Bortsov AV, Platts-Mills TF, Peak DA, et al. Effect of pain location and duration 

on life function in the year after motor vehicle collision. Pain. Sep 

2014;155(9):1836-1845. 

63. Sveinsdottir V, Eriksen HR, Ursin H, Hansen AM, Harris A. Cortisol, Health, and 

Coping in Patients with Nonspecific Low Back Pain. Appl Psychophysiol 

Biofeedback. Mar 2016;41(1):9-16. 

64. Ho KKN, Simic M, Småstuen MC, et al. The association between insomnia, c-

reactive protein, and chronic low back pain: cross-sectional analysis of the HUNT 

study, Norway. Scandinavian journal of pain. 2019;19(4):765-777. 

65. Zhang R, Xu J, Wu X, Liu Z. Transforming growth factor β1 (TGF-β1) regulates 

the expression of extracellular matrix genes in a concentration-dependent manner. 

Biomedical Research (0970-938X). 2017;28(7). 

66. Zhang H, Caudle Y, Wheeler C, et al. TGF-β1/Smad2/3/Foxp3 signaling is 

required for chronic stress-induced immune suppression. Journal of 

neuroimmunology. 2018;314:30-41. 



 

38 

 

 

Table 1 – Participant characteristics 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample size 109 

Mean Age  43.7 (±14.6) 

Spinal injury  29.2% 

Mean BMI  26.7 (±6.2) 

Sex (% female)  57.7% 

Mean pain severity (out of 10) 4.3 (±2.1) 

Mean pain interference (%) 38.4 (±23.9) 
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Table 2 – Relevant immune and neurological biomarkers 

Biomarker  
Type Rationale  

TNF-α, Il-1β, Il-6 Pro-inflammatory 

cytokines 

Increased during pain, generates 

hyperalgesia/allodynia, stimulates noxious 

signaling, prolongs pain sensitivity, contributes to 

neural degeneration and remodeling, influences 

long-term changes in neuronal signaling patterns 

Il-10, TGF-β Anti-inflammatory 

cytokines 

decreased during pain, Inhibits TNF-α/Il-1β/Il-6, 

counter-acts pain sensitization activity of pro-

inflammatory cytokines 

BDNF Secreted protein / 

neurotransmitter 

Associated with sensitivity, depression, and 

anxiety.  Facilitates interaction between 

peripheral and central nervous system   

 

CRP Inflammatory peptide Increased during major pathology such as 

cardiovascular disease, diabetes, asthma.  

Increased levels implicated in increased pain 

sensitivity.   

Cortisol Steroid hormone Primary product of HPA axis, associates with pain 

and stress, elevated in pain and stress, influences 

immune activity 
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Table 3 – Psychosocial variables with binary category designation 

Metadata variable 
Category designations  

Sex Male / Female 
 

Region of Injury Spinal (head, neck, or back) / peripheral (limb 
involvement)  

Body-Mass Index (BMI) >25.09 / <25.09 (since 25 indicates 
“overweight”) 
 

Employment prior Employed / Unemployed for pay prior to 
trauma 
 

Return-to-work status (RTW) Full return / Partial or no return to previous 
employment 

Medicolegal status  Involved / Not involved in litigation due to 
injury 
 

Post-Secondary Education post-secondary / no post-secondary (post-
secondary includes college, university, trade 
school or other certification programs) 

Household Income  <$80,000 / >$80,000 (where $80,000 
represents the Ontario median) 

Pre-existing Psychopathology  Present / Absent (any pre-existing condition 
that has been formally diagnosed and/or is 
being treated) 

Pre-existing Pain  Present / Absent (any pre-existing condition 
that has been formally diagnosed and/or is 
being treated) 

Peri-Traumatic Fear  Yes / No (whether or not the participant was 
frightened by the event) 

Depression Likely depressed / Not likely depressed (based 
on meeting the depression threshold on the 
PHQ-9 questionnaire) 

Peri-Traumatic Stress <2 / ≥2 (general, pre-trauma life stress was 
measured on a Likert scale where <2 indicates 
little or no life stress)  

Any Adverse Childhood Experiences (ACE) Absent / present (either direct or indirect 
exposure to abuse or neglect) 
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Table 4 – Correlations of biomarkers with pain severity in the presence of moderators   

 

TNFα (97) IL-10 (102) BDNF (99) IL-1β (94) Cortisol (95) TGFβ (97) CRP (91) IL-6 (94) 

Full sample (R (p)) -0.05 (0.61) -0.08 (0.77) -0.04 (0.72) -0.03 (0.77) -0.05 (0.65) -0.05 (0.66) -0.09 (0.39) -0.12 (0.24) 

Sex 
 Female  
 Male  

 
(56) -0.03 (-0.32, 
0.25) 
(40) -0.02 (-0.32, 
0.30) 

 
(53) -0.09 (-0.31, 
0.12) 
(39) -0.07 (-0.39, 
0.25) 

 
(58) 0.06 (-0.18, 
0.30) 
(40) -0.19 (-
0.48, 0.16)  

 
(53) -0.07 (-0.36, 
0.21) 
(40) -0.01 (-0.23, 
0.25) 

 
(57) -0.02 (-0.29, 
0.26) 
(37) -0.15 (-0.45, 
0.14) 

 
(57) -0.01 (-0.25, 
0.23) 
(39) -0.18 (-0.50, 
0.15) 

 
(54) -0.30 (-0.52, -
0.04)*^^ 
(36) 0.22 (-0.08, 
0.46) 

 
(56) 0.06 (-0.26, 
0.37) 
(37) -0.31 (-0.58, 
0.01) 

Region of Injury 
  Spinal  
  Peripheral 

 
(24) 0.08 (-0.26, 
0.37) 
(73) -0.08 (-0.32, 
0.16) 

 
(22) -0.27 (-0.62, 
0.06) 
(71) -0.03 (-0.23, 
0.16) 

 
(24) 0.01 (-0.42, 
0.49) 
(75) -0.06 (-0.28, 
0.18) 

 
(21) 0.03 (-0.43, 
0.48) 
(73) -0.04 (-0.24, 
0.16) 

 
(22) -0.43 (-0.76, 
0.04)* 
(73) 0.05 (-0.18, 
0.27) 

 
(24) 0.02 (-0.39, 
0.49) 
(73) -0.05 (-0.26, 
0.16) 

 
(20) 0.14 (-0.31, 
0.63) 
(71) -0.16 (-0.37, 
0.07) 

 
(21) 0.06 (-0.49, 
0.67) 
(73) -0.17 (-0.39, 
0.08)  

BMI 
  ≤25.09  
  >25.09  

 
(46) -0.09 (-0.43, 
0.26) 
(39) 0.01 (-0.29, 
0.31) 

 
(41) -0.17 (-0.42, 
0.08) 
(46) -0.01 (-0.24, 
0.23) 

 
(43) 0.02 (-0.28, 
0.32) 
(50) 0.03 (-0.24, 
0.29) 

 
(42) -0.18 (-0.45, 
0.10) 
(47) 0.16 (-0.10, 
0.40) 

 
(41) -0.13 (-0.42, 
0.15) 
(48) -0.04 (-0.33, 
0.24) 

 
(42) -0.12 (-0.39, 
0.19) 
(50) -0.01 (-0.31, 
0.28) 

 
(41) -0.05 (-0.36, 
0.26) 
(45) -0.07 (-0.35, 
0.24) 

 
(41) -0.22 (-0.53, 
0.13) 
(48) 0.06 (-0.27, 
0.37) 

Employment Prior 
  Employed for pay  
  Not employed for pay  

 
(70) -0.20 (-0.40, 
0.02) 
(24) 0.28 (-0.13, 
0.61)^^ 

 
(69) -0.05 (-0.24, 
0.14) 
(22) -0.04 (-0.44, 
0.36) 

 
(72) -0.08 (-0.31, 
0.16) 
(24) -0.03 (-0.47, 
0.37) 

 
(68) -0.03 (-0.22, 
0.19) 
(23) -0.24 (-0.58, 
0.12) 

 
(69) 0.08 (-0.15, 
0.31) 
(23) -0.20 (-0.56, 
0.19) 

 
(70) 0.05 (-0.17, 
0.26) 
(24) -0.35 (-0.68, 
0.03) 

 
(68) -0.14 (-0.34, 
0.08) 
(22) 0.01 (-0.42, 
0.46) 

 
(69) -0.15 (-0.41, 
0.13) 
(23) -0.04 (-0.44, 
0.33) 

Return-To-Work Status 
  Full RTW  
  Partial or no RTW  

 
(52) -0.25 (-0.47, -
0.01) 
(37) 0.16 (-0.18, 
0.49) 

 
(50) -0.16 (-0.41, 
0.09) 
(35) -0.02 (-0.28, 
0.26) 
 

 
(53) -0.11 (-0.35, 
0.16) 
(38) 0.08 (-0.24, 
0.37)  

 
(50) -0.12 (-0.37, 
0.17) 
(36) 0.08 (-0.20, 
0.39) 

 
(53) 0.03 (-0.20, 
0.29) 
(34) -0.09 (-0.44, 
0.27) 

 
(51) 0.04 (-0.22, 
0.27) 
(38) -0.13 (-0.41, 
0.16) 

 
(52) -0.18 (-0.40, 
0.06) 
(33) -0.02 (-0.41, 
0.36) 

 
(53) -0.18 (-0.48, 
0.16) 
(34) -0.04 (-0.37, 
0.24) 

Post-Secondary 
Education 
  No post-secondary ed.  
  Post-secondary ed. 

 
(25) -0.01 (-0.54, 
0.50) 
(71) -0.07 (-0.27, 
0.15) 

 
(24) -0.18 (-0.53, 
0.16) 
(68) -0.05 (-0.25, 
0.15) 

 
(24) 0.18 (-0.19, 
0.48) 
(74) -0.09 (-
0.30, 0.14) 

 
(25) 0.12 (-0.29, 
0.50) 
(68) -0.09 (-0.28, 
0.12) 

 
(22) 0.19 (-0.23, 
0.59) 
(72) -0.13 (-0.36, 
0.11) 

 
(24) -0.08 (-0.49, 
0.35) 
(72) -0.05 (-0.25, 
0.17)  

 
(21) -0.12 (-0.57, 
0.34) 
(70) -0.08 (-0.30, 
0.15) 

 
(22) -0.13 (-0.60, 
0.28) 
(72) -0.11 (-0.36, 
0.16) 

Household Income 
 <$80k  
  ≥$80k  

 
(46) -0.14 (-0.46, 
0.17) 
(47) 0.02 (-0.23, 
0.27) 

 
(45) -0.16 (-0.39, 
0.07) 
(45) 0.02 (-0.24, 
0.28) 

 
(48) -0.11 (-0.37, 
0.14) 
(47) 0.00 (-0.31, 
0.30) 

 
(45) -0.20 (-0.49, 
0.11) 
(45) 0.14 (-0.14, 
0.39) 

 
(45) -0.12 (-0.39, 
0.20) 
(46) 0.10 (-0.16, 
0.35) 

 
(47) -0.13 (-0.37, 
0.13) 
(46) 0.01 (-0.30, 
0.29) 

 
(43) -0.12 (-0.40, 
0.21) 
(46) -0.05 (-0.31, 
0.25) 

 
(45) -0.34 (-0.64, -
0.03)* 
(46) 0.02 (-0.33, 
0.34) 

Pre-Existing         
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Psychopathology 
  Yes 
  No 

(26) 0.16 (-0.20, 
0.46) 
(69) -0.10 (-0.39, 
0.17) 

(25) -0.24 (-0.49, 
0.00) 
(66) 0.02 (-0.19, 
0.22) 

(26) -0.18 (-0.62, 
0.18) 
(71) -0.01 (-0.25, 
0.23) 

(25) -0.33 (-0.62, 
-0.02) 
(67) 0.05 (-0.16, 
0.28) 

(25) 0.05 (-0.37, 
0.47) 
(68) -0.10 (-0.34, 
0.15) 

(26) -0.48 (-0.70, 
0.17)*^^ 
(69) 0.10 (-0.12, 
0.30) 

(23) 0.02 (-0.36, 
0.37) 
(67) -0.15 (-0.38, 
0.10) 

(23) -0.29 (-0.78, 
0.16) 
(70) -0.05 (-0.33, 
0.22) 

Pre-Existing Pain 
  Yes  
  No 

 
(17) 0.41 (-0.06, 
0.81) 
(76) -0.11 (-0.34, 
0.14) 

 
(16) 0.19 (-0.20, 
0.79) 
(73) -0.12 (-0.32, 
0.06) 

 
(17) -0.13 (-0.57, 
0.32) 
(78) -0.04 (-0.25, 
0.19) 

 
(17) 0.23 (-0.21, 
0.59) 
(75) -0.10 (-0.29, 
0.10) 

 
(17) 0.25 (-0.16, 
0.56) 
(74) -0.06 (-0.29, 
0.19) 

 
(16) -0.33 (-0.70, 
0.25) 
(77) 0.00 (-0.19, 
0.20) 

 
(14) 0.07 (-0.41, 
0.51) 
(75) -0.11 (-0.34, 
0.11) 

 
(15) 0.27 (-0.64, 
0.86) 
(77) -0.20 (-0.43, 
0.03)  

Peri-Traumatic Fear 
  No  
  Yes 

 
(50) -0.17 (-0.45, 
0.14) 
(46) 0.08 (-0.24, 
0.37) 

 
(50) -0.17 (-0.40, 
0.10) 
(42) 0.05 (-0.21, 
0.30) 

 
(52) -0.05 (-0.30, 
0.19) 
(46) 0.01 (-0.31, 
0.36) 

 
(49) -0.15 (-0.41, 
0.10) 
(44) 0.14 (-0.12, 
0.38) 

 
(51) -0.02 (-0.30, 
0.24) 
(43) -0.08 (-0.39, 
0.24) 

 
(50) 0.03 (-0.23, 
0.26) 
(46) -0.14 (-0.39, 
0.16) 

 
(49) -0.17 (-0.45, 
0.12) 
(42) 0.01 (-0.27, 
0.31) 

 
(50) -0.28 (-0.54, 
0.03) 
(44) 0.02 (-0.30, 
0.34)  

Depression 
  Likely depressed  
  Not likely depressed 

 
(27) -0.02 (-0.43, 
0.40) 
(69) -0.08 (-0.33, 
0.17) 

 
(25) -0.36 (-0.66, 
-0.09) 
(67) 0.03 (-0.20, 
0.24) 

 
(27) 0.09 (-0.27, 
0.46) 
(71) -0.08 (-0.29, 
0.16) 
 

 
(26) -0.36 (-0.61, 
-0.12) 
(67) 0.07 (-0.16, 
0.31) 

 
(25) 0.01 (-0.38, 
0.42) 
(69) -0.03 (-0.28, 
0.22) 

 
(27) -0.13 (-0.45, 
0.24) 
(69) -0.04 (-0.28, 
0.19) 

 
(22) -0.01 (-0.46, 
0.42) 
(69) -0.10 (-0.32, 
0.12) 

 
(24) -0.41 (-0.72, -
0.10)* 
(70) -0.04 (-0.30, 
0.25) 

Peri-Traumatic Stress  
  Low stress (<2)  
  High stress (2 or more)  

 
(45) 0.09 (-0.22, 
0.38) 
(49) -0.23 (-0.46, 
0.06) 

 
(44) 0.03 (-0.21, 
0.27) 
(46) -0.17 (-0.42, 
0.09) 

 
(47) -0.14 (-0.39, 
0.12) 
(49) -0.02 (-0.33, 
0.25) 

 
(44) -0.01 (-0.27, 
0.28) 
(47) -0.15 (-0.42, 
0.10) 

 
(44) -0.08 (-0.38, 
0.23) 
(48) -0.02 (-0.33, 
0.27) 

 
(46) -0.18 (-0.46, 
0.13) 
(48) -0.01 (-0.22, 
0.22) 

 
(43) -0.09 (-0.41, 
0.23) 
(46) 0.04 (-0.15, 
0.25) 

 
(46) 0.04 (-0.30, 
0.39) 
(46) -0.37 (-0.64, -
0.07)* 

Any ACE 
  At least one  
  None  

 
(59) 0.06 (-0.24, 
0.35) 
(36) -0.22 (-0.54, 
0.11) 

 
(56) -0.05 (-0.25, 
0.13) 
(35) -0.12 (-0.46, 
0.25) 

 
(60) 0.04 (-0.21, 
0.26) 
(37) -0.09 (-0.40, 
0.26)  

 
(57) -0.01 (-0.24, 
0.23) 
(35) -0.07 (-0.38, 
0.27) 

 
(56) 0.03 (-0.23, 
0.28) 
(37) -0.14 (-0.47, 
0.24) 

 
(60) -0.03 (-0.26, 
0.21) 
(35) -0.04 (-0.38, 
0.30) 

 
(55) -0.17 (-0.42, 
0.10) 
(35) -0.08 (-0.39, 
0.21) 

 
(57) -0.03 (-0.32, 
0.26) 
(36) -0.30 (-0.59, 
0.06) 

Any ACE (direct) 
  At least one  
  None  

 
(39) 0.02 (-0.26, 
0.30) 
(56) -0.10 (-0.40, 
0.19) 

 
(37) -0.17 (-0.40, 
0.05) 
(54) -0.05 (-0.32, 
0.23) 

 
(40) 0.04 (-0.29, 
0.32) 
(57) -0.06 (-0.30, 
0.20) 

 
(38) -0.21 (-0.49, 
0.04) 
(54) 0.08 (-0.18, 
0.34) 

 
(38) -0.04 (-0.33, 
0.30) 
(55) -0.03 (-0.33, 
0.24) 

 
(40) -0.07 (-0.36, 
0.23) 
(55) 0.01 (-0.27, 
0.27) 

 
(37) -0.03 (-0.34, 
0.29) 
(53) -0.18 (-0.42, 
0.09) 

 
(38) -0.10 (-0.48, 
0.25) 
(55) -0.16 (-0.41, 
0.14) 

Any ACE (indirect) 
  At least one  
  None 

 
(51) 0.02 (-0.28, 
0.34) 
(44) -0.12 (-0.41, 
0.15) 

 
(49) -0.09 (-0.33, 
0.14) 
(42) -0.07 (-0.35, 
0.22) 

 
(52) 0.06 (-0.21, 
0.30) 
(45) -0.10 (-0.38, 
0.22) 

 
(49) -0.02 (-0.29, 
0.25) 
(43) -0.05 (-0.35, 
0.24) 

 
(48) 0.07 (-0.22, 
0.35) 
(45) -0.15 (-0.45, 
0.16) 

 
(52) 0.02 (-0.23, 
0.24) 
(43) -0.09 (-0.38, 
0.24) 

 
(47) -0.13 (-0.42, 
0.18) 
(43) -0.12 (-0.37, 
0.18) 

 
(49) -0.06 (-0.40, 
0.26)  
(44) -0.21 (-0.51, 
0.12) 
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Bolded items indicate a significant correlation and/or one value exceeding the confidence intervals of its categorical counterpart.  Grayed out regions represent excluded variables.   

* = Correlation significant at the p<0.05 level 

** = Correlation significant at the p<0.01 level 

^ = partial moderation (interaction term retained with other variables) 

^^ = full moderation (only interaction is retained)
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Table 5 – Correlations of biomarkers with pain interference in the presence of moderators   

 

TNFα (96) IL-10 (92) BDNF (98) IL-1β (93) Cortisol (94) TGFβ (96) CRP (91) IL-6 (94) 

Full sample (R (p)) 0.06 (0.56) -0.04 (0.69) -0.02 (0.88) -0.00 (0.97) -0.10 (0.33) -0.05 (0.66) -0.19 (0.07) 0.08 (0.47) 

Sex 
 Female 
 Male 

 
(56) 0.08 (-0.19, 
0.33) 
(39) 0.04 (-0.24, 
0.31) 

 
(53) -0.08 (-0.31, 
0.15) 
(38) 0.01 (-0.29, 
0.27)  

 
(58) 0.01 (-0.24, 
0.26) 
(39) -0.07 (-0.36, 
0.24) 

 
(53) 0.02 (-0.25, 
0.31) 
(39) -0.05 (-0.33, 
0.23) 

 
(57) -0.17 (-0.40, 
0.09) 
(36) -0.02 (-0.43, 
0.31) 

 
(57) -0.09 (-0.32, 
0.15) 
(38) -0.01 (-0.31, 
0.36) 

 
(54) -0.13 (-0.38, 
0.15) 
(36) -0.25 (-0.51, 
0.07) 

 
(56) 0.09 (-0.19, 
0.38) 
(37) 0.057 (-
0.25, 0.38) 

Region of Injury 
  Spinal  
  Peripheral 

 
(23) 0.38 (-0.18, 
0.72) 
(73) 0.01 (-0.20, 
0.23) 

 
(21) -0.25 (-0.67, 
0.18) 
(71) -0.02 (-0.21, 
0.18) 

 
(23) 0.32 (-0.20, 
0.72) 
(75) -0.09 (-0.28, 
0.10) 

 
(20) 0.32 (-0.16, 
0.67) 
(73) -0.07 (-0.27, 
0.14) 

 
(21) -0.52 (-0.80, -
0.09)*^^ 
(73) 0.01 (-0.19, 
0.25) 

 
(23) 0.38 (-0.07, 
0.79)^^ 
(73) -0.15 (-0.34, 
0.06) 

 
(20) 0.44 (-0.01, 
0.81) 
(71) -0.35 (-0.54, -
0.14)**^^ 

 
(21) 0.25 (-0.14, 
0.70) 
(73) 0.04 (-0.19, 
0.28) 

BMI 
  ≤25.09  
 >25.09 

 
(48) -0.05 (-
0.34, 0.27) 
(39) 0.15 (-0.11, 
0.38) 

 
(41) -0.02 (-0.28, 
0.25) 
(46) -0.05 (-0.31, 
0.24) 

 
(43) -0.08 (-0.32, 
0.17) 
(50) 0.09 (-0.17, 
0.35) 

 
(42) -0.19 (-0.47, 
0.07) 
(47) 0.19 (-0.13, 
0.45) 

 
(41) -0.32 (-0.55, -
0.08)* 
(48) 0.03 (-0.28, 
0.34) 

 
(42) -0.12 (-0.38, 
0.17) 
(50) -0.01 (-0.31, 
0.25) 

 
(41) -0.23 (-0.50, 
0.08) 
(45) -0.15 (-0.39, 
0.14) 

 
(41) -0.03 (-0.37, 
0.32) 
(48) 0.25 (-0.03, 
0.48) 

Employment Prior 
  Employed for pay  
  Not employed for pay   

 
(70) 0.04 (-0.18, 
0.28) 
(24) 0.02 (-0.38, 
0.41) 

 
(69) 0.00 (-0.19, 
0.20) 
(22) -0.11 (-0.52, 
0.38) 

 
(72) -0.10 (-0.29, 
0.11) 
(24) 0.10 (-0.39, 
0.52) 

 
(68) 0.06 (-0.16, 
0.28) 
(23) -0.39 (-0.71, 
0.03) 

 
(69) 0.00 (-0.23, 
0.23) 
(23) -0.25 (-0.67, 
0.17) 

 
(70) -0.02 (-0.23, 
0.19) 
(24) -0.19 (-0.57, 
0.20) 

 
(68) -0.13 (-0.33, 
0.10) 
(22) -0.31 (-0.66, 
0.02) 

 
(69) 0.02 (-0.19, 
0.25) 
(23) 0.18 (-0.25, 
0.60)  

Return-To-Work Status 
  Full RTW  
  Partial or no RTW 

 
(52) -0.01 (-
0.26, 0.26) 
(37) 0.14 (-0.19, 
0.47) 

 
(50) -0.15 (-0.42, 
0.10) 
(35) 0.05 (-0.22, 
0.28) 

 
(53) -0.05 (-0.28, 
0.22) 
(38) -0.02 (-0.32, 
0.33) 

 
(50) -0.04 (-0.35, 
0.27) 
(36) 0.07 (-0.23, 
0.35) 

 
(53) 0.04 (-0.22, 
0.27) 
(34) -0.26 (-0.57, 
0.15) 

 
(51) 0.14 (-0.11, 
0.38) 
(38) -0.24 (-0.47, 
0.01) 

 
(52) -0.18 (-0.38, 
0.07) 
(33) -0.22 (-0.54, 
0.16) 

 
(53) -0.07 (-0.34, 
0.21) 
(34) 0.16 (-0.13, 
0.45) 

Post-Secondary 
Education 
  No post-secondary ed.  
  Post-secondary ed.  

 
(25) -0.07 (-
0.47, 0.37) 
(71) 0.12 (-0.10, 
0.32) 

 
(24) -0.29 (-0.61, 
0.10) 
(68) 0.05 (-0.16, 
0.25) 

 
(24) 0.01 (-0.29, 
0.36) 
(74) -0.02 (-0.25, 
0.20) 

 
(25) 0.14 (-0.31, 
0.60) 
(68) -0.07 (-0.29, 
0.14) 

 
(22) -0.04 (-0.41, 
0.40) 
(72) -0.14 (-0.38, 
0.10) 

 
(24) -0.08 (-0.44, 
0.32) 
(72) -0.03 (-0.26, 
0.19) 

 
(21) -0.51 (-0.73, -
0.18)* 
(70) -0.09 (-0.31, 
0.13) 

 
(22) 0.06 (-0.34, 
0.50) 
(72) 0.09 (-0.15, 
0.33)  

Household Income 
  <$80k  
  ≥$80k  

 
(46) -0.13 (-
0.44, 0.17) 
(47) 0.23 (-0.01, 
0.46) 
 

 
(45) -0.09 (-0.32, 
0.19) 
(45) -0.00 (-0.33, 
0.26) 

 
(48) -0.06 (-0.32, 
0.22) 
(47) -0.07 (-0.30, 
0.19) 

 
(45) -0.18 (-0.45, 
0.11) 
(45) 0.15 (-0.14, 
0.40) 

 
(45) -0.16 (-0.43, 
0.15) 
(46) 0.08 (-0.18, 
0.32) 

 
(47) -0.04 (-0.31, 
0.22) 
(46) -0.12 (-0.37, 
0.15) 

 
(43) -0.27 (-0.53, 
0.05) 
(46) -0.01 (-0.26, 
0.25) 

 
(45) -0.04 (-0.34, 
0.27) 
(46) 0.12 (-0.17, 
0.45) 

Pre-Existing         
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Psychopathology 
  Yes  
  No  

(26) -0.06 (-
0.44, 0.31) 
(69) 0.10 (-0.15, 
0.35) 

(25) -0.36 (-0.67, 
-0.04) 
(66) 0.07 (-0.15, 
0.27) 

(26) -0.11 (-0.43, 
0.22) 
(71) 0.01 (-0.21, 
0.24) 

(25) -0.37 (-0.67, 
0.05) 
(67) 0.07 (-0.16, 
0.28) 

(25) 0.02 (-0.31, 
0.31) 
(68) -0.15 (-0.38, 
0.09) 

(26) -0.31 (-0.62, 
0.11) 
(69) 0.06 (-0.16, 
0.27) 

(23) -0.26 (-0.63, 
0.09) 
(67) -0.16 (-0.36, 
0.09) 

(23) -0.19 (-0.64, 
0.31) 
(70) 0.15 (-0.08, 
0.37) 

Pre-Existing Pain 
  Yes  
  No  

 
(17) 0.24 (-0.16, 
0.71) 
(76) 0.06 (-0.14, 
0.26) 

 
(16) 0.32 (-0.10, 
0.66) 
(73) -0.12 (-0.35, 
0.09) 

 
(17) 0.12 (-0.34, 
0.62) 
(78) -0.10 (-0.28, 
0.10) 

 
(17) 0.49 (-0.00, 
0.86)*^ 
(75) -0.13 (-0.36, 
0.09) 

 
(17) -0.20 (-0.67, 
0.19) 
(74) -0.02 (-0.25, 
0.20) 

 
(16) 0.13 (-0.33, 
0.70) 
(77) -0.10 (-0.30, 
0.12) 

 
(14) -0.30 (-0.65, 
0.21) 
(75) -0.17 (-0.38, 
0.07) 

 
(15) 0.42 (-0.24, 
0.81) 
(77) 0.02 (-0.21, 
0.26) 

Peri-Traumatic Fear 
  No 
  Yes 

 
(50) -0.08 (-
0.33, 0.19) 
(46) 0.19 (-0.08, 
0.47) 

 
(50) -0.21 (-0.46, 
0.04)  
(42) 0.16 (-0.09, 
0.41) 

 
(52) -0.03 (-0.25, 
0.22) 
(46) 0.04 (-0.28, 
0.34) 

 
(49) -0.23 (-0.48, 
0.05) 
(44) 0.29 (0.04, 
0.51)^ 

 
(51) -0.04 (-0.33, 
0.23) 
(43) -0.19 (-0.51, 
0.14) 

 
(50) -0.02 (-0.27, 
0.22) 
(46) -0.04 (-0.33, 
0.26) 

 
(49) -0.26 (-0.47, 
0.00) 
(42) -0.12 (-0.42, 
0.16) 

 
(50) -0.20 (-0.45, 
0.09) 
(44) 0.28 (0.02, 
0.52)^ 

Depression 
  Likely depressed  
  Not likely depressed  

 
(27) -0.07 (-
0.44, 0.36) 
(69) 0.11 (-0.09, 
0.32) 

 
(25) -0.24 (-0.60, 
0.15) 
(67) -0.03 (-0.25, 
0.19) 

 
(27) 0.22 (-0.18, 
0.55) 
(71) -0.09 (-0.30, 
0.10) 

 
(26) -0.15 (-0.48, 
0.21) 
(67) 0.00 (-0.24, 
0.23) 

 
(25) -0.21 (-0.57, 
0.13) 
(69) -0.02 (-0.25, 
0.20) 

 
(27) 0.01 (-0.33, 
0.37) 
(69) -0.11 (-0.32, 
0.14) 

 
(22) -0.11 (-0.56, 
0.32) 
(69) -0.18 (-0.37, 
0.02) 

 
(24) -0.21 (-0.55, 
0.19) 
(70) 0.15 (-0.09, 
0.38) 

Peri-traumatic Stress 
  Low stress (<2)  
  High stress (2 or more) 

 
(45) 0.03 (-0.27, 
0.32) 
(49) 0.07 (-0.18, 
0.34) 

 
(44) -0.01 (-0.30, 
0.27) 
(46) -0.06 (-0.28, 
0.15) 

 
(47) -0.24 (-0.43, 
-0.01) 
(49) 0.15 (-0.11, 
0.41) 

 
(44) -0.01 (-0.31, 
0.28) 
(47) -0.05 (-0.33, 
0.25) 

 
(44) -0.14 (-0.41, 
0.16) 
(48) -0.08 (-0.35, 
0.18) 

 
(46) -0.31 (-0.54, -
0.03)*^ 
(48) 0.13 (-0.12, 
0.39) 

 
(43) -0.17 (-0.42, 
0.11) 
(46) -0.08 (-0.35, 
0.22) 

 
(46) 0.14 (-0.16, 
0.47) 
(46) -0.02 (-0.28, 
0.28) 

Any ACE 
  At least one  
  None  

 
(59) 0.00 (-0.26, 
0.25) 
(36) 0.18 (-0.13, 
0.44) 

 
(56) -0.11 (-0.33, 
0.12) 
(35) 0.050 (-
0.29, 0.38) 

 
(60) 0.02 (-0.22, 
0.26) 
(37) -0.02 (-0.31, 
0.29) 

 
(57) -0.06 (-0.30, 
0.17) 
(35) 0.10 (-0.23, 
0.45) 

 
(56) -0.02 (-0.28, 
0.24) 
(37) -0.21 (-0.48, 
0.09) 

 
(60) -0.02 (-0.26, 
0.24) 
(35) -0.07 (-0.42, 
0.28)  

 
(55) -0.27 (-0.47, -
0.04)* 
(35) -0.12 (-0.42, 
0.22) 

 
(57) 0.07 (-0.21, 
0.35) 
(36) 0.10 (-0.22, 
0.43) 

Any ACE personal 
  At least one  
  None  

 
(39) -0.04 (-
0.33, 0.25) 
(56) 0.16 (-0.08, 
0.38) 

 
(37) -0.15 (-0.42, 
0.12) 
(54) 0.01 (-0.25, 
0.24) 

 
(40) -0.02 (-0.31, 
0.25) 
(57) 0.00 (-0.26, 
0.28) 

 
(38) -0.13 (-0.40, 
0.17) 
(54) 0.08 (-0.19, 
0.35) 

 
(38) -0.20 (-0.50, 
0.13) 
(55) -0.04 (-0.31, 
0.23) 

 
(40) -0.01 (-0.26, 
0.26) 
(55) -0.06 (-0.34, 
0.24) 

 
(37) -0.19 (-0.44, 
0.09) 
(53) -0.22 (-0.45, 
0.03) 

 
(38) -0.02 (-0.34, 
0.28) 
(55) 0.14 (-0.12, 
0.44) 

Any ACE other 
  At least one  
  None  

 
(51) -0.04 (-
0.32, 0.26) 
(44) 0.17 (-0.06, 
0.39) 

 
(49) -0.15 (-0.42, 
0.11) 
(42) 0.07 (-0.20, 
0.33) 

 
(52) 0.02 (-0.23, 
0.31) 
(45) -0.03 (-0.28, 
0.24) 

 
(49) -0.11 (-0.37, 
0.15) 
(43) 0.09 (-0.21, 
0.37) 

 
(48) 0.06 (-0.26, 
0.34) 
(45) -0.25 (-0.49, 
0.04) 

 
(52) 0.00 (-0.23, 
0.26) 
(43) -0.09 (-0.37, 
0.22) 

 
(47) -0.28 (-0.50, -
0.04) 
(43) -0.14 (-0.40, 
0.13) 

 
(49) 0.02 (-0.28, 
0.33) 
(44) 0.11 (-0.19, 
0.41)  
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Bolded items indicate a significant correlation and/or one value exceeding the confidence intervals of its categorical counterpart.  Grayed out regions represent excluded variables.   

* = Correlation significant at the p<0.05 level 

** = Correlation significant at the p<0.01 level 

^ = partial moderation (interaction term retained with other variables) 

^^ = full moderation (only interaction is retained)
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Table 6 – Significant Moderators identified for Hierarchical multiple Regression 

Analyses  

A – Pain Severity  

 β (95%CI) R2 (Δr2) F change (p) 

TNF-α -1.94 (-3.72, -0.16) 0.01 (0.01) 0.42 (0.52) 

Employment Prior -0.86 (-1.75, 0.04) 0.04 (0.04) 3.63 (0.06) 

TNF-α x Employment 
Prior 

1.37 (0.07, 2.67) 0.09 (0.04) 4.39 (0.04) 

TGF-β -0.06 (-0.09, -0.02) 0.01 (0.01) 0.56 (0.46) 

Pre-Existing 
Psychopathology 

0.05 (-0.81, 0.90) 0.01 (0.00) 0.14 (0.71) 

TGF-β x Pre-existing 
Psychopathology  

0.03 (0.01, 0.05) 0.09 (0.08) 7.95 (<0.01) 

CRP 0.06 (0.00, 0.11) 0.01 (0.01) 0.56 (0.46) 

Sex 0.46 (-0.36, 1.27) 0.03 (0.02) 1.68 (0.20) 

CRP x Sex -0.04 (-0.07, -0.01) 0.09 (0.06) 5.98 (0.02) 

 

B – Pain Interference  

 β (95%CI) R2 (Δr2) F change (p) 

IL-1β 59.96 (13.65, 106.27) 0.00 (0.00) 0.01 (0.94) 

Pre-Existing Pain -9.92 (-18.32, -1.52) 0.07 (0.07) 6.88 (0.01) 

IL-1β x Pre-Existing Pain -32.03 (-56.07, -8.00) 0.14 (0.07) 7.01 (0.01) 

IL-1β 29.79 (6.25, 53.33) 0.00 (0.00) 0.00 (0.97) 

Peri-Traumatic Fear -9.18 (-15.83, -2.53) 0.07 (0.07) 6.45 (0.01) 

IL-1β x Peri-Traumatic 
Fear 

-18.94 (-33.58, -4.29) 0.13 (0.06) 6.60 (0.01) 

Cortisol -0.18 (-0.35, -0.02) 0.01 (0.01) 0.95 (0.33) 

Region of Injury 4.56 (-3.67, 12.78) 0.02 (0.01) 0.51 (0.48) 

Cortisol x Region of 0.09 (0.00, 0.18) 0.06 (0.05) 4.30 (0.04) 
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Injury 

TGF-β 0.41 (-0.01, 0.82) 0.00 (0.00) 0.19 (0.66) 

Region of Injury 2.51 (-5.28, 10.30) 0.01 (0.01) 1.08 (0.30) 

TGF-β x Region of Injury -0.23 (-0.45, -0.01) 0.06 (0.05) 4.37 (0.04) 

TGF-β -0.28 (-0.53, -0.04) 0.00 (0.00) 0.14 (0.71) 

Peri-Traumatic Stress 10.58 (4.13, 17.04) 0.09 (0.09) 8.91 (<0.01) 

TGF-β x Peri-Traumatic 
Stress 

0.17 (0.01, 0.32) 0.13 (0.04) 4.56 (0.04) 

CRP 0.66 (0.17, 1.15) 0.04 (0.04) 3.38 (0.07) 

Region of Injury 5.74 (-1.70, 13.19) 0.06 (0.02) 1.96 (0.17) 

CRP x Region of Injury -0.44 (-0.71, -0.17) 0.16 (0.10) 10.28 (<0.01) 

IL-6 4.38 (0.71, 8.05) 0.01 (0.01) 0.54 (0.47) 

Peri-Traumatic Fear  -8.14 (-14.56, -1.72) 0.06 (0.06) 5.30 (0.02) 

IL-6 x Peri-Traumatic 
Fear 

-2.84 (-5.26, -0.42) 0.11 (0.05) 5.45 (0.02) 
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Figure 1 – Graphical Representation of Pain Severity Moderators 
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Figure 2 – Graphical Representation of Pain Interference Moderators 
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Chapter 3  

3 Exploring recovery trajectories and predicting outcomes 
of acute musculoskeletal trauma using latent growth 
curve analysis  

3.1 Introduction 

Pain following musculoskeletal trauma is a complex phenomenon. While early models 

conceptualized pain as a direct result of the magnitude of tissue damage, newer models 

have re-conceptualized it as a highly subjective experience influenced by interactions of 

biology, psychology and social influences 1. The experience of pain is a nearly universal 

phenomenon, and is widely recognized as essential for survival learning in most 

organisms including humans 2.  However, its inconsistent relationship to key 

physiological mechanisms 3 has made its regulation difficult.  Unresolved pain can 

disrupt multiple aspects of life 4 and without proper control, pain has been considered its 

own pathological condition 5.  The incidence and prevalence of chronic pain is estimated 

to be nearly 20% of adults in Canada 6 and the United States 7 with staggering economic 

and social burden 8. With pain being such a complex and integrated experience, health 

care providers can struggle to navigate the various interactions that lead to the 

development of chronic pain.   

 

Many scholars in the field have argued that better mechanism-based prognostic models 

are needed to identify key intervention targets in the acute stage of injury and pain to 

prevent poor outcomes 9,10. There has yet to be consistent evidence that any intervention 

strategy effectively prevents the transition to chronicity rendering the field no further 

ahead than it has been over the past several decades. Additionally, the use of opioids in 

acute pain management or as a long-term solution has been heavily scrutinized in recent 

years, driven largely by findings that prolonged administration (> 3 months) significantly 

increases the likelihood of physical or psychological dependence 11.  This general lack of 

effectiveness in preventing chronic or persistent pain is driven at least in part by poor 
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understanding of the mechanisms that explain the acute-to-chronic or acute-to-recovery 

transitions 12.   

 

Pain prognosis as a field of study has evolved considerably over the past two decades, 

with emphasis added during the mid-1990s from groups exploring acute whiplash-

associated disorder 13 and acute low back pain 14. However, considerable challenges 

persist today, including the nature of the outcomes to be predicted and the multitude of 

confounding influences that very likely exist when creating prognostic models 15. 

Traditionally, pain intensity (or severity) has been the most common outcome predicted 

in prognostic research following musculoskeletal trauma 16 and is not coincidentally one 

of the most reliable predictors of a poor outcome 17.  More recently however, 

psychological and physical function outcomes have been included in these models. For 

example, Sterling and colleagues conducted latent growth curve modeling in a sample of 

155 people with acute (<1 month) whiplash and found that a 3-class model (mild, 

moderate, severe) best described the trajectory of outcomes for both physical (Neck 

Disability Index 18) and emotional (Post-traumatic Stress Diagnosis Scale 19) functioning.  

Panken and colleagues 20 similarly conducted latent growth curve analysis to again 

identify 3 emergent trajectories that best described the progress of pain intensity in 622 

participants with low back pain of median 5.8 weeks duration (2 to 780 weeks). The 3-

class trajectories model appears to be showing consistency in this literature, though 

outstanding questions persist including the translation of these findings to injuries 

affecting other parts of the body, and other relevant physical and psychological outcomes. 

That is, how consistent are these models in more heterogeneous samples when different 

outcomes are used? A better understanding of recovery trajectories will facilitate 

prognostic assessment of patients and help to direct healthcare resources to those who 

would benefit most while preventing overtreatment of those who are likely to recover 

quickly. 

 

Therefore, the purpose of this study was to investigate the recovery trajectories following 

non-catastrophic MSK trauma in a general population which includes both axial and 

peripheral trauma.   This was conceptualized as a first step towards a body region-
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agnostic approach to prognostic phenotyping of people with acute, non-catastrophic MSK 

trauma. 

 

3.2 Methods 

3.2.1 Participant recruitment 

Data for this analysis were drawn from two longitudinal cohort studies, one in London 

Ontario, Canada (SYMBIOME, Systematic Merging of Biology, Mental Health and 

Environment, clinicaltrials.gov ID no. NCT02711085) and one in Chicago Illinois, 

United States (ID no. NCT02157038). Eligible participants were identified by emergency 

or acute-care nursing or medical clinicians, all within 4 weeks of musculoskeletal (MSK) 

trauma. All participants were 18 to 65 years, had to have suffered a non-catastrophic 

MSK injury that did not require inpatient admission or surgical correction, and could 

speak and understand conversational (at least grade 8) English. Exclusion criteria were 

those with one or more prior motor vehicle collisions (Chicago cohort only), any nervous 

system or major systemic disorders that would be expected to otherwise impair recovery 

independently of the trauma, and any metabolic systems disorders (Chicago cohort only). 

Co-treatment or other chronic comorbidities were captured as part of the intake and 

follow-up packages.  The London cohort included participants with non-catastrophic 

musculoskeletal (MSK) injury affecting any body region, while the Chicago cohort 

included only those with whiplash-associated symptoms about the neck arising from 

motor vehicle collisions. After being medically cleared and discharged, interested 

participants gave permission for a member of the research team to describe the study, 

answer questions, and consent to enroll prior to leaving the hospital. Participants were 

provided a package of self-report questionnaires to be completed within 24 hours of 

discharge. Biomarker data were also collected from participants though these differed 

considerably between the two cohorts so could not be combined and are not being 

described here. Follow-up in the two cohorts occurred within 1 month from inception, 

and again 3 and 12 months after injury.  
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3.2.2 Psychometric variables and metadata 

The questionnaires differed slightly between the two cohorts, though the constructs being 

captured were similar enough to allow meaningful pooling. Both studies captured 

demographic and social data including age, sex, body mass index (BMI, kg/m2), work 

status, medicolegal status, and significant comorbidities (e.g. depression or other mood 

disorders, existing pain conditions). The primary outcome for defining recovery 

trajectory was pain-related functional interference as measured by the Interference 

subscale of the Brief Pain Inventory (BPI 21, London cohort) or the Neck Disability Index 

(NDI 18, Chicago cohort). The BPI is one of the most widely used pain interference scales 

globally 22 and has considerable evidence of validity across many clinical populations 

including musculoskeletal pain 23. The NDI is one of the most widely-used region-

specific scales for capture of neck-related disability specifically and is more relevant to 

that population. The two tools share several items including work ability, sleep, and 

recreation, but the NDI excludes items irrelevant to those with neck pain like walking 

interference. Both the NDI and the BPI have demonstrated acceptable reliability, validity 

and responsiveness for capturing interference 18,21,23-26. Both can easily be converted into 

a percentage score of the total scale range (0% = no interference, 100% = complete 

interference), allowing meaningful combination of the two databases.  The NDI shows a 

moderate (r = 0.58) 27 to strong (r = 0.71) 28 correlation with the NPRS dependent on the 

time-frame explored.  The NDI was also shown to have a strong correlation to the visual 

analogue scale (r = 0.64) 29.  Our database demonstrated a similar correlation between the 

BPI interference subscale and the NPRS (r = 0.67).   

 

Pain severity as a secondary outcome was captured from all participants at each data 

collection period using a standard 0-10 Numeric Pain Rating Scale (NPRS) in both 

cohorts.       

 

Intervention between follow-up periods, if any, occurred at the discretion of the 

participant and healthcare providers. Type of intervention was captured (e.g. physical 

therapy, pharmaceuticals, massage therapy, work hardening) though the balance of 

evidence available in the field does not support the superiority of any treatment modality 
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over others, including type of intervention, frequency, dosage or intensity, when 

compared to simple advice and education 30-33. As such, intervention type was captured in 

general terms only. Ethics approval was obtained by the respective research ethics boards 

prior to recruiting participants into the study. Participants were reimbursed up to the 

equivalent of $240 Canadian dollars for expenses and time incurred during participation 

across all follow-up periods. 

 

3.3 Analysis 

3.3.1 Pre-Analysis 

Participant metadata (age, sex, BMI, medicolegal status, work status) and baseline scores 

on each of the outcomes were evaluated descriptively (frequencies, means, ranges). The 

primary (% pain interference) and secondary (pain severity) outcomes were first explored 

for missing data and normality. Region of injury was coded according to the primary area 

of symptoms; presence of any head, neck or back injuries (regardless of additional 

peripheral injuries) were classified as “axial” while those affecting the upper or lower 

extremities (shoulder, elbow, wrist, hip, knee, ankle) were classed as “peripheral”.  

Where necessary, data were square-root transformed in order to reduce the skewness of 

the distribution to within acceptable limits.   

 

3.3.2 Latent Growth Curve Analysis  

Latent growth curve analysis (LGCA) was conducted on the square-root transformed data 

to identify the number of trajectories definable by each of the 2 primary outcomes 

following the steps of DiStefano and Kamphaus 34 using the Growth Mixture Modeling 

(GMM) function in MPlus v6.12 software (Muthen & Muthen, Los Angeles USA). For 

each, a series of models were constructed, starting with a single trajectory (termed 

‘class’) and increasing until model fit no longer improved, the model could no longer be 

mathematically defined, one of the latent classes possessed fewer than 10% of 

participants, or the class structure did not make clinical sense. The fit indicators of 

interest were the Akaike Information Criterion (AIC) 35-37, the Bayesian Information 
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Criterion (BIC) 35-37, entropy 36, and the adjusted Lo-Mendell-Rubin likelihood ratio test 

(LMR-LRT)35,37. While no set criteria exist for deeming model fit acceptable 37, the 

cluster solution that provides the lowest AIC and BIC and the highest entropy value 

(ideally >0.80) that also conforms to theory is generally considered optimal 38. An 

additional statistical analysis was conducted using the k-means approach, where the Lo-

Mendell-Rubin Adjusted Likelihood Ratio Test (LMR-LRT) is used to statistically 

compare the fit of the k cluster solution (e.g. 3) with that of the k-1 class solution (e.g. 2). 

When fit no longer statistically improves (p>0.05) with the addition of a new class, the 

solution with the smaller number of classes is generally accepted for reasons of 

parsimony 37,39.  Both linear and quadratic (non-linear) models were tested.  

After the optimal model solution was identified, each participant received an assignment 

to the most likely trajectory based on posterior probabilities from the modeling 

procedure. Owing to >20% missing data across all time points, a validation step was 

undertaken to improve confidence in the model solution. A repeated measures ANOVA 

with 4 levels of repeated variable (time: 0, 1, 3, and 12 months) and trajectory class as the 

between group variable was conducted on the raw interference or NPRS scores to ensure 

main effects of group and time were statistically significant and meaningful. Significant 

main effects were further explored using Tukey’s post-hoc test or t tests with Bonferroni 

correction. 

 

Prior research has suggested that that axial injuries (i.e. head, neck, and back) have more 

than twice the functional interference than injuries in other areas 40.  As such, a planned 

disaggregated sub-analysis was also conducted where the trajectories were explored in 

the axial and peripheral groups separately. Consistencies in trajectory shapes were 

expected, but proportions within each trajectory were hypothesized to be different, with 

proportionately greater representation of the axial traumas in the more severe pain 

groups.   

 

As exploration of quadratic functions with 12-month outcomes was a planned analysis, 

only those participants with at least 3- or 12-month outcome data were included for each 

analysis.  If participants were missing data for both 3 and 12 months, they were excluded 
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from outcome analysis.  In those with a single missing value, data were estimated using 

maximum likelihood estimation based on all the available data in order to generate an 

acceptable class solution for recovery. This is an acceptable method for dealing with 

missing values which makes use of all available data to estimate an appropriate model 

that can be used to describe the entire sample 41,42.  As an additional measure of 

trustworthiness in model-estimated values, observed 12-month values for both pain 

severity and interference were compared against the MPlus-generated estimated values 

via t-test to ensure that no significant differences existed.  

 

3.3.3 Sample size estimation 

Previous studies investigating pain recovery trajectories using latent growth curve 

modeling and ANOVA-based approaches have identified distinct classes with a medium 

effect size 43.  A power analysis was conducted using G*Power v3.1 44 indicating that a 

total sample of 189 participants would be required to detect moderate effects (ηp
2 = 0.03) 

with β = 80% using RM ANOVA between means with α = 0.05.   

 

3.4 Results 

3.4.1 Participant characteristics  

A total of 231 participants were recruited within 28 days (4 weeks) of non-catastrophic 

MSK trauma. Of those, 134 were from the London Ontario sample and 97 from the 

Chicago Illinois sample. The sample was 54.9% male, mean age of 39.7 years, average 

BMI of 26.1kg/m2, and the modal cause of injury when the two databases were combined 

was motor vehicle collision (50.5% of responses). Table 7 presents the remaining 

participant characteristics including baseline mean values on each of the 4 primary 

outcomes.  Participants described a mix of axial (59.9%) or peripheral (40.1%) injuries.    
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3.4.2 Latent Growth Curve Analysis 

The dataset for the base model included all 241 participants (axial and peripheral 

combined). Table 8 presents the results of the 1, 2, 3, and 4-class models, for both the 

linear and the quadratic functions. In reviewing the fit indicators and clinical utility, the 

3-class quadratic model for square-root percent interference was deemed optimal (AIC = 

2911.63, BIC = 2973.59, Entropy = 0.68, LMR-LRT = 46.12, p<0.01 vs. the 2-class 

model). The 3 trajectories were labeled according to the intercepts, slopes, and quadratic 

functions of the curves: Curve 1 = Rapid recovery (lowest intercept, full or near full 

recovery by 3 months, 34.9% of the sample); Curve 2 = Delayed recovery (higher 

intercept, near linear recovery through to 12 months, 19.2% of the sample); Curve 3 = 

Little or no recovery (higher intercept, slight downward curve at later follow-up but 

persistently high interference scores, 45.9% of the sample). 

 

Fit indicators for the pain severity outcome were optimal for a 2-trajectory quadratic 

model (AIC = 2935.51, BIC = 2983.58, Entropy = 0.79, LMR-LRT = 81.03, p<0.01).  

These were labeled: Curve 1 = Rapid recovery (lower intercept, recovery by 3 months 

with a flattened curve thereafter, 83.4% of the sample); and Curve 2 = Minimal or no 

recovery (higher intercept, persistent higher pain severity ratings at 12 months despite 

some improvement, 16.6% of the sample). While the inclusion of the quadratic term led 

to more meaningful model results for both the interference and pain outcomes, we had to 

constrain variance in that term to zero to achieve adequate convergence (essentially 

forcing each participant within a trajectory to have the same non-linear trajectory). 

Figures 3 (Percent Interference) and 4 (Pain Severity) present the trajectories graphically. 

Planned disaggregated analysis of axial vs peripheral injury yielded qualitatively similar 

trajectories with slight differences in proportions; where the axial injuries contained a 

higher proportion of Minimal or No Recovery and peripheral injuries contained a higher 

proportion of Rapid Recovery in accordance with our a priori hypotheses.  The 

similarities in these trajectories lend support to maintaining a combined injury model that 

incorporates both axial and peripheral injury.          
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3.4.3 Validation 

An RM ANOVA was performed with time as the repeated factor and ‘class assignment’ 

as the between-subjects factor.  The results demonstrate a significant main effect of group 

(F (2,231) = 517.14, p<0.01) and time (F (1,231) = 3779.41, p<0.01) for pain interference 

in the expected directions.  The interaction term between group and time was also 

significant (F (2,231) = 518.47, p<0.01).  Mean percent interference was significantly 

lower in Curve 1 (rapid recovery) than the other two, and was significantly higher in the 

Curve 3 (little or no recovery) than the other two. Tukey’s post-hoc revealed that mean 

interference was not different between the delayed and minimal recovery trajectories 

until the 3 month follow-up, supporting the label of ‘Delayed Recovery’ (p<0.01).  At 12 

month follow-up, Rapid and Delayed Recovery trajectories were not significantly 

different (p=0.07).  The same RM ANOVA analysis was also performed for pain 

severity.  As a 2-class combined injury model, there was significant main effect of group 

(F (1,227) = 357.93, p<0.01) and time (F (1,227) = 366.13, p<0.01).  There was also a 

significant interaction effect of group and time (F (1,227) = 302.68, p<0.01), with 

significant differences at each time point based on independent samples t-tests with 

Bonferroni correction (p<0.0125).  Mean severity was significantly lower in Curve 1 

(rapid recovery) than in Curve 2 (minimal/no recovery). Further, the predicted models 

appeared sound even despite any missing data as there were no significant differences 

between 6-month predicted and observed values (all p>0.40, Tables 10A and B).  

To better describe the relationship between trajectory and actual distal outcome, we first 

trichotomized the 12-month interference scores using simple thresholds informed by the 

nature of the data: those scoring 0-5% interference at 12 months were considered to be 

experiencing no clinically meaningful ongoing problems, those score 5-20% were 

considered to be experiencing mild ongoing problems, and those scoring over 20% were 

considered persistent and clinically relevant problems, in general accordance with widely 

accepted thresholds for NDI scores 45 (Table 10A and 10B). Owing to missing data by 12 

months, 184 complete datasets (76.3% of baseline) were available for this analysis. A 3 x 

3 cross-tabulation was established, shown in Table 10. No participants in the Rapid or 

Delayed interference recovery trajectories rated >20% interference at 12 months, though 

a combined 9 participants rated mild persistent problems. Similarly, only 1 participant 



63 

  

classed in the Minimal or No Recovery trajectory rated <5% interference at 12 months, 

while 56 (59.6% of those in that trajectory) rated 5-20% interference. These proportions 

indicated a clear distinction between the Rapid and Minimal or No Recovery trajectories 

in accordance with the labels given them, but some ambiguity in the middle trajectory 

and mild interference outcome.  With regard to pain severity, all of the participants in the 

Minimal or No Recovery trajectory reported persisting pain of at least 4/10 severity at 12 

months.  In the Rapid recovery trajectory, 74 participants (51.0% of the class) indicated 

having no pain (0 out of 10) at 12 months, however 71 participants (49.0%) indicated 

some degree of pain severity still present at 12 months (ranging from 1 to 3 out of 10).   

 

3.5 Discussion 

This study provides evidence for the general decrease in disability and pain intensity over 

the course of 12 months in a mixed adult population following non-catastrophic axial or 

peripheral trauma.  These dimensions appear to stabilize at approximately 3 months post-

injury.  Our results also suggest that classification of recovery following non-catastrophic 

injury is determined by both the intercept (baseline symptoms) and slope (relative rate of 

symptom decline).  This is in keeping with known associations between pain perception 

and the severity of future pain in both pediatric 46 and adult populations 47-49.   

In accordance with previous research by Sterling and colleagues 12, 50, we have identified 

3 distinct classes of recovery for axial injuries in disability/pain interference.  In addition, 

we have also demonstrated that these same recovery classes may also include perceived 

disability in peripheral injuries as our 3-class model was a mixed injury group, and 

disaggregated analyses showed qualitatively similar trajectories exist in both groups.  

With respect to pain interference, the majority of participants seemed to belong to the 

minimal/no recovery class (45.9%), however, the majority of our sample consisted of 

axial injuries (52.7% neck injuries and 9.1% lower back).  This may have resulted in a 

higher number of participants experiencing persistent interference from their pain.  This 

is in keeping with prior research that suggests a greater level of disability among axial 

injuries 40.  Pagé et al have also identified 3 predictive trajectories of pain intensity and 

disability in a study of over 1800 participants with mixed conditions enrolled in the 
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Quebec Pain Registry 51.  That registry however contains only those who have already 

been diagnosed with chronic pain and trajectories were based on recovery while in a 

multidisciplinary pain program.  Studies investigating the trajectories of post-operative 

pain have also identified 3 distinct groupings based on initial severity of symptoms 52, 53. 

Other studies investigating hip 54 and low back pain 55 recovery have identified 4- and 5-

class models, respectively.  However, in both studies, three categories of stable symptoms 

were always identified (low/mild, moderate persistent, and severe persistent); where 

additional classes were reflective of those who experienced fluctuating pain over the 

course of years.   

 

Based on our data, pain severity seemed to favor a 2-class model.  This differs from our 

3-class model of pain interference.  Although severity and interference are related, they 

are still considered separate constructs of pain measurement 21.  These dimensions can 

present differently such that it is possible to have a high level of pain intensity with a 

relatively low level of interference or disability 56.  Table 1 shows that 19.2 % of our 

participants scored over threshold for likely depression and 19.7% scored over threshold 

for likely PTSD at entry into the study.  Approximately 16.6% of participants were also 

placed into the minimal or no recovery group for pain severity upon conclusion of the 

study.  Although no conclusions can be drawn from these observations, chronic pain is 

often closely associated with a number of psychological disturbances including PTSD, 

depression, and anxiety 57, 58.  Whether or not these factors are linked in our study is up 

for debate, but the literature suggests that there is a connection between the changes in 

pain, depression, and anxiety over time.  Gerrits and colleagues have investigated this 

synchronicity by measuring longitudinal changes in these symptoms in more than 2000 

participants 59.  Over the course of 4 years, participants that had either a chronic or 

incident anxiety/depression diagnosis reported significantly higher pain compared to 

healthy controls.  The participants who were in remission from their depression or 

anxiety at follow-up reported decreased levels of pain compared to chronic cases but 

were still significantly higher than healthy counterparts 59.  From a psychosocial 

perspective, Bonanno and colleagues investigated the trajectories of depression following 

traumatic spinal cord injury over the course of 2 years 60.  They identified 2 stable classes 
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that emerge from the beginning with 2 additional classes that fluctuate over time.  Their 

results suggest that after 1 year there is a gradual trend toward the 2 stable classes 60.  

Psychological comorbidity is closely tied to the overall experience of pain.  

Radiofrequency neurotomy in whiplash patients has shown that general psychological 

distress detected upon intake was resolved with the successful post-operative resolution 

of pain symptoms 61.  Similarly, disability and pain intensity can be affected to some 

degree by the resolution of tissue damage; whereas PTSD and depression (relating to 

emotional reactivity) may be more closely associated with pre-existing and ongoing 

psychosocial factors. It has been shown in post-traumatic distress that the occurrence of 

an initial traumatic event can psychologically sensitize the brain to subsequent trauma 62, 

63; which may explain why those with higher symptom severity at intake, continued along 

an elevated trajectory.  More recently, Sterling and colleagues demonstrate a considerable 

agreement between trajectories of neck disability and post-traumatic distress.  They also 

assert that membership in the disability and PTSD groups are determined by similar 

factors 12.         

 

As table 10A and 10B suggest, our trajectories, while achieving acceptable fit to the data, 

still showed considerable inter-individual variation.  Even in those who are on a rapid or 

delayed recovery process, 4.86% still present with mild-moderate levels of pain 

interference and 49.0% present with pain severity greater than 0 at their 6-month 

outcome.  Our study population consists of many different types of MSK trauma and it is 

possible that this variety of traumatic injuries may be contributing to the variations in 

each recovery class.  It is more likely however that this variability is a product of 

inherent, inter-individual differences.  In a controlled environment with experimentally-

induced pain (i.e. the same noxious stimulus being applied to everyone), healthy 

participants can indicate anywhere between 2 to 9 out of 10 on the visual analog scale of 

pain measurement 64.  These ratings were also proportional to the amount of neurological 

activity recorded in the pre-frontal cortex (executive function), anterior cingulate cortex 

(emotional reaction to pain, goal setting), and the primary somatosensory cortex 

(incoming sensory information) 65.  This suggests that the variability is not simply an 

error involved with subjective reporting, but that it is indicative of actual neurological 
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differences in the experience of pain 64, 65.  Regardless of the mechanism of injury, the 

perception of pain is highly specific to the person.  Although we have demonstrated the 

emergence of distinct recovery classes in pain severity and interference, the information 

gleaned from these trajectories should be used with caution.  As we have shown, the 

recovery class alone is insufficient to capture individual variability and completely 

predict 6-month outcomes.  Both the pathway and the eventual outcome should be taken 

into consideration when defining recovery.       

 

A few limitations need to be taken into consideration.  The data used in the analysis were 

entirely generated via self-report for all constructs tested.  This creates the potential to 

overestimate symptom severity.  However, there is correlation between self-report and 

neural activity, and despite advances that have been made in pain neuroimaging, the most 

reliable measurement of pain over time in healthy individuals continues to be subjective 

self-report data 66.  The data itself were also compiled from two separate sites, one in 

Canada and one in the US, using constructs that were related but not identical.  Despite 

the high level of agreement between the constructs being used, the exclusive focus on 

non-catastrophic neck trauma in the Chicago cohort compared to the multi-region trauma 

in the London cohort will inevitably add variation within the data.  The use of two 

different scales for capturing pain-related interference between the two cohorts is 

definitely a limitation of this study, however both the NDI and the BPI interference 

subscale correlate strongly with standard measures of pain severity (NRS).  From 

previous work on recovery trajectories 54, 55, it is possible that additional classes do exist 

and that our study lacks the adequate power to detect these smaller, more labile classes.  

However, our findings are in agreement with other studies of similar design 12, 50, and 

although no strict guidelines exist for adequate sample size for growth curve modeling, it 

is suggested that at least 100 participants are required in order to avoid underreporting the 

“correct” number of classes 67.  Other classes may also represent smaller, more 

statistically uncommon proportions of the population which may not be as clinically 

relevant as the broader groups.          
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In conclusion, findings of previous groups of a 3-class recovery trajectory model were 

replicated in our more heterogeneous sample of non-catastrophic acute MSK trauma, 

though pain severity tended to favor a 2-class recovery model.  Graphical depiction of 

individual trajectories and crosstabulation of both recovery trajectory and 6-month 

outcome suggest a general agreement between course and state of recovery, though some 

symptom variability within each recovery class suggests that future researchers should 

consider both the trajectory and distal outcome when conducting longitudinal research.  

Recovery trajectories may help to guide prognosis and treatment but are insufficient on 

their own to dictate total recovery or eventual outcomes.     
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Table 7 – Participant characteristics 

Sex (% male) 
 
54.9% 

Cause (%) 
   Motor vehicle collision 
   Fall / Slip 
   Hit by person or object (not MVC) 
   Awkward lift or twist 
   Other 

 
50.5% 
14.2% 
9.4% 
8.0% 
17.9% 

Body Region Injured (%)1 

   Neck 
   Shoulder 
   Elbow 
   Wrist or Hand 
   Lower Back 
   Hip 
   Knee 
   Foot or Ankle 

 
52.7% 
9.1% 
3.6% 
15.5% 
9.1% 
2.3% 
8.6% 
16.4% 

Employment (%) 
   Full-Time 
   Part-Time 
   Off Work (temporary) 
   Not Employed for Pay 

 
58.8% 
14.9% 
2.6% 
23.7% 

Current Work Status (%) 
   Full Return 
   Partial Return 
   No Return 

 
56.6% 
25.4% 
18.0% 

Educational Attainment (%) 
   High School or Less 
   Community College or Trade School 
   University Undergraduate Degree 
   University Graduate Degree 
   Other 

 
25.0% 
31.9% 
29.3% 
12.1% 
1.7% 

Household Income 
   ≤$20,000 
  $21,000 - $80,000 
  $81,000 - $150,000 
  >$150,000 

 
7.1% 
45.1% 
36.3% 
11.5% 

Pre-Existing Pain (% yes)2 17.1% 

Continuous Variables 

Variable Mean (SD, range) 

Age (years) 39.7 (13.8, 18 to 66) 

Body Mass Index (kg/m2) 26.1 (5.4, 14.4 to 51.5) 

Post-Traumatic Distress (% of total score)3 19.7% (19.7%, 0 to 94) 

Depressive Symptoms (% of total score)4 19.2% (19.1%, 0 to 95) 

Pain Interference (% of total score)5 37.6% (21.0%, 0 to 96) 

Pain Severity (0-10 NRS) 4.6 (2.2, 0 to 10) 

1: The total proportions will exceed 100% as participants were free to choose more than one body region. 
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2: Pre-existing pain was identified by reviewing medication lists for any analgesic medication and co-morbidity lists for any pain-

related condition (e.g. fibromyalgia, osteoarthritis, repetitive strain injuries, neck or back pain, etc…). 

3: Post-Traumatic distress was captured using two different but related tools: The PTSD Checklist, The PTS Diagnosis Scale. Results 

have been reported as a percentage of total scale score. 

4: Depressive symptoms were captured using the depression subscale of the HADS (HADS-D) and the PHQ-9.  Results have been 

reported as a percentage of total scale score. 

5: Disability, or functional interference was captured using the interference subscales of the Neck Disability Inventory or the Brief 

Pain Inventory and have been reported as a percentage of total scale score.     
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Table 8 – Latent Growth Curve Analysis for pain severity and interference 

dimensions 

Model 

 

AIC BIC Entropy LMR-LRT adj (p) 

2-class Pain Severity 

 

2935.51 2983.58 0.79 81.03 (<0.01) 

3-class Pain Severity 

 

2927.64 2979.14 0.79 46.91 (0.21) 

4-class Pain Severity 

 

2911.76 2977.00 0.67 22.83 (0.53) 

     

2-class Pain Interference 

 

2952.30 3000.49 0.59 41.20 (<0.01) 

3-class Pain Interference 

 

2911.63 2973.59 0.68 46.12 (<0.01) 

4-class Pain Interference 

 

2874.52 2950.25 0.70 43.13 (0.09) 
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Table 9 – Counts and proportions for pain interference trajectory based on (A) Pain 

Interference % with 95% confidence intervals (axial and peripheral injuries) and 

(B) Pain severity scores (out of 10) with 95% confidence intervals (axial and 

peripheral injuries) 

A 

Trajectory N (%) Baseline*  

 

1-month*  3-month*  12-month* 

Rapid 34.9 4.68 (4.45, 4.91) 1.78 (1.62, 1.94) 0.27 (0.15, 0.38) 0.14 (0.05, 0.23) 

Delayed 19.2 6.59 (6.23, 6.95) 5.66 (5.36, 5.95) 3.63 (3.37, 3.89) 0.51 (0.24, 0.77) 

Minimal 45.9 6.39 (6.22, 6.56) 5.34 (5.19, 5.50) 4.69 (4.53, 4.85) 4.44 (4.25, 4.63) 

B 

Trajectory N (%) Baseline  

 

1-month  3-month  12-month  

Rapid 83.4 4.33 (4.15, 4.52) 2.99 (2.83, 3.15) 1.18 (1.06, 1.30) 0.65 (0.55, 0.75) 

Minimal 16.6 5.70 (5.24, 6.16) 5.42 (5.00, 5.84) 5.20 (4.84, 5.55) 5.67 (5.35, 5.99) 
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Table 10 – Cross-tabulation table of trajectory and 12-month BPI pain interference 

outcomes (A) and BPI pain severity outcomes (B) 

 A 

12-month 
outcome 

Rapid recovery 
(%) 

Delayed recovery 
(%) 

Minimal/No 
recovery (%) 

Total 

<5% interference 
(mild)  

53 (91.4%) 29 (87.9%) 1 (1.1%) 83 

5-20% interference 
(mild-moderate) 

5 (8.6%) 4 (12.1%) 56 (59.6%) 65 

>20% interference 
(moderate-high) 

0 (0.0%) 0 (0.0%) 37 (39.3%) 37 

Total 58 33 94 185 

 

B 

12-month outcome Rapid recovery (%) Minimal/No recovery (%) Total 

Pain = 0 75 (51.0%) 0 (0.0%) 75 

Pain > 0 72 (49.0%) 38 (100%) 110 

Total 147 38 185 
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Figure 3 – Recovery Trajectories for Pain Interference in Axial and Peripheral 

Injuries 

Graphical representation of a 3-class LGCA model of pain interference recovery for axial 

and peripheral injury over a 6-month follow-up period, where dashed lines indicate 95% 

confidence intervals for each class.  The x-axis denotes time and the y-axis denotes pain 

interference expressed as a percentage out of 100.  Rapid recovery (34.9%) is depicted as 

having a moderate intercept and rapidly declining slope.  Delayed recovery (19.2%) is 

depicted as having a high intercept and steadily declining slope.  Minimal or No 

Recovery (45.9%) is depicted as having a high intercept and minimally declining slope.     
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Figure 4 – Recovery Trajectories for Pain Severity for Axial and Peripheral Injuries 

Graphical representation of a 2-class LGCA model of pain severity recovery for axial and 

peripheral injury over a 6-month follow-up period, where dashed lines indicate 95% 

confidence intervals for each class.  The x-axis denotes time and the y-axis denotes their 

pain severity score out of 10.  Rapid recovery (83.4%) is depicted as having a moderate 

intercept and steadily declining slope.  Minimal or No Recovery (16.6%) is depicted as 

having a high intercept and minimal slope. 
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Chapter 4  

4 Latent profile analysis of blood marker phenotypes and 
their relationships with clinical pain and interference 
reports in people with acute musculoskeletal trauma 

4.1 Introduction 

Chronic pain represents a substantial burden on patients and health systems, due in part to 

its complexity and resistance to traditional medical and pharmaceutical treatments 1.  

While progress in interdisciplinary care strategies has been made, effective pain 

management remains a unique challenge 2.  With chronic pain becoming a problem of 

epidemic proportions 3, healthcare researchers and providers have turned their attention 

towards the identification of mechanisms for early detection and intervention 4, 5.   

 

Longitudinal modeling studies in both clinical 6 and population-level 7 samples have 

identified trajectories of pain and recovery that most commonly indicate 15-25% of 

participants report long-term, chronic or persistent pain and functional interference after 

musculoskeletal trauma seemingly regardless of the body region affected 6, 8-11. In a prior 

study (see chapter 2) we identified a 3-trajectory model of functional recovery from 

musculoskeletal (MSK) trauma representing trajectories of rapid recovery (32.0% of the 

sample), delayed recovery (26.7%), and minimal or no recovery (41.3%). Of note is that 

Sterling and colleagues followed post-traumatic stress outcomes and also found a 

qualitatively-similar 3-trajectory model as the best fit to the data. The identification of 

consistent recovery trajectories provides new opportunities to characterize predictive 

mechanisms.  

 

Advances in research and technology has led to the re-emergence of a search for 

biomarkers that may explain the onset or persistence of pain, though these have moved 

from traditional approaches such as static structural imaging to more dynamic ‘omics’ 

approaches (e.g. genomics, transcriptomics, proteomics, metabolomics). The results of 

such work has been mixed though evidence is mounting that dysfunction in some aspect 
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of the omics cascade may represent a valuable biomarker of acute or chronic pain.  In a 

recent review of biomarkers of low back pain (LBP) 12, inflammatory mediators such as 

high sensitivity C-reactive protein (hsCRP), tumor necrosis factor alpha (TNF-α), and 

interleukin 6 (IL-6) were identified as having a potential role in the acute phase of LBP.  

In the chronic phase Li et al 13 found that IL-10 was decreased while IL-6 was increased 

in people with low back pain compared to matched controls.  Conversely, Klyne et al 14 

showed that IL-6 levels do not significantly differ between those with low back pain and 

controls.  They did, however, report a significant difference in IL-6 within the low back 

pain group between those reporting high levels of pain and those reporting low levels of 

pain.  These studies suggest that there may be value in exploring blood-based proteins as 

markers of distress and/or pain but that simple bivariate associations may not yield 

consistent results.   

 

The purpose of this study was to explore a theoretical position that 8 previously-

identified blood-based protein/hormone biomarkers will explore meaningful variance in 

pain-related outcomes after trauma but only when considered as clusters rather than 

single bivariate associations. A secondary outcome was to explore the utility of the 

biomarker clusters for predicting previously-derived clinical recovery trajectories.  

 

4.2 Methods 

Data from this observational cohort study were drawn from the longitudinal SYMBIOME 

(Systematic Merging of Biology, Mental Health and Environment) databanking study 

(clinicaltrials.gov ID no. NCT02711085). The study was approved by the office of 

Human Research Ethics at Western University and the Lawson Health Research Institute, 

and written, informed consent was obtained from all participants. Eligible participants 

were identified by emergency or acute-care clinicians from an urgent care centre in 

London, ON, Canada.  After being medically discharged, a member of the research team 

described the study, answered questions, enrolled and screened potential participants 

prior to leaving the hospital. Two samples of antecubital blood were drawn into 4mL K2 

EDTA BD vacutainer tubes by a trained phlebotomist and immediately stored on ice for 
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transfer and storage at an immunity and proteomics lab. Prior to freezing the samples 

were centrifuged for 10 minutes at 2000 x g, had plasma pipetted into up to 6 x 50μL 

aliquots, and then both supernatant and pellet were stored at -80°C.  

Participants were concurrently provided a package of self-report questionnaires that 

included demographic metadata (age, sex, education level, work status, household 

income, pre-existing pathology, BMI, and region of injury) and pain intensity and 

functional interference through the Brief Pain Inventory 15.  All participants provided 

informed, written consent prior to participation. 

 

Follow-up occurred at 1, 2, 3, 6 and 12 months from injury, with the biological samples 

collected at baseline, 3, 6 and 12 months only. Participants were paid up to $300 in total 

compensation for participation. For the purposes of this study, only the baseline blood 

samples were analysed and interpreted for biomarker classes, and owing to attrition 

recovery up to the 6-month follow-up was used as the final end point.  Functional 

recovery was measured using the pain and interference subscales of the BPI. The BPI is 

one of the most widely used pain-interference scales globally 16 and has adequate 

evidence of validity across many clinical populations including musculoskeletal pain 17.  

 

4.2.1 Analysis of serum biomarkers  

The target markers for this analysis were those shown previously to be associated with 

pain, distress, or inflammation 18-24.  Through a collaborative consultative process, eight 

markers were specifically chosen: Brain-Derived Neurotrophic Factor (BDNF), 

Transforming Growth Factor-beta 1 (TGFβ1), C-reactive protein (CRP), Tumour 

Necrosis Factor-alpha (TNF-α), Interleukins 1-beta (IL-1β), 6 (IL-6) and 10 (IL-10), and 

the stress hormone cortisol.  Analyte concentrations in plasma were assayed using 

multiplexed biomarker immunoassay kits according to manufacturers’ instruction for 

Brain Derived Neurotrophic Factor (Human Premixed Multi-Analyte Kit, R&D Systems 

Inc. cat. no. LXSAHM), Transforming Growth Factor-Beta 1 (TGFΒ1 Single Plex Magnetic 

Bead Kit, EMD Millipore cat. no. TGFΒ1MAG-64K-01), Interleukins 1-β, 6, and 10 and 

TNF-α (Human High Sensitivity T Cell Magnetic Bead Panel Multiplex Kit, EMD Millipore 
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cat. no. HSTCMAG-28SK).  A BioPlexTM 200 readout System was used (Bio-Rad 

Laboratories, Hercules, CA), that uses Luminex® xMAPTM fluorescent bead-based 

technology (Luminex Corp., Austin, TX). Levels were automatically calculated from 

standard curves using Bio-Plex Manager software (v.4.1.1, Bio-Rad).  Cortisol (Cortisol 

Enzyme Immunoassay Kit, Arbor Assays cat. no. K003-H1/H5), and C-Reactive Protein (C-

Reactive Protein (human) ELISA Kit, Cayman Chemical Company cat. no. 10011236) were 

assayed following industry-standard approaches for Enzyme-Linked Immunosorbant 

assay (ELISA). All assays were performed in duplicate with the value for analysis being 

the mean concentration of the two runs. 

 

4.3 Analysis 

Participant characteristics were summarized descriptively (means and distributions or 

proportions). 

 

4.3.1 Pre-analysis of analytes  

Prior to primary analyses we explored the distribution of the data both qualitatively and 

statistically. Concentrations of all 8 analytes were significantly positively skewed and in 

violation of normality via Kolmogorov-Smirnov tests. High outliers (>4SD above the 

mean) or those for which the assay resulted in non-detectable (too low or too high) 

concentrations were first removed. All concentrations were then square-root transformed 

to reduce skewness, and then Z-transformed to place all concentrations on the same scale 

with a mean of 0.0 and standard deviation of 1.0.   

 

4.3.2 Bivariate associations 

A matrix of all cross-product Pearson correlations between the 8 markers was created as 

an exploratory step and to identify potential problems with collinearity in cluster analysis 

(r > 0.80). There was no statistical correction for multiple comparisons, accepting the 
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potential for alpha error rather than prematurely rejecting potentially important findings 

at this exploratory stage.  

 

4.3.3 Profile Analysis  

Meaningful clusters in the data were identified with maximum likelihood estimation 

(MLE)-based latent profile analysis (LPA) as previously described 25 using MPlus 

software v6.12 (Muthen and Muthen, Los Angeles, USA).  Using all 8 target biomarkers, 

a series of models were constructed, starting with a single profile (termed ‘class’) and 

increasing until model fit no longer improved in a meaningful way, the LPA estimation 

could no longer derive a mathematically definable model, one of the latent classes 

possessed fewer than 10% of participants, or the class structure did not make clinical 

sense. The fit indicators of interest were the Akaike Information Criterion (AIC) 26-28, the 

Bayesian Information Criterion (BIC) 26-28, entropy 27, and the adjusted Lo-Mendell-

Rubin likelihood ratio test (LMR-LRT)26, 28 while considering solutions that provide 

generally strong posterior classification probabilities (ideally ≥0.85). While no set criteria 

exist for deeming model fit acceptable 28, the cluster solution that provides the lowest 

AIC and BIC and the highest entropy value (acceptably >0.70, ideally >0.80) that also 

conforms to theory is generally considered optimal 29. The LMR-LRT is used to 

statistically compare the fit of the k cluster solution with that of the k-1 class solution. 

When fit no longer statistically improves (p>0.05) with the addition of a new class, the 

solution with the smaller number of classes is generally accepted 28, 30. 

 

In the interest of parsimony, once an overall class solution was determined biomarkers 

were then systematically eliminated to obtain the simplest discriminatory model. To start, 

mean differences in square-root transformed marker concentration were explored across 

the identified classes using one-way analysis of variance (ANOVA). The marker with the 

smallest interclass differences was eliminated first, followed by the next smallest, and so 

on until the simplest model remained that still showed good fit indicators in LPA. The 

intention was that each of the blood markers defining the final class solution should show 

a significant difference between the groups. 
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4.3.4 Recovery and outcome analysis 

After LPA each participant was assigned to one of the identified classes based on relative 

blood marker concentration. Pain-related 12-month outcome data was trichotomized for 

pain interference (<5% mild interference, 5-20% moderate interference, >20% severe 

interference) and dichotomized for pain severity (pain = 0, pain > 0).  Biomarker classes 

were then compared against these pain-related outcome groups using χ2 analysis.   

 

4.3.5 Sample size estimation 

There is little guidance in the literature for optimal sample size in MLE-based LPA. Prior 

to the exploratory analyses described herein there was also no clear existing evidence to 

inform the likely number of clusters or the relative proportions or communalities to assist 

with sample estimation. Therefore we adopted the general position in the field that a 

minimum of 100 samples is a minimum for meaningful results, and continued to position 

the analyses as discovery (exploratory) in nature, that is, hypothesis-generating rather 

than hypothesis-testing.  

 

4.4 Results 

Table 11 provides the characteristics of the study population.  There were 109 

participants in the SYMBIOME database who provided blood samples within 3 weeks of 

MSK trauma. After assay, data for 3 participants were removed as all analytes were not 

detectable or out of range of the kits. Mean age of the remaining n=106 was 44.6 years 

and 58.5% of the sample was female.  The modal mechanism of injury was reported as 

‘other’ and 74.3% of the sample reported the primary region of injury as the upper or 

lower extremity (vs. the axial spine). Pain severity and interference at inception was 

moderate (Mean Severity = 4.5/10, SD = 2.0; Mean Interference = 28.6/70, SD = 16.8).  
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Table 12 is the cross-product correlation matrix between all biomarker pairs after 

removal of outliers and square root transformation.  BDNF and TGF-β1 demonstrated the 

strongest association (r = 0.74, p<0.01).  Cortisol and CRP did not appear to be 

associated with any other biomarker while IL-6 and IL-1β were significantly correlated 

with all markers except those two. 

 

Table 13 shows the results of the LPA models with associated fit indicators for the 

models tested.  The final class solution was a 3-class model as it showed a meaningful 

improvement over a 2-class solution based on relevant fit indicators (AIC = 2257.31, BIC 

= 2348.82, Entropy = 0.83, LMR-LRT = 28.08, p=0.08).  Figure 5 show the relative 

concentrations of all 8 markers in the 3 class model. After settling on the 3-class model, 

analytes were removed in a systematic fashion based on total interclass differences.  CRP 

(F(2,108) = 0.14, p=0.87) and cortisol (F(2,108) = 2.34, p=0.10) displayed the smallest 

interclass mean differences (Fig.1) and were eliminated first.  Table 13 also shows the 

model fit adjustment of the 3-class latent profile solution with the sequential elimination 

of biomarkers.  TNF-α (F(2,108) = 10.65, p<0.01), IL-6 (F(2,108) = 11.40, p<0.01), and 

IL-10 were also removed, in that order, each time retesting model fit and posterior 

classification probabilities. The remaining 3 markers were BDNF, TGFβ1 and IL-1β. 

BDNF and TGFβ1 were both discriminative across the 3 classes, while IL-1β provided 

improved discrimination between the two lower concentration classes. The decision to 

retain IL-1β despite acceptable model fit is described in the discussion section. The final 

model indicated a 3-class solution that could be adequately described by 3 of the 8 

markers (AIC = 827.41, BIC = 865.09, Entropy = 0.80, LMR-LRT = 34.08, p=0.03). The 

3 classes were labeled according to the relative concentrations of the 3 markers as: Class 

1 = Low concentration of all markers (33.9% of the sample), Class 2 = Average 

Concentration of all markers (47.7%), and Class 3 = High concentration of BDNF and 

TGFβ1 (18.3%). Figure 6 shows relative (Z-transformed) concentrations graphically and 

Table 14 shows the raw (non-transformed) values with 95% confidence intervals. 

 

With each participant assigned to the most likely biomarker class based on posterior 

probabilities, the sample was split into 3 groups. BPI Pain Severity and Pain Interference 
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scores captured at 6-month follow-up were compared across groups using chi-square 

analysis. Table 15 shows the frequencies of the final biomarker classes across relevant 

recovery outcomes of pain interference/disability (Table 15A) and severity (Table 15B).  

The majority of participants seemed to recover from their injuries with respect to both 

pain disability (75.5%) and severity (62.4%).  In Table 15A, both mild and moderate 

interference contain a small minority of participants that show high BDNF/TGF-β1 

(13.8% and 14.3%, respectively).  Those with severe, persisting disability however, 

display an increased trend (40%) towards high BDNF/TGF-β1 (χ2 = 5.85, df = 2, p = 

0.06, Fisher’s exact test).    Similarly in Table 15B, those with persisting pain at 12 

months (pain > 0) have a greater proportion of high BDNF/TGF-β1 (26.3%) compared to 

those who have no pain (10.3%) at 12 months (χ2 = 3.86, df = 1, p = 0.049).              

 

4.5 Discussion 

We have presented a first step towards derivation of a potentially useful panel of 

immunological, neurotrophic, and endocrine markers assayed from serum for use in post-

traumatic pain research. Through a multi-step approach to latent profile analysis, a 3-

class solution was identified that could be adequately described by 3 of 8 markers: 

BDNF, TGFβ1 and IL-1β, though at least two other markers (IL-6 and IL-10) also 

showed some significant discriminative accuracy between the classes. Further, 

participants assigned to the class representing the highest mean BDNF and TGFβ1 

concentrations also tended to rate higher on self-rated scales of pain-related functional 

interference when measured 12 months post-trauma.  Although the difference between 

pain interference groups was non-significant from a traditional standpoint, it would be 

premature to dismiss these findings considering a similar result in pain severity and the 

exploratory nature of this study.   

 

As shown in Figures 1 and 2, an argument could have been made for removing IL-1β 

from the final model and retaining only TGFβ1 and BDNF, though the strong correlation 

between these two markers (Table 12) led us to retain a third marker for better 

discriminative accuracy between Class 1 and Class 2, and to allow greater opportunities 
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for exploration of potential mechanisms behind the biomarker/clinical outcome 

associations found here. Both IL-10 and IL-6, and to a lesser extent TNF-α, could also 

have been retained as they too discriminated between the two lower concentration 

classes, but IL-1β provided the greatest discriminative accuracy (largest between-class 

mean difference) and was therefore chosen as the third marker. To our knowledge this is 

the first time that these 3 markers, arguably up to 6 markers, have been shown to interact 

as a panel that may have clinical utility if the findings can be replicated in an independent 

sample. It is notable that the only two markers that showed no between-class differences 

(CRP and Cortisol) were also those that showed no meaningful association with any of 

the other 6 markers (Table 12). This should not be mistaken as indicating that these 

markers are unimportant in research into pain and trauma, rather that through cluster 

analysis they did not contribute important explanatory utility to the classes identified 

herein. 

 

BDNF is a small peptide that is involved in myriad functions related to survival, growth 

and plasticity of neurons and it acts as a key regulator of learning and memory 31.  It 

carries out this activity by binding to its receptor tyrosine kinase B (TrkB) and activating 

signalling cascades involved in gene transcription for proteins of stress and plasticity 31-

33.  TGF-β1 is a ubiquitous, pleiotropic cytokine that, along with its immunomodulatory 

function, is involved in cell growth, development, angiogenesis, and wound healing 34.  

TGF-β1 has been shown to play a role in the long-term facilitation of neuronal activity 

and transmission 35.  Both BDNF and TGF-β1 do not seem to display any significant 

short term effects on sensory neurons, but they appear to have a role in facilitating long-

term signaling by affecting new growth at sensory neuron synapses 35, 36.  With regard to 

pain, Sikandar and colleagues have demonstrated that primary afferent-derived BDNF 

may be involved in the transition from acute to chronic pain.  By applying an 

inflammatory stimulus to mice, they showed that conditional BDNF knockout mice do 

not develop an ongoing mechanical hyperalgesia 24.  Similarly, Richner and colleagues 

have shown that BDNF, via TrkB receptors, can reduce inhibition at the spinal dorsal 

horn by downregulating the expression of a protein known as KCC2 37.  By inhibiting this 

BDNF-regulated pathway, they were able to prevent the decrease of KCC2 and impair 
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mechanical allodynia.  TGF-β1, with its ability to suppress immune activity and promote 

endogenous opioid signaling, appears to have a protective effect against the development 

of chronic neuropathic pain 38.  The association between BDNF and TGF-β1 appears to 

have prior empirical support, at least in animal models. Sometani et al have shown that 

TGF-β1 administered to cortical neurons of the rat increases BDNF and TrkB expression, 

suggesting that BDNF may require TGF-β1 in order to carry out its neurotrophic effects 

39.  Both BDNF and TGF-β1 also appear to regulate the Gadd45 family of enzymes 

which have been implicated in psychiatric diseases 40.  Although it is unclear in what 

capacity BDNF and TGF-β1 are exerting their influence in persistent disability and pain 

in humans, their association is at least biologically plausible.   

 

Despite the significance of BDNF and TGF-β1, at this early stage of research it is advised 

that future studies consider incorporating all of the biomarkers explored here.   Cytokines 

often act synergistically such that their effectiveness is substantially increased when 

working in concert with one another 41.  Together they can affect multiple systems 

through peripheral and central crosstalk mechanisms to influence immune, endocrine and 

neuronal functioning 42, 43.  For example, prior work by Sterling and colleagues 

demonstrated a potential role for both TNF-α and CRP, wherein the latter appeared to 

show some discriminative accuracy in identifying those with more severe symptoms 

following whiplash injury 44.  Additionally, Li et al 13 and Klyne et al 14 found that IL-6 

may also be involved in discriminating between control and low back pain, and within 

low back pain groups, respectively.   

 

The effects in our study may be related to the simultaneous consideration of multiple 

markers in the same class. Many prior studies, including a recent companion manuscript 

from the same dataset (see chapter 1), we showed that in isolation none of the 8 markers 

explored here were associated with clinical pain or interference levels, though several 

potential moderating effects of psychosocial variables were identified. We believe 

however that it is the multivariate cluster nature of the results from this latent profile 

analysis that will prove more valuable. In the same way that a single genetic 

polymorphism is unlikely to explain important variance in a clinical outcome but gene x 



94 

  

gene interactions are more likely, the expression of certain proteins, at certain levels, in 

the same person appears as though it may be a more fruitful direction for exploration. In 

exploring this hypothesis we are working at the ‘proteomics’ level of the ‘omics’ cascade, 

downstream from genomic and transcriptomic processes but upstream from 

metabolomics. Future research directions could use these results and then move along 

that cascade in either direction to further explain these findings. It is important to reiterate 

that this has been considered exploratory research and needs replication, and that despite 

some biological plausibility, association is not causation. 

 

There are some important limitations of this study to consider.  First, blood was drawn 

using venipuncture which may involve increased anxiety for some.  All participants were 

notified at screening and prior to consent of the requirement for repeated blood draws 

which may have been sufficient to eliminate those with needle-based anxieties.  Second, 

blood was drawn as participants presented to the urgent care centre regardless of the time 

of day.  This allowed for a more accurate “baseline” sample to be taken as close to the 

time of trauma as possible, but it does not take into account the known diurnal variations 

in some of these biomarkers, specifically cortisol 45 and CRP 46.  If sample collection had 

occurred at the same time each day, this may have shown a greater overall effect of the 8 

biomarker model.  Lastly, as this was an exploratory study, we have not attempted to 

build more complex multivariate models, including for example sex, age, or 

psychological distress. Our prior work supports the notion that the associations shown 

here may be moderated by other important person-level variables that require larger 

datasets to properly explore.  This represents an important step for future studies as 

analyzing biomarker concentrations in isolation may be an oversimplification of their role 

in persistent pain.      

 

In conclusion, we have presented an exploratory study of immune, neurotrophic and 

endocrine biomarkers in a population of people in the acute stage of non-catastrophic 

musculoskeletal trauma using latent profile analysis.  Our results show that a 3-class 

profile solution appears to be the most statistically sound.  Interestingly 6 out the 8 

biomarkers showed some potential to discriminate between different classes, with cortisol 
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and CRP being the only exceptions.  Classes were organized based on increasing serum 

biomarker concentration where the third class was characterized by high BDNF/TGF-β1.  

Although recovered populations are not significantly different in their levels of BDNF 

and TGF-β1, those who experience persisting disability or pain are more likely to have 

higher levels in serum.  These findings, if used in combination with other self-report 

measures of pain and distress, may provide a simple biopsychosocial approach to 

phenotyping pain in a clinical population.     
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Table 11 – Characteristics and baseline values of SYMBIOME participants in this 

analysis 

N = 109  

Sex (% female) 58.5% 

Age (mean, range) 44.6 years (18 to 66) 

BMI (mean, range) 26.4 kg/m2 (14.4 to 51.5) 

Primary Region of Injury (%) 

   Axial 

   Extremity 

 

25.7% 

74.3% 

Mechanism of injury (%) 

   Motor vehicle injury 

   Fall 

   Hit by person or object 

   Awkward lift or twist 

   Other 

 

7.1% 

28.6% 

19.4% 

14.3% 

30.6% 

Brief Pain Inventory at Inception (mean, range) 

   Pain Severity (/10) 

   Pain Interference (/70) 

 

4.5 (0 to 8) 

28.6 (0 to 67) 
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Table 12 – Cross-product correlation matrix of all 8 analytes (Pearson’s r) after 

square-root transformation 

 IL-6 IL-10 TNF-α TGF-β1 BDNF CRP Cortisol 

IL-1β  0.47** 0.53** 0.42** 0.34** 0.31** 0.03 -0.06 

IL-6  0.47** 0.34** 0.25* 0.21* -0.01 0.01 

IL-10   0.42** 0.19* 0.17 -0.09 -0.10 

TNF-α    -0.01 0.18 0.02 0.11 

TGF-β1     0.74** -0.16 0.11 

BDNF      -0.01 0.16 

CRP       -0.05 

*: correlation is significant at the p<0.05 level, **: correlation is significant at the p<0.01 level. 

Biomarkers: Brain-Derived Neurotrophic Factor (BDNF), Transforming Growth Factor-beta 1 (TGF-β1), 

C-reactive protein (CRP), Tumour Necrosis Factor-alpha (TNF-α), Interleukins 1-beta (IL-1β), 6 (IL-6) and 

10 (IL-10), and cortisol.   
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Table 13 – Fit Indicators for latent profile analysis and class assignment 

 AIC BIC Entropy LMR-LRT (p) 

2 class 2298.77 2366.06 0.78 90.80 (0.07) 

3 class 2257.31 2348.82 0.83 58.08 (0.08) 

4 class 2231.06 2346.79 0.89 43.23 (0.30) 

 

3 class (- CRP) 1986.71 2067.45 0.83 57.81 (0.058) 

3 class (- cortisol) 1678.22 1748.20 0.82 56.22 (0.054) 

3 class (- TNFα) 1384.94 1444.15 0.81 47.06 (0.053) 

3 class (- IL6) 1121.54 1169.99 0.80 39.44 (0.029) 

3 class (- IL10) 827.41 865.09 0.80 34.08 (0.033) 

3 class (- IL1β) 539.24 566.16 0.81 27.44 (0.025) 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Entropy and Lo-Mendull-

Rubin Adjusted Likelihood Ratio Test (LMR-LRT).  Values highlighted in BOLD indicate the preferred 

class for analysis.  Biomarkers: Brain-Derived Neurotrophic Factor (BDNF), Transforming Growth Factor-

beta 1 (TGF-β1), C-reactive protein (CRP), Tumour Necrosis Factor-alpha (TNF-α), Interleukins 1-beta 

(IL-1β), 6 (IL-6) and 10 (IL-10), and cortisol.   
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Table 14 – Mean (raw, untransformed) concentrations of the analytes across the 3 

classes identified through LPA 

 Overall mean (95%CI) Class 1 (n = 42) Class 2 (n = 47) Class 3 (n = 20) F (p) 

IL-1β  

(pg/mL)  

2.71 (2.43, 2.99) 1.32 (1.07, 1.58) 3.46 (3.14, 3.77) 3.19 (2.52, 3.87) 19.75  

(<0.01) 1 

BDNF  

(ng/mL)  

3.55 (3.00, 4.09) 1.78 (1.22, 2.34) 3.08 (2.71, 3.46) 8.65 (7.51, 9.80) 182.92  

(<0.01) 2 

TGF-β1  

(ng/mL)  

24.45 (21.11, 27.79) 16.96 (12.22, 21.70) 21.78 (19.02, 24.54) 46.67 (35.74, 57.60) 67.14  

(<0.01) 2 

IL-10 

(pg/mL) 

21.12 (18.08, 24.16) 15.7 (11.9, 19.5) 23.1 (18.5, 27.7) 27.8 (18.2, 37.4) 6.06  

(<0.01)1 

IL-6 

(pg/mL) 

92.17 (80.05, 104.29) 70.1 (56.9, 83.2) 101.9 (81.5, 122.2) 115.6 (80.3, 150.8) 4.81  

(0.01)1 

TNF-α 

(pg/mL) 

5.61 (5.08, 6.13) 4.9 (3.9, 5.8) 6.0 (5.4, 6.7) 6.1 (4.6, 7.5) 2.77  

(0.07) 

CRP  

(mg/L) 

3.34 (2.65, 4.01) 3.22 (2.24, 4.21) 3.36 (2.29, 4.44) 3.48 (1.41, 5.54) 0.00  

(1.00) 

Cortisol 

(μg/dL) 

12.04 (10.58, 13.49) 10.44 (8.65, 12.22) 13.42 (10.75, 16.08) 12.05 (8.68, 15.43) 1.99  

(0.14) 

1: The mean concentration was significantly lower in Class 1 compared to the other two groups. 2: The 

mean concentrations of both BDNF and TGF-β1 were significantly different across all 3 groups. Statistical 

tests were one-way ANOVA with Tukey’s post-hoc test using square-root transformed data to reduce 

deviations from normality. BOLD are the 3 markers retained in the final model solution.  Biomarkers: 

Brain-Derived Neurotrophic Factor (BDNF), Transforming Growth Factor-beta 1 (TGF-β1), C-reactive 

protein (CRP), Tumour Necrosis Factor-alpha (TNF-α), Interleukins 1-beta (IL-1β), 6 (IL-6) and 10 (IL-

10), and cortisol.   
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Table 15 – Crosstabulation of biomarker classes with 6-month outcomes in pain 

interference (A) and severity (B)  

A 

BPI Pain Interference Low-Mod BDNF/TGF-
β1  

High BDNF/TGF-β1 Total  

Mild interference (<5%) 69 11 80 

Mod Interference (5-20%) 18 3 21 

Severe Interference (>20%) 2 3 5 

Total  89 17 106 

 

B 

BPI Pain Severity  Low-Mod BDNF/ TGF-
β1 

High BDNF/TGF-β1 Total  

No Pain (Pain = 0) 61 7 68 

Persisting Pain (Pain > 0) 28 10 38 

Total  89 17  106 
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Figure 5 – Graphical representation of the 3-class latent profile solution along with 

the frequencies of each class.   

 

All 8 target markers presented in a 3-class profile solution were labeled accordingly: Class 1 = 

Low concentration of all markers (32.8% of the sample), Class 2 = Average Concentration of all 

markers (49.0%), Class 3 = High Concentration of BDNF and TGF-β1 (18.2%). Relative 

concentration represents z-transformed values.  Biomarkers: Brain-Derived Neurotrophic Factor 

(BDNF), Transforming Growth Factor-beta 1 (TGFβ1), C-reactive protein (CRP), Tumour 

Necrosis Factor-alpha (TNF-α), Interleukins 1-beta (IL-1β), 6 (IL-6) and 10 (IL-10), and cortisol.   
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Figure 6 – Graphical representation of the 3-class latent profile solution adequately 

described by 3 of the 8 markers.   

 

Classes were labelled accordingly: Class 1 = Low concentration of all markers (41.5% of the 

sample), Class 2 = Average Concentration of all markers (42.4%), and Class 3 = High 

concentration of BDNF and TGF-β1 (16.1%). Relative concentration represents z-transformed 

values.  Biomarkers: Interleukin-1β (IL-1β), Brain-Derived Neurotrophic Factor (BDNF), and 

Transforming Growth Factor β1 (TGF-β1).     
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Chapter 5  

5 Summary 

In an essay entitled “Meditation in a toolshed”1, author C.S. Lewis describes standing 

inside a shed and observing a beam of sunlight that has entered through a crack in the 

doorway.  Standing beside the doorway, only the beam itself is visible inside the 

darkened space with specks of dust illuminated along its path.  When he steps into the 

path of the beam however, and looks along the light through the crack in the door, he sees 

the tree outside, the sky, and the sun far off in the distance.  These are two very different 

experiences that result in separate conclusions.  He uses this example to illustrate the 

difference between “looking at” and “looking along”, while making the comparison 

between objective and subjective experience.  But which one represents the truth?  Lewis 

argues that both perspectives are essential to understanding the greater questions of 

human existence.      

The idea of addressing things in a holistic fashion is certainly not a new one.  Lewis’ 

essay was first published in 1970, and though it spoke to questions of a more 

transcendental nature, the underlying concept was also beginning to emerge in the 

medical field.  Engel first proposed the biopsychosocial model as an alternative to the 

biomedical model in 1977; where Engel outlines the importance of considering the whole 

individual rather than giving automatic preference to the objectivity of a medical expert2.  

Even Melzack’s neuromatrix model3, upon which this dissertation is conceptually based, 

is now almost three decades old.  Yet chronic pain remains a prevalent issue in our 

society with no single solution, which emphasizes both its universality and subjectivity.  

The purpose of this dissertation was to introduce only the initial phase of the 

SYMBIOME project, whose overarching goal is to reconcile the biological, 

psychological and social dimensions of the experience we know as pain.  These chapters 

represent the first of our attempts to combine the perspectives of “looking at” and 

“looking along” musculoskeletal pain in an effort to better understand this very 

intersectional problem.   
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Chapter 2 demonstrates the results of a wide-ranging moderator analysis in the context of 

functional outcomes (pain interference and pain severity).  Taking psychological and 

social moderators into consideration has an effect on the relationships between 

biomarkers and pain.  In relation to pain severity, TNF-α, TGF-β1, and CRP were 

moderated by the effects of employment prior to trauma, pre-existing psychopathology, 

and biological sex, respectively.  In relation to pain interference, IL-1β, cortisol, TGF-β1, 

CRP, and IL-6 were moderated by the effects of pre-existing pain conditions, peri-

traumatic fear, the region of injury (axial vs peripheral), and peri-traumatic stress.  These 

results support the claim that physiological factors are tied to pain through more than 

simple bivariate relationships.  The context of the musculoskeletal trauma, both the 

personal and social context, can affect the behavior of biological systems.  The greater 

implication of this work is that it advocates for a comprehensive phenotyping when 

dealing with pain, as opposed to the simple presence or absence of inflammatory 

regulators as can be done with certain arthritic conditions.          

Chapter 3 demonstrates the results of latent growth curve analysis in determining the 

recovery trajectories of acute non-catastrophic musculoskeletal pain in the context of pain 

interference and severity over the course of 12 months from the time of the initial trauma.  

With pain interference as the relevant outcome, 3 distinct trajectories emerged wherein 

people would either rapidly recover, have a delayed recovery (but still reach full recovery 

by 12 months), or experience minimal to no recovery at all.  Pain severity favored a 2-

trajectory model with rapid recovery or minimal to no recovery.  The classification of 

recovery group depended on both the initial baseline symptoms and the relative rate of 

symptom decline.  Both recovery outcomes appeared to stabilize after a period of 3 

months.  The implications of this work are that recovery cannot adequately be measured 

by initial symptom severity alone.  Recovery trajectories may help guide prognostication 

efforts but it is recommended that they be used in association with other measures.  

Future longitudinal research may wish to consider both the recovery trajectory and distal 

outcomes together in order to develop accurate groupings or classes.   

Chapter 4 demonstrates the results of latent class analysis and growth mixture modeling 

when applied to relevant biomarkers of pain.  This chapter presents the initial derivation 
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of a panel of 8 biomarkers (TNF-α, IL-1β, IL-6, CRP, IL-10, cortisol, BDNF, and TGF-

β1) that may have the potential to discriminate between functional recovery outcomes.  

Using this panel of immune, neurotrophic and endocrine regulators, 3 meaningful groups 

or classes were identified.  These groups could be adequately defined by using only 3 of 

the 8 markers (IL-1β, BDNF, and TGF-β1) where classes were organized by low 

concentration of markers in serum, average concentration, or high concentration of 

BDNF and TGF-β1.  Participants assigned to the high concentration class at baseline 

were more likely to score higher on self-report measures of pain and disability in their 6-

month outcomes.  These results suggest that biomarkers of immune, nervous and 

endocrine function may provide a useful prognostic tool of persistent symptoms when 

used in combination with other measures of pain in the context of acute musculoskeletal 

trauma.             

A clinical summary of this work suggests that person-level variables such as pre-existing 

psychological conditions, employment status, and sex may play a role in the perceived 

severity of pain.  However, pre-existing pain conditions, the location of trauma (spinal vs 

peripheral), and presence of fear or stress at the time of trauma may be more relevant to 

one’s perceived disability.  Unlike what has been suggested in previous literature, initial 

symptom severity alone may not be adequate to predict long-term outcomes.  Although 

people who rapidly recover will likely have lower levels of initial severity or disability, it 

is still possible to experience a full recovery with higher baseline symptoms.  These 

individuals (as indicated by the “delayed recovery trajectory” in chapter 3) may recover 

at a slower rate, but still be fully functional by 12 months.  Although it is not entirely 

clear which factors will distinguish between delayed and minimal recovery, the data 

suggests that significant improvements in interference can occur by 1-3 months for those 

in the delayed trajectory.  Close monitoring of the aforementioned physical and 

psychosocial variables in the initial 3 months will be relevant for interdisciplinary 

treatment and the potential for early intervention.  There also appears to be more 

variability in pain interference compared to severity as recovery tends to occur in 3 (as 

opposed to 2) different trajectories.  This suggests that there may be more change 

associated with functional ability over the course of rehabilitation even if symptoms of 
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severity remain relatively stable.  Although physical therapy cannot directly benefit from 

detecting clusters of biomarkers in serum at this time, it may be possible in the future to 

develop a composite score of pain that includes specific clusters of biomarkers, relevant 

person-level variables, and current pain measurement scales.                            

Although this dissertation is by no means a definitive formula on a systems-based 

approach to pain research, it represents our efforts to lay the groundwork for the deep 

clinical phenotyping of pain.  By understanding the nature of the interactions between 

systems and the relevant risk factors therein, it may be possible to develop a predictive 

algorithm that can accurately identify those at risk of developing chronic pain.  This 

knowledge may also be used toward the development of individualized treatment plans 

for those who suffer from chronic pain and require strategic, interdisciplinary 

management.   

 

5.1 Future Directions  

As stated previously, this project is merely the initial stage in the development of a “pain 

phenotype”.  As a simple strategy to further develop this prognostic phenotype, future 

research may consider a deeper exploration of sex and gender as it relates to the 

development of pain.  Previous studies in the field of pain and gender have shown that 

females bear a greater burden of chronic pain than males4. This difference is only 

partially accounted for by the contributions of social factors such as education, economic 

stability, and age5.  Further research may link differences in internal functioning with the 

age and sex of the participant.  Other considerations that should be taken into account are 

gender roles and expectations. A common, pre-conceived notion is that the female role is 

associated with lower pain tolerance and greater likelihood to report pain6. These notions 

however are influenced by gender constructs and gender itself can be considered a 

continuum6.  This area represents another relevant dimension in capturing the experience 

of pain especially since women are underrepresented in pain medicine7.   
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From an intervention perspective, cannabinoids represent a class of compounds which 

may possess the potential to modulate a number of processes related to pain.  Research 

has shown that cannabinoid compounds have significant modulatory effects on both the 

immune 8, 9 and nervous systems 10, along with higher brain functions 11.  External 

cannabinoids are able to exert their effects due to the presence of an internal system of 

cannabinoid receptors and endogenously-produced cannabinoid compounds (i.e. 

endocannabinoids) 12, 13. This endocannabinoid system is closely linked with major 

physiological functions as cannabinoid receptors are located throughout the body14. Once 

these receptors are activated by either external cannabinoid compounds or 

endocannabinoids, they affect a number of different tissues to influence anxiety, pain, 

nausea, and inflammation 13, 15 . Despite this extensive involvement in regulating 

function, a number of genetic variations have been identified in the genes responsible for 

cannabinoid activity and cannabinoid breakdown in the body (i.e. metabolism).  Although 

the results are not conclusive, these variations may influence the efficacy of cannabinoids 

in different individuals 16. To address these individual variations, pharmacogenetics 

represents a promising new tool in the development of personalized medicine. It involves 

the screening of specific genes associated with a given drug’s activity and metabolism to 

determine a person’s potential responsiveness to the drug itself 17. This technology has 

been used to develop personalized pain treatments, but has yet to be implemented on a 

wide scale due to a lack of knowledge on translating genetic profiles into clinical action 

17 and the associations between gene targets and functional traits 18. Application of this 

genetic screening technology within known recovery groups in musculoskeletal pain may 

help to identify novel gene-trait associations and inform cannabinoid treatment decisions 

going forward.    
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Appendix B: Letter of Information 

 

 

May 28, 2015 

Principal Investigator: Dr. David Walton 

Funding source: Western internal funding, CIHR bridge grant, Canadian Pain Society 

Letter of Information  

Modeling recovery after traumatic injuries 

 

 

Dear Sir/Madam, 
Thank you for your time in reviewing this letter of information and for considering participation in our 
study.  Please be sure to read this letter in its entirety and have any questions you may have answered to 
your satisfaction before consenting to participate.   
 
Why am I being invited to participate?   
You are being invited to participate because you have indicated that you are a male/female between the 
ages of 18-65 and are seeking care from emergency, medical or rehabilitation services for a recent 
accident or injury to your muscles, bones or ligaments, or because you have responded to one of the 
posted advertisements for this study.   
You are not eligible for this study if any of the following apply to you.  Please tell the research coordinator 
if any of these apply:  

1. Severe gingivitis, periodontal disease, active dental caries (tooth decay), or any other active oral 
condition 

2. Actively undergoing cancer treatment  
3. Are currently experiencing an infection or illness (cold, flu, fever, etc.)  
4. Are currently taking antibiotics or have taken antibiotics within the past week  
5. You are a smoker or have been a smoker within the past year  
6. You have Diabetes, either Type I or Type II  
7. You currently have stomach ulcers, Celiac or Inflammatory Bowel Disease (Ulcerative colitis or 

Crohn’s Disease) 

What is this study about? 
We are trying to understand the process of recovery over the 6 months following a traumatic injury, and 
to identify things (factors) that may explain why people differ in how they recover after these events.  We 
will be collecting information including the nature of your injury, your biology, psychology, and past 
experiences all in the same period.  Our goal is to not only improve understanding of how people recover 
following different types of injuries, but what factors influence that recovery.  By identifying important 
factors we will start to work on developing new ways to treat those factors and eventually improve the 
likelihood of successful recovery for people injured in the future. 
What will I be asked to do? 
If you agree to participate, you will be provided with a package that includes almost all of the data 
collection instruments that you will be asked to complete on your own at home starting at least 48 hours 
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after your injury.  The procedures include questionnaires for you to complete and different vials into 
which you will provide saliva and a stool sample.  Once collected, the samples can be stored in your home 
freezer until a member of the research team comes to pick them up.  The questionnaires will be repeated 
monthly for 6 months after your injury and the biological sampling will be repeated after 3 and 6 months.  
After the 6th month, your participation in the study will be complete.  Below you will find more detailed 
information on the types of data instruments in this study. 
 

1. A set of questionnaires that will ask you about a variety of different things.  These include: i) 
your age, sex, work and educational status, ii) the nature of your injury (type of injury, when it 
occurred, how long ago it occurred, a brief description of the injury itself), iii) your medical and 
legal involvement (if any), iv) experiences from your childhood, including bullying and home 
environment, v) recent stressors you may have experienced, vi) the stress you have experienced 
as a result of your injury, vii) the type and amount of symptoms and interference you have 
experienced as a result of your injury. 

2. Drool/Saliva (part 1) – You will receive 3 specialized test tubes with sterile cotton swabs in each.  
You will start on a day that is convenient to you, preferably within 5 days of completing your 
questionnaires.  A pamphlet explaining all procedures is included with the instruments.  This 
pamphlet should be read in its entirety.  The tubes with the cotton swabs are to be used 3 times 
during the same day – once immediately upon waking, again 20-30 minutes after waking, and 
again mid-afternoon between 2pm and 4pm.  This will require you to chew the cotton swab for 
about 10 seconds before returning it to the test tube, sealing it and placing it in your freezer.   

3.  Drool/Saliva (part 2): You will receive a specialized test tube into which you will spit or drool a 
small amount of saliva BEFORE your nightly (bedtime) routine, before brushing but at least 2 
hours after eating.  Once completed, this and the other samples can be stored in your residential 
freezer until retrieved by a member of the research team.   

4. Serum: A trained researcher will draw 3cc of blood from the vein on the front of your elbow. 

The following two components are optional. 
5. Stool: This is an optional part of the study.  You will provide a sample of stool using a specialized, 

sterile tube with a Q-tip type cotton swab.  This will simply require you to twirl the end of the 
swab in a piece of used bathroom tissue, sealing it in the test tube and placing in your freezer.  
Only a small sample is required, and this can be collected at any time of day.  

6. Hair: This is an optional part of the study for which you will be compensated if you choose to 
participate.  As long as you have at least 3cm of hair on your head, we will cut approximately 100 
hairs from the back of your scalp in a manner that minimizes any obvious physical change in your 
hair style using sterile scissors.  This will be done by a member of the research team, and will only 
be done once at the beginning of the study. 

We are collecting saliva samples in order to analyze the levels of specific proteins, which we are calling 
“biomarkers”, that are typically present in the body and that may change during times of stress.  
Specifically, these are classed broadly as the stress hormone cortisol, the gonadal hormone testosterone, 
and immune or inflammatory markers that are referred to as ‘cytokines’.  Stool samples, on the other 
hand, will provide us with specific information regarding the different bacterial populations that inhabit 
your intestines.  The types of bacteria in your intestines may be influenced as a result of significant 
stressors, such as trauma or injury.  We will be looking to see if any major shifts in the types of bacteria 
occur in your system as you are recovering.  There is some research that suggests certain genes play a role 
in the speed and effectiveness of recovery from an injury.  The blood is being drawn primarily for 
exploratory and data redundancy reasons.  If the other tissues/fluids fail for any reason, the blood will 
allow us to evaluate the same chemical markers without having to reconnect with you to collect more 
data.  Finally, from your hair we will be able to determine the presence of different hormones that have 
been stored in your hair from the time before your injury. 
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It is important to understand that everyone’s body is different and it’s currently difficult to say what is 
‘good’ or ‘bad’ in these analyses.  For that reason, these tests should not be considered diagnostic of any 
specific diseases or conditions. 
  
Once all samples have been collected, contact the research team at Western University.  These samples 
will then be retrieved from you by a member of the research team at a day, time and location that is 
convenient for you.  A subset of the questionnaires will be completed again at 1 month intervals 
(approximately 10 minutes to complete), and the biological samples will be collected at 3 and 6 months.  
After the 6th month, your participation in the study is complete.   
 
What are the risks and benefits of participating?  
There are no immediate anticipated benefits to you from participating in this study.  If you request it, we 
will provide you with the results of the different system tests that we conduct, although they may be 
difficult to interpret in isolation until the rest of our data have been collected.  However, if our predictions 
are correct and we are able to identify dysfunction in key systems that can explain at least part of the pain 
experience, this may open new avenues to treatment that may have benefit to you or others in the 
future.   
All participants may receive a final report of the study in which the results (using only group data) will be 
presented.  If you wish to receive this report, you will need to indicate this on the consent form and 
include contact information to which the report should be sent.  Those participants who wish to receive 
their own individual results will be required to contact the Lead Researcher Dr. David Walton directly to 
make that request.  His contact information can be found at the end of this letter.  Keep in mind that the 
data associated with this study is not a medical record and shouldn’t be used as such.  We will keep the 
Master List that links your name with your ID number for 6 months after your completion of the study 
after which it will be shredded for confidentiality and privacy protection reasons.  This means that we will 
not be able to provide your individual results beyond 1 year from your injury. 
 
The risks to participation are minimal and are largely inconveniences due to time.  The salivette (saliva 
collection tube with cotton swab) samples must be performed at three separate times throughout a single 
day which may be a mild disruption to your daily routine for that day.  Improper collection and handling of 
stool samples MAY pose a risk of bacterial contamination/infection, however, if carefully performed 
(including washing your hands afterwards), this risk is quite minimal.  The blood will be drawn using a 
standard protocol that you have likely experienced before in a doctor’s office or the Red Cross.  
Completion of the questionnaires may lead to some people experiencing emotional distress, especially 
those that ask you to recall and reflect upon childhood experiences if yours were not positive.  We have 
provided suggestions for managing emotional distress, should you experience it, at the end of this letter. 
We will do everything in our power to ensure your data, including the biological specimens and your 
questionnaires, are kept secure and confidential.  However, we cannot guarantee against a data breach 
regardless of how good our physical and virtual security is.  Your data will be stored with only a random ID 
number in order to mitigate any potential risk, nonetheless the risk of data breach or loss is possible and 
we want to ensure you’re aware of this.   Should this happen you will be quickly informed. 
 
Will I be compensated for my participation? 
You have different options for the degree to which you wish to participate in this study.  The minimum 
level of participation is to complete the paper forms, saliva, and blood draw.  This would be done once 
when you enter the study, then at 1, 2, 3, 6 and 12 months later.  Each follow-up will likely take about 45 
minutes of your time, and you will receive $30 total for participating in this level of the study.  The hair 
and stool are optional components, and for each one you will receive an additional $15 ($30 for both).  
We recognize that collecting these samples is no small commitment, but can be completed in its entirety 
in a single day and a total anticipated time commitment of approximately 1 hour at each collection 
period.  Out of respect for your time, you will be therefore be reimbursed a minimum of $180 total for 
participating in each phase of this study (intake and 1, 2, 3, 6, and 12 months).  If you complete the two 
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additional components you are eligible for an additional $30 per session, up to an additional $180 for the 
entire study. 
 
Who will have access to my information? 
A unique randomly-generated 6-digit ID number will appear on all forms belonging to you for the sole 
purpose of connecting all of the data you provide at each period.  The lead researcher at Western 
University, Dr. David Walton, will collect all of the data provided by all participants and will analyze it as 
an anonymous group.  Once transcribed, all data are stored on the secure, password protected and 
firewalled server of Western University and the paper forms are shredded.  Western University’s REB and 
representatives from Lawson’s Quality Assurance and Education Program will have access to participant’s 
data to ensure that it is following the proper laws and regulations. Outside of these groups, your specific 
information will not be shared with anyone without your express written consent to do so.   
 
Note some of the tools to be completed are meant to measure severity of symptoms related to 
depression or anxiety.  IF your responses lead to a score that is suggestive of either depression or anxiety, 
your family doctor will be contacted to inform him/her of the results of the scale and what they may 
mean.  It will ultimately be up to your family physician to decide how and when he/she should follow up 
with you if at all. 
 
Data will be retained in anonymous form indefinitely as an ongoing database.   

Voluntary participation 
Participation in this study is voluntary.  You may refuse to participate, refuse to answer any questions or 
withdraw from the study at any time.  If you choose to withdraw from the study, you may request to have 
your contributions to that point removed, at any time up until 6 months after you are done the study.  
Withdrawal from the study or refusal to participate is your decision, and may be done without the 
requirement of explanation on your part.  Withdrawal will in no way affect your current or future 
relationship with any of the research team or clinicians associated with the study. 
 
What if I want more information? 
You may contact the lead researcher, Dr. David Walton, at Western University (London, Canada) if you 
require any further clarification.  If you have any questions about your rights as a research participant or 
the conduct of the study you may contact the Office of Research Ethics.  You are encouraged to keep this 
letter of information for your own records.   
 
If you wish to receive a summarized copy of the results of this study and/or your individual results, you 
may leave your email address on a separate sheet.  The sheet will be held by the research coordinator, 
and the email addresses will only be used to provide the results, after which the list will be destroyed. 
We thank you in advance for considering participation in this study.  You do not waive any legal rights by 
signing this consent form.   
 
Sincerely, 
 
 
David Walton BScPT, PhD   
Lead Researcher   
 

Co-researchers: 
Ruth Lanius MD PhD 
Stan Van Uum MD, PhD 
Greg Gloor PhD 
Walter Siqueira DDS, PhD 
Melanie Colombus 
Kristine Van Aarsen 
Joshua Lee 
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If you are experiencing emotional distress: 

 

This research study does NOT include treatment recommendations.  However, while completing the 

questionnaires about your emotional state or past experiences, you may find that you experience 

emotional distress (e.g. sadness or anxiety) by virtue of thinking about and answering the questions.  If 

this should happen, it is most commonly short-lived and may be a sign to take a break from the 

questionnaires until you settle down enough to come back to them.   

However, in the distress can last longer than a day or can be quite severe in some people.  If this happens 

to you, you are encouraged to seek professional assistance to help deal with your emotional state.  The 

Canadian Mental Health Association includes several resources on their website as a good place to start: 

http://www.cmha.ca/mental-health/find-help/.  TeleHealth Ontario can also offer support or direction, 

they can be reached 24 hours, 7 days per week.  The London Mental Health Crisis Service offers 24-hour, 7 

days per week support to those in acute mental distress.  Finally, if you feel you are in significant 

emotional distress and require more immediate help, you can call your family doctor or emergency 

services (9-1-1).  In that case you should refrain from completing any further questionnaires and let the 

researchers know that you are unable to continue. 

 

 

 

 

 

 

 

 

 

http://www.cmha.ca/mental-health/find-help/
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January 9, 2015 

Consent form 

Modeling recovery from traumatic injuries 

Principal Investigator: Dr. David M. Walton PT PhD 

I have read the letter of information, have had the nature of the study explained to me and I agree to 

participate.  All questions have been answered to my satisfaction. I also consent to being contacted by the 

Lead Researcher in the case any of my scale scores suggest possible problems with depression or anxiety. 

Please indicate the level of study participation to which you are consenting by placing a check in the 

appropriate circle: 

⃝ Paper forms only (monthly forms, approximately 10 minutes each, $25 total compensation) 

⃝ Paper forms and biological specimens but not hair (saliva, stool, serum) at intake, 3 and 6 months 

(approximately 1 hour each), paper forms at 1, 2, 4, and 5 months (approximately 10 minutes each).  $100 

total compensation 

⃝ Paper forms and biological specimens including a sample of about 100 hairs from the back of your head 

at intake.  Other data and intervals as described directly above (approximately 10 minutes in months 1, 2, 4 

and 5, approximately 1 hour in months 3 and 6).  $125 total compensation. 

 

__________________________________ 

Participant name (print) 

________________________________________________  __________________ 

Participant signature       Date 

________________________________________________   

Person obtaining consent (print)        

_________________________________________________  __________________ 

Signature of person obtaining consent     Date 
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Request for Summary of Results 

⃝ I would like to receive a copy of the group average results from this project (Note: these results will not 

have any clinical application and will not affect your medical treatment)      

If you would like to receive a copy of the group results, please provide your preferred method of delivery: 

⃝ Electronic (email); Email address: ________________________ 

OR 

⃝ Postal mail; Mailing address (incl. Street, City, and Postal code):  

_____________________________________ 

_____________________________________ 

_____________________________________ 
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Appendix C: SYMBIOME data collection flow diagram 
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Appendix D: Simple Schematic of Moderator Variables 

 

 

Moderator variables provide key context that can change both the magnitude and direction of the 

relationship between the independent variable (one of the 8 biomarkers) and the dependent variable (pain-

related outcomes of severity and interference).  The implications of these moderators are that biomarkers 

may behave differently in the context of pain-related outcomes depending on which metadata subgroup is 

being analyzed.     
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Appendix E: Conceptual Summary Figure 

 

 

Tissue trauma can occur in the peripheral tissues (affecting primary afferent pathways) or spinal tissues 

(affecting secondary afferent pathways) resulting in an immune inflammatory repair response.  

Inflammatory factors (TNF-α, IL-1β, IL-6, IL-10, TGF-β1, and CRP) can affect neural activity of tissues which 

include increased noxious signaling (hyperalgesia) and heightened sensitivity to benign stimuli (allodynia).  

Inflammation can also affect sensitivity of second order WDR neurons resulting in increased sensitivity 

and neurological drive in the spinal cord.  Cortisol, TGF-β1, and in particular, BDNF may be implicated in 

their ability to facilitate the long-term synaptic plasticity in spinal afferents that results in chronic 

sensitization.  Progressing from peripheral to central signaling, IL-1β and IL-6 may be involved in 

facilitating fear-learning and fear-memory in the context of stress.  This may contribute to the associative 

mechanism between trauma, fear, adaptation and learning.  TGF-β1 and BDNF are associated with growth 

arrest and DNA damage enzymes (Gadd45) which have been implicated in a number of different 

psychiatric diseases.  All of the above mentioned mechanisms have been previously described in the 

literature and cited throughout chapters 2, 3, and 4 of this dissertation.            
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Higher level cortical plasticity in the brain (from Mansour et al. 2014)1 – Acute pain evokes nociceptive 

pathways (solid arrows) in the brain which involves the thalamus (Thal), parabrachial nucleus (PB), 

amygdala (Amyg), insula (Ins), anterior cingulate cortex (ACC), and 1° and 2° somatosensory regions (S1 

and S2).  Under normal circumstances, these nociceptive associations dissipate with time.  Prolonged 

stimulation can result in the transition towards chronic pain and “emotional suffering” which involves 

higher brain regions that generate our motivation and sense of self (dotted arrows) including the basal 

ganglia (BG), pre-frontal cortex (PFC), and 1° motor cortex (M1).  This transition leads to the persistence 

of memory with regard to pain, thereby perpetuating the experience.         

1.  Mansour AR, Farmer MA, Baliki MN, Apkarian AV. Chronic pain: the role of learning and brain plasticity. Restorative neurology 

and neuroscience. 2014 Jan 1;32(1):129-39. 
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