
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-21-2020 10:30 AM

MHCherryPan, a novel model to predict the binding affinity of pan-MHCherryPan, a novel model to predict the binding affinity of pan-

specific class I HLA-peptide specific class I HLA-peptide

Xuezhi Xie
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Xuezhi Xie 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Bioinformatics Commons

Recommended Citation Recommended Citation
Xie, Xuezhi, "MHCherryPan, a novel model to predict the binding affinity of pan-specific class I HLA-
peptide" (2020). Electronic Thesis and Dissertation Repository. 6971.
https://ir.lib.uwo.ca/etd/6971

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.lib.uwo.ca%2Fetd%2F6971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6971?utm_source=ir.lib.uwo.ca%2Fetd%2F6971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Supervisor

Zhang Kaizhong

The University of Western Ontario

This dissertation/thesis is available at Scholarship@Western: https://ir.lib.uwo.ca/etd/6971

https://ir.lib.uwo.ca/etd/6971

Abstract

The human leukocyte antigen (HLA) system or complex plays an essential role in regu-

lating the immune system in humans. Accurate prediction of peptide binding with HLA can

efficiently help to identify those neoantigens, which potentially make a big difference in im-

mune drug development. HLA is one of the most polymorphic genetic systems in humans, and

thousands of HLA allelic versions exist[6]. Due to the high polymorphism of HLA complex,

it is still pretty difficult to accurately predict the binding affinity. In this thesis, we presented a

new algorithm to combine convolutional neural network and long short-term memory to solve

this problem. Compared with other current popular algorithms, our model achieved the state-

of-the-art results.

Keywords: Bioinformatics, deep learning, health informatics, machine learning, HLA

i

Summary for Lay Audience

In recent years, deep learning has witnessed many significant breakthroughs in different

areas and achieves encouraging results. Various machine learning methods have also been

applied in bioinformatics fields. Due to the importance of major histocompatibility complex

(MHC) in immunity, many models have been developed for MHC-peptide binding prediction.

However, it is still difficult to accurately predict the MHC-peptide binding specification for all

the MHC alleles now.

In this thesis, we proposed a novel model which combined convolutional neural network

and long short-term memory to solve this problem. Our model has been tested with the experi-

mental benchmark from IEDB and shows powerful performance compared with other currently

popular algorithms.

ii

Acknowlegements

To my supervisor, Dr. Kaizhong Zhang, I owe an immense debt of gratitude for his support,

mentorship, scientific insights and contagious enthusiasm during my studies. His consistent,

patient confidence in me was essential in the performance of the work described in this the-

sis. He provides much help since I came to London, I believe he considerably exceeded the

expectations of his role as supervisor.

I would like to thank Yuanyuan Han for her encouragement and advice during this research

and the life in Canada.

I would also like to show special gratitude to my parents for their constant support through-

out my research and life.

iii

Contents

Abstract i

Summary for Lay Audience ii

Acknowlegements iii

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Biological Background . 1

1.2 Research Question . 4

1.3 Difficulty . 4

1.4 Machine Learning in MHC-binding Problem 5

1.5 Contributions . 6

1.6 The Structure of this Thesis . 7

List of Appendices 1

2 Machine learning and related works 8

2.1 Machine learning algorithms on binding predictions 8

2.1.1 Artificial Neural Networks . 8

2.1.2 Feedforward Neural Network and Convolutional Neural Networks . . . 10

iv

2.1.3 Recurrent Neural Networks . 11

2.2 Models on HLA-peptide binding prediction 12

2.2.1 Allele-specific Models . 13

2.2.2 Pan-specific Models . 15

2.2.3 Consensus Models . 18

2.3 Our Novel Design . 19

3 Methodology 21

3.1 Problem statement . 21

3.2 Encoding . 21

3.2.1 Genetic Codes for Amino Acids . 22

3.2.2 Encoding Method . 22

3.3 Model . 24

3.3.1 Peptide Feature Extraction Module . 24

3.3.2 HLA Feature Extraction Module . 26

3.3.3 Affinity Prediction Module . 27

3.4 Pipeline . 28

3.5 Model Training . 29

4 Experiment setup 31

4.1 Dataset . 31

4.1.1 EBI . 31

4.1.2 IEDB . 32

4.2 Data pre-processing and pre-analysis . 33

4.2.1 Peptide-HLA data pre-processing . 33

4.2.2 HLA Sequences . 34

4.2.3 Data pre-analysis and visualization . 35

4.2.4 The Amino Acid Enrichment for peptide-hla binding data 38

v

4.2.5 Encoding . 38

4.3 Model Learning . 41

4.3.1 Model training and preventing overfitting 41

4.3.2 Implementation . 42

4.4 Performance Evaluation . 42

4.4.1 Test Benchmark Dataset . 43

4.4.2 Metrics and Mathematical Function 43

4.5 Technologies and Tools . 47

5 Result and discussion 49

5.1 Experimental results on different encoding metrics 49

5.1.1 BLOSUM Matrix . 49

5.1.2 Results on different blossom matrix 51

5.2 Experimental results on Benchmark testing dataset 52

5.2.1 Average AUC and SRCC . 55

6 Conclusion 56

6.1 Conclusion . 56

6.2 Future Work . 57

Bibliography 58

A MHCherryPan Model Summary 65

Curriculum Vitae 67

vi

List of Figures

1.1 MHC Class I Processing.[38]: Proteins are degraded into peptides by the pro-

teasome. peptides convey into the endoplasmic reticulum, where they com-

bined with MHC-I molecules. MHC-I/peptide complexes enter Golgi appara-

tus, are glycosylated, enter secretory vesicles, fuse with the cell membrane, and

externalize on the cell membrane interacting with T lymphocytes 2

1.2 The structure of MHC class I molecules.[38] 3

1.3 Polymorphism and Polygeny of MHC molecules. Taken from the source:

Immunobiology, Garland Science[13]. Picture 1.3a(polymorphism) shows the

expression of MHC alleles is codominant and most individuals are likely to be

heterozygous at each locus. Therefore, two combinantions (shows as the col-

ors) can be found as the result. Picture1.3b indicates the polygene where three

genes could leads to 3 combination. Picture 3c (Polymorphism and Polygeny)

represents that after combining polymorphism and polygenes, it could lead to

6 different combinantions. 5

1.4 Application of deep learning in bioinformatics. taken from the source: Deep

learning in bioinformatics, Min et al. [24] . 6

2.1 Artificial Neural Networks[41] . 10

2.2 The illustration of Feed Forward Neural Network and Convolutional Neu-

ral Network. Reproduced from original paper[16]: (A) Feed forward net-

work. (B) Convolutional neural network. (C) A filter can be visualized as a

sequence motif. 11

vii

2.3 Basic recurrent neural network[41] . 12

2.4 MHCflurry Flow Network. Reproduced from original paper [28]: Neural

network architecture . 14

2.5 The example of insertion and deletion for peptide. Reproduced from orig-

inal paper [2]: Left(a) is the insertion example for peptide ”AILDFTHL” and

the right(b) is the deletion example for peptide ”FYGERPLTRY” 15

2.6 Interaction map of the HLA pseudo sequence in NetMHCPan. Repro-

duced from original paper[19] . 16

2.7 PickPocket Flow Network. Reproduced from original paper [53] 18

3.1 BLOSUM62 Matrix: The BLOSUM62 matrix is used to encode peptide and

HLA sequences. 24

3.2 Peptide Feature Extractor - RNN . 25

3.3 HLA Feature Extractor - CNN . 26

3.4 MHCherryPan Network Architecture: (I) Peptide Feature Extraction. (II)

MHC Feature Extraction. (III) Affinity Prediction. (IV) Components of a con-

volutional Block . 28

3.5 Model Training: Forward and Backward Propagation, replicated from original

article[15]. 29

4.1 MHC Training Data . 33

4.2 The statistics summary for training dataset 34

4.3 Pie chart of binding or not for MHC Training Data.[38]: The blue part is

for ”not binding” data and the orange part is for ”binding” data. 35

4.4 Training data distribution by peptide length. 36

4.5 Binding Affinity Distribution by Alleles . 37

4.6 Motif analysis for 9-mer peptides[38]: showing the percentage of enriched

amino acid at each position for hla-peptide binding data. 39

viii

4.7 Motif analysis for 10-mer peptides showing the percentage of enriched amino

acid at each position for hla-peptide binding data. 40

4.8 Job script for Model training . 42

4.9 AUC Curve.: Taken from Receiver operating characteristic - Wiki [40] 44

5.1 Blosum Matrix: from top to bottom: blosum 60, blosum 62, blosum 70, blo-

sum 80, and blosum 90. The matrix is downloaded from ftp://ftp.ncbi.

nlm.nih.gov/blast/matrices/ . 50

5.2 Average AUC and SRCC Bar Chart . 55

A.1 Summary for MHCherryPan Model . 66

ix

ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/
ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/

List of Tables

2.1 Summary of related works for predicting MHC-peptide ligands. 19

5.1 Validation Experiment results for the MHCherryPan model trained on IEDB

dataset. 51

5.2 Performance Evaluation on IEDB Benchmark Database 53

5.2 Performance Evaluation on IEDB Benchmark Database 54

x

Chapter 1

Introduction

In this chapter, we introduce the background of major histocompatibility complex, especially

its function in immunology, the importance of the research question, and our contribution to

solve it. The thesis layout is illustrated at the end of this chapter.

1.1 Biological Background

The major histocompatibility complex (MHC) proteins are critical for the adaptive immune

system recognizing foreign molecules in most mammalian species. MHC are the chaperones

for endogenous peptides which are transferred to the cell surface through binding with MHC

(the MHC-peptide complex) as the antigens for T cell recognition. Essentially, T cells would

tolerate the auto-antigens, but activate when the allo-antigens appear [38]. Those MHC pro-

teins are called human leukocyte antigen (HLA) complex in human beings, and they help our

immune system to distinguish pathogens (foreign molecules) through binding to peptide anti-

gens and exposing them to the surface of cells for recognition by certain T cells. Research

on the canonical mechanism of MHC-peptide binding can benefit our comprehension of which

peptides bind to MHC (potentially resulting in an immune response). This could be in favor for

cancer treatments. Specifically regarding the mutated or tumor cells, some peptides originates

from altered tumor proteins and they are known as neoantigens. Those neoantigens would

1

2 Chapter 1. Introduction

be the ideal antigens for the development of protein-based vaccines and drugs to treat tumor

patients[22]. Recent advances in cancer immunotherapy have confirmed this new treatment

boosts T cell activity to destroy cancer cells in both mouse models and human patients[20].

Figure 1.1: MHC Class I Processing.[38]: Proteins are degraded into peptides by the pro-
teasome. peptides convey into the endoplasmic reticulum, where they combined with MHC-I
molecules. MHC-I/peptide complexes enter Golgi apparatus, are glycosylated, enter secretory
vesicles, fuse with the cell membrane, and externalize on the cell membrane interacting with T
lymphocytes

MHC can be further divided into three subgroups: MHC class I, MHC class II, and MHC

class III. Among those, MHC class I and MHC class II attract more research attention due

to they directly involve in antigen presentation of immunology[14]. Class I MHC binds to

peptides from intracellular proteins, while class II MHC binds to extracellular peptides that

are brought inside the cell. Figure 1.1 illustrates the MHC class I pathway. MHC class I

plays an irreplaceable role in cell-mediated immunity, which could resolve in intracellular

pathogens such as viruses and some bacteria. MHC class I mediates the destruction of infected

or malignant host cells (cellular immunity) by interacting with CD8 molecules on surfaces of

cytotoxic T cells. In human beings, the MHC complex is also called the human leukocyte

antigen (HLA) system. There are three class I in humans: HLA-A, HLA-B and HLA-C.

1.1. Biological Background 3

As shown in Figure 1.2, MHC class I molecules are heterodimers, which are made up of

two polypeptide chains - α and β 2-microglobulin (b2m) and the two chains are linked through

the interaction between b2m and the α3 domain[38]. Regarding those chains, the α chains

are polymorphic and encoded by MHC genes, while the b2m subunit is not polymorphic and

encoded by the β 2-microglobulin gene[38]. The α3 domain is plasma membrane-spanning

and interacts with the CD8 co-receptor of T-cells. The α3-CD8 interaction holds the MHC I

molecule in place while the T cell receptor (TCR) on the surface of the cytotoxic T cell binds

its α1-α2 heterodimer ligand, and checks the coupled peptide for antigenicity[38]. The α1

and α2 heavy chain domains fold to form the active binding pocket for short antigenic peptide

peptides to bind, and the peptides binding to MHC class I molecules are mostly in 8-10 amino

acid in length[5]. Those α1, α2, and α3 domains create a globular protein in which a β-pleated

sheet forms the floor of the peptide-binding groove and is bounded by two helical regions that

form the sides of the groove[8].

Figure 1.2: The structure of MHC class I molecules.[38]

4 Chapter 1. Introduction

1.2 Research Question

In this thesis, we concentrate on predicting peptide binding to MHC/HLA through deep learn-

ing methods. In particular, we try to solve peptide-MHC binding prediction problems by using

Recurrent Neural Network and VGG-based Convolutional Neural Network, and then compare

our model performance with other currently popular models.

1.3 Difficulty

Accurate prediction of peptides binding to MHC still faces a big challenge. The difficulty

could refer to two unique properties of MHC: Polygenes and polymorphism. Polygenes mean

each individual possesses several different MHC genes, which results in diverse range of

peptide-binding specificities. The polymorphism of MHC stands for that the organism dif-

fers diversely from each other within the same species[14]. Many different alleles exist inside

a population[38]. The MHC genes are the most polymorphic genes, as we know so far. The

polymorphism is so high, no two individuals have exactly the same set of MHC molecules ex-

cept for the twins[38]. Those properties lead to experimental characterization for peptide-MHC

binding costly and time-consuming. Therefore, in silico computational approaches have been

proposed to study this research topic, especially when large amounts of in vitro binding affini-

ties data are available in public databases like the Immune Epitope Database (IEDB)[9, 32].

Although there are over a half million of experimentally characterized binding affinities data

in the IEDB database, they are not evenly distributed across the alleles. The experimental data

could be as many as 10000 characterized peptide-MHC binding affinities for common alleles,

while it may be as few as 100 for other rare alleles. Besides, most peptides in MHC class

I ligands data represented as 9 amino acids (aa) in length, but it also varied critically among

MHC alleles. For example, the H-2Kb allele has a preference for 8 aa-long peptides, while

HLA-A*01:01 has nearly one-third of MHC-presented peptides which have a length of 9 aa.

1.4. Machine Learning inMHC-binding Problem 5

Figure 1.3: Polymorphism and Polygeny of MHC molecules. Taken from the source:
Immunobiology, Garland Science[13]. Picture 1.3a(polymorphism) shows the expression of
MHC alleles is codominant and most individuals are likely to be heterozygous at each locus.
Therefore, two combinantions (shows as the colors) can be found as the result. Picture1.3b
indicates the polygene where three genes could leads to 3 combination. Picture 3c (Polymor-
phism and Polygeny) represents that after combining polymorphism and polygenes, it could
lead to 6 different combinantions.

1.4 Machine Learning in MHC-binding Problem

In recent years, various machine learning methods have been applied in bioinformatics fields.

Figure 3.3 indicated the general process of deep learning in bioinformatics. Inside those meth-

ods, due to the importance of MHC in immunity, many models have been developed for MHC-

peptide binding prediction to either predict the binding affinity (a regression problem) or to

predict whether a peptide could bind to the MHC allele (a classification problem)[3]. Among

all of the models, studies on predicting peptide binding to HLA class I molecules have been

more active due to the availability of the large-scale high-quality peptide-HLA binding data as

provided by IEDB database, and the automated benchmark platform for comparing, tracking,

and scoring the progress of several current popular online computational methods[34]. There

are mainly three categories of models for HLA-peptide binding prediction: allele-specific, con-

sensus, and pan-specific models[27, 29, 53, 11].

Most of these models make full use of machine learning algorithms, such as artificial neu-

6 Chapter 1. Introduction

Figure 1.4: Application of deep learning in bioinformatics. taken from the source: Deep
learning in bioinformatics, Min et al. [24]

ral networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks

(RNN), to extract the motifs features. Machine learning algorithms can build complex nonlin-

ear models to achieve outstanding prediction performance in the HLA-peptides binding affinity

prediction[51].

1.5 Contributions

In this thesis, we propose a new model to solve HLA-peptide binding prediction problems.

Our model is developed based on pan-specific models and combines the strengths of CNN and

RNN architectures. Compared with other currently popular models, including NetMHCPan3.0,

NetMHCPan4.0, PickPocket, SMM, NetMHC3.4, NetMHC4.0, ARB, MHCflurry, AMMPM-

BEC, IEDB Consensus and netMHCcons, our model achieved state-of-the-art results on vari-

ous HLA alleles with excellent generalization performance.

The main contribution of this thesis is as follows:

• We proposed a well-performed binding probability prediction model called MHCherry-

Pan, which achieved the state-of-the-art results on a large number of HLA alleles.

• The novel design which combines CNN-based and RNN-based extractors in one pan-

specific model enables our model to deal with any length peptide sequences and also

have good generalization capability.

1.6. The Structure of this Thesis 7

• Our model takes raw sequential data as input, which could be potentially used in any

RNA-protein, DNA-protein, and RNA-DNA binding prediction.

1.6 The Structure of this Thesis

The rest of the thesis is organized as follows. In Section 2, we provide an overview of the

related work. In Section 3, we describe our new approach - MHCherryPan for predicting

HLA-peptide binding. In Section 4, we discuss the experiment setup, including the datasets

that we use and some experiment details. In Section 5, we compare our new model with other

popular models. Section 6 concludes this paper.

Chapter 2

Machine learning and related works

In this section, we first introduce the frequently-used machine learning algorithms in the binding-

prediction problems and then we would focus on the previous work done for HLA-peptide

binding prediction, which can be classified into allele-specific, pan-specific, and consensus

models. In the end, we will summary the related works and introduce our model.

2.1 Machine learning algorithms on binding predictions

Currently, the neural network is the dominant machine-learning algorithm for peptide-binding

prediction problems [23]. Among different fundamental architectures of neural networks for

binding prediction algorithms, Artificial Neural Networks, Convolutional Neural Networks and

Recurrent Neural Networks are the most popular deep learning methods which have all been

applied and achieved inspiring results.

2.1.1 Artificial Neural Networks

Deep learning, as a member of the broader family of machine learning methods, is based on

artificial neural networks with representation learning [44]. The reason why it is so-called is

due to the learning complexity. Generally speaking, deep learning model contains much deeper

8

2.1. Machine learning algorithms on binding predictions 9

layers such as two or more hidden layers whereas shadow learning usually only contain one

layer. Deep learning have been applied to fields such as speech recognition, computer vision,

natural language processing, audio recognition, social network filtering, machine translation,

bioinformatics, drug design, medical image analysis, material inspection and board game pro-

grams, where they have produced inspiring results which could be comparable or surpassing

human performance[44].

Artificial Neural Network is an information processing model acquire, store and utilize

experimental knowledge and it is is inspired by the way biological nervous systems, such as the

brain, process information[55] . Artificial Neural Networks (ANN), as one of the most popular

deep learning algorithms, have been successfully applied on several significant bioinformatic

topics such as DNA-binding and RNA-binding prediction as well as HLA-peptides binding

predictions[1]. An ANN is usually consisted of neurons that are connected to each other, and

ANN has three general types of layers: the input layer, the hidden layer, and the output layer,

as shown in figure 2.1. The input layer brings the initial data such as variables or features of

a given problem into the system for further processing by subsequent layers. These inputs are

then propagated through the hidden layers to the output layer. The hidden layers perform a

series of (non)linear functions that convert the input data into data that the output layer can

use. This conversion is often called feature extraction since the network learns which input

data is more important than others.

ANN can capture the complex inter-relationships in the non-linearity among data variables

and has been used in classification and recognition tasks as well as motifs feature extraction[51].

Most of the ANN-based prediction models on HLA-peptides binding affinity prediction, such

as netMHC [21], and MHCflurry[28], only include one or two full-connected layers, with

the optimizing network structures and parameters for different MHC alleles. Although ANN-

based approaches are remarkable for its accuracy, they lose flexibility due to they limit the

input length of peptide epitopes (8-15 amino acids for MHCflurry) and support only specific

MHC alleles that the models have been trained for[16].

10 Chapter 2. Machine learning and related works

Figure 2.1: Artificial Neural Networks[41]

2.1.2 Feedforward Neural Network and Convolutional Neural Networks

A feedforward neural network is an artificial neural network in which connections between the

nodes do not form a cycle[52]. As the name indicates, it is a network where the information

flows in one single direction. Information spreads from one layer to the next, starting at the

input nodes, through the hidden nodes, and ending in the output nodes. A non-linear so-called

activation function, most often tanh or sigmoid, is applied to give the output of a neuron given

its input. Figure 2.2A indicated the architecture of the feedforward neural network. The hidden

layer of a feedforward neural network is also referred to as a dense layer because it is fully

connected to the previous layer.

Convolutional Neural Networks (CNNs) are a type of deep feedforward neural network.

The name ”convolutional Neural Networks” is due to that the network utilized a mathematical

operation called convolution, which is a specialized kind of linear operation [43] as shown

in Figure 2.2b. Convolutional networks are neural networks that use convolution instead of

the general matrix multiplication in at least one of their layers[43]. CNNs usually consist of

2.1. Machine learning algorithms on binding predictions 11

Figure 2.2: The illustration of Feed Forward Neural Network and Convolutional Neural
Network. Reproduced from original paper[16]: (A) Feed forward network. (B) Convolu-
tional neural network. (C) A filter can be visualized as a sequence motif.

multiple convolutional layers with many convolutional filters and pooling layers (the function

is to downsample an input representation), which makes the model able to learn many highly

abstract features[18]. CNN have achieved amazing result in some fields especially in image

classification. In the field of HLA binding, the HLA-CNN[35] , which uses three convolutional

layers and two fully- connected layers with word embedding for encoding, achieves good per-

formance and outperforms all traditional prediction methods. DeepSepPan[19] utilized the

VGG-liked deep CNN to extract abstract features from HLA. Although it also achieves com-

petitive performance compared with other current algorithms, DeepSeqPan loses flexibility and

only supports the peptides which have 9 aa length.

2.1.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN), as shown in figure 2.3, is a special type of neural network

because (unlike feedforward neural networks) it contains directed cycles. RNN layers use the

12 Chapter 2. Machine learning and related works

Figure 2.3: Basic recurrent neural network[41]

output of the network at a certain iteration as input for a next iteration. This recursive aspect of

RNN make them extremely useful for sequential data, especially if the output of the network

for a certain element depends on both that element and the output of the previous element(s).

RNN has been used to encode time-series information in many tasks due to that RNN can

better capture temporal relationships by remembering previous inputs[16]. A popular choice

for RNN is the Long Short-Term Memory (LSTM), which alleviates the vanishing and ex-

ploding gradient problems presented in normal RNN[16]. MHCpred[10] with the structure of

deep RNN, which applies three LSTM layers and adaptively learns the appropriate parameters

to enable the model to learn the hidden features more efficiently. Another big merit of RNN

is that there is no limit for the peptide length due to RNN utilizes the masking layers, so it

doesn’t require fixed-length inputs. In this case, those RNN-based prediction models could be

very flexible in the input length.

2.2 Models on HLA-peptide binding prediction

In order to accurately predict peptides binding MHC and identify ideal neoanitgen for protein-

based vaccine development, many models have been developed during the last several years.

There are different ways to classify those models. For example, based on the result the model

generates, they could be divided into regression model (predicting binding affinity) or clas-

2.2. Models on HLA-peptide binding prediction 13

sification models(predicting binding or not). If we focus more on the algorithms or model

themselves, most of the models for HLA-peptide binding prediction can be divided into three

categories: allele-specific, consensus, and pan-specific models[27, 29, 53, 11].

2.2.1 Allele-specific Models

Allele-specific models have been proposed to predict the specificity of one receptor (one HLA

Allele) based on training data regarding this one HLA allele. In allele-specific models, each

HLA allele would have a separate allele-specific prediction model. MHCflurry is a recent pro-

posed allele-specific model that achieved state-of-the-art results compared with other algorithms[28].

MHCflurry

MHCflurry, as one of the most well-performed allele-specific model, is developed using

separate artificial neural networks (ANNs) for each supporting allele, which consists of locally

connected layers and a fully connected layer [28]. As mentioned previously that allele model

need to have separate prediction model for each allele, MHCflurry designed an ensemble of

8-16 neural networks for each supported MHC allele trained on affinity measurements from

IEDB and other sources[28].

Figure 2.4 indicates the flow chart for the MHCflurry model. As the figure 2.4 shows, pep-

tide data sequences are firstly padding into 15 amino acids by adding a ‘no-residue’ character

(‘X’). The reason why they padding through the mid of the peptide sequences instead of regular

padding method (padding to the beginning or the end) is to maintain the position of the anchor

residue (please also see in section 3.4 prepossessing). After padding, the peptide sequence

is then encoded into a tensor with dimension size of 15 x 21 by using BLOSUM 62 matrix.

Regarding the activation function for the model, MHCflurry uses the hyperbolic tangent func-

tion for the hidden layers and the sigmoid function for the final output layers. MHCflurry

had separate networks trained for each supported MHC allele, and each network contains the

14 Chapter 2. Machine learning and related works

locally-connected layers, fully-connected layers and an affinity predictor.

Figure 2.4: MHCflurry Flow Network. Reproduced from original paper [28]: Neural
network architecture

NetMHC 4.0

NetMHC 4.0 is another popular allele-specific model, which is also developed using ar-

tificial neural networks (ANNs). NetMHC 4.0 develops an ensemble method to generate the

feed-forward networks and assigns the binding core of a given peptide based on the major-

ity vote of the networks in the ensemble [2]. NetMHC 4.0 uses both sparse encoding matrix

(a matrix in which most of the elements are zero such as one-hot key) and BLOSUM62 (see

explanation in 3.2.2) to encode the peptide sequences into nine amino acid-binding cores.

But unlike MHCflurry padding all peptide sequence into 15 amino acids, NetMHC 4.0

developed a novel deletion-and- insertion methods, which is used to reconcile peptide sequence

into a core of nine amino acids. As figure 2.5 shows the example of insertion and deletion for

peptide. Regarding the peptide which the sequence length is 8 or 10, the NetMHC would first

2.2. Models on HLA-peptide binding prediction 15

reconcile into the 9-amino acid peptides by inserting or deleting at all possible positions, which

results in multiple potential sequences. After that, it will select the highest predicted score with

the current configuration of the neural network is taken as the optimal binding core[2] . In

addition, NetMHC does not public their detailed implementation and code.

Figure 2.5: The example of insertion and deletion for peptide. Reproduced from original
paper [2]: Left(a) is the insertion example for peptide ”AILDFTHL” and the right(b) is the
deletion example for peptide ”FYGERPLTRY”

2.2.2 Pan-specific Models

Although those allele-specific models usually have high excellent performance on some com-

mon HLA alleles which have large amounts of experimental data but predict poorly on other

alleles with few experimental data. This will cause a big issue since many alleles only have

a few experimental data available. Therefore, researchers proposed the pan-specific models to

solve this data scarcity issue.

The main idea of the pan-specific model is to use the data from all the alleles of HLA

for model training so that it could predict the binding results of the HLA alleles, which may

have less experimental data or do not appear at all. The pan-specific model would encode both

the peptides and the HLA alleles protein as inputs. The peptide-HLA binding environment is

represented in this way so the deep learning models can be trained on all peptide-HLA binding

data[54].

16 Chapter 2. Machine learning and related works

NetMHCPan

Figure 2.6: Interaction map of the HLA pseudo sequence in NetMHCPan. Reproduced
from original paper[19]

NetMHCPan is the first pan-specific MHC-peptide binding prediction algorithm and it

achieves state-of-the-art result in prediction performance [27]. One of the significant con-

tributions of NetMHCPan is that they designed a novel pseudo sequence to stand for the HLA

binding motifs. In their method, an HLA sequence is reduced to a pseudo amino acid sequence

of length 34, and each amino acid in this pseudo sequence is selected if it is in contact with the

peptide within 4.0 A [27].

The interaction map in Figure 2.6 is extracted based on a representative set of HLA struc-

tures with nonamer peptides, and this extracted 34-length pseudo sequence is a list of location

indexes of amino acids in the HLA sequence[27]. Therefore, NetMHCPan represents each

MHC sequence as a 34 corresponding residues, and an HLA-peptide binding sample is repre-

sented as a 43-length amino acid sequence (34 from the HLA and 9 from the peptide). The

input is then used to train multiple feedforward neural networks, and the network with the high-

est prediction performance on the evaluation set was selected as the final prediction model[27].

2.2. Models on HLA-peptide binding prediction 17

PickPocket

PickPocket is another popular pan-specific model for predicting peptide-MHC binding.

The main idea of PickPocket is to use statistical approach to calculate the binding score for

each candidate peptide sequence. For each supported HLA alleles, amino acids that frequently

occur at anchor positions (the positions where certain amino acids appear more) given the

higher value. The less frequent amino acids are assigned with lower values [53]. The final

score of a sequence is the sum of values at each position.

PickPocket constructs position-specific scoring matrices (PSSMs) for each MHC alleles,

which are derived from peptide ligands in the training data. In order to support MHC alleles

with insufficient data, PickPocket developed a novel pocket-specific binding method. These

pockets are derived form specificity determining interactions with amino acid side chains dis-

tributed along the length of the ligand [53]. Therefore, pocket library could be built from MHC

alleles for where a significant amount of peptide-binding ligands data was available to con-

struct a PSSM for those rare HLA alleles which have insufficient experimental data. In order

to calculate the similarity between the a rare MHC allele and the MHC allele with a calculated

PSSM from the training dataset, the similarity function is used as following:

S im(sq, si) =
S (sq, si)√

S (sq, sq)S (si, si)
(2.1)

S(sq, si) indicates the similarity score between the two pocket sequences Sq and Si.

By doing this, PickPocket could calculate a weighted average PSSM for those unknown or

rare MHC alleles based on pocket similarities of all calculated HLA PSSMs from the training

set. Figure 2.7 indicates the more-detailed flow network for PickPocket. PickPocket firstly

extracts the position-specific vectors from the PSSMs in association with pseudo-sequence to

construct a pocket library and each pocket library entry is characterized by nine pairs, where

each pair consists of a specificity vector and a list of pocket amino acids[53]. Each number

corresponds to the following steps: (1) Build up PSSMs from ligands data; (2) Extract pseudo-

sequences for the pockets; (3) Extract the position-specific vectors to construct a pocket library;

18 Chapter 2. Machine learning and related works

Figure 2.7: PickPocket Flow Network. Reproduced from original paper [53]

(4 and 5) Input a query MHC, the model retrieves the position-specific vectors and calculates

mean vectors (6) The algorithm constructs a virtual PSSM for the target allele[53].

2.2.3 Consensus Models

The third one is called the consensus model. Due to some models may predict well for one

given HLA molecule but perform poorly for others, a consensus model usually uses several

different models and produces a prediction result based on all of them, which is usually defined

as a simple average of those models[26]. The objective of consensus algorithms is to achieve

an optimal combination of a series of prediction methods[17] for any given HLA molecule in

an automatic manner[17]. There are some current popular consensus models, such as IEDB

Consensus and netMHC-cons.

NetMHCcons

NetMHCcons is a popular consensus model for peptide-MHC binding prediction. In par-

ticular, two ANN-based MHC-peptide prediction models (NetMHC 3.4 and NetMHCpan) and

2.3. Our Novel Design 19

one PSSM-based model (Pickpocket 1.1) have been utilized in this approach. NetMHCcons

provides three options for peptide binding prediction to different MHC alleles. Each of the

included models was first benchmarked separately and performance evaluated prior to the ap-

plication of the consensus method [17]. In the end, the output result of NetMHCcons model is

defined as following:

NetMHCcons =



NetMHCpan + Pickpocket if distance >= 0.1

NetMHC + NetMHCpan if distance = 0

NetMHCpan if 0 < distance < 0.1

(2.2)

where distance refers to the distance between the query HLA alleles and its nearest neighbour

in the reference HLA allele list

2.3 Our Novel Design

Model Name Category Year Special Design Algorithm Last Update

NetMHC4.0 Allele-specific 2014 Insertion and deletion ANNs October 2017
MHCflurry Allele-specific 2018 Padding ANNs January 2019
NetMHCPan 4.0 Pan-specific 2017 HLA pseudo code features ANNs January 2018
PickPocket Pan-specific 2009 Pocket Library PSSM January 2017
NetMHCcons Consensus 2012 Sequence-based features Consensus January 2017

Table 2.1: Summary of related works for predicting MHC-peptide ligands.
The online link to access the above mentioned models are as following:

NetMHC 4.0: http://www.cbs.dtu.dk/services/NetMHC/;
MHCflurry: https://github.com/openvax/mhcflurry/;

NetMHCPan-4.0, http://www.cbs.dtu.dk/services/NetMHCpan/;
PickPocket 1.1: http://www.cbs.dtu.dk/services/PickPocket/;

NetMHCcons-1.1; http://www.cbs.dtu.dk/services/NetMHCcons/;

Table 2.1 is a summary of the related works as we discussed previously. Those model

are still frequently used today and can be considered as the state of the art for peptide-MHC

binding prediction problems. Currently, most of the prediction models are based on single

machine learning algorithm, such as ANN-based, CNN-based and RNN-based model. But as

http://www.cbs.dtu.dk/services/NetMHC/
https://github.com/openvax/mhcf lurry/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/PickPocket/
http://www.cbs.dtu.dk/services/NetMHCcons/

20 Chapter 2. Machine learning and related works

explained in machine learning section, considering that CNNs are excellent in extracting motifs

features from protein sequence and RNN performs well on sequential data, in this thesis, we

propose a novel pan-specific model called MHCherryPan which makes full use of CNN and

RNN architectures to predict the binding affinity between HLA class I and peptides by using

large-scale public datasets. We compared our model with other current popular models, and

the result proved our model performed very well on the HLA-peptide binding problem and

achieved state-of-the-art results on a large number of HLA alleles with good generalization

capability.

Chapter 3

Methodology

In this chapter, we propose a new model called MHCherryPan to solve HLA-peptide bind-

ing prediction problems, and then we would elucidate our approach thoroughly. Firstly, we

demonstrate the problem that we want to solve, then we explain our model in detail, including

encoding the input data, extracting peptide features, extracting HLA features, and predicting

HLA-peptide binding affinity. Lastly, we would combine all the modules we discussed and

introduce the pipeline for our model, which would give a big clear picture.

3.1 Problem statement

In this thesis, we build up a deep learning model to predict peptide binding to MHC/HLA

through deep learning methods. In particular, we try to solve peptide-HLA binding prediction

problems by using Recurrent Neural Network and VGG-based Convolutional Neural Network

and then compare our model performance with other currently popular models.

3.2 Encoding

This section introduces the genetic codes for amino acids and how we transform them into the

numeric representation by using the encoding matrix.

21

22 Chapter 3. Methodology

3.2.1 Genetic Codes for Amino Acids

The MHC/HLA and antigen peptides are composed of amino acids. There are around 500

amino acids known, but merely 20 amino acids appear in the genetic code[36]. Those 20

amino acids are used to represent the input data (peptides and HLA). Any one of these 20

amino acids has its name, but it also has the three-letter or one-letter representations which are

commonly used in literature including this thesis:

alanine - ala - A lysine - lys - K

arginine - arg - R methionine - met - M

asparagine - asn - N phenylalanine - phe - F

aspartic acid - asp - D proline - pro - P

cysteine - cys - C serine - ser - S

glutamine - gln - Q threonine - thr - T

glutamic acid - glu - E tryptophan - trp - W

glycine - gly - G tyrosine - tyr - Y

histidine - his - H valine - val - V

isoleucine - ile - I asparagine/aspartic acid - asx - B *

leucine - leu - L glutamine/glutamic acid - glx - Z *

*The last two amino acids (B and Z) are special due to sometimes it is difficult or impossible

to differentiate between two amino acids. This uncertainty to identify between two amino acids

(asparagine and aspartic acid, glutamine and glutamic acid) is shown with a special symbol (B

or Z).

3.2.2 Encoding Method

When working with amino acids sequence data, the numeric representation of amino acids,

which also is called encoding, will affect the model performance. Currently, there are two

common encoding solutions for amino acids. The first is a simple method called a one-hot

3.2. Encoding 23

encoding model in which each amino acid is represented by a unit binary vector of length n,

containing a single one and (n-1) zeros, e.g. [1,0,0, ., 0] for one amino acid and [0,1,0, ., 0]

for another amino acid. The value of that channel is set to one if the corresponding amino acid

appears, and the rest channels remain zero. This solution fairly treats all amino acids.

Another one is to use the BLOSUM matrix for encoding, representing each amino acid

by its corresponding row in the BLOSUM matrix. The BLOSUM matrix is a substitution

matrix to score alignments between evolutionarily divergent protein sequences [12]. Instead of

fairly treating all amino acid, the BLOSUM matrix keeps the evolutionary information about

which pairs of amino acids are easily interchangeable during evolution(i.e., which amino acid

positions are highly variable and which are conserved)[16]. This will be very important in

peptide-protein binding prediction.

In our MHCherryPan model, every input is a pair match of an HLA and a peptide. Taking

the peptide and the HLA as the pair inputs, we utilize the Blosum62 matrix to encode according

to locations of amino acids in sequences. Figure 3.1 shows the BLOSUM62 Matrix. Each

peptide and HLA are represented to the network as a series of amino acids; each amino acid

is represented as a 21-dimensional, smoothed, and blosum62- encoded vector. The peptide

sequence is encoded into a tensor with the dimension as 1 × 15 × 21, where the last dimension

number represents the number of channels and every channel stands for one of 20 amino acids

and one extra for padding and masking. 15 represents the peptide length. Although we choose

15 as the maximum length for peptide, our model can accept any-length peptides due to that

we use the masking layer in RNN, which can handle variable-length inputs by skipping any

input with mask value by copying the previous hidden state of the cell.

We tested our model on alignment-ready HLA sequences with different lengths and chose

the length 180 as the fixed dimension. Then we encoded each aligned HLA sequence into a 2D

tensor with dimension 1 × 180 × 21. We acquired alignment-ready HLA - 2895 sequences of

length 180 amino acids from the IMGT/HLA database[30]. Therefore, we encode each aligned

HLA sequence into a 2D tensor with dimension 1 × 180 × 21 in our model.

24 Chapter 3. Methodology

Figure 3.1: BLOSUM62 Matrix: The BLOSUM62 matrix is used to encode peptide and HLA
sequences.

3.3 Model

In this section, we explain our model in detail, including how to extract peptide features, how

to extract HLA feature, and how to predict HLA-peptide binding based on extracted peptide

features and HLA features.

3.3.1 Peptide Feature Extraction Module

Recurrent neural networks (RNN) are neural network models for sequential data, and they have

time-delayed connections between the neurons of a hidden layer. RNN process one element

of the sequence at a time. In biological sequence context, RNN process one residue after the

other[16]. The information, therefore, flows both from input to output and along the sequence.

In this way, memory is generated and the neural network gains the ability to store and integrate

information from past inputs. Long short-term memory (LSTM) neural networks are a particu-

lar type of RNN in which the scalar-valued hidden neuron is replaced with the LSTM memory

3.3. Model 25

Figure 3.2: Peptide Feature Extractor - RNN

block[16]. The LSTM memory block is inspired by a computer memory cell and is easier for

the network to store a given input over many time steps[16].

LSTM can take input sequences with varying length by using the masking layers, which

makes LSTM highly flexible for dealing with unfixed length sequential data. In our model,

LSTM was chosen as the extracting methods for peptide feature extraction in order to gener-

alize the relationship between the amino acid representation in peptide sequence. Figure 3.2

shows the RNN peptide feature extractor. We used the Bi-direction LSTM layer with 128 num-

ber of units. Our peptide feature extraction section processes one amino acid from an entire

sequence of peptide at a time, then predict whether it has the certain biological property after

having seen the whole sequence. We utilized the bidirectional approach (biLSTM) where the

network processed the input sequence forwards and backwards. In this way, each prediction

was determined by not just what came before the current position but also what comes after.

Recurrent neural networks use the output of a certain element in the sequence as an extra

26 Chapter 3. Methodology

Figure 3.3: HLA Feature Extractor - CNN

input when handling the next element of that sequence. This allows the network to learn

dependencies between elements of the same sequence. This is exactly the type of situation we

are in. We presume that sequential features, such as the order or (relative) position of certain

amino acids in the proteins sequence will influence the reaction between these proteins. This

is the type of dependencies we want to discover. For this reason, choosing a recurrent neural

network seems to be the more promising strategy for our problem.

3.3.2 HLA Feature Extraction Module

CNNs consist of several convolutional layers with many convolutional filters and maxpooling

layers. Maxpooling layers enable the network to become invariant to small local deformations

in the input[16]. In CNN, information flows only from the input to the output through layer by

layer. They are not fully connected, but use a filter (a set of weights) over the input and feed

the information into a different neuron in the next layer. The filter will thereby identify features

in input irrespectively of where they appear[16]. We utilized a convolutional filter to detect a

motif in an amino acid sequence.

Inspired by DeepSeqPan, we defined a similar Convolutional Block to extract high-level

features from raw sequence data. As Figure 3.3 indicates, our convolutional block (ConvBlock)

3.3. Model 27

consists of two blocks with convolutional, batch normalization (a technique for training very

deep neural networks that standardizes the inputs to a layer for each mini-batch), max pooling

and LeakyReLu layers (an activation function to transfer the negative number into a smaller

number). Unlike DeepSeqPan that has many parameters needed to train, We simplified the

structure and optimized it to extract the protein sequences data with 180 aa lengths. In our

model, we applied a VGG-liked network configuration to extract the high-order features. VGG

is a straight forward CNN architecture and the main idea is to stack the convolutional layers

with increasing filter sizes. Information stored inside HLA proteins can be learned by the

neural network automatically with its end-to-end training framework.

3.3.3 Affinity Prediction Module

As the training data is all labeled with the IC50 value (which is an experimental way to measure

the affinity value between two peptides, see section 4.4.4 for more details), we devised our

output layer to produce the predicted IC50 value for the input MHC/HLA - Peptide pair. To

predict whether the input MHC/HLA - Peptide pair binding or not, we used a thread-hold value

to get the binary label. We set the threshold value into 500nm, which is also commonly used by

most of currently popular models such as MHCFlurry, DeepSeqPan, NetMHCPan and so on.

The reason why most of the current models are using IC50 value as the label instead of using

the binary label (0 for not binding and 1 for binding) is due to the IC50 value could potentially

bring more useful information into our model like the strength of the binding.

In order to pass the high-order features into out layers, we designed a feed-forward neural

network to perform and analyze the features passed from HLA Feature Extractor and Peptide

Feature Extractor. We first used a concatenate layer to merge features from peptide and HLA.

After this, we performed several dense layers (the regular deeply connected neural network

layer), dropout layers (layers which is used to prevent a model from overfitting), and activation

layers(LeakyReLu and linear layers) to further fully connect all the features. Eventually, our

model outputs one number to represent the binding affinity (IC50).

28 Chapter 3. Methodology

Figure 3.4: MHCherryPan Network Architecture: (I) Peptide Feature Extraction. (II) MHC
Feature Extraction. (III) Affinity Prediction. (IV) Components of a convolutional Block

3.4 Pipeline

The MHCherryPan model for solving MHC-peptide binding prediction problems follows a

straightforward pipeline, as shown in figure 3.4. As discussed, the model consisted three parts:

peptide feature extraction, HLA Feature extraction, and affinity prediction. When the paired

input data goes through the model, the HLA extractor module will extract abstract features from

HLA sequences, and the peptide extractor module will extract features from peptide sequences.

In the end, the affinity prediction module would concatenate the features from both modules

and produce the prediction.

3.5. Model Training 29

Figure 3.5: Model Training: Forward and Backward Propagation, replicated from original
article[15].

3.5 Model Training

Training the neural network is to learn the values of parameters(weights and biases) for models.

It is extremely significant for improving the model performance, and training is done by an

iterative process of forward propagation (forward information flow), and backward propagation

of the information by the layers of neurons. Figure 3.5shows the process of model training.

Forward propagation occurs when inputting the training data into the model, and these

data go through the whole network for their labels or predictions to be computed. By doing

this, the input data would be transformed through all the layers of network, and all its neurons

have applied their transformation, the predicted label or result will be produced by the model

or the final layer.

A loss function is used to calculate the error or the loss so we can compare and measure

how close or distinct our prediction result was compared with the correct result (true label).

The goal for training the model is to have the cost or loss function as small as possible, which

means there is little or no divergence between predict label and expected value (true label). In

order to achieve the goal, the weights of the neurons or the network will gradually be adjusted

30 Chapter 3. Methodology

along the direction where the loss function is smaller and smaller. One of the common loss

functions used for regression prediction is mean square error, which is also the loss function

used to train this model. The function definition is shown as below (3.1).

L =
1
n

n∑
i=1

(YIC50 (i) − ŶIC50 (i))2 (3.1)

YIC50 (i)represents the true value and ŶIC50 (i) stands for the predict value.

Back propagation is a widely used algorithm to calculate the derivative (gradient) of the

cost function with respect to the weight matrices. After the loss has been computed, this

information is spread backward. The loss propagates to all layers that relate to the output result

beginning from the output layer. Nevertheless, the hidden layers merely acquire a proportion of

the total loss, according to how relative contribution that each layer has devoted to the former

output. This process is repeated until the loss is minimum.

Chapter 4

Experiment setup

In this chapter, we discussed our experiment setup, including the datasets that we use, model

training, model validation, performance evaluation methods and some experiment implemen-

tation details.

4.1 Dataset

This section would discuss the datasets we used. The data is the result of a combination of

two datasets. We obtained the MHC sequential data from EBI, and we collected experimental

binding data from IEDB. These two sets were then combined to create a single set to use for

training and validation. We would discuss those databases we used and how we collect data in

detail.

4.1.1 EBI

The EMBL Outstation-European Bioinformatics Institute (EBI) is a center for research and ser-

vices in bioinformatics, which manages and makes available a wide range of the databases of

biological data including nucleic acid, protein sequences, and macromolecular structures. For

this thesis, we are particularly interested in the IPD-IMGT/HLA Database, which was used

31

32 Chapter 4. Experiment setup

to collect details for the MHC molecules. The Immuno Polymorphism Database (IPD)- Inter-

national ImMunoGeneTics (IMGT) Databases provides a database specialized for sequences

of the human major histocompatibility complex (MHC). This database utilizes the official se-

quences names, which are from the WHO Nomenclature Committee For Factors of the HLA

System[30]. The IPD-IMGT/HLA Database works as a part of the international ImMuno-

GeneTics project (IMGT).[30]. We obtained 2895 pre-aligned HLA sequences of length 180

amino acids from EBI.

4.1.2 IEDB

The Immune Epitope Database (IEDB)[9] provides a broad set of experimentally character-

ized peptides and peptide-MHC binding affinities data publicly for research use. Database

entries are curated from published literature, and numerous affinities are conducted based on

immunofluorescent assays. These affinities are represented as an IC50 value, the half-maximal

inhibitory concentration in nano-molar (NM) units of peptide to MHC molecules. A total of

approximately 1,100,000 examples from MHC ligand assays was available as of Aug 2019,

spanning multiple mammalian and avian species.

The training dataset is downloaded from the IEDB database (http://tools.iedb.org/

main/datasets). All training data is labeled by IC50 binding affinity values. The HLA se-

quences were obtained from the EBI database, and all the sequences are already in alignment in

180 aa length. We trained our model on peptides binding to HLA-A, HLA-B and HLA-C alle-

les with available HLA sequences. The training dataset contains 202091 peptide-HLA binding

peptides covering 42 HLA-A alleles (132255 samples), 49 HLA-B alleles (66704 samples),

and 10 HLA-C alleles (3132 samples). All peptides in the training set consist of 8-15 amino

acid residues.

http://tools.iedb.org/main/datasets
http://tools.iedb.org/main/datasets

4.2. Data pre-processing and pre-analysis 33

4.2 Data pre-processing and pre-analysis

In this section, we would further look into the peptide-hla data since the data is always the

fundamental key for building up the model. Also, the more we comprehend our data, the better

we could do to build up our model. We would introduce the pre-processing methods, data

pre-analysis, and data visualization for our peptide-hla data.

4.2.1 Peptide-HLA data pre-processing

Figure 4.1: MHC Training Data

Data preprocessing is a data processing method to transform experimental data into a clean

format, which could help to prevent some data issues such as incomplete data, data with lack-

ing specific attributes, and data with errors[25]. The experimental peptide-HLA data we col-

lected from IEDB contained many features(in total 98 fields), and many of them are irrel-

evant for model training. Therefore, the first step was to remove those irrelevant features

from the dataset. When filtering the dataset, we kept only three fields (out of 98): mhc - the

MHC name (e.g., HLA-A*01:01) using nomenclature for factors of the MHC System(http:

//hla.alleles.org/nomenclature/naming.html), peptide - the peptide amino acid se-

quences information for hla-peptide data, IC50(nM) - the binding affinity measurement by

IC50 (The half maximal inhibitory concentration). Figure 4.1 illustrates an example of MHC

training data. We also remove any entry with invalid data like sequences with uncertainty in

the amino acids (see section 3.2.1).

http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/nomenclature/naming.html

34 Chapter 4. Experiment setup

Besides, We remove the sequences from the dataset that is rare enough. As mentioned, the

peptide-HLA data varies by length of the peptide. The length of peptides for the majority of

the data is around length 8 to length 15 aa (Please see figure 4.4 for more specific statistics).

Therefore, we filtered out those data where the length is smaller than eight or greater than

15 due to that the Peptide-HLA data with those lengths don’t have enough data. Figure 4.2

indicates the statistics summary (including total counts, means, Standard deviation, minimum,

25%, 50%, 75%, maximum) for our training dataset. Before we encode our data as the input to

train our model, we also implemented data analysis and visualization to learn more about the

data.

Figure 4.2: The statistics summary for training dataset
The Y IC50 is the constructed feature from IC50 using the log function. The details can be
found in subsection 4.4.2.

4.2.2 HLA Sequences

We downloaded all the training data from IPD - IMGT datasets[30]. But since the goal is to

build a pan-specific model, the amino acids sequences information for HLA are also necessary.

HLA sequences have different lengths. Alignments for those sequences are necessary due to

most of machine learning models require the fixed-length input. Therefore, the pre-aligned

HLA sequences were collected from the EBI database and the length is 180 aa[33].

4.2. Data pre-processing and pre-analysis 35

Figure 4.3: Pie chart of binding or not for MHC Training Data.[38]: The blue part is for
”not binding” data and the orange part is for ”binding” data.

4.2.3 Data pre-analysis and visualization

In order to have a better understanding of our data, we did a comprehensive analysis and

visualization for our training data from IEDB.

We firstly group our data by ”binding” or ”not binding.” As Figure 4.3 indicates, there are

30.4% training data that are labeled ”binding” and 69.6% labeled ”not binding.” In reality, the

ratio of positive vs negative was in the range of 1.3% vs 98.7% ([4]). This difference could

be illustrated by the selection process used to select candidates on which the experiments are

performed that contribute to those online datasets [4]. It is reasonable that lots of experiments

are done with those samples that are more likely to yield a positive result [4]. Therefore, we get

imbalanced data. In order to solve this, we used the Area under the ROC curve (AUC) instead

of accuracy to measure our model performance. This is due to that accuracy only measures

the number of correctly predicted samples over the total number of samples, and it could be

misleading for unbalanced data since it will be more sensitive to the class of more data. In this

case, the AUC can be used as a better model evaluation method since it could also consider the

precision and recall. The AUC would be discussed in more detail in the section 4.4.2.

Regarding the mhc/hla peptide binding mechanisms, there are multiple features that play a

36 Chapter 4. Experiment setup

Figure 4.4: Training data distribution by peptide length.

role in it. Among them, two of the significant features which would have a big influence on

model performance are hla alleles and peptide sequential data. Therefore, we grouped our data

distribution by hla alleles and peptide sequences to have a better understanding of our data.

As we mentioned previously, the length of peptide is an important feature regarding the

HLA peptide binding mechanism. Therefore, we grouped our data by the peptide length, and

figure 4.4 is an overview of the hla-peptide data distribution by peptide length. As shown in

figure 4.4, the numbers of training samples varies greatly. As we can see from the figure 4.4,

most data concentrated in length 9, which is far more than any other length. The second most

hla-peptide data is in length 10. As we can see from the figure, the majority of data stays in

length 9 and length 10, which we would perform a more detailed analysis in the next subsection.

The rest length data (length 8, 11, 12, 13, 14, 15) has less data compared with length 9 and

length 10. Therefore building up a reasonable model which considering the data distribution in

length would be significant. This is also one of the reasons why we choose the RNN. Due to

the majority of data is in length 9 and length 10, we also analyze the frequency of amino acids

in peptide.

4.2. Data pre-processing and pre-analysis 37

Figure 4.5: Binding Affinity Distribution by Alleles

38 Chapter 4. Experiment setup

Figure 4.5 indicated the affinity value(transformed IC50) distributions by different hla alle-

les. The x-axis is the target value and it represents the binding affinity between peptide and hla

which will be inputted into our model(the transformed function is in 4.4.2 Metrics and Math-

ematical Function subsection) for training. We visualize the result through box plot. Using

the box plot, we can compare the range and distribution of the affinity value for different hla

alleles. Each box in alleles shows the quartiles of the dataset while the whiskers extend to

show the rest of the distribution. An outlier is an observation that is numerically distant from

the rest of the data[42]. When reviewing a box plot, an outlier is defined as a data point that

is located outside the fences(”whiskers”) of the box plot. As the figure shows, alleles have

different binding affinity distribution. The neighboring alleles (the similar alleles) in the table

tend to have the more similar distributions of binding affinities distribution.

4.2.4 The Amino Acid Enrichment for peptide-hla binding data

We also filtered out the non-binding data and analyzed HLA-binding binding data through

statistics-based visualization using bar chart and iceLogo, examining amino acid abundance at

each position of the 9-aa and 10-aa peptides.

Figure 4.6 and Figure 4.7 show the frequencies of each position of 9-aa peptides for HLA-

peptide ligands. As we can see from the figure, for all the HLA allele types in this data set,

the majority anchor positions were at the position 2, position 3, and the C-terminal position.

In addition, we also found that the particular amino acid frequency at the C-terminal position

correlated strongly among all the positions. Those results are in accordance with the similar

statistic analysis we could find in Faridi’s paper in 2018 [7].

4.2.5 Encoding

After filtering, analyzing, and visualizing the data, the next step is to transfer the raw data,

which is the amino acid sequence into the encoded data that the machine learning model could

4.2. Data pre-processing and pre-analysis 39

Figure 4.6: Motif analysis for 9-mer peptides[38]: showing the percentage of enriched amino
acid at each position for hla-peptide binding data.

40 Chapter 4. Experiment setup

Figure 4.7: Motif analysis for 10-mer peptides showing the percentage of enriched amino
acid at each position for hla-peptide binding data.

4.3. Model Learning 41

take as the input. As mentioned in section 2, we tested different encoding matrices and finally

decided to use the BLOSUM62 Matrix to encode the pair of peptide-HLA sequences into the

those NumPy arrays (A numpy array is the standard representation for numerical data [37]).

The comparison result of different encoding metrics would be illustrated in the result section.

Regarding the y label (IC50 values), due to our goal is to make a regression model to predict

the binding affinity but the IC50 values in our datasets varies too much (from 0 to 80000NM),

we use the equation as mentioned in subsection 4.4.2 to transfer our data into y value in the

range of 0-1, which could help to input our data into the model.

4.3 Model Learning

In this section, we give some more details regarding the model learning. We introduce training

the model, implementing the training experiment, and preventing overfitting.

4.3.1 Model training and preventing overfitting

We used training datasets and validation datasets to train our model. Firstly, we split all our

training data randomly into training sets and validation sets by following a 4:1 ratio. Training

datasets are used to fit or train the parameters of our model. The validation dataset would

be used to give an unbiased evaluation for our trained model. By using validation sets, we

could choose the best performance model from all the training models (with different trained

parameters). The table 5.1 indicated the training AUC and validation AUC for our model.

The MHCherryPan model was implemented with the Keras. Stochastic gradient descent

(SGD) is utilized as the optimizer. We trained our model with learning rate decay and used

an early stop approach to prevent overfitting. The initial learning rate (a tuning parameter in

an optimization algorithm that determines the step size at each iteration while moving toward

a minimum of a loss function [46]) is 0.005, and the momentum factor is 0.6. It is scheduled

to decrease the learning rate if AUC has not increased within 20 epochs. We set the minimum

42 Chapter 4. Experiment setup

learning rate as 0.00002. The training process stops if the loss on the validation set has not

decreased within 50 epochs.

In addition to utilizing the early-stop strategy, we also applied the following methods to

prevent overfitting. We designed several Drop Out layers in our model to reduce overfitting

by introducing discrete noise during training. We also used multiple Batch normalization to

re-parameterize the hidden unit activation in order to increase convergence speed and make the

output stochastic, creating a regularizing effect[16].

4.3.2 Implementation

The entire programming for the model is done in Python 3.7. Pandas library package (version

0.24.1) is used for data preprocessing, and Keras library package (version 2.2.4) is utilized for

building the model.

The model training is done through Sharcnet server. Regarding the resources, as Figure 4.8

shows, 2 GPU and 4 CPU cores are used. The memory usage is allocated for 40GB. The details

regarding the used package and sharcnet server can be found in section 4.5.

Figure 4.8: Job script for Model training

4.4 Performance Evaluation

In this section, we introduce the test benchmark dataset and how to evaluate the performance

of our model by using the test dataset.

4.4. Performance Evaluation 43

4.4.1 Test Benchmark Dataset

In order to evaluate our model performance, we use a public test benchmark dataset, which

is provided by IEDB to test several popular hla-peptide binding algorithms. The test bench-

mark dataset and training dataset are distinct with each other. The test benchmark dataset is

downloaded from IEDB’s weekly benchmark dataset, and the date is ranged from 2014-03-21

to 2019-05-26 (http://tools.iedb.org/auto_bench/mhci/weekly). In case that dupli-

cate peptides may appear in both the training and testing dataset downloaded from IEDB, we

eliminated all duplicate peptides from the benchmark testing dataset.

4.4.2 Metrics and Mathematical Function

In this thesis, both Area under the curve (AUC) and Spearman’s rank correlation coefficient

(SRCC) are used as the evaluation metrics to compare the performance of our model with the

public benchmark results of other current widely-used models from IEDB [32]. Both AUC and

SRCC are calculated using the Scikit learn package for Python3.

Area under the receiver operating characteristic curve (AUC)

AUC is the area under the resulting curve of the positive rate and false positive rate at each

possible score threshold.It is in a sense a broader metric, testing the quality of the internal

value that the classifier generates and then compares to a threshold. As Figure 4.9 indicates,

the false positive rate and the true positive rate(precision) are calculated for each possible score

threshold, and the final metric is the area under the resulting curve.[3]

True positive rate (or sensitivity or recall) =
True positive

true positive + false negative
(4.1)

True negative rate (or Specificity) =
True Negatives

True Negatives + False Positives
(4.2)

http://tools.iedb.org/auto_bench/mhci/weekly

44 Chapter 4. Experiment setup

False positive rate =
False Positive

False Positive+True Negative
(4.3)

Precision or positive predictive value =
True Positive

True Positive+False Positive
(4.4)

Figure 4.9: AUC Curve.: Taken from Receiver operating characteristic - Wiki [40]

A true positive (TP) defines as an outcome in which the model correctly predicts the pos-

itive class. Also, a true negative is an outcome in which the model correctly predicts the

negative class.[45] A false positive (FP) defines as an outcome in which the model wrongly

predicts the positive class. A false negative is an outcome in which the model wrongly pre-

dicts the negative class.[45] The true positive rate, true negative rate, and false positive rate are

calculated as formula 4.1, 4.2, and 4.3. Sensitivity (which is also called the true positive rate

or the recall) measures the proportion of actual positives that are correctly identified as such

[48]. For instance, the percentage of infected people who are correctly identified as having the

condition [48]. Specificity (which is called the true negative rate) measures the proportion of

actual negatives that are correctly identified as such. For example, the percentage of uninfected

4.4. Performance Evaluation 45

people who are correctly identified as not having the condition [48].Positive rate is the sum of

the true positive rate and the false positive rate. precision is the fraction of relevant instances

among the retrieved instances, while recall (or sensitivity) is the fraction of the total amount of

relevant instances that were actually retrieved. [47].

The reason why we prefer AUC is due to two points: first, AUC and Spearman’s rank

correlation coefficient are the standard measurements which are used on the IEDB benchmark

website. It would be appropriate to use the same measurements as the benchmark website used.

Second, AUC is more sensitive to imbalanced class. As explained, AUC considers true positive

rate and false positive rate in the measurement, which in that sense may be a better summary of

the performance of a classifier since it incorporates different aspects of the performance into a

single number. Regarding accuracy, it may not be suitable for the imbalanced class. Accuracy

would be favor for the majority class, which is not what we want. For example, if we have an

imbalanced dataset where 95 are positive and 10 are negative, in this case, the classifiers could

always predict ”positive” to achieve the high accuracy. But this is not what we want. We want

a classifier to distinguish two classes instead of always guessing the ”majority” result. On the

other hand, AUC is better since it consider true positive rate and false positive rate. In addition,

some other measurements may also be acceptable like Precision-Recall curves. But since we

want to compare our results with the results reported on benchmark website, it may be more

appropriate to use the same measurement (AUC) as website used.

Spearman’s rank correlation coefficient (SRCC)

The Spearman correlation coefficient is a method to summarise the direction and strength

of a relationship between two variables.[50] The Spearman correlation coefficient is to measure

the monotonic relationship between distributed variables. It represent the rank correlation be-

tween target and predicted values for quantitative measurements. The pair we used to measure

here is the target value and predicted value. It defines as below:

ρ = 1 −
6
∑

d2
i

n(n2 − 1)
(4.5)

46 Chapter 4. Experiment setup

d is the pairwise distances of the ranks of the variables and n is the number of samples.

There is an another similar method is called Pearson coefficients. It is also used to measure

the relationship between two variables. But the difference is that the Pearson coefficients mea-

sure the linear relationship between two continuous variables while the Spearman correlation

evaluates the monotonic relationship between two continuous or ordinal variables[50]. The

monotonic relationship means the variables tend to change together, but may not at a constant

rate. Since what we measure is the target value and predict value, we believe the monotonic

relationship may makes more sense instead of only linear relationship. Also, as mentioned

previously, another big consideration is that SRCC is the measurement used by the bench-

mark website. Those are the reasons why we choose the SRCC instead of Pearson coefficients.

However, this is just our preference. Some model like MHCflurry used Kendall rank corre-

lation coefficient (a similar matrix like SRCC to measure the monotonic relationship), AUC

and Pearson coefficients for model performance evaluation. From their published result, the

Pearson coefficients have the similar results as other two measurements.

Binding Affinity(IC50)

The IC50 value in our HLA-peptides training dataset covered a large range from 0 to

80000nM. IC50 value is used as the an experimental measurement for binding affinity. The

higher the IC50 value stands for, the lower the binding affinity. In order to fit all data smoothly

into the model and prevent the gradient explosion problem from training the deep neural net-

work, we transform the IC50 into the regression y value using the equation below. We define

MaxIC50 as 50000nM.

YIC50 =


0 if IC50 > MaxIC50

1 − logMaxIC50
IC50 if IC50 ≤ MaxIC50

(4.6)

In order to obtain the predicted label (whether binding or not), we use a common threshold

500nM for IC50, for which many other popular models used and previous studies[31] demon-

strated 500 nM as an MHC affinity threshold for HLA class I. We use binary label 0 - not

4.5. Technologies and Tools 47

binding and 1 - binding.

label =


0 if IC50 > 500nM

1 if IC50 ≤ 500nM
(4.7)

The overall loss L is the sum of the regression loss defined as the Mean Square Error.

L =
1
n

n∑
i=1

(YIC50 (i) − ŶIC50 (i))2 (4.8)

YIC50 (i)represents the true value and ŶIC50 (i) stands for the predict value.

4.5 Technologies and Tools

This section gives an overview of the tools used throughout the various parts of this thesis. All

code was written in Python 3.7.

Keras (2.2.4) is an open-source, high-level neural networks API written in Python. It can

be configured to use Tensorflow, CNTK or Theano as backend. We used the default backend

which is Tensorflow. Keras greatly simplifies the code needed to design, train and evaluate

Neural Networks, while retaining the performance of more complicated libraries. This makes

it a great tool for research.

Tensorflow (1.14.1) was used as the underlying library for Keras. It is an open-source

library for numerical computations such as neural networks. It was originally designed by

Google to perform a deep neural network and machine learning research.

Pandas (0.24.1) was used to reading, parsing and saving pre-processed files. It is an open-

source library providing multiple data structures and data analysis tools which are commonly

used in machine learning.

NumPy (1.13.1) is a package for scientific computing in Python. It is part of the SciPy

(0.19.1) ecosystem. Its N-dimensional array structure is used as the main data container for the

48 Chapter 4. Experiment setup

various mathematical libraries used throughout the thesis.

SHARCNET was used as the server for training our model. It is initiated by universities

in Ontario, Canada to accumulate funding together to purchase supercomputer systems, and it

could be shared and used by university researchers to perform research, instead of individually

purchasing smaller systems.[49]

Chapter 5

Result and discussion

In this chapter, firstly, we discuss the experimental results, including the model performance on

validation sets using different encoding matrix. Secondly, we compare the performance of our

model with current popular models including as follows: pan-specific algorithms: NetMHC-

Pan3.0, NetMHCPan4.0, and PickPocket, allele-specific algorithms: SMM, NetMHC3.4, NetMHC4.0,

ARB, MHCflurry and AMMPMBEC, and consensus algorithms: IEDB Consensus and netMHC-

cons.

5.1 Experimental results on different encoding metrics

In this section, we discussed the model performance on the validation dataset by using different

encoding metrics. Finally, selecting Blosum62 as the final encoding matrix.

5.1.1 BLOSUM Matrix

The figure 5.1 illustrates all the BLOSUM matrix which we tested for our model. It includes

blosum 60, blosum 62, blosum 70, blosum 80, and blosum 90. BLOSUM stands for Block

Substitution Matrices. It computes pairwise amino acid alignment counts and it counts amino

acid replacement frequencies directly from columns in blocks. The number XX after BO-

49

50 Chapter 5. Result and discussion

Figure 5.1: Blosum Matrix: from top to bottom: blosum 60, blosum 62, blosum 70, blo-
sum 80, and blosum 90. The matrix is downloaded from ftp://ftp.ncbi.nlm.nih.gov/
blast/matrices/

ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/
ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/

5.1. Experimental results on different encoding metrics 51

LUSM indicates the sequences that are XX% similar are clustered during the construction

of the BLOSUM matrix. BLOSUM matrices with high numbers are designed for comparing

closely related sequences, while those with low numbers are designed for comparing distantly

related sequences[39].

5.1.2 Results on different blossom matrix

The table 5.1 indicates the model performance using different encoding matrix including blo-

sum60, blosum62, blosum65, blosum70, and blosum90. Regarding my model, all blosum

matrix performances similarly and blosum62 gives a slightly better model performance. Those

blosum matrix were downloaded from NCBI website(ftp://ftp.ncbi.nih.gov/blast/

matrices/)

Encoding Matrix AUC SRCC

Blosum60 0.833 0.734
Blosum62 0.843 0.742
blosum70 0.839 0.738
blosum80 0.842 0.748
blosum90 0.840 0.743

Table 5.1: Validation Experiment results for the MHCherryPan model trained on IEDB dataset.

From the table 5.1, it can be seen that for the blosum 60, blosum 70, blosum 80, and

blosum 90, the highest AUC (blosum62) is 84.3% and the lowest (blosum60) is 83.3%. Also,

the difference is very small (0.1%). The reasons why We finally choose the blosum 62 as the

final encoding matrix is due to the following two points: firstly, it gives us the slighter better

AUC performance comparing with other matrices. Second, BLOSUM-62 matrix is a more

widely used matrix, and it is among the best for detecting the weakest protein similarities. It

is also the default matrix in lots of protein alignments such as protein BLAST. Although we

choose the Blosum62 as the default encoding matrix, programming is designed to be flexible,

and it can easily switch to other encoding matrices as well.

ftp://ftp.ncbi.nih.gov/blast/matrices/
ftp://ftp.ncbi.nih.gov/blast/matrices/

52 Chapter 5. Result and discussion

5.2 Experimental results on Benchmark testing dataset

In order to compare our model performance with other popular HLA-binding prediction mod-

els, we evaluated our model on the public IEDB weekly benchmark datasets where a set of

top algorithms have been evaluated with the published results. Those top algorithms include

as follows: pan-specific algorithms: NetMHCPan3.0, NetMHCPan4.0, and PickPocket, allele-

specific algorithms: SMM, NetMHC3.4, NetMHC4.0, ARB, MHCflurry and AMMPMBEC,

and consensus algorithms (results are based on several different algorithms): IEDB Consensus

and netMHCcons. We firstly trained our MHCherryPan model on the training datasets. Then

we evaluated our trained MHCherryPan on all the available IEDB weekly benchmark datasets.

AUC and SRCC are used as the metrics to compare the performance.

Table 5.2 summarized the performance of different models on a total of 77 IEDB bench-

mark testing datasets. For each IEDB dataset, we highlighted the highest AUC scores in red

and the highest SRCC scores in green. Then we summed up the number of datasets where each

algorithm achieved the highest scores and we put them at the bottom row of the table. It can be

observed that our MHCherryPan acquired the highest AUC scores in 29 records out of a total

of 77 testing datasets. In 48 datasets where our MHCherryPan didn’t acquire the highest AUC

scores, there are 14 records on which the AUC scores of MHCherryPan are very close to the

highest AUC scores within a small margin around 0.2. Comparing with all other algorithms

regarding AUC in the benchmark table, mhcflurry and our model ranked the first and second,

obtaining the similar numbers of 30 and 29. In terms of SRCC, MHCherryPan obtained the

highest scores on 17 records, which ranked the second. Among pan-specific models (NetMHC-

Pan3.0, NetMHCPan4.0, and PickPocket), our model performed much better in both AUC and

SRCC, and our numbers of highest AUC and SRCC are almost double the other pan-specific

algorithms.

5.2. Experimental results on Benchmark testing dataset 53

Table 5.2: Performance Evaluation on IEDB Benchmark Database

Pan-specific Allele-specific Ensemble
Measure

MHCherryPan NetMHCpan3 NetMHCpan4 PickPocket SMM NetMHC3.4 NetMHC4 ARB SMMPMBEC mhcflurry IEDBCons NetMHCcons

HLA IEDB Ref Type Len Count auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc auc srcc

HLA-B*57-01 1029061 ic50 9 26 0.87 0.64 0.84 0.6 0.82 0.57 0.88 0.67 0.85 0.62 0.8 0.62 0.74 0.56 0.45 0.16 0.79 0.56 0.8 0.66 0.81 0.58 0.8 0.57

HLA-B*57-01 1028554 ic50 9 53 0.96 0.7 0.87 0.64 0.88 0.6 0.85 0.44 0.77 0.33 0.94 0.52 0.96 0.53 0.63 0.12 0.77 0.29 0.97 0.62 0.77 0.33 0.92 0.56

HLA-C*05-01 1028230 ic50 9 172 0.98 0.85 0.98 0.89 0.97 0.88 0.95 0.84 1 0.91 1 0.94 0.99 0.92 - - 0.99 0.9 0.91 0.8 1 0.91 1 0.92

HLA-C*07-02 1028232 ic50 9 140 0.92 0.78 0.96 0.81 0.97 0.83 0.91 0.76 0.96 0.92 0.97 0.89 0.95 0.85 - - 0.97 0.91 0.86 0.67 0.96 0.92 0.97 0.88

HLA-A*24-02 1026840 binary 9 357 0.91 0.49 0.86 0.43 0.87 0.44 0.84 0.41 0.84 0.4 0.87 0.44 0.86 0.43 0.83 0.4 0.84 0.4 0.86 0.43 0.85 0.42 0.87 0.44

HLA-A*24-02 1026840 ic50 9 20 0.74 0.34 0.67 0.3 0.66 0.27 0.76 0.45 0.74 0.4 0.59 0.21 0.62 0.23 0.44 0.05 0.75 0.38 0.75 0.39 0.73 0.37 0.59 0.2

HLA-B*27-04 1029125 binary 9 21 0.98 0.78 0.99 0.8 0.99 0.8 0.83 0.53 - - - - - - - - - - 0.95 0.73 - - 0.94 0.72

HLA-A*30-02 1026840 binary 9 360 0.87 0.59 0.78 0.45 0.78 0.45 0.75 0.4 0.73 0.36 0.75 0.4 0.75 0.4 0.65 0.25 0.72 0.35 0.83 0.52 0.75 0.4 0.77 0.43

HLA-A*30-02 1026840 ic50 9 56 0.67 0.34 0.48 -0.02 0.49 -0.01 0.4 -0.1 0.54 0.12 0.59 0.13 0.54 0.03 0.64 0.27 0.52 0.07 0.8 0.58 0.55 0.08 0.51 0.05

HLA-A*30-02 1026840 t1/2 9 56 0.46 0.04 0.48 0.03 0.5 0.05 0.47 -0.01 0.5 0.07 0.55 0.19 0.48 0.07 0.52 0.15 0.53 0.12 0.57 0.19 0.48 0.07 0.5 0.09

HLA-A*02-02 1028790 ic50 9 55 0.84 0.69 0.75 0.59 0.76 0.61 0.72 0.53 0.71 0.56 0.74 0.64 0.72 0.59 0.73 0.49 0.74 0.57 0.91 0.86 0.71 0.56 0.75 0.62

HLA-A*02-02 1024516 ic50 9 51 0.86 0.7 0.78 0.6 0.79 0.62 0.7 0.5 0.69 0.55 0.74 0.65 0.72 0.6 0.76 0.51 0.73 0.57 0.93 0.86 0.68 0.56 0.75 0.63

HLA-B*27-05 1029125 binary 9 21 0.99 0.8 0.95 0.73 0.94 0.72 0.91 0.67 0.91 0.67 0.94 0.72 0.96 0.75 0.88 0.62 0.96 0.75 0.96 0.75 0.91 0.68 0.96 0.75

HLA-B*27-05 1031253 ic50 9 12 0.63 0.57 0.63 0.57 0.57 0.48 0.6 0.49 0.63 0.44 0.69 0.6 0.69 0.58 0.6 0.46 0.6 0.46 0.71 0.71 0.64 0.49 0.66 0.62

HLA-A*02-01 1033576 binary 9 27 0.9 0.5 0.87 0.46 0.88 0.47 0.89 0.48 0.89 0.48 0.92 0.52 0.91 0.51 0.78 0.35 0.89 0.48 0.9 0.5 0.88 0.47 0.9 0.5

HLA-A*02-01 1028554 ic50 9 44 0.74 0.46 0.88 0.71 0.88 0.72 0.88 0.51 0.89 0.58 0.82 0.62 0.81 0.6 0.76 0.51 0.86 0.55 0.91 0.63 0.84 0.5 0.89 0.69

HLA-A*02-01 1028553 ic50 9 22 1 0.61 0.85 0.59 0.85 0.57 0.83 0.58 0.85 0.59 0.91 0.7 0.92 0.63 0.9 0.69 0.83 0.62 0.97 0.76 0.85 0.58 0.92 0.64

HLA-A*02-01 1029824 binary 9 77 0.6 0.16 0.57 0.1 0.56 0.09 0.55 0.08 0.57 0.1 0.57 0.11 0.58 0.12 0.52 0.04 0.57 0.1 0.61 0.17 0.58 0.12 0.56 0.09

HLA-A*02-01 1033071 ic50 9 112 0.9 0.81 0.88 0.82 0.88 0.81 0.85 0.78 0.87 0.8 0.88 0.81 0.88 0.82 0.85 0.79 0.87 0.81 0.88 0.82 0.87 0.81 0.88 0.81

HLA-A*02-01 1026371 t1/2 9 85 0.8 0.54 0.81 0.57 0.81 0.57 0.79 0.54 0.81 0.56 0.82 0.58 0.81 0.57 0.81 0.56 0.81 0.56 0.82 0.6 0.8 0.52 0.82 0.57

HLA-A*02-01 1027079 binary 9 16 0.71 0.34 0.8 0.48 0.84 0.54 0.8 0.48 0.75 0.39 0.76 0.42 0.76 0.42 0.78 0.45 0.75 0.39 0.82 0.51 0.73 0.37 0.8 0.48

HLA-A*02-01 1027588 binary 9 19 0.81 0.53 0.85 0.6 0.84 0.58 0.74 0.42 0.84 0.58 0.84 0.57 0.86 0.62 0.77 0.47 0.85 0.6 0.85 0.6 0.84 0.58 0.83 0.56

HLA-A*02-01 1028790 ic50 9 55 0.68 0.67 0.58 0.61 0.58 0.63 0.66 0.59 0.56 0.63 0.57 0.61 0.56 0.61 0.57 0.58 0.55 0.61 - - 0.51 0.56 0.57 0.61

HLA-A*02-01 1031894 ic50 9 431 0.81 0.57 0.9 0.74 0.9 0.74 0.78 0.57 0.82 0.65 0.88 0.72 0.88 0.72 0.76 0.54 0.82 0.65 0.86 0.75 0.82 0.64 0.88 0.73

HLA-A*02-01 1024516 ic50 9 51 0.74 0.7 0.63 0.65 0.63 0.67 0.66 0.59 0.64 0.69 0.64 0.67 0.63 0.67 0.65 0.66 0.63 0.68 0.71 0.75 0.57 0.62 0.63 0.67

HLA-A*02-01 1028928 binary 9 13 0.91 0.51 0.95 0.57 0.95 0.57 0.93 0.54 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57

HLA-A*02-01 1027471 binary 9 45 0.94 0.51 0.84 0.4 0.84 0.4 0.86 0.43 0.85 0.42 0.85 0.41 0.86 0.43 0.85 0.41 0.85 0.42 0.9 0.47 0.85 0.41 0.86 0.42

HLA-A*02-01 1026840 binary 9 357 0.9 0.57 0.91 0.57 0.9 0.57 0.89 0.55 0.9 0.57 0.89 0.55 0.91 0.58 0.9 0.56 0.9 0.57 0.91 0.58 0.91 0.58 0.9 0.57

HLA-A*02-01 1026840 ic50 9 24 0.65 0.22 0.66 0.38 0.66 0.35 0.68 0.38 0.64 0.33 0.59 0.26 0.64 0.33 0.69 0.4 0.61 0.29 0.71 0.47 0.56 0.19 0.65 0.32

HLA-A*02-01 1026840 t1/2 9 24 0.72 0.45 0.76 0.48 0.73 0.43 0.67 0.39 0.75 0.38 0.69 0.32 0.76 0.41 0.71 0.45 0.73 0.35 0.75 0.48 0.69 0.28 0.72 0.4

HLA-A*02-01 1028285 t1/2 9 881 0.85 0.65 0.86 0.71 0.87 0.72 0.84 0.68 0.85 0.7 0.85 0.69 0.86 0.7 0.82 0.65 0.85 0.69 0.87 0.71 0.84 0.68 0.86 0.71

HLA-C*03-03 1028228 ic50 9 163 0.95 0.88 0.92 0.83 0.92 0.82 0.9 0.81 0.95 0.85 0.93 0.85 0.95 0.87 - - 0.94 0.84 0.87 0.78 0.95 0.85 0.93 0.84

HLA-B*07-02 1028554 ic50 9 52 0.92 0.74 0.79 0.63 0.8 0.66 0.74 0.7 0.85 0.66 0.88 0.7 0.83 0.67 0.76 0.65 0.86 0.7 0.92 0.86 0.82 0.59 0.86 0.73

HLA-B*07-02 1028553 ic50 9 22 0.88 0.62 0.89 0.67 0.88 0.73 0.89 0.62 0.89 0.62 0.92 0.76 0.89 0.65 0.88 0.55 0.88 0.62 0.91 0.68 0.88 0.67 0.91 0.72

HLA-B*07-02 1031253 ic50 9 13 1 0.93 1 0.97 1 0.98 1 0.87 1 0.96 1 0.96 1 0.98 1 0.89 1 0.97 1 0.96 1 0.97 1 0.97

HLA-B*07-02 1026371 t1/2 9 43 0.93 0.81 0.97 0.86 0.98 0.87 0.88 0.65 0.96 0.79 0.96 0.84 0.94 0.82 0.78 0.53 0.96 0.81 0.96 0.85 0.96 0.79 0.95 0.84

HLA-B*07-02 1028928 binary 9 12 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.66 1 0.65

HLA-B*07-02 1026840 binary 9 296 0.95 0.43 0.89 0.37 0.89 0.38 0.88 0.36 0.9 0.39 0.9 0.38 0.9 0.38 0.88 0.37 0.9 0.39 - - 0.89 0.38 0.89 0.38

HLA-A*68-02 1028790 ic50 9 55 0.86 0.63 0.81 0.54 0.81 0.54 0.8 0.45 0.81 0.54 0.83 0.56 0.83 0.55 0.76 0.45 0.8 0.52 0.83 0.58 0.8 0.53 0.83 0.55

HLA-A*68-02 1024516 ic50 9 51 0.9 0.68 0.85 0.58 0.86 0.58 0.86 0.54 0.83 0.56 0.86 0.59 0.86 0.59 0.8 0.47 0.83 0.55 0.86 0.6 0.83 0.56 0.85 0.58

HLA-C*04-01 1028229 ic50 9 153 0.97 0.52 0.94 0.48 0.95 0.49 0.85 0.39 0.97 0.56 1 0.58 1 0.56 - - 1 0.59 0.85 0.4 0.97 0.55 1 0.59

HLA-B*35-01 1028554 ic50 9 56 0.82 0.54 0.67 0.4 0.66 0.36 0.5 0.28 0.59 0.21 0.57 0.27 0.69 0.27 0.64 0.26 0.53 0.2 0.81 0.5 0.7 0.29 0.64 0.36

HLA-C*03-04 315209 t1/2 9 14 0.8 0.29 1 0.88 1 0.86 0.87 0.72 - - - - - - - - - - - - - - 0.91 0.78

HLA-A*03-01 1031253 ic50 9 14 1 0.78 0.93 0.77 0.96 0.8 0.96 0.71 0.87 0.69 0.89 0.73 0.96 0.79 0.71 0.47 0.91 0.75 0.96 0.83 0.9 0.73 0.91 0.76

HLA-C*14-02 1028234 ic50 9 218 0.9 0.8 0.87 0.77 0.86 0.75 0.83 0.67 0.87 0.77 0.93 0.88 0.91 0.81 - - 0.88 0.78 0.88 0.74 0.88 0.77 0.91 0.85

HLA-B*38-01 1029957 ic50 9 27 0.95 0.78 0.95 0.81 0.97 0.79 0.97 0.78 0.99 0.84 1 0.84 0.98 0.82 0.65 0.1 0.99 0.84 0.95 0.8 0.98 0.84 1 0.84

HLA-B*27-03 315174 binary 9 11 0.79 0.48 0.82 0.54 0.89 0.66 0.89 0.66 - - - - - - - - 0.5 0.96 0.78 - - 0.89 0.66

HLA-B*39-06 1029957 ic50 9 33 0.94 0.89 0.79 0.55 0.71 0.4 0.75 0.54 - - - - - - - - - - 0.92 0.79 - - 0.81 0.59

HLA-B*27-06 1029125 binary 9 21 0.84 0.57 0.77 0.45 0.73 0.39 0.8 0.5 - - - - - - - - - - 0.87 0.62 - - 0.75 0.42

HLA-A*30-01 1026840 binary 9 349 0.96 0.24 0.8 0.16 0.83 0.17 0.75 0.13 0.79 0.15 0.77 0.14 0.83 0.17 0.71 0.11 0.78 0.15 0.91 0.21 0.73 0.12 0.79 0.15

HLA-A*02-06 1028790 ic50 9 55 0.79 0.66 0.78 0.63 0.78 0.62 0.75 0.53 0.73 0.59 0.76 0.62 0.76 0.62 0.73 0.57 0.73 0.59 0.88 0.82 0.73 0.59 0.77 0.64

54 Chapter 5. Result and discussion

Table 5.2: Performance Evaluation on IEDB Benchmark Database

Pan-specific Allele-specific Ensemble
Measure

MHCherryPan NetMHCpan3 NetMHCpan4 PickPocket SMM NetMHC3.4 NetMHC4 ARB SMMPMBEC mhcflurry IEDBCons NetMHCcons

HLA-A*02-06 1024516 ic50 9 51 0.85 0.75 0.83 0.72 0.83 0.7 0.76 0.55 0.79 0.68 0.81 0.71 0.82 0.71 0.78 0.66 0.79 0.68 0.92 0.87 0.78 0.68 0.83 0.73

HLA-C*15-02 1028235 ic50 9 181 0.92 0.75 0.94 0.77 0.93 0.77 0.87 0.74 0.94 0.85 0.97 0.87 0.93 0.84 - - 0.94 0.86 0.9 0.7 0.94 0.86 0.96 0.85

HLA-A*66-01 315312 binary 9 8 0.58 0.13 0.33 -0.25 0.42 -0.13 0.5 0 0.5 0 0.5 0 0.33 -0.25 - - 1 0.76 0.17 -0.5 0.5 0 0.5 0

HLA-A*31-01 315312 binary 9 10 1 0.85 0.96 0.7 1 0.85 0.92 0.71 0.92 0.71 0.92 0.71 0.92 0.71 0.88 0.64 0.92 0.71 - - 0.92 0.71 0.92 0.71

HLA-B*15-02 1027131 binary 9 14 1 0.71 1 0.71 1 0.71 1 0.71 0.91 0.58 1 0.71 1 0.71 1 0.72 1 0.71 1 0.71 0.97 0.67 1 0.71

HLA-B*44-03 1028554 ic50 9 46 0.72 0.58 0.64 0.6 0.58 0.56 0.64 0.43 0.75 0.47 0.65 0.56 0.74 0.65 0.56 0.25 0.76 0.55 0.69 0.77 0.84 0.56 0.64 0.55

HLA-C*12-03 1028286 ic50 9 172 0.87 0.75 0.71 0.54 0.72 0.55 0.65 0.43 0.57 0.52 0.69 0.65 0.72 0.65 - - 0.61 0.61 0.81 0.63 0.57 0.52 0.71 0.63

HLA-A*68-01 1026840 binary 9 436 0.93 0.45 0.86 0.37 0.85 0.36 0.88 0.4 0.86 0.37 0.87 0.38 0.89 0.4 0.78 0.34 0.88 0.39 0.88 0.39 0.88 0.39 0.87 0.39

HLA-A*68-01 1026840 ic50 9 35 0.87 0.68 0.84 0.6 0.85 0.61 0.86 0.64 0.79 0.62 0.84 0.65 0.85 0.68 0.77 0.53 0.83 0.63 0.87 0.71 0.82 0.66 0.85 0.65

HLA-A*68-01 1026840 t1/2 9 35 0.29 -0.38 0.38 -0.2 0.38 -0.22 0.24 -0.46 0.25 -0.42 0.27 -0.41 0.28 -0.4 0.31 -0.39 0.25 -0.43 0.27 -0.38 0.26 -0.42 0.29 -0.35

HLA-A*02-03 1028790 ic50 9 55 0.76 0.58 0.71 0.54 0.71 0.53 0.77 0.5 0.68 0.52 0.67 0.51 0.66 0.49 0.68 0.5 0.69 0.53 0.69 0.58 0.66 0.42 0.69 0.54

HLA-A*02-03 1024516 ic50 9 51 0.8 0.6 0.75 0.56 0.74 0.57 0.77 0.47 0.68 0.53 0.68 0.54 0.67 0.53 0.73 0.54 0.69 0.54 0.72 0.62 0.66 0.42 0.71 0.56

HLA-C*08-02 1028233 ic50 9 87 0.9 0.7 0.92 0.77 0.92 0.76 0.83 0.65 0.92 0.79 0.96 0.88 0.92 0.81 - - 0.92 0.79 0.79 0.6 0.92 0.79 0.96 0.86

HLA-B*07-02 1026371 t1/2 10 25 0.71 0.58 0.77 0.62 0.77 0.6 0.73 0.59 0.73 0.58 0.74 0.58 0.82 0.71 0.72 0.57 0.73 0.61 0.78 0.67 0.74 0.6 0.76 0.62

HLA-A*02-06 1028790 ic50 10 35 0.87 0.74 0.82 0.57 0.81 0.56 0.66 0.39 0.79 0.56 0.75 0.55 0.82 0.51 0.76 0.49 0.8 0.59 0.88 0.82 0.78 0.54 0.76 0.57

HLA-A*02-06 1024516 ic50 10 32 0.9 0.74 0.88 0.58 0.86 0.57 0.76 0.46 0.84 0.58 0.82 0.57 0.88 0.5 0.85 0.53 0.85 0.59 0.91 0.82 0.85 0.57 0.84 0.6

HLA-A*02-01 1033071 ic50 10 75 0.91 0.82 0.9 0.86 0.91 0.86 0.88 0.82 0.89 0.83 0.91 0.84 0.91 0.87 0.86 0.8 0.89 0.83 0.91 0.83 0.89 0.86 0.9 0.84

HLA-A*02-01 1024516 ic50 10 32 0.71 0.66 0.62 0.53 0.62 0.52 0.66 0.44 0.67 0.54 0.69 0.55 0.64 0.53 0.64 0.53 0.62 0.52 0.85 0.75 0.67 0.54 0.69 0.55

HLA-A*02-01 1026371 t1/2 10 22 0.56 0.04 0.54 0.12 0.56 0.14 0.56 0.07 0.56 0.14 0.58 0.19 0.52 0.06 0.53 0.11 0.55 0.11 0.58 0.16 0.55 0.13 0.56 0.15

HLA-A*02-01 1028790 ic50 10 35 0.72 0.59 0.6 0.43 0.6 0.43 0.65 0.3 0.65 0.47 0.67 0.45 0.64 0.44 0.64 0.44 0.59 0.45 0.84 0.67 0.66 0.46 0.68 0.44

HLA-A*02-01 1028285 t1/2 10 62 0.62 0.26 0.7 0.44 0.7 0.44 0.68 0.43 0.69 0.4 0.68 0.38 0.69 0.41 0.68 0.45 0.68 0.39 0.7 0.42 0.68 0.4 0.72 0.45

HLA-A*68-02 1028790 ic50 10 35 0.75 0.41 0.62 0.36 0.66 0.42 0.66 0.29 0.72 0.38 0.7 0.43 0.65 0.46 0.7 0.31 0.69 0.34 0.67 0.41 0.7 0.37 0.66 0.33

HLA-A*68-02 1024516 ic50 10 32 0.88 0.43 0.76 0.41 0.81 0.47 0.78 0.31 0.82 0.41 0.81 0.47 0.78 0.51 0.78 0.37 0.81 0.36 0.82 0.48 0.83 0.42 0.76 0.35

HLA-A*02-03 1028790 ic50 10 35 0.72 0.31 0.76 0.27 0.76 0.26 0.7 0.07 0.73 0.34 0.78 0.31 0.76 0.29 0.68 0.29 0.7 0.31 0.92 0.69 0.7 0.28 0.79 0.29

HLA-A*02-03 1024516 ic50 10 32 0.72 0.36 0.77 0.36 0.77 0.36 0.71 0.16 0.72 0.31 0.79 0.38 0.78 0.4 0.73 0.36 0.7 0.3 0.92 0.73 0.71 0.3 0.81 0.38

HLA-A*02-01 1028285 t1/2 11 38 0.75 0.47 0.58 0.18 0.62 0.26 0.68 0.32 0.75 0.36 0.67 0.2 0.5 0.02 0.65 0.1 0.69 0.2 0.7 0.34 0.75 0.36 0.66 0.21

Highlighed Counts 29 17 8 5 14 8 6 2 4 3 16 10 11 9 3 2 7 4 30 30 7 5 10 4

5.2. Experimental results on Benchmark testing dataset 55

5.2.1 Average AUC and SRCC

Besides counting the highest numbers of each dataset in terms of AUC and SRCC, we also

calculate the average AUC and SRCC for each algorithm based on the data in Table 5.2. As

we can see in the figure 5.2, our model and MHCFlurry both achieved the best average (0.83)

in AUC comparing with other algorithms using IEDB Benchmark Datasets. Our SRCC ranked

the second and performed a little bit less than MHCFlurry did. If only comparing within the

pan-specific algorithms, our model outperformed all the rest pan-specific models. Those results

are consistent with previous analysis by counting the highest numbers. In total, our proposed

MHCherryPan could thus be an excellent supplementary algorithm for current existing pan-

specific models.

Figure 5.2: Average AUC and SRCC Bar Chart

Chapter 6

Conclusion

In this chapter, We conclude the work presented in this thesis. In the end, we discuss the future

work.

6.1 Conclusion

In this thesis, we have developed MHCherryPan, a novel model combining convolutional and

recurrent neural networks for pan-specific HLA-peptide binding affinity prediction. Our model

is composed of an RNN-based peptide feature extractor, a CNN-based HLA feature extractor

and a binding predictor. The extensive benchmark experiments on HLA-I peptide binding pre-

diction demonstrated that MHCherryPan achieved state-of-the-art performance over a majority

of the benchmark datasets from IEDB. MHCherryPan is characterized by its capability of bind-

ing prediction with only the raw amino acid sequences of HLA and peptides, which makes it

applicable to HLA-peptide binding prediction for HLA alleles without structural information.

Our main contribution is to propose a novel design combining CNN-based and RNN-based

networks inside one pan-specific model. Instead of using the consensus model to combine the

different results from various model architectures, we bring another possibility to combine the

features from different networks in one model.

56

6.2. FutureWork 57

6.2 Future Work

Our thesis work may be enhanced in the following. First, in this thesis, merely raw amino acid

sequence data is used for representing the input peptide and HLA protein. However, this can

be improved by including MS for the peptide. Secondly, we can further test the performance

of our MHCherryPan on alleles where few data is available. Moreover, combining our model

with current software to create a pipeline to identify neoantigens may be another meaningful

work in the future.

Bibliography

[1] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predict-

ing the sequence specificities of dna-and rna-binding proteins by deep learning. Nature

biotechnology, 33(8):831, 2015.

[2] Massimo Andreatta and Morten Nielsen. Gapped sequence alignment using artificial

neural networks: application to the mhc class i system. Bioinformatics, 32(4):511–517,

2016.

[3] Rohit Bhattacharya, Ashok Sivakumar, Collin Tokheim, Violeta Beleva Guthrie, Valsamo

Anagnostou, Victor E Velculescu, and Rachel Karchin. Evaluation of machine learning

methods to predict peptide binding to mhc class i proteins. bioRxiv, page 154757, 2017.

[4] Bruno De Deken. Predicting mhc binding preferences using recurrent neural networks,

2017. [Online; accessed 17-February-2020].

[5] Scott R Burrows, Jamie Rossjohn, and James McCluskey. Have we cut ourselves too

short in mapping ctl epitopes? Trends in immunology, 27(1):11–16, 2006.

[6] Sung Yoon Choo. The hla system: genetics, immunology, clinical testing, and clinical

implications. Yonsei medical journal, 48(1):11–23, 2007.

[7] Pouya Faridi, Chen Li, Sri H Ramarathinam, Julian P Vivian, Patricia T Illing, Nicole A

Mifsud, Rochelle Ayala, Jiangning Song, Linden J Gearing, Paul J Hertzog, et al. A

58

BIBLIOGRAPHY 59

subset of hla-i peptides are not genomically templated: Evidence for cis-and trans-spliced

peptide ligands. Science immunology, 3(28):eaar3947, 2018.

[8] Gary S Firestein, Ralph Budd, Sherine E Gabriel, Iain B McInnes, and James R O’Dell.

Kelley and Firestein’s Textbook of Rheumatology E-Book. Elsevier Health Sciences, 2016.

[9] Ward Fleri, Sinu Paul, Sandeep Kumar Dhanda, Swapnil Mahajan, Xiaojun Xu, Bjoern

Peters, and Alessandro Sette. The immune epitope database and analysis resource in

epitope discovery and synthetic vaccine design. Frontiers in immunology, 8:278, 2017.

[10] Pingping Guan, Irini A Doytchinova, Christianna Zygouri, and Darren R Flower.

Mhcpred: a server for quantitative prediction of peptide–mhc binding. Nucleic acids

research, 31(13):3621–3624, 2003.

[11] Youngmahn Han and Dongsup Kim. Deep convolutional neural networks for pan-specific

peptide-mhc class i binding prediction. BMC bioinformatics, 18(1):585, 2017.

[12] Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[13] C Janeway, P Travers, M Walport, and M Shlomchik Immunobiology. Garland science

publishing. New York, NY, 2005.

[14] Charles A Janeway, Paul Travers, Mark Walport, Mark Shlomchik, et al. Immunobiology:

the immune system in health and disease, volume 7. Current Biology London, 1996.

[15] Jordi TORRES. Learning process of a neural network, 2018. [Online; accessed 17-

February-2020].

[16] Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose Juan Alma-

gro Armenteros, Henrik Nielsen, Casper Kaae Sønderby, Ole Winther, and Søren Kaae

Sønderby. An introduction to deep learning on biological sequence data: examples and

solutions. Bioinformatics, 33(22):3685–3690, 2017.

60 BIBLIOGRAPHY

[17] Edita Karosiene, Claus Lundegaard, Ole Lund, and Morten Nielsen. Netmhccons: a

consensus method for the major histocompatibility complex class i predictions. Immuno-

genetics, 64(3):177–186, 2012.

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436, 2015.

[19] Zhonghao Liu, Yuxin Cui, Zheng Xiong, Alierza Nasiri, Ansi Zhang, and Jianjun Hu.

Deepseqpan, a novel deep convolutional neural network model for pan-specific class i

hla-peptide binding affinity prediction. Scientific reports, 9(1):794, 2019.

[20] Yong-Chen Lu and Paul F Robbins. Cancer immunotherapy targeting neoantigens. In

Seminars in immunology, volume 28, pages 22–27. Elsevier, 2016.

[21] Claus Lundegaard, Kasper Lamberth, Mikkel Harndahl, Søren Buus, Ole Lund, and

Morten Nielsen. Netmhc-3.0: accurate web accessible predictions of human, mouse

and monkey mhc class i affinities for peptides of length 8–11. Nucleic acids research,

36(suppl 2):W509–W512, 2008.

[22] Heng Luo, Hao Ye, Hui Wen Ng, Sugunadevi Sakkiah, Donna L Mendrick, and Huixiao

Hong. snebula, a network-based algorithm to predict binding between human leukocyte

antigens and peptides. Scientific reports, 6:32115, 2016.

[23] Shutao Mei, Fuyi Li, André Leier, Tatiana T Marquez-Lago, Kailin Giam, Nathan P

Croft, Tatsuya Akutsu, A Ian Smith, Jian Li, Jamie Rossjohn, et al. A comprehensive

review and performance evaluation of bioinformatics tools for hla class i peptide-binding

prediction. Brief Bioinform, 10, 2019.

[24] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics. Brief-

ings in bioinformatics, 18(5):851–869, 2017.

BIBLIOGRAPHY 61

[25] Mohit Sharma. What steps should one take while doing data preprocessing?, 2018. [On-

line; accessed 17-February-2020].

[26] Magdalini Moutaftsi, Bjoern Peters, Valerie Pasquetto, David C Tscharke, John Sidney,

Huynh-Hoa Bui, Howard Grey, and Alessandro Sette. A consensus epitope prediction

approach identifies the breadth of murine t cd8+-cell responses to vaccinia virus. Nature

biotechnology, 24(7):817, 2006.

[27] Morten Nielsen and Massimo Andreatta. Netmhcpan-3.0; improved prediction of bind-

ing to mhc class i molecules integrating information from multiple receptor and peptide

length datasets. Genome medicine, 8(1):33, 2016.

[28] Timothy J O’Donnell, Alex Rubinsteyn, Maria Bonsack, Angelika B Riemer, Uri Laser-

son, and Jeff Hammerbacher. Mhcflurry: open-source class i mhc binding affinity predic-

tion. Cell systems, 7(1):129–132, 2018.

[29] Bjoern Peters and Alessandro Sette. Generating quantitative models describing the se-

quence specificity of biological processes with the stabilized matrix method. BMC bioin-

formatics, 6(1):132, 2005.

[30] James Robinson, Jason A Halliwell, James D Hayhurst, Paul Flicek, Peter Parham, and

Steven GE Marsh. The ipd and imgt/hla database: allele variant databases. Nucleic acids

research, 43(D1):D423–D431, 2014.

[31] Alessandro Sette, Antonella Vitiello, Barbara Reherman, Patricia Fowler, Ramin Nay-

ersina, W Martin Kast, CJ Melief, Carla Oseroff, Lunli Yuan, Jorg Ruppert, et al. The

relationship between class i binding affinity and immunogenicity of potential cytotoxic t

cell epitopes. The Journal of Immunology, 153(12):5586–5592, 1994.

[32] Satarudra Prakash Singh and Bhartendu Nath Mishra. Major histocompatibility com-

plex linked databases and prediction tools for designing vaccines. Human immunology,

77(3):295–306, 2016.

62 BIBLIOGRAPHY

[33] Jugmohit S Toor, Arjun A Rao, Andrew C McShan, Mark Yarmarkovich, Santrupti Nerli,

Karissa Yamaguchi, Ada A Madejska, Son Nguyen, Sarvind Tripathi, John M Maris, et al.

a recurrent mutation in anaplastic lymphoma kinase with distinct neoepitope conforma-

tions. Frontiers in immunology, 9:99, 2018.

[34] Thomas Trolle, Imir G Metushi, Jason A Greenbaum, Yohan Kim, John Sidney, Ole

Lund, Alessandro Sette, Bjoern Peters, and Morten Nielsen. Automated benchmarking

of peptide-mhc class i binding predictions. Bioinformatics, 31(13):2174–2181, 2015.

[35] Yeeleng S Vang and Xiaohui Xie. Hla class i binding prediction via convolutional neural

networks. Bioinformatics, 33(17):2658–2665, 2017.

[36] Ingrid Wagner and Hans Musso. New naturally occurring amino acids. Angewandte

Chemie International Edition in English, 22(11):816–828, 1983.

[37] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure

for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,

2011.

[38] Wikipedia contributors. Major histocompatibility complex — Wikipedia, the free

encyclopedia. https://en.wikipedia.org/wiki/Major_histocompatibility_

complex.

[39] Wikipedia contributors. Blosum — Wikipedia, the free encyclopedia, 2019. [Online;

accessed 17-February-2020].

[40] Wikipedia contributors. Receiver operating characteristic — Wikipedia, the free encyclo-

pedia, 2019. [Online; accessed 10-November-2019].

[41] Wikipedia contributors. Recurrent neural network — Wikipedia, the free encyclopedia,

2019. [Online; accessed 27-October-2019].

https://en.wikipedia.org/wiki/Major_histocompatibility_complex
https://en.wikipedia.org/wiki/Major_histocompatibility_complex

BIBLIOGRAPHY 63

[42] Wikipedia contributors. Box plot — Wikipedia, the free encyclopedia, 2020. [Online;

accessed 23-February-2020].

[43] Wikipedia contributors. Convolutional neural network — Wikipedia, the free encyclope-

dia, 2020. [Online; accessed 27-April-2020].

[44] Wikipedia contributors. Deep learning — Wikipedia, the free encyclopedia, 2020. [On-

line; accessed 26-April-2020].

[45] Wikipedia contributors. False positives and false negatives — Wikipedia, the free ency-

clopedia, 2020. [Online; accessed 23-February-2020].

[46] Wikipedia contributors. Learning rate — Wikipedia, the free encyclopedia, 2020. [On-

line; accessed 27-April-2020].

[47] Wikipedia contributors. Precision and recall — Wikipedia, the free encyclopedia, 2020.

[Online; accessed 27-April-2020].

[48] Wikipedia contributors. Sensitivity and specificity — Wikipedia, the free encyclopedia,

2020. [Online; accessed 27-April-2020].

[49] Wikipedia contributors. Sharcnet — Wikipedia, the free encyclopedia, 2020. [Online;

accessed 23-February-2020].

[50] Wikipedia contributors. Spearman’s rank correlation coefficient — Wikipedia, the free

encyclopedia, 2020. [Online; accessed 28-April-2020].

[51] Zhoujian Xiao, Yuwei Zhang, Runsheng Yu, Yin Chen, Xiaosen Jiang, Ziwei Wang, and

Shuaicheng Li. In silico design of mhc class i high binding affinity peptides through

motifs activation map. BMC bioinformatics, 19(19):516, 2018.

[52] Andreas Zell, Niels Mache, Ralf Huebner, Günter Mamier, Michael Vogt, Michael

Schmalzl, and Kai-Uwe Herrmann. Snns (stuttgart neural network simulator). In Neural

network simulation environments, pages 165–186. Springer, 1994.

64 BIBLIOGRAPHY

[53] Hao Zhang, Ole Lund, and Morten Nielsen. The pickpocket method for predicting bind-

ing specificities for receptors based on receptor pocket similarities: application to mhc-

peptide binding. Bioinformatics, 25(10):1293–1299, 2009.

[54] Lianming Zhang, Keiko Udaka, Hiroshi Mamitsuka, and Shanfeng Zhu. Toward more

accurate pan-specific mhc-peptide binding prediction: a review of current methods and

tools. Briefings in bioinformatics, 13(3):350–364, 2011.

[55] Jacek M Zurada. Introduction to artificial neural systems, volume 8. West St. Paul, 1992.

Appendix A

MHCherryPan Model Summary

In the following, we provides the detailed architecture summaries for the MHCherryPan model

which we discussed in Chapter 3 and Chapter 4.

65

66 Chapter A. MHCherryPanModel Summary

Figure A.1: Summary for MHCherryPan Model

Curriculum Vitae

Name: Xuezhi Xie

Post-Secondary University of Waterloo
Education and Waterloo, On, Canada
Degrees: 2012 - 2014 BscH

University of Western Ontario
London, ON
2018 - 2020 Msc

Honours and Western Graduate Research Scholarships(WGRS)
Awards: 2018-2020

Related Work Teaching Assistant
Experience: The University of Western Ontario

2018 - 2020

Publications:

MHCherryPan, a novel model to predict the binding affinity of pan-specific class I HLA-

peptide, accepted by IEEE - BIBM conference 2019 (in press).

67

	MHCherryPan, a novel model to predict the binding affinity of pan-specific class I HLA-peptide
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowlegements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Biological Background
	Research Question
	Difficulty
	Machine Learning in MHC-binding Problem
	Contributions
	The Structure of this Thesis

	Machine learning and related works
	Machine learning algorithms on binding predictions
	Artificial Neural Networks
	Feedforward Neural Network and Convolutional Neural Networks
	Recurrent Neural Networks

	Models on HLA-peptide binding prediction
	Allele-specific Models
	Pan-specific Models
	Consensus Models

	Our Novel Design

	Methodology
	Problem statement
	Encoding
	Genetic Codes for Amino Acids
	Encoding Method

	Model
	Peptide Feature Extraction Module
	HLA Feature Extraction Module
	Affinity Prediction Module

	Pipeline
	Model Training

	Experiment setup
	Dataset
	EBI
	IEDB

	Data pre-processing and pre-analysis
	Peptide-HLA data pre-processing
	HLA Sequences
	Data pre-analysis and visualization
	The Amino Acid Enrichment for peptide-hla binding data
	Encoding

	Model Learning
	Model training and preventing overfitting
	Implementation

	Performance Evaluation
	Test Benchmark Dataset
	Metrics and Mathematical Function

	Technologies and Tools

	Result and discussion
	Experimental results on different encoding metrics
	BLOSUM Matrix
	Results on different blossom matrix

	Experimental results on Benchmark testing dataset
	Average AUC and SRCC

	Conclusion
	Conclusion
	Future Work

	Bibliography
	MHCherryPan Model Summary
	Curriculum Vitae

