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Abstract

Meteoroids ejected from comets form meteoroid streams which disperse over time due to

gravitational perturbations and non-gravitational forces. When stream meteoroids collide with

the Earth’s atmosphere, they are visible as meteors emanating from a common point-like area

(radiant) in the sky. Measuring the size of meteor shower radiant areas can provide insight into

stream formation and age. The tight radiant dispersion of young streams are difficult to de-

termine due to measurement error, but if successfully measured, the dispersion could be used

to constrain meteoroid ejection velocities from their parent comets. The estimated ejection

velocity is an uncertain, model-dependent value with significant influence on the prediction

accuracy of meteor shower models which are operationally used by space agencies to mitigate

the meteoroid impact risk.

The first part of this work consists of a theoretical investigation of achievable meteor radiant

and velocity measurement accuracy using optical observation systems. From dynamical mete-

oroid stream modelling it has been estimated that a minimum radiant measurement accuracy

of 0.1° is needed to begin to resolve the radiant structure of young meteor showers. Using a

novel meteor trajectory simulator, it was found that this accuracy can be achieved using narrow

field of view optical systems and a newly developed method of meteor trajectory estimation.

The measurement accuracy of pre-atmosphere meteoroid velocities remains model-dependent

because meteoroids may decelerate up to 750 m s−1 prior to becoming visible.

The second part of the work was observational and done using the Canadian Automated

Meteor Observatory (CAMO). Four Electron Multiplying CCD cameras were used to ob-

serve the 2018 outburst of the Draconid meteor shower which had a radiant dispersion of

0.25°, consistent with simulations and previous high-precision measurements. A mass index

of s = 1.74 ± 0.18 during the peak was estimated using a novel method. The CAMO mir-
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ror tracking system was used to observe the 2019 Orionids. For the first time, the Orionid

radiant structure was accurately measured, showing indications of two stream branches. As

part of the meteoroid modelling work to improve radiant and orbit measurements the compres-

sive strengths of meteoroids were estimated through direct observations of fragmentation. The

measured values were a good match to in-situ Rosetta measurements from comet 67P.

Keywords: meteors, meteoroids, optical observations, meteor trajectories, asteroids, comets,

meteoroid strength
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Summary for Lay Audience

When comets come close to the Sun, dust particles called meteoroids are ejected from the

comet’s surface and form meteoroid streams which initially closely follow the comet’s orbit.

Meteoroids within a stream drift away (disperse) from each other over time because they are

pushed by Sun’s radiation and pulled by the gravity of nearby planets. When stream meteoroids

collide with the Earth’s atmosphere, they are visible as meteor showers (“shooting stars”) em-

anating from a common point-like area in the sky called the radiant. Observing meteors using

video cameras from several locations enables us to compute their radiant and 3D trajectory in

the atmosphere. Young streams (10s-100s years old) have tight radiant areas which are difficult

to resolve because the measurements are usually not accurate enough. Knowing the true radi-

ant dispersion can help to directly calculate the speed at which meteoroids were ejected from

comets. Right now, the ejection speed is calculated from different theoretical models which

do not agree with each other. The ejection speed is one of the most important parameters in

meteor shower prediction models which are used by space agencies. During times of high me-

teor activity, space walks are suspended and satellites are reoriented to minimize the chance of

impact. Historically, predicting the true activity of meteor showers has been challenging and

several major meteor shower outbursts were not predicted because of unknown ejection speeds.

In this work, it was determined through meteoroid stream modelling that radiants should be

measured with an accuracy of at least 0.1° to reveal the true radiant dispersion of young meteor

showers. Using a new meteor shower simulator developed here, it was shown that the required

accuracy can be achieved by existing optical meteor observation systems if our new method

of computing meteor trajectories is used. Using very precise optical instruments that are a

part of the Canadian Automated Meteor Observatory, real radiant dispersions of the Draconid

and Orionid meteor showers were measured. The observed Draconid radiant positions match

theoretical radiants well, and the structure of the Orionid radiant was revealed for the first time.
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I also thank Damir Šegon and Pete Gural for instilling a passion for meteors in me through

their relentless thirst for knowledge. Furthermore, I would like to thank many other passionate

amateur astronomers who encouraged me to pursue astronomy as a profession.

Many thanks to all past and present members of the Western Meteor Physics Groups for

sharing their expertise and friendship.

Finally, I thank my friends and family for their undivided support and kindness, as well as

the employees of the restaurant Babylon for their friendliness and amazing food which kept me

going.

vii



Contents

Abstract ii

Summary for Lay Audience iv

Co-Authorship Statement v

Acknowledgements vii

List of Figures xiv

List of Tables xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Meteor Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Meteoroid genesis and orbital evolution . . . . . . . . . . . . . . . . . 10

1.2.2 Atmospheric entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Optical meteor observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Computing meteor trajectories . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Meteor shower dispersions . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Measurement accuracy of initial velocities of meteors 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

viii



2.2 Ablation models and simulation details . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Faint meteor ablation model . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Fireball ablation model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Optical system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Image intensified system . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Moderate field-of-view system . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 All-sky system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Types of meteoroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.1 CAMO influx system . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.2 Moderate field of view system - CAMS . . . . . . . . . . . . . . . . . 61

2.6.3 All-sky (SOMN) system . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.4 Dependence of the velocity difference on the varying atmospheric density 68

2.7 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Novel meteor trajectory simulator and solver - I. Theory 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Overview of trajectory solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Monte Carlo trajectory estimation method . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Inputs and conversions to rectangular coordinates . . . . . . . . . . . . 93

3.3.2 Plane fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.3 Plane intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.4 Line of sight method . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.5 Computing meteor length, velocity and lag . . . . . . . . . . . . . . . 99

3.3.6 Estimating timing offsets and the initial velocity . . . . . . . . . . . . . 100

3.3.7 Refining the trajectory solution - a Monte Carlo approach . . . . . . . . 104

ix



3.4 Meteor shower and trajectory simulator . . . . . . . . . . . . . . . . . . . . . 108

3.4.1 Simulating radiants and activity . . . . . . . . . . . . . . . . . . . . . 113

3.4.2 Generating meteor state vectors and apparent radiants . . . . . . . . . . 115

3.4.3 Simulating meteoroid dynamics . . . . . . . . . . . . . . . . . . . . . 116

3.4.4 Generating synthetic trajectory data . . . . . . . . . . . . . . . . . . . 117

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.1 Note on code availability . . . . . . . . . . . . . . . . . . . . . . . . . 120

4 Novel meteor trajectory simulator and solver - II. Results 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Simulation-based performance analysis of trajectory solvers . . . . . . . . . . . 125

4.2.1 Hardware models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Simulated meteor showers . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.3 Dynamical modelling of the 2011 Draconid outburst . . . . . . . . . . 129

4.2.4 Simulation validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.1 All-sky systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.2 Moderate FOV systems . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3.3 CAMO system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.4 Trajectory solution accuracy as a function of convergence angle . . . . 149

4.3.5 The 2015 Taurid outburst - high-precision all-sky observations . . . . . 153

4.3.6 Influence of gravity on trajectories of long-duration fireballs . . . . . . 154

4.3.7 Estimated radiant error and true accuracy . . . . . . . . . . . . . . . . 158

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5 Novel mass index estimation applied to 2018 Draconids 169

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2 Instruments and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

x



5.2.1 Electron Multiplying Charge Coupled Device systems . . . . . . . . . 171

5.2.2 Data reduction and calibration . . . . . . . . . . . . . . . . . . . . . . 175

5.3 Maximum likelihood estimation method of computing population and mass

indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.3.1 Description of the new method . . . . . . . . . . . . . . . . . . . . . . 182

5.3.2 Testing the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4 Mass and population index of the 2018 Draconids . . . . . . . . . . . . . . . . 199

5.4.1 Bin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.4.2 Bin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.5 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.6 Radiant distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.7.1 Complete input data and trajectory solutions for EMCCD meteors . . . 214

6 CAMO data reduction pipeline and mechanical strength measurements 220

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.1.1 Previous research done using CAMO data . . . . . . . . . . . . . . . . 222

6.1.2 Introduction to meteoroid strength measurements . . . . . . . . . . . . 225

6.1.3 Strength measurements from meteoroid fragmentation in the atmosphere 227

6.1.4 Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2 CAMO mirror tracking system specifications . . . . . . . . . . . . . . . . . . 230

6.2.1 System hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.2.2 Detection software and tracking . . . . . . . . . . . . . . . . . . . . . 232

6.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.3.1 Operational plates for tracking . . . . . . . . . . . . . . . . . . . . . . 234

6.3.2 Astrometry calibration plates . . . . . . . . . . . . . . . . . . . . . . . 237

6.4 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.4.1 CAMO tracking system weblog . . . . . . . . . . . . . . . . . . . . . 238

xi



6.4.2 Manual reduction of wide-field data . . . . . . . . . . . . . . . . . . . 238

6.4.3 Manual reduction of narrow-field data . . . . . . . . . . . . . . . . . . 240

6.5 Examples of reduced meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.5.1 Morphologies allowing for high precision measurements . . . . . . . . 244

6.5.2 Morphologies with deteriorating measurement precision . . . . . . . . 246

6.5.3 Morphologies which severely limit measurement precision . . . . . . . 246

6.6 Meteoroid compressive strength measurements . . . . . . . . . . . . . . . . . 249

6.6.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.6.2 July 21, 2017 event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Radiant and orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Deceleration, strength, and mass distribution of fragments . . . . . . . 262

Mass and size distribution of fragments . . . . . . . . . . . . . . . . . 266

6.6.3 Identification and analysis of a larger population of fragmenting meteors 267

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7 Orionids dispersion 284

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.2 Observations details and data reduction . . . . . . . . . . . . . . . . . . . . . . 286

7.3 Radiant dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8 Conclusion 311

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

A Equations and transformations for trajectory and orbit computation 315

A.1 Bending of the trajectory due to gravity . . . . . . . . . . . . . . . . . . . . . 315

A.2 Distance between lines in 3D space . . . . . . . . . . . . . . . . . . . . . . . . 316

xii



A.3 Orbit computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

A.3.1 Correcting the apparent radiant and the velocity for Earth’s rotation . . 318

A.3.2 Geocentric radiant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

A.3.3 Precessing ECI coordinates to J2000 . . . . . . . . . . . . . . . . . . . 321

A.3.4 Position and the velocity of the Earth . . . . . . . . . . . . . . . . . . . 321

A.3.5 Heliocentric coordinates of the meteor . . . . . . . . . . . . . . . . . . 322

A.3.6 Heliocentric ecliptic radiants . . . . . . . . . . . . . . . . . . . . . . . 323

A.3.7 Keplerian orbital elements . . . . . . . . . . . . . . . . . . . . . . . . 324

A.4 Earth-centered inertial coordinates . . . . . . . . . . . . . . . . . . . . . . . . 327

A.4.1 Converting geographical coordinates to ECI . . . . . . . . . . . . . . . 328

A.4.2 ECI to geographical coordinates . . . . . . . . . . . . . . . . . . . . . 329

A.5 Local apparent sidereal time . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

A.6 Horizontal to equatorial coordinate conversion . . . . . . . . . . . . . . . . . . 332

A.7 Equatorial to horizontal coordinate conversion . . . . . . . . . . . . . . . . . . 332

A.8 Precessing equatorial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 332

A.9 Ecliptic coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

B Table of EMCCD Draconids 336

B.1 Table of EMCCD Draconids . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

C CAMO plate formats 347

C.1 AST plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

C.2 AFF plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

D Copyright Permissions 351

Curriculum Vitae 360

xiii



List of Figures

1.1 Stages of life of an average meteoroid . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Distribution of geocentric velocities . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 GMN radinats in SCE coordinates . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Sporadic sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 The 2019 NASA meteor shower forecast . . . . . . . . . . . . . . . . . . . . . 8

1.6 Meteor trajectory estimation in steps . . . . . . . . . . . . . . . . . . . . . . . 19
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Chapter 1

Introduction

1.1 Motivation

The goal of this thesis is to measure true physical radiant dispersion of meteor showers through

optical observations. Meteoroids are defined by the International Astronomical Union (Koschny

& Borovicka, 2017) as 30 µm to 1 m solid objects moving in interplanetary space. When they

collide with a gaseous atmosphere they start ablating and produce light, ionisation, and other

phenomena which are collectively called meteors. The point on the sky from which a meteor

appears to originate is called the radiant.

If meteors have a common origin and hence similar heliocentric orbits, they will appear

to an observer on the Earth’s surface to have similar radiants and velocities forming a meteor

shower. Meteor showers are caused when Earth encounters meteoroid streams – groups of

meteoroids on similar orbits. The origins of meteoroids are from either cometary or asteroidal

parent bodies (Ceplecha et al., 1998).

Meteoroids are released from cometary parent bodies when comets approach the Sun. In

this case, the volatiles near the surface start to sublimate and this leaves a trail of meteoroids

behind the comet (Vaubaillon et al., 2019). Meteoroids of asteroidal origin are released through

asteroid collisions, tidal/spin-up disruptions, or ejection due to thermal stresses (Lauretta et al.,

1



2 Chapter 1. Introduction

2019; Agarwal, 2019).

Meteoroids initially closely follow the orbit of the parent body, as ejection speeds are a

small fraction of the parent orbital velocity (Jenniskens, 1998). Over time, meteoroid orbits

become dispersed due to gravitational perturbations and non-gravitational forces such as Solar

radiation pressure (Egal et al., 2019). Thus, the orbits in a meteoroid stream vary slightly and

this is reflected in the apparent angular dispersion of their radiant locations in the sky (radiant

areas).

Young meteor showers most often have tighter (smaller) angular radiants and sharp (tem-

poral) peaks of activity, while older showers are more dispersed and last longer. Very old

meteoroid streams lose the orbital memory of the parent body and become part of the sporadic

background (Jenniskens, 2006). Figure 1.1 shows the different stages of life of an average me-

teoroid. In contrast to meteor showers, which occur annually for a period of several hours up

to several weeks, sporadic meteors have a steady flux which varies about ±30% throughout the

year (Campbell-Brown & Jones, 2006).

In practical terms, being able to measure true physical radiant dispersions can help to con-

strain ages of meteor showers and models of their formation. These models are used by satellite

operators to estimate the meteoroid impact risk and undertake action to minimize it (Drolsha-

gen & Moorhead, 2019). Finally, these models are used to predict annual shower activity by

NASA (Moorhead et al., 2019) and schedule spacewalks on the International Space Station

during periods of lowest meteoroid activity to mitigate the impact risk to astronauts (Hoffman

et al., 2020).

1.2 Meteor Physics

When meteoroids hit the Earth’s atmosphere they undergo rapid heating caused by collisions

with air particles and become visible to the human eye at altitudes between 70 – 120 km. Me-

teoroids that orbit the Sun enter the atmosphere at hypervelocity speeds. The slowest me-
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Figure 1.1: (A) Meteoroid ejection from a comet (Source: ESA), B) Meteoroid stream evolu-
tion (Source: Dr. Peter Brown), C) Meteor observed in the atmosphere after an encounter with
the Earth.

teors are those whose relative velocities with respect to the Earth are near net zero, thus

they enter the atmosphere with a speed equivalent to the escape velocity from Earth’s sur-

face
√

2GME
r = 11.2 km s−1, where ME is the mass of the Earth and r is the Earth’s radius. The

fastest observed meteors are those that are close to escaping the Solar System with heliocen-

tric velocities at Earth’s orbit
√

2GMS
rE

= 42.1 km s−1, and they collide with the Earth head on,

adding Earth’s orbital velocity
√

GMS
rE

= 29.8 km s−1 to the total of 71.9(5) km s−1 (it varies

due to the changing Earth-Sun distance rE; MS is the mass of the Sun). Temporary captured

meteoroids in an orbit around the Earth (Shober et al., 2019) may have even lower geocentric

velocities (i.e. velocities relative to the centre of the Earth), and interstellar objects may have

velocities far exceeding the upper limit (Taylor et al., 1996).

Meteors observed by the human eye are usually produced by meteoroids smaller than a

millimetre. These small meteoroids almost completely ablate away in the atmosphere, turning

into disassociated ions (Popova et al., 2019). Objects smaller than 30 µm do not ablate and

are known as interplanetary dust particles (IDPs) which slowly settle down in the atmosphere

and may be collected in the stratosphere (Brownlee, 1985). Refractory meteoroid components

that survive the entry and IDPs that arrive to the surface are known as micrometeorites, and are

usually collected in areas where they concentrate over time, such as ice sheets in the Arctic and

ocean sediments (Genge et al., 2008).

On the other hand, meteorite-dropping fireballs are caused by larger >20 cm meteoroids

(Ceplecha et al., 1998), and are rare events that only occur several times a year on regional
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scales (Brown et al., 2002). An average of ∼40 t of extraterrestrial material of all sizes falls to

the Earth’s surface every day, but estimates vary by an order of magnitude (Plane, 2012).

Millimetre-size meteoroids can generally be divided into several groups by their physical

properties derived from optical and spectral observations (Borovička, 2005): low-density (ρm =

100 – 1000 kg m−3) cometary meteoroids with high porosity (Borovička et al., 2007, 2014),

asteroidal meteoroids with stony composition (ρm = 2500 – 4000 kg m−3), and high density

iron meteoroids (Vojáček et al., 2019). Meteoroid bulk density is still a contentious issue

due to measurement and model limitations - for example, Kikwaya et al. (2011) proposed a

correlation between bulk density and orbital characteristics, but Vojáček et al. (2019) showed

that meteoroids on asteroidal orbits can also have low bulk densities.

Figure 1.2 shows the distribution of geocentric velocities of meteors observed by the Global

Meteor Network (GMN), a world-wide network of video cameras (Vida et al., 2019). The

distribution is bimodal and the different peaks correspond to different meteor sources on the

sky. To illustrate, Figure 1.3 shows the distribution of GMN meteor radiants in Sun-centered

ecliptic (SCE) coordinates - the observed geocentric velocities are colour coded. Note that the

local peaks in the velocity distribution correspond to certain meteor showers which are also

labeled in Figure 1.3.

Figure 1.4 shows an SCE radiant plot of combined North and South hemisphere radar ob-

servations (Brown et al., 2005; Pokornỳ et al., 2017). We will use the two plots to illustrate ob-

servational biases and explain observed meteoroid sources. In contrast to optical observations,

radar observations can be performed 24/7 under all weather conditions. Radars also typically

observe meteoroids smaller than optical systems; at such sizes (< mm) sporadic meteors are

more prevalent than shower meteors (Campbell-Brown, 2007).

The centre of SCE plots is aligned with the Earth’s direction of motion around the Sun,

i.e. the apex, and corresponds to meteoroid geocentric velocities above ∼41 km s−1 (minimum

geocentric velocity of 11.2 km s−1 + mean orbital velocity of Earth of 29.8 km s−1). These me-

teoroids hit the Earth “head on”, and are mainly produced by Halley-type comets (Campbell-
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Figure 1.2: Distribution of meteoroid geocentric velocities of ∼ 100, 000 meteors observed in
2019 by the Global Meteor Network (Vida et al., 2019). Full names of meteor showers are
given in Table 1.1.
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Figure 1.3: Meteor radiants in Sun-centred ecliptic coordinates collected in 2019 by the Global
Meteor Network. The geocentric velocity is colour coded.

Figure 1.4: Sporadic meteoroid sources as seen by the Canadian Meteor Orbit Radar (CMOR;
Brown et al., 2005) and the Southern Argentina Agile MEteor Radar (SAAMER; Janches et al.,
2015). The relative areal density of meteoroid radiants is colour coded. H is the helion source,
AH is the anti-helion source, NA and SA are the North and the South apex source, and NT and
ST are the North and the South Toroidal source. Courtesy of Dr. Petr Pokorny.
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Brown & Wiegert, 2009). 90° to the right of the centre is the anti-helion (“anti-Sun”) sporadic

source. These meteoroids have smaller velocities (20 – 40 km s−1) and are mainly produced by

short-period comets, such as 2P/Encke (Wiegert et al., 2009).

On the opposite side of the plot, 90° to the left of centre, is the apparent location of the Sun.

Because the GMN data was obtained using optical systems that only work during the night,

Figure 1.3 shows no observed radiants close to that direction. On the other hand, Figure 1.4

comprising radar radiants clearly shows the helion source. Meteoroids coming from the helion

source are on the post-perihelion leg (after perihelion, the closest point to the Sun) of the

same family of orbits as those from the anti-helion source, which represents the pre-perihelion

portion. Finally, the radiant concentrations at the top and bottom of the ring around the apex

source (with speeds around 35 km s−1) are known as the Toroidal sources (North and South)

which are fed by short and long period comets, as well as near-Earth asteroids (Wiegert et al.,

2009; Pokornỳ et al., 2014).

On a clear night when no major meteor showers are active, a human observer may see 1-2

meteors an hour. This number can increase dramatically if a major meteor shower is active,

to about 100 meteors an hour. In rare occurrences, thousands of meteors an hour can be seen

during meteor shower outbursts (Jenniskens, 2006). Figure 1.5 shows a meteor shower activity

forecast for 2019 from (Moorhead et al., 2018).

The Zenithal Hourly Rate (ZHR) is the number of meteors a human observer would see in

an hour of observation under ideal conditions, assuming that the shower radiant is at the zenith.

Note that this is only an approximate upper limit to the number that can actually be seen -

the observed number decreases by 1/cos zc where zc is the angle between the shower radiant

and the zenith (Arlt et al., 2008). For example, if the radiant was only 30° above the horizon

(zc = 60), one would only see half the number of meteors given by the ZHR.

Table 1.1 lists some major meteor showers that were predicted to be active in 2019. Most

showers have an activity peak that only lasts on the order of hours to days. Note the Southern

and Northern Taurids have small activity, but they last more than 2 months. The shower dura-
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Figure 1.5: 2019 meteor shower activity forecast plot. Reproduced from Moorhead et al.
(2018). The Zenithal Hourly Rate (ZHR) is the number of meteors a human observer would
see in an hour if the meteor shower radiant was in the zenith.

tion and level of activity are determined in part by its age and evolution. For example, in 2019

there was a predicted Draconid outburst that was supposed to last only a matter of hours, but

the predicted activity did not materialize. Models show that meteoroids causing the outburst

were less than 100 years old (Egal et al., 2019), thus if they did collide with the Earth, the ac-

tivity enhancement would have been substantial (the shower usually has a small ZHR in most

years). But because the meteoroid stream was young and spatially narrow, uncertainties in the

model made the prediction uncertain as well.

In contrast, the Taurid complex (NTA and STA) is likely tens of thousands of years old

(Valsecchi et al., 1995), based on its long duration, low activity and broad radiant. The Tau-

rid meteoroid stream is thus very spread out and tends to have consistently low inter-annual

activity.

Meteoroids present a danger to satellites and astronauts in orbit. For an 8-hour low Earth
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Table 1.1: Major meteor shower activity predictions for 2019 by Moorhead et al. (2018).

IAU Name Peak Parent body Speed ZHR

code date (km/s) (meteors/h)

QUA Quadrantids Jan 4 96P/Machholz 41 110

PER Perseids Aug 13 109P/Swift-Tuttle 59 110

DRA Draconids Oct 8 21P/Giacobini–Zinner 20 10-100

STA Southern Taurids Nov 05 2P/Encke 27 5

ORI Orionids Oct 23 1P/Halley 66 20

NTA Northern Taurids Nov 12 2P/Encke 29 5

GEM Geminids Dec 14 3200 Phaethon 35 140

orbit spacewalk, there is a 1 in 5000 probability of impact induced leakage leading to end of

a space walk due to either an orbital debris or a meteoroid impact (Pate-Cornell & Sachon,

2001). Although the time-integrated flux of the sporadic background over the whole year is

about a factor of 10 times higher than that of meteor showers (Jones & Brown, 1993), the main

contributor to the increase of spacecraft impact risk from natural sources are young meteoroid

streams which have not been perturbed, and whose activity can be order of magnitude higher

than that of regular meteor showers. Such meteor showers are called meteor storms and their

activity can reach up to several thousand meteors visible per hour to a ground-based observer

(∼ 1 meteor every second that can be seen by human eye; Jenniskens, 2006).

Beech & Brown (1993) estimated the impact probability of a Perseid meteoroid during the

1993 Perseid meteor outburst with an object the size of the Space Shuttle to be about 0.1%.

During the outburst, the European Space Agency’s (ESA) satellite Olympus lost an on-board

gyroscope and spun out of control. Subsequent analysis has shown that the most probable

explanation was a high-speed impact (∼58 km s−1) of a Perseid meteoroid which produced im-

pact generated plasma and short-circuited sensitive electronics (Caswell et al., 1995). Another
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ESA satellite, the XMM-Newton X-ray space observatory lost two CCD imaging arrays while

observing an object located in the direction of the south Toroidal sporadic source (Drolshagen,

2008; Cooke, 2014).

1.2.1 Meteoroid genesis and orbital evolution

Comets were first established as being meteor shower parent bodies in the nineteenth century.

Schiaparelli (1867) measured the radiant locations of the Perseid and Leonid meteor showers,

and demonstrated that these showers had orbits with striking similarity to comets 109P/Swift-

Tuttle and 55P/Tempel-Tuttle, respectively. Comets are small Solar System bodies composed

of a mixture of rock, dust, and different ices. The most abundant are water, carbon dioxide,

carbon monoxide, methane, and ammonia ice (Greenberg et al., 1998). Although described

as “dirty snowballs” in the past, recent findings indicate that their dust-to-ices ratio is in fact

a factor of two (or more) larger (Fulle et al., 2017), making them more akin to icy dirtballs

(Keller, 1989).

Comets are among the most primitive remnants of the formation of the Solar System. After

initially forming in the inner Solar System, they were ejected during encounters with the grow-

ing giant planets far from the Sun early in Solar System history (Tsiganis et al., 2005; Levison

et al., 2008). Most of the time, comets reside in a low-temperature environment far from the

Sun and remain dormant. When they are flung into an orbit that brings them closer to the Sun

by gravitational interactions with passing stars or the tides of the galaxy (Duncan et al., 1987),

the ices start to sublimate and the comet develops a coma.

The most significant volatile sublimation is due to water ice sublimation which starts at

152 K, a temperature which cometary nuclei reach when around 3 au from the Sun (1 au is the

average distance from the Sun to the Earth). Other ices start sublimating at larger distances due

to a much lower sublimation temperature (e.g. 25 K for carbon monoxide), but they are not the

main drivers of cometary activity (Womack et al., 2017).

Sublimating ices form jets of gas that lift dust particles from the comet surface. As the
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height from the surface increases, the gas drag becomes smaller and the particles are decel-

erated by the comet’s gravity. They achieve a terminal ejection velocity in the range from

1 – 1000 m s−1, depending on the size and density of the particle, as well as the comet distance

from the Sun (Vaubaillon et al., 2005). Several authors have developed hydrodynamical models

describing the dust-gas interaction, but the predicted ejection velocities may differ significantly

between models (Whipple, 1951; Jones, 1995; Crifo & Rodionov, 1997). Another important

physical process is the distributed coma production, i.e. sublimation of embedded ices occur-

ring on the lifted meteoroids themselves. Including this effect reduces the resulting ejection

velocities compared to surface-only production (Brown & Jones, 1998).

Meteor shower outbursts can be predicted in time and approximately in expected strength

by numerically modeling orbits of meteoroids after ejection from their parent comets (Vaubail-

lon et al., 2005). In these cases, actions can be taken to minimize the impact risk from outbursts

to both satellites and astronauts in orbit.

As an example, Vaubaillon et al. (2011) and Maslov (2011) predicted the 2011 outburst of

the Draconid meteor shower which was subsequently well observed using optical (Koten et al.,

2014; Šegon et al., 2014) and radar methods (Kero et al., 2012; Ye et al., 2013a). A year later

an unpredicted Draconid outburst was observed which reached meteor storm levels of ∼ 9000

meteors per hour (Ye et al., 2013b) for smaller radar meteoroid sizes (the visual rate was an

order of magnitude lower). Such cases demonstrate that existing models do not always match

the observations: either there is a meteor shower outburst that was not predicted, or a predicted

outburst which did not happen. Egal et al. (2019) predicted an enhanced concentration of Dra-

conid meteoroids in 2018 close to ESA’s GAIA spacecraft which was re-oriented in response

to minimize the exposed satellite area to the incoming meteoroid stream.

To perform numerical modelling of meteoroid streams, hundreds of thousands to millions

of test particles with different ejection velocities, masses, and densities are ejected from the

sunlit side of the parent comet and their motion is integrated in time. It is often assumed

that there is no interaction with the parent body. Because the comet size (kilometer scale) is
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negligible compared to total integrated distances, the particles are created at the position of

the parent body with the velocity equal to the sum of the parent motion and ejection velocity

vectors. It is also assumed that the particles do not interact with one another (Vaubaillon et al.,

2005). The motion can be described by a fundamental specific force equation which is solved

numerically

# »

x′′ =
d #»v
dt

= F(
#»

x′, #»x , t) = Fg( #»v , #»x , t) + Fr( #»v , #»x , t) , (1.1)

where #»x is the particle position vector with respect to the Sun, #»v its velocity vector, and

t is the simulation time. The gravitational (Fg) and non-gravitational (Fr) specific forces are

considered separately (Klačka & Kocifaj, 2008). High order integrators (usually 15th order) are

used to integrate the meteoroid motion in time, taking care to account for machine precision

and numerical artifacts (Everhart, 1985; Rein & Spiegel, 2014). Gravitational interactions with

the Sun, all eight planets, and the Moon are included by using the classical law of universal

gravitation

Fg( #»v , #»x , t) = −
Gm�
| #»x |3

#»x −
9∑

p=1

Gmp

( #»x − #»xp

| #»x − #»xp|
3 +

#»xp

| #»xp|
3

)
, (1.2)

where G is the gravitational constant, m� is the mass of the Sun, mp are masses of individual

planets and the Moon, and #»xp is the position vector of the planet with respect to the Sun.

Non-gravitational forces acting on the test particle are related to solar radiation, but usually

just the Poynting–Robertson effect is included. It can be described as a relativistic effect which

causes the particle to lose angular momentum and over time spiral into the Sun. As the particles

are moving at tens of kilometers a second (∼ 10−4c), from the reference frame of individual

particles it appears that that the solar radiation is coming from a slightly forward direction due

to the aberration of light, thus the radiation absorption causes a drag force. This effect depends

on the particle size. To characterize this behaviour, we can consider the ratio β between the

solar radiation pressure Fr and the force of gravity Fg� between the particle and the Sun (Burns
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et al., 1979)

β =
Fr

Fg�
=

L�πR2

4πGM�m

Q̄′pr

c
, (1.3)

where L� is the solar luminosity, R the particle radius, Q̄′pr the radiation pressure efficiency

factor averaged over all wavelengths and weighted by the solar spectrum, and m is the particle

mass. Particles with β ≥ 0.5 will be blown out of the Solar System on hyperbolic orbits because

the radiation pressure exceeds the force of gravity. They are called β-meteoroids and typically

have 1 µm scale diameters, i.e. they are too small to be considered in meteoroid ejection models

(Grün & Zook, 1980). On the other hand, particles with β < 0.1 (larger than ∼10 µm) will spiral

into the Sun approximately after

τ =
1
4

(
β

Gm�
c

)−1

a2
0 , (1.4)

where a0 is the particle’s initial semi-major axis (Leinert & Grün, 1990; Krivov et al., 2006).

Assuming a β = 0.1 particle was ejected at a = 1 au, it will take it abound 10,000 years to

spiral into the Sun.

Particles with 0.1 < β < 0.5 may spiral in or be ejected, depending on their physical

properties. Particles >1 mm are largely unaffected because they have large mass to surface

areas and the radiation pressure is a second order effect. However, we still consider it for all

meteoroids even on shorter time scales because it plays a role in meteoroid stream dispersion

and can slightly alter orbital paths, an important consideration for some meteor outbursts with

orbits near the Earth. The radiation pressure force expression is

Fr( #»v , #»x , t) = β
GM�
| #»x |2

[(
1 −

#»v · êx

c

)
êx −

#»v
c

]
,

êx =
#»x
| #»x |

.

(1.5)

The motions of test particles are integrated until they make a close encounter with the



14 Chapter 1. Introduction

Earth. Usually particles that approach the Earth within ∆x = | #»v |∆T are considered as potential

impactors, where ∆T is the expected time of the shower (Egal et al., 2019). Major sources

of uncertainty related to shower predictions are the unknown true orbit and the activity of the

parent body (i.e. total dust production) at the time of meteoroid ejection.

In many cases the ejection may have happened thousands of years ago, and no reliable

comet observations exist at that time. For older showers, the influence of non-gravitational

forces on meteoroids and perturbations of meteoroid orbits after close encounters with Jupiter

is particularly important to their future motion (Vaubaillon, 2017). Jupiter’s gravity scatters

compact streams and increases the prediction uncertainty. For younger showers, where the

dynamical evolution has not had enough time to disperse the stream and the influence of non-

gravitational forces is negligible, the main causes of prediction uncertainty are the unknown

ejection velocities of meteoroids from comet surfaces.

Measuring the real dispersion of the radiant (the angular spread in the radiant) in a young

meteor shower could give an independent estimate of the ejection velocities, potentially en-

abling more accurate predictions of the future activity of a particular shower. During mod-

elling, one also has to assume a comet size, density, and the ejected dust mass range and mass

distribution. The mass distribution is usually described as a power-law, i.e. a line in a number

vs mass log-log plot. The cumulative mass distribution index is the slope of that line.

In-situ observations of the comet 67P/Churyumov–Gerasimenko by the Rosetta probe show

that at sizes >1 mm the particles follow a power-law and the cumulative mass index is constant

at around s = 2 (i.e. the number of particles increases ten times for every order of magnitude

decrease in mass). At sizes <1 mm the mass index varies from s = 1.3 beyond 2 au (i.e. more

larger particles) to s = 1.9 at perihelion (i.e. the closest point to the Sun, at around 1.2 au)

(Fulle et al., 2016).

The observed mass distribution became dramatically different after the comet passed the

closest point to the Sun – the mass ejected prior to perihelion was dominated by particles

of 1 × 10−6 kg, while much smaller 1 × 10−9 kg particles dominated the mass output in post-
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perihelion ejection. This observation may suggest that the meteoroids that produced the 2012

Draconid outburst might have been ejected after the perihelion of the parent comet, as the

outburst was dominated by smaller meteoroids visible only by radar (Ye et al., 2013b). In all

the preceding cases, activity profiles of the shower are known (which helps constrain models)

but the radiant dispersion has never been reliably measured; the latter would provide direct

estimates of meteoroid ejection speeds and hence improve models.

1.2.2 Atmospheric entry

Individual meteoroids are too small to be detected in space; hence we use the atmosphere as

a detector. Through collision with air molecules, the meteoroid rapidly loses kinetic energy.

The resulting light, heat, and ionization are used as proxies to estimate the meteoroid mass and

pre-atmospheric orbit.

The interaction between the meteoroid and the atmosphere can be described by mass loss

equations which use conservation of momentum and energy. Assuming a non-fragmenting

solid spherical particle, the received thermal energy flux from air particles hitting the meteoroid

is balanced by radiative losses, temperature increase, and mass loss (Jones & Kaiser, 1966),

which can be formulated as

πR2Λ
ρav3

2
= 4πR2εσb(T 4

s − T 4
0 ) +

4
3
πR3ρmc

dTs

dt
− L

dm
dt

, (1.6)

where R is the particle radius, Λ the heat transfer coefficient (usually unity if there is no shield-

ing), ρa the atmosphere density, v the instantaneous velocity, ε the emissivity coefficient, σb

the Stefan-Boltzman constant, Ts the meteoroid surface and T0 the atmosphere temperature, ρm

the meteoroid density, and L is the energy needed to ablate a unit of mass. The constants in

this equation are Λ, ε, σb, ρm, and L.

For particles in the meteoroid size range, the altitude at which the received energy flux is

larger than radiative and heating losses is around 110 – 130 km, which corresponds to the be-
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ginning heights of most meteors (Popova et al., 2019). In this regime the mass loss dominates,

so the radiation and heating can be disregarded, and the expression can be simplified to

dm
dt

= −Λ
πR2ρav3

2L
. (1.7)

The momentum a spherical meteoroid loses in time ∆t through interaction with an encountered

column of atmosphere is

∆p = −ρaS v2Γ∆t , (1.8)

where S the meteoroid’s cross-sectional area, and Γ the drag coefficient. Deceleration can be

simply found if we know that F = mdv
dt and F =

∆p
∆t

dv
dt

= −
ρaS v2Γ

m
. (1.9)

Equations 1.7 and 1.9 can be connected by introducing the ablation coefficient σ, which de-

scribes the mass loss rate and hence the instantaneous total meteoroid mass as a function of

velocity (Ceplecha et al., 1998)

σ =
Λ

2LΓ
. (1.10)

The equations above assume that the meteoroid’s only source of energy is its kinetic energy.

It is usually assumed that at any instant in time a portion of the meteoroid kinetic energy is

radiated away as light in the form

I = −τ
dEk

dt
= −τ

(
v2

2
dm
dt

+ mv
dv
dt

)
, (1.11)

where I is the luminous intensity in watts and τ is the (dimensionless) luminous efficiency. The

exact value of luminous efficiency is uncertain, but it is around 1%, plus or minus an order

of magnitude (Subasinghe & Campbell-Brown, 2018), and likely depends on height, speed,
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intensity, and mass. Equations 1.7 and 1.9 can be integrated analytically (Pecina & Ceplecha,

1983), although they are often numerically fit to observations to invert physical properties of

meteoroids (Borovička et al., 2007; Kikwaya et al., 2011).

Optical meteor observations measure the meteor brightness in the units of apparent stellar

magnitude, so to compare meteor observations to the simulated brightness, one needs to convert

I to an apparent magnitude. In short, the brighter an observed object is, the lower its magnitude.

A difference of 1 magnitudes from some defined zero point in the spectral bandpass of an

instrument corresponds to a difference in brightness of ∼ 2.5 times. Thus the magnitude M of

a meteor at a given point in time can be calculated as

M = −2.5 log10
I

P0m
, (1.12)

where P0m is a power of a zero magnitude meteor in a given instrumental spectral bandpass.

For example, Weryk & Brown (2013) computed P0m = 1210 W assuming a black body meteor

with a temperature of T = 4500 K and a spectral bandpass appropriate to Sony HAD CCD

cameras. Note that spectral observations indicate that there are several spectral classes of

meteors (classified by sodium and iron abundance) and no “average” spectrum exists (Vojáček

et al., 2019). Using the black body distribution is just a rough approximation to the actual

spectral energy distribution. Meteors observed by the human eye are usually in the range of

magnitudes from +2M to +4M; meteors brighter than +2M are small in number, while meteors

fainter than +4M are mostly below the sensitivity of the human eye (Millman & Burland, 1961).

Meteorite dropping fireballs are brighter events, with magnitudes typically brighter than −4M.

One important phenomenon that classical single-body equations do not capture is fragmen-

tation. From photographic observations in the 1950s and 60s it was discovered that meteors

are shorter and decelerate more rapidly than predicted by the classical single-body equations

(Verniani, 1969). Furthermore, it was noticed that meteors often show long wakes of dust be-

hind the leading body. These observations can be best explained by assuming fragmentation is

present.
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Generally, two types of fragmentation are considered (Borovička et al., 2007): The first is

erosion (continuous fragmentation), in which grains of dust in the 10s to 100s micron range

are constantly released from the meteoroid. The second is disruption (gross fragmentation) in

which the main body fissions into several parts of comparable size at one point in time.

Based on high-resolution observations, Subasinghe et al. (2016) has shown that 85% of

mm-sized meteors show long wakes which are consistent with continuous fragmentation, and

about 5% show gross fragmentation. The remaining 10% appear to be single bodies, but

Campbell-Brown (2017) was only able to explain their observed light production by assuming

a small amount of continuous fragmentation. This indicates that fragmentation is a common

phenomenon that must be included in models, but accounting for fragmentation is difficult and

it tremendously increases the complexity of ablation models.

1.3 Optical meteor observations

Meteoroid ejection speeds and other physical simulation parameters can be constrained by

observations, but the expected physical radiant dispersion of a young stream is very small and

beyond the detection limits of most regular meteor detection systems. Brown & Jones (1998)

have shown that the true radiant dispersion of a meteor shower, if it could be measured with a

precision of ∼0.1°, would allow a direct estimate of the true age of the encountered stream and

could also be used to measure ejection speeds. The accuracy of the ejection velocity and age

estimation would have to be investigates on a case-by-case basis for every meteor shower.

Optical meteor observations historically have been done photographically or using a low-

light video camera. With the advent of highly sensitive and low-cost CCD cameras in the early

1990s, video meteor observations became one of the preferred way to optically observe meteors

(Molau & Nitschke, 1996). These video cameras are usually operated at 25 to 30 frames per

second (FPS), have all-sky to moderate fields of view (180° to 20°), and can detect meteors

down to magnitudes from +2M to +5M (Molau & Gural, 2005; Jenniskens et al., 2011).



1.3. Optical meteor observations 19

Figure 1.6: Left: Geometry of a meteor observed from 2 stations allowing a three dimensional
trajectory to be computed; Middle: Radiants of 2009 Perseids projected on a celestial sphere.
Right: Orbits of Perseid meteoroids in the Solar System (courtesy of the Croatian Meteor
Network).

Meteors are detected using one of several available automated algorithms which provides

measurements of meteor position and brightness in time. A minimum of four frames are re-

quired to reliably estimate the meteor velocity (Albin et al., 2016), which puts an effective lower

limit for observed meteor duration to around 0.15 s. By observing a meteor from multiple loca-

tions it is possible to triangulate its trajectory in 3D space, and by measuring the initial velocity

it is possible to estimate its orbit in the Solar System (see Figure 1.6). Most optical systems can

measure positions of meteors with a precision on the order of 1 arc minute (∼50 m at 100 km,

the typical meteor height), yielding a radiant and velocity precision of 0.5° and 1 km s−1, re-

spectively (Jenniskens et al., 2011), while radar trajectories derived from transverse scattering

detections are generally less precise (Weryk & Brown, 2012). Optical observations have his-

torically been a critical resource for studies of meteoroid fragmentation and physical properties

(Jacchia et al., 1967), including recovery of meteorites produced by meteorite-dropping fire-

balls (Spurnỳ, 2015).

Accurately measuring pre-atmospheric velocities of meteors (i.e. the velocity before any

atmospheric deceleration) is essential in estimating the velocity distribution inside the stream.

This also is key to precisely estimating radiant dispersion, as well as the influence of non-

gravitational forces on meteoroids which reduce the size of their orbits relative to purely Kep-
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lerian orbits.

For this thesis, the highest resolution optical system for meteor observations developed to

date are used, namely the Canadian Automated Meteor Observatory (CAMO) tracking system

(Weryk et al., 2013). The system uses a wide-field high speed camera (30°× 30° field of view)

which detects meteors in real time and then cues a pair of mirrors which track the meteor

and redirect its light through a telescope (1.5° × 1.5° field of view). The light is amplified

using an image intensifier and the video is captured using a high-resolution camera operated at

100 frames per second. This setup gives a spatial resolution of about 1 arc second (∼0.5 m at

100 km) and is capable of routinely detecting individual meteor fragments, a unique capability

among optical systems. The tracking system has a meteor limiting magnitude (i.e. sensitivity

threshold) of about +5.5M. The system is described in more detail in Chapter 6.

1.3.1 Computing meteor trajectories

In this section we give a brief overview of methods for meteor trajectory estimation. See

Chapter 3 for a more detailed discussion and quantitative development.

Given a set of observations of the same meteor from different locations (the distance be-

tween the observers should usually be at least 50 km for typical optical systems), one may use

several approaches to compute the meteor trajectory. Historically, the first method that was

developed consists of fitting planes through observations from every location - this can be done

as meteors should follow a great circle on the celestial sphere (Ceplecha, 1987). The trajectory

is assumed to be a straight line in space and is found as the intersection of these planes.

Another approach is to consider individual measurements from all observers as lines of

sight and fit a 3D trajectory directly to measurements as a line which minimizes the distance

between all lines of sight (Borovička, 1990).

The second important measurement in reconstructing the meteoroid’s orbit is its pre-atmosphere

velocity. Conventionally, this velocity is estimated by projecting observations to the trajectory

line and either computing the average velocity of the whole meteor (which will surely include
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some deceleration), or by computing the average velocity of the first half of the observed flight

to minimize the effects of deceleration. Alternatively, one may fit an empirical or physical

deceleration model to reconstruct the pre-atmosphere velocity (Whipple & Jacchia, 1957).

In recent years, new methods have been developed which couple the trajectory and velocity

estimation by modelling the meteoroid flight dynamics. In this approach, the model is tuned

to minimize the difference between modelled and observed positions on the sky and produce

a best fit. The flight models may be empirical and described by simple analytical expressions

(Gural, 2012), or full physical ablation models described by differential equations (see section

1.2.2) requiring integration (Sansom et al., 2019).

Generally, these approaches provide improved trajectory accuracy, but are model-dependent

and such models may be hard to fit to data, potentially introducing biases (Egal et al., 2017).

Hajduková et al. (2017) have shown that orbits of the annual Geminid meteor shower pub-

lished by different authors show large variability in the mean geocentric velocity, an indication

of inconsistency in the methods used for data reduction (the geocentric velocity is the pre-

atmospheric velocity corrected for Earth’s gravity and rotation). The reduction methods are

usually not transparent; their details are either unpublished or described in insufficient details.

Hajduková et al. (2017) have also shown a systematic underestimation of the observed geocen-

tric velocity compared to modelled values, either indicating a problem with the methods, or

existence of a physical process modifying the meteoroid orbits.

1.3.2 Meteor shower dispersions

Hajduková et al. (2017) have also shown a large variation in the observed Geminid meteor

shower dispersion between observations from different authors. A part of the problem may

also be the meteor shower association algorithm - as shown in Figure 1.3, meteor showers

are surrounded by sporadic meteors and it may be hard to avoid sporadic contamination. As

no formal, quantitative definition of a meteor shower exists, the separation of shower meteors

from the background is often done manually (Jenniskens et al., 2016).
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Borovička et al. (2014) have also shown differences between radiant dispersions - the high-

precision manual radiant measurements of the 2011 Draconid outburst by Ondrejov Observa-

tory cameras all fall within a radius of about 0.5°, while the measurements by Toth et al. (2012)

and Trigo-Rodrı́guez et al. (2013) lie within a radius of 1°-2°. This strongly suggests that in

many cases the measurement error dominates dispersion measurement, obscuring the true age

of meteor showers.

Šegon et al. (2017) confirmed the connection between seven parent bodies and newly dis-

covered meteor showers by performing dynamical modelling of meteoroid ejection from said

parent bodies. The most striking parts of their paper were plots comparing simulated and ob-

served radiant distribution, reproduced in Figure 1.7. The observed radiants have an order of

magnitude larger dispersion than the simulated radiants, indicating that either the observations

are not precise enough (Kresák, 1992), or the simulation assumptions are incorrect (Jenniskens,

1998). A rigorous observational error analysis is rarely done and the true radiant and velocity

accuracy remains unknown. Finally, very little research into dispersions of meteor shower ra-

diants was done since Kresák & Porubcan (1970) and this thesis aims to make further progress

in this regard.

1.4 Thesis Goals

The primary goal of this thesis is to accurately measure radiants and velocities of meteors

through high-precision optical measurements with the goal of providing constraints which may

be used in meteor shower prediction models. Improved prediction accuracy is essential for

mitigating the risk meteoroids from young unperturbed meteor streams pose to astronauts and

spacecraft.

The thesis is highly focused on understanding the measurement accuracy and errors asso-

ciated with meteor trajectory estimation. The specific objectives of this work are:

1. To determine the accuracy and limits to measurements of the pre-atmosphere velocities
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Figure 1.7: Left: Observed (circles) and simulated radiants (crosses) of 49 Andromedids.
Right: κ Cepheids. Credit: Šegon et al. (2017), A&A, 598, A15, 2017, reproduced with
permission,©ESO.

of meteors.

2. To determine the minimum radiant accuracy needed to measure the dispersion of meteor

showers with the smallest radiant areas.

3. To investigate different methods of meteor trajectory estimation and what meteor radiant

accuracy one may expect for a particular optical observation system.

4. To investigate the influence of meteor physical properties and morphology on the mea-

surement accuracy.

5. To apply the procedures developed in this thesis to measure the true physical dispersion

of at least one meteor shower.

In Chapter 2 (published as Vida et al., 2018) I investigate the amount of deceleration expe-

rienced by meteors before they become detectable by three representative optical systems. This

shows that the pre-atmosphere velocity accuracy is model dependent. In Chapter 3 (published

as Vida et al., 2020d) I develop a novel method of meteor trajectory estimation and a novel

meteor trajectory simulator which is used to investigate the performance of different methods
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of meteor trajectory estimation and provides rigorous error estimates. In Chapter 4 (published

as Vida et al., 2020b) I give the results of the theoretical development done in Chapter 3.

In Chapter 5 (published as Vida et al., 2020c) I develop a novel method of meteor shower

mass index estimation and apply it, together with the meteor trajectory estimation method

developed in Chapter 3, on high-precision observations of the 2018 Draconid outburst.

In Chapter 6 (published as Vida et al., 2020a) I describe the upgraded CAMO hardware,

data calibration, and reduction pipeline. Next, I demonstrate that the trajectory measurement

accuracy is heavily dependent on meteor morphology, the type, and amount of fragmentation.

In this Chapter I also show the first meteoroid compressive strengths measurements derived

from direct observations of meteoroid gross fragmentation.

Finally, in Chapter 7 I measure the dispersion of the 2019 Orionid meteors showers using

high-precision CAMO data. The overall thesis work is summarised in Chapter 8.
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Ceplecha, Z., Borovička, J., Elford, W. G., et al. 1998, Space Science Reviews, 84, 327

Cooke, W. J. 2014

Crifo, J., & Rodionov, A. 1997, Icarus, 127, 319

Drolshagen, G. 2008, Advances in space Research, 41, 1123

Drolshagen, G., & Moorhead, A. V. 2019, The Meteoroid Impact Hazard for Spacecraft, ed.

G. O. Ryabova, D. J. Asher, & M. J. Campbell-Brown, 255

Duncan, M., Quinn, T., & Tremaine, S. 1987, The Astronomical Journal, 94, 1330

Egal, A., Gural, P., Vaubaillon, J., Colas, F., & Thuillot, W. 2017, Icarus, 294, 43

Egal, A., Wiegert, P., Brown, P., et al. 2019, Icarus, 330, 123

Everhart, E. 1985, in International Astronomical Union Colloquium, Vol. 83, Cambridge Uni-

versity Press, 185–202

Fulle, M., Marzari, F., Della Corte, V., et al. 2016, The Astrophysical Journal, 821, 19

Fulle, M., Della Corte, V., Rotundi, A., et al. 2017, Monthly Notices of the Royal Astronomical

Society, 469, S45

Genge, M. J., Engrand, C., Gounelle, M., & Taylor, S. 2008, Meteoritics & Planetary Science,

43, 497



BIBLIOGRAPHY 27

Greenberg, J. M., et al. 1998, Astronomy and Astrophysics, 330, 375

Grün, E., & Zook, H. 1980, in Symposium-International Astronomical Union, Vol. 90, Cam-

bridge University Press, 293–298

Gural, P. S. 2012, Meteoritics & Planetary Science, 47, 1405
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Chapter 2

Measurement accuracy of initial velocities

of meteors

A version of this chapter has been published as:

Vida, D., Brown, P.G., & Campbell-Brown, M. (2018). Modelling the measure-

ment accuracy of pre-atmosphere velocities of meteoroids. Monthly Notices of the

Royal Astronomical Society, 479, 4307.

2.1 Introduction

Understanding the linkage of meteor showers to their parent bodies over time requires start-

ing conditions for backward orbital integration, namely the contemporary osculating orbits of

both the parent and stream meteoroids (Abedin et al., 2018). However, calculation of precise

heliocentric orbits of meteoroids from ground-based optical observations is difficult as atmo-

spheric deceleration affects all measurements to some extent. Ultimately, one has to know the

pre-atmosphere position and the velocity vector of the meteoroid to a high degree of accuracy,

prior to the meteoroid’s interaction with the atmosphere if long-term backward integrations are

to be meaningful for timescales comparable to the lifetime of a meteoroid stream.

32
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With the increasing precision of optical meteor observing systems, various authors have

examined the probable initial velocity of meteors and performed uncertainty estimates. For

example, Egal et al. (2017) used “CAmera for BEtter Resolution” (CABERNET) network data,

a system which achieves a spatial precision of 3.24 arc seconds, and found that it is possible

to determine meteoroid initial velocities with a precision of 1.25% by using the trajectory

estimation method of Gural (2012).

However, the question of true velocity accuracy is quite complex, as the velocity of the

meteoroid at the beginning of its luminous phase is often equated with its pre-atmospheric

velocity (Jenniskens et al., 2011; Trigo-Rodrı́guez et al., 2013; Šegon et al., 2014), but this is

not strictly true. Ceplecha (1987) advises estimating the pre-atmosphere velocity from time vs.

length along the track using the method of Pecina & Ceplecha (1983, 1984) and assumes the

velocity after the correction for Earth’s rotation (equation 35 in Ceplecha, 1987) to be equal

to the no-atmospheric velocity, which may be a valid assumption for fireball-sized meteoroids,

although this was never validated for fainter meteors.

For meteoroids corresponding to fireball sizes, this approach has recently been validated

by Spurnỳ et al. (2017) who reduced 144 Taurid fireballs and modelled their trajectories using

the Ceplecha et al. (1993) ablation model, which corresponds to the Pecina & Ceplecha (1983,

1984) model if no fragmentation is assumed. Using an atmosphere mass density model, they

assumed that the velocity at the height of 150 km corresponds to the pre-atmosphere velocity

(private communication, Dr. Borovička). They found a new branch (a separate group in the

meteorid stream) of the Taurid meteor shower, with fireball-sized meteoroids having tightly

clustered radiants/speeds as independently predicted for the Taurid resonant swarm (Asher &

Izumi, 1998). The authors quote the initial velocity of fireballs (all with initial masses higher

than 10−4 kg) to within several tens of meters per second, the most precise ones approaching

±7 m s−1. As the Ceplecha et al. (1993) method models the full trajectory of the meteoroid, it

is possible to estimate (within model assumptions) its real pre-atmosphere velocity (velocity

at t = −∞); indeed the authors attribute the discovery of the new Taurid branch to the high
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precision of their data reduction, a fact validated by the tight statistical clustering of the res-

onant swarm radiants. In contrast, much smaller meteoroids measured by backscatter radars

Brown et al. (2005, 2008) need a deceleration correction which can be as much as 6 km s−1 (up

to 50%) for meteors with beginning heights of 80 km.

Hajdukova Jr et al. (2017) have recently shown that most orbits of video meteors suffer

from a significant bias in semi-major axis due to underestimated initial velocities. They point

out that initial velocities of the Geminids are usually underestimated as much as 200 m s−1 to

500 m s−1 compared to values derived from dynamical simulations and high-precision manual

reduction done by Koten et al. (2004).

These examples motivate the general question of how accurately one can in practice mea-

sure the initial velocity of a meteoroid (i.e. the velocity at the beginning of the luminous phase)

and the closely associated question of how this velocity differs from the real pre-atmosphere

velocity of a meteoroid? Here we define the real pre-atmosphere velocity as the velocity prior

to any sensible deceleration by the atmosphere; operationally this occurs for most meteoroids

at heights above 180km.

This paper seeks to address two specific questions:

1. How does the true meteoroid velocity far out of the atmosphere differ from the often

adopted initial velocity measured at the beginning height (i.e. height of first detection)

as a function of mass and meteoroid type?

2. What are the effective limits to the achievable accuracy of pre-atmospheric velocities for

different optical systems and are these primarily model-related limitations or equipment

limitations?

To determine the difference between a meteoroid’s velocity before it enters the atmosphere

and the instrumentally measured velocity at the beginning of the luminous phase, we employ

a modified single-body meteor ablation model from Campbell-Brown & Koschny (2004) for

fainter meteors, and the FM model by Ceplecha & Revelle (2005) for fireballs.
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In what follows, we compare simulated meteor velocities at the beginning of their modelled

trajectory (at 180 km height) and their velocity at the height where they would first be detected

by a given optical system. We then model three real-world, but quite different, optical meteor

observation systems which cover the meteoroid mass range from 5 × 10−7 kg to ∼ 10 kg. The

details of the modelled systems are given in section 2.3.

For each system we have modelled three populations of meteoroids ranging in bulk den-

sity from 180 kg m−3 to 5425 kg m−3. The details of the adopted material properties for each

population are given in section 2.4. A major uncertainty in this model approach is the effect of

fragmentation. Approximately 90% of faint meteors fragment during flight (Subasinghe et al.,

2016), although Hawkes & Jones (1975) point out that release of ∼ 10−9 kg grains may begin

even before the luminous phase of the flight. Stokan & Campbell-Brown (2014) inspected 1800

high-resolution videos recorded by the Canadian Automated Meteor Observatory of masses ∼

10−4 kg (Weryk et al., 2013) and found only 3 meteors which exhibited complex gross frag-

mentation which occurred before the event was recorded by the system. In what follows, we

use this observation to justify use of a single-body meteor ablation model up to the point of de-

tection, while using an appropriate (larger) apparent ablation coefficient to simulate continuous

fragmentation into finer grains. We note that ignoring fragmentation prior to luminous onset

will make our speed corrections lower limits; the true difference may be larger.

2.2 Ablation models and simulation details

2.2.1 Faint meteor ablation model

To perform our simulations for fainter meteors, we have modified the dustball model of Campbell-

Brown & Koschny (2004) so that there is no fragmentation due to thermal disruption. The

model assumes that the initial kinetic energy of a meteoroid is carried away by three types

of energy losses: loss through heat transfer due to collisions with air molecules, black-body

radiation, and heat lost with evaporating meteoroid material
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where Tm is the temperature of the meteoroid (initial value is assumed to be 280 K), c is the

specific heat of meteoroid (c = 1000 J kg−1 K−1), m the meteoroid mass, Λ the heat transfer

coefficient (Λ = 0.5), ρa the atmospheric density, which we take from the NRLMSISE-00

model (the geographical coordinates used were 45° N, 0° E on January 1, 2000 at 12:00 UTC)

(Picone et al., 2002), v the meteoroid velocity, A the shape factor (A = 1.21, sphere), ρm the

meteoroid density, σB the Stefan-Boltzmann constant, ε the meteoroid emissivity (ε = 0.9), Ta

the atmospheric temperature (constant at Ta = 280 K) and L is energy needed to ablate a unit

mass (heat of ablation).

Compared to classical single-body ablation models, our model assumes that the ablation

starts as the meteoroid heats high in the atmosphere, and combines the Clausius-Clapeyron

partial vapour pressure equation with the additional incorporation of the Knudsen-Langmuir

evaporation rate formula for calculating the mass loss
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where ψ is the condensation coefficient (ψ = 0.5), µ is the molar mass (µ = 36 u), kB is the

Boltzman constant, Pa is the standard atmospheric pressure at sea level, TB the boiling temper-

ature of the meteoroid material at Pa (TB = 1850 K), and pv is the vapour pressure of meteoroid

material at its surface (we assume pv = 0 for free molecular flow, in which the meteoroids are

at high altitudes).

The change in speed is calculated through conservation of momentum, when air molecules

collide with the meteoroid
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here Γ is the drag coefficient, which is assumed to be unity. Acceleration due to Earth’s gravity

is also taken into account.

The energy going into light production is assumed to be some fraction of the kinetic energy

loss, including the deceleration term

I = τ

(
dm
dt

v2

2
+ mv

dv
dt

)
, (2.4)

where I is the luminous intensity and τ is the non-dimensional luminous efficiency.

In what follows, all numerical integrations are performed using the fourth order Runge-

Kutta method with a fixed time step of 0.001 s, until the whole mass of the meteoroid is ablated

which we identify to be equivalent to the residual mass falling below 10−14 kg.

2.2.2 Fireball ablation model

For masses of meteoroids in the fireball range, we apply the fragmentation model (FM) by

Ceplecha & Revelle (2005) which is based on classical single-body ablation equations with

explicit addition of fragmentation. Modelling assumptions for faint meteors are not valid for

larger masses, primarily because these meteoroids are no longer in free molecular flow as fire-

balls penetrate deeper into the atmosphere and are larger, entering the continuum flow regime

(Campbell-Brown & Koschny, 2004). The FM was developed in part to explain the discrep-

ancies between measured photometric and dynamic masses of fireballs. In the original work

it was successfully applied to 15 fireballs, and later further validated through application to

meteorite-dropping fireballs (Borovička et al., 2013).

As the FM code produces magnitudes in the photographic bandpass, we convert them to

the bandpass of Sony HAD CCD based systems (see section 2.3.3), by applying a color index

derived by Silber (2014) where MHAD = Mph + 1.2.
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2.3 Optical system parameters

To explore speed corrections using representative optical meteor observation systems in use

today, we model three “typical” optical meteor systems: an image intensified system lens cou-

pled to a CCD video camera with a narrow field of view, a moderate field of view CCD video

system, and an all-sky CCD video fireball system. Each system is sensitive to a different range

of meteoroid masses, peak magnitudes (i.e. the magnitude when the meteor is the brightest),

and beginning heights. To simulate the detectability of meteors for each system we estimate

the following parameters:

• The magnitude at which the system typically detects the beginning of the meteor.

• The bolometric power of a zero-magnitude meteor P0m in each system bandpass. We

assume a black-body meteor with peak temperature at T = 4500 K (Borovička, 2005)

and we use Table 3 from Weryk & Brown (2013) for determining P0m per bandpass.

• The typical mass of a meteoroid most commonly detected by a system is a strong func-

tion of velocity, which is determined from the observations. Mass is typically the most

uncertain characteristic for a meteoroid so we appeal to the known invariance of begin-

ning heights with meteoroid mass for smaller meteoroids (Hawkes & Jones, 1975; Koten

et al., 2004), and assume that for a range of peak magnitudes for a given optical system

the corresponding meteoroid mass is purely a function of velocity.

• We assume a linear correlation between meteoroid velocity and peak magnitude, physical

quantities which are strongly correlated (e.g. Jacchia et al. (1967)). Operationally, we

then produce a functional fit of peak magnitude and velocity using real observations as

measured by real-world examples of each type of system.

• For faint meteors (image intensified and moderate field of view CCD video systems) we

use the Campbell-Brown & Koschny (2004) meteor ablation model with a fixed luminous
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Table 2.1: Meteor limiting magnitude (MLM), equivalent bolometric power for a 0 magnitude
meteor (P0m), the expected peak magnitude (Mpeak) for meteors with a particular initial speed
(Vinit), estimated initial mass of a meteoroid m[kg], and assumed luminous efficiency. Mod-
els of the Canadian Automated Meteor Observatory (CAMO), Cameras for All-sky Meteor
Surveillance (CAMS), and Southern Ontario Meteor Network (SOMN) are given.

System Based on MLM P0m [W] Mpeak log m[kg] τ

Image intensified CAMO influx system, 1* +7.5M 840 −0.035Vinit + 4.623 −0.4Mpeak

V2
init

log 0.098 0.7 %
Moderate field of view CAMS, 2* +5.0M 1210 −0.022Vinit + 2.244 4*, modified 0.7 %
All-sky SOMN, 3* −0.5M 1210 −0.009Vinit − 4.033 1.8 − 3.5 log Vinit − 0.413Mpeak 5*

References: 1* - Weryk et al. (2013), 2* - Jenniskens et al. (2011), 3* - Brown et al. (2010),
4* - Jacchia et al. (1967), 5* - Ceplecha & Revelle (2005)

efficiency of 0.7 %. For fireballs (all-sky system) we use the Ceplecha & Revelle (2005)

luminous efficiency model.

The details of the model parameters for each optical system are given in Table 2.1 and

described briefly in the following sections.

2.3.1 Image intensified system

The model we adopt for a narrow-field image intensified system is the Canadian Automated

Meteor Observatory (CAMO) influx system as employed by the Western Meteor Physics Group

(Campbell-Brown et al., 2013; Weryk et al., 2013). These systems use a high sensitivity CCD

camera running at 20 frames per second with a chip of 1600 × 1200 pixels and 14-bit optical

depth. The lens is a 50 mm f /0.95 Navitar, which gives a field of view of 20 × 20 degrees.

The camera is lens coupled to a 25 mm Generation 3 ITT model FS9925 image intensifier. The

stellar limiting magnitude is +8.5M, while the limiting magnitude for meteors is +7.5M.

There are two identical influx systems separated by a baseline of 45 km, one at Elginfield

(43.193° N, 81.315° W) and the other at Tavistock (43.264° N, 80.772° W) in Southwestern

Ontario, Canada.

The photometric calibration was done in the R band for which the total bolometric power

output of a zero-magnitude T = 4500 K blackbody meteor is P0m = 840 W (Weryk & Brown,

2013). The magnitude and mass dependencies were fitted to 4882 manually reduced double
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station meteors. The trajectories were calculated using the MILIG software (Borovička, 1990)

which employs the least squares line-of-sight fitting method.

The initial velocities are taken to be the average velocity of the first half of the meteor

trajectory. We have only taken events with eccentricities e < 1.0, velocities within 11.2 km s−1

and 71 km s−1, and peak magnitudes fainter than −2M. Photometric meteoroid masses were

calculated using a luminous efficiency of τ = 0.7% based on the integrated lightcurves.

After performing initial meteoroid ablation simulations with these measured masses, we

had to reduce the mass by a factor of 2 to match the simulation results to the observations,

effectively using τ = 1.4%. The original photometric masses were producing events which

started at heights well above those observed. When we reduced masses further (by a factor

of 3 and more), the meteors with smaller masses were too faint to be detected by the system.

We attribute this to the uncertainty in the luminous efficiency τ in particular recent work which

indicates that τ might be on the order of several percent for smaller meteoroids (Subasinghe &

Campbell-Brown, 2018). For our simulations we wish to adopt simple relations between mete-

oroid mass, magnitude and velocity. Hence, we performed a linear fit on the peak magnitudes

versus velocities (in km s−1) and obtained the following relation:

Mpeak(Vinit) = −0.035Vinit + (4.623 ± 1.25) , (2.5)

note that we only characterize the uncertainty in the intercept which we use as an indicator of

the physical spread in the data, which will be used later to reconstruct the observed range of

masses.

We also generated a simple empirical photometric mass model using this same luminous

efficiency, comparing also the peak magnitudes and initial velocities

log m(Vinit,Mpeak) =
−0.4Mpeak

V2
init

log k , (2.6)

where photometric mass is given in kilograms and the velocity in km s−1. Note that the −0.4
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Figure 2.1: The photometric mass dependence as a function of the initial velocity and peak
magnitude for the CAMO image intensified influx system. The colored dots represent the
measurements, while the background colour represents the fit. The red line is the fit given by
equation 2.5, while blue lines represent the 95% confidence interval of the fit.

term comes from the definition of the magnitude (see Chapter 1). After fitting the model, we

obtained k = 0.098. It is worth mentioning that fitting the logarithm of the photometric mass

instead of the mass directly produces a better fit, as this linearizes the differences in the mass

across the mass spectrum; otherwise, the fit for smaller masses is not reliable. Figure 2.1 shows

the measured masses as colored dots, while the background color represents the model. Note

that the model fits the data well, as no major discrepancies in colour between the dots and the

background can be seen. Figure 2.2 shows the dependence of the peak magnitude and the mass

on the initial velocity.
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Figure 2.2: The top panel shows the dependence of peak magnitude on initial velocity, and
the bottom plot shows the dependence of photometric mass on velocity for the CAMO image
intensified influx system. Blue lines represent the 95% confidence interval of the fit. Note that
the mass confidence interval is also symmetric around the mean (red) line in the logarithmic
mass plot because the 10−0.4Mpeak term.
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2.3.2 Moderate field-of-view system

The moderate field-of-view system model is based on the Cameras for Allsky Meteor Surveil-

lance (CAMS) (Jenniskens et al., 2011). For this system we have used P0m = 1210 W ap-

propriate to a Sony HAD CCD chip (Weryk & Brown, 2013), used in the Watec 902 H2 Ul-

timate cameras operated by CAMS. Although Jenniskens et al. (2011) state that the limiting

magnitude of CAMS cameras is +5.5M, they point out that very few meteors that faint are

multi-station. In our simulations, we have found the value of MLM = +5.0M matches the ob-

served beginning heights best, as we have treated the limiting magnitude as a free parameter,

compensating for uncertainties in meteor geometry and the luminous efficiency.

In the CAMS orbit database (Jenniskens et al., 2016a), there is no data on photometric

meteoroid masses; thus we have followed the work of Jenniskens et al. (2016b) and used the

results of Jacchia et al. (1967) to calculate meteoroid masses in grams, which we had to slightly

modify as initial the simulations did not match the observations

log m(Vinit,Mpeak,ZG) = log
τv(Vinit)

0.03

(
5.15 − 3.89 log Vinit

−0.33(Mpeak + 0.6) − 0.67 log (cos ZG)
)
.

(2.7)

As suggested by Jenniskens et al. (2016b), in the caption to their Table 5, we applied a

color index correction of +0.6 to observed peak magnitudes between the photographic and

HAD CCD systems before computing the mass. We also had to change the peak magnitude

term from 0.44 to 0.33. This new value was empirically chosen because the original range of

masses produced unphysical simulations - more massive meteoroids had very large beginning

heights, while smaller meteoroids (fainter than peak magnitude +3M) were too faint to be

detected, indications that the range of masses had to be reduced. As equation 2.7 was derived

using the luminous efficiency of Verniani (1965), the computed masses were normalized to

τ = 0.7%, a value that produced simulations that were most consistent with observations.
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τv(Vinit) is the Verniani (1965) luminous efficiency given as a fraction (not a percent):

τv(Vinit) = 10−7Pv0mVinit , (2.8)

where Vinit is given in km s−1 and Pv0m = 1490 W is the radiated power appropriate to a 4500 K

black-body zero magnitude meteor in the visual bandpass, as given by Weryk & Brown (2013).

To obtain an empirical relation between velocities and peak magnitudes for this dataset,

we first filtered the CAMS data set by taking only those meteors with a convergence angle

QC > 15°, a reported error in geocentric velocity σVg < 10% and eccentricities e < 1.0. The

total number of remaining meteors was 80232. A linear fit of velocity to peak magnitude

produces

Mpeak(Vinit) = −0.022Vinit + 2.243 ± 1.45 . (2.9)

Figure 2.3 shows both the peak magnitude fit and the empirical mass function fit adopted

in our simulations for this system.

2.3.3 All-sky system

At the higher end of meteoroid masses, we investigated pre-detection decelerations of mete-

oroids observed by all-sky video systems. As a representative system we used the Southern

Ontario Meteor Network (SOMN) (Weryk et al., 2008; Brown et al., 2010).

The systems use HiCam HB-710E Sony Ex-View HAD CCD cameras equipped with Rain-

bow L163VDC4 1.6− 3.4mm f /1.4 lenses. The cameras have a resolution of 640× 480 pixels

and are operated at 29.97 frames per second. Meteor trajectories were estimated using the

method of Borovička (1990). The automated data reduction pipeline only provides the average

velocity of the event, though in most cases little deceleration is evident due to the low resolu-

tion of these systems. From examination of the results of the automated detection software, we

find that the system most often detects meteors when they reach a visual magnitude between
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Figure 2.3: The top panel shows the dependence of peak magnitude on initial velocity of
CAMS data, and the bottom plot shows the dependence of mass on velocity for a zenith angle
ZG = 45° using equation 2.7. Blue lines represent the 95% confidence interval of the fit. The
horizontal banding in the top plot is due to rounding to one decimal place in the magnitude
value in the original data set.
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0M and −1M. Our simulations were most consistent with observations for MLM = −0.5M.

We found the automated photometry to be inconsistent with manual photometric reduc-

tions; therefore we fit our empirical relations by using representative mass and peak magnitudes

from a subset of 283 manually reduced all-sky events. We have found that the peak magnitude

does not show a strong correlation with velocity, probably due to saturation which occurs at

higher brightness levels and the larger pixel scale of these systems:

Mpeak(Vinit) = −0.009Vinit − 4.033 ± 1.53 . (2.10)

In contrast to the two previous systems, we have found that the simplistic mass model given

by equation 2.5 does not fit the computed all-sky masses well, so we used a model similar to

Jacchia et al. (1967), but without the zenith angle term. Upon running the simulations with the

original estimated photometric masses, we noticed that the smallest meteoroids are not visible

to the system. Simulations matched the observations only when we increased all masses by a

factor of 4, which we attribute to uncertainties in the luminous efficiency and saturation effects.

The resulting mass function was the following:

log m(Vinit,Mpeak) = 1.806 − 3.512 log Vinit − 0.413Mpeak , (2.11)

where the masses are given in kilograms. Figure 2.4 shows the peak magnitude fit and the

corresponding masses for values of initial velocity and peak magnitude for the subset of 283

manually measured SOMN events.

2.4 Types of meteoroids

To cover the range of expected material properties and ablation behaviour in our model, we use

three distinct types of meteoroids: cometary, asteroidal, and iron-rich. The detailed physical

parameters for each category are given in Table 2.2. These classes were adopted by applying the
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Figure 2.4: The top panel shows the dependence of peak magnitude on initial velocity, and the
bottom plot shows the dependence of mass on velocity for the all-sky fireball system. Blue
lines represent the 95% confidence interval of the fit. As expected for such a large pixel scale
system, the average peak magnitude is a weak function of speed.
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Campbell-Brown & Koschny (2004) model in Kikwaya et al. (2011) to 107 optical observations

of meteors and from model fits deriving their physical properties. Originally, Kikwaya et al.

(2011) divided their meteoroid data into 5 types based on orbit-type, as originally proposed by

Borovička et al. (2005). As our simulations are most sensitive to physical structure and not

orbital information, we focus on dividing meteoroids into density groups.

This simple density classification scheme was motivated by figure 11 in Kikwaya et al.

(2011) which shows a strong correlation between the meteoroid orbit Tisserand parameter with

respect to Jupiter TJ and meteoroid bulk density. Three distinct groupings of densities can

be identified in that graph. Note that the distinction is purely by density and that meteoroids

in JFC-type orbits have densities comparable to our asteroidal category, possibly indicating

evolution from Asteroidal-JFC orbits through radiation forces over long timescales. We have

also assumed that every meteoroid type has its own characteristic apparent ablation coefficient

σ, following the classification first proposed in Ceplecha (1988).

Changing the apparent ablation coefficient is equivalent to adding meteoroid fragmenta-

tion, which we have not done explicitly in the model. The apparent ablation coefficient may

differ significantly from the intrinsic ablation coefficient, which does not take fragmentation

into account. As shown by Ceplecha & Revelle (2005) the average apparent and intrinsic abla-

tion coefficients can differ by as much as two orders of magnitude, meaning that fragmentation

is the primary process of meteoroid ablation in most fireball-class (large) meteoroids. High-

resolution observations of faint meteors also show a high occurrence rate of visible continuous

fragmentation, indicating that the same is probably true for smaller meteoroids as well (Subas-

inghe et al., 2016).

Ceplecha & Revelle (2005) have also shown that intrinsic ablation coefficients between dif-

ferent types of meteoroids are very similar, indicating that the material composition between

meteoroid types is broadly similar; the ablation differences may be in bulk density and me-

chanical properties which only influence the rate of fragmentation (Borovička et al., 2015). As

we use different bulk densities for the different meteoroid classes in our simulations to recreate
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the earliest phases of ablation, we adopt the assumptions above for the purposes of this work.

We have assumed fixed drag and heat transfer coefficients Γ = 1.0 and Λ = 0.5. The

true values are uncertain and different authors have used different values: in Borovička et al.

(2007) and Fisher et al. (2000) both values are assumed to be 1.0, while in Campbell-Brown

et al. (2013) the values were Γ = 1.0 and Λ = 0.4. Kikwaya et al. (2011) searched values

from 0.5 to 1.0 in trying to simultaneously match the dynamic and photometric measurements

of their meteors. Detailed results presented in Kikwaya (2011) show no strong dependence

for these values with meteoroid type. Here we use the values for drag and heat transfer given

in Campbell-Brown & Koschny (2004). The apparent ablation coefficient was altered only

through changes to the heat of ablation L, thus effectively simulating different ablation rates. L

can be computed using the following expression:

L =
Λ

2σΓ
. (2.12)

The values used in our numerical entry modelling for the apparent ablation coefficients

were taken from Ceplecha et al. (1998), Table XVII, where meteoroid types are categorized

according to Ceplecha (1988) groups: A, B, C, and D.

Comparing that table with Table 10 in Kikwaya et al. (2011), where the authors associate

each Ceplecha group to their individual observed meteors, we conclude that the low-density

cometary material (group C) with average density of 800 kg m−3 has an average apparent abla-

tion coefficient of σ = 0.1 s2 km−2, while the carbonaceous chondrite-like material (group A)

has an ablation coefficient of σ = 0.042 s2 km−2.

The properties for the iron-rich meteoroids are more uncertain; Ceplecha et al. (1998) gives

an apparent ablation coefficient ofσ ≈ 0.07 s2 km−2 for higher densities than ours, 7800 kg m−3,

which were derived from fireball observations in the mass range (from 0.1 kg to 2 × 103 kg).

Due to the lack of other empirical values, we simply use σ = 0.07 s2 km−2 for iron-rich me-

teoroids, noting that for iron bodies melting as opposed to vaporiztion will dominate abla-

tion so these larger ablation coefficients are expected. Finally, Kikwaya et al. (2011) find a



50 Chapter 2. Measurement accuracy of initial velocities of meteors

Table 2.2: Physical properties adopted for the three model meteoroid classes. ρmin and ρmax

given the range of bulk densities of meteoroids, σ is the apparent ablation coefficient, while L
is the energy needed to ablate a unit mass.

Type ρmin (kg m−3) ρmax (kg m−3) σ (s2 km−2) L (J kg−1)
Cometary 180 1510 0.1 2.5 × 106

Asteroidal 2000 3500 0.042 6.0 × 106

Iron-rich 4150 5425 0.07 3.6 × 106

strong correlation between the density and thermal conductivity, but because we have assumed

a non-fragmenting model, thermal conductivity is not used as one of the parameters in our

implementation of the Campbell-Brown & Koschny (2004) model.

2.5 Simulation details

The goal of our simulation is to produce estimated brightness, speed and deceleration/mass

loss profiles for a suite of meteoroids with different masses entering at a range of speeds and

entry angles for all three types of meteoroids. From this simulation “template” we then select

only those meteoroids which would be detectable for a particular optical system, based on the

empirical system properties summarized in Table 2.1. We then use these simulated events to

compare the true initial speeds to speeds at the moment of detection for each type of optical

system.

The simulations were done in 1 km s−1 steps in initial velocity V∞, from 11 km s−1 to

71 km s−1, and across 13 zenith angle bins, from 0° to 75°, distributed uniformly by the co-

sine of the zenith angle (thus making the phase space denser at high zenith angles). For zenith

angles larger than 75° very few simulated meteors reached the limiting magnitude of the sys-

tems, which is consistent with observations - e.g. in CAMS data only 3% of all orbits have

zenith angles larger than 75°. For very low velocity meteors (below 13 km s−1) at high zenith

angles almost no ablation occurred until they were gravity accelerated to higher velocities.

This often took more than 10 s, which we view as largely unphysical - we chose to discard
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these simulation runs.

The suite of model meteor peak magnitudes were then generated by sampling in 20 uniform

steps within the 95% confidence interval of the fit, producing 20 simulated masses. Finally, 5

uniform intervals were taken between the minimum and maximum meteoroid densities given

in Table 2.2 for each meteoroid type per simulated mass.

After running the meteor ablation simulation with the Campbell-Brown & Koschny (2004)

model, luminous intensities were converted to absolute magnitudes, while the implementation

of the Ceplecha & Revelle (2005) method provides photographic absolute magnitudes which

are converted to absolute magnitudes in our bandpass (see section 2.2.2). To approximate

various geometries between the observers and the meteor trajectory, we have assumed that the

range to the meteor at any given point corresponds to
√

(100 km)2 + h2(t), where h(t) is height

above the ground in kilometres. Our simulations ignore atmospheric extinction.

We define the time of the initial meteor detection tinit as the time when the meteor’s visual

magnitude exceeds the system’s limiting magnitude. We reject all meteors which spend less

than 0.15 s above the detection limit. This time requirement is based on the typical value used

in meteor detection algorithms, namely a meteor is detected if it is above the noise level for 4

consecutive video frames for NTSC frame rates of 30 frames per second (Albin et al., 2016).

The simulated beginning height hBEG of the meteor is taken as its height at time tinit.

Similarly, the simulated measured initial velocity vinit is the velocity at tinit. This is an upper

limit to the initial velocity observed from a real optical meteor observation system, which

necessarily uses a larger segment of the trail to find speeds (in most cases) during which the

meteoroid will have decelerated.

For the CAMO Influx system, for example, the initial velocity is computed as the average

velocity of the first half of the meteor trajectory. For the all-sky SOMN system initial velocity is

equated to the average velocity across the entire trail. In both systems, these are always smaller

than the real initial velocity, ie. the initial velocity at the moment the system first detects the

meteor.
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For the CAMS system, the initial velocities are expected to be closer to the real initial

values as they are measured with a more advanced trajectory estimation method using a global

fit with time information combined with a deceleration model (Gural, 2012), although the real

accuracy of this method remains unclear (Egal et al., 2017).

The difference between the starting velocity and the initial velocity is calculated for every

simulation run as

∆v = vinit − v∞ + ∆vgrav , (2.13)

where ∆vgrav is the change in velocity due to gravitational acceleration, which is already

taken into account when computing the geocentric radiant (Ceplecha, 1987), and thus must

be taken out of the total velocity difference. ∆vgrav was computed by running an additional

no-atmosphere simulation and taking the difference between the pre-atmosphere velocity and

the velocity at the height of detection.

Figure 2.5 shows an example simulation for a CAMS-like system. At about t = 6 s ablation

coupled with increased atmospheric drag causes rapid deceleration. The meteor would be de-

tected at about t = 6.7 s, when the difference from the starting velocity has reached −130 m s−1.

As our goal is to provide a correction for the initial speed for the entire meteoroid popula-

tion for a given observation system, we averaged the velocity differences and beginning heights

across simulations for all density intervals per meteoroid type. This is justified as density is

not a parameter that can be easily determined from the meteor trajectory alone, as it does not

correlate strongly with orbital type (Ceplecha, 1988), and hence requires detailed modelling on

a per event basis.

2.6 Results

To validate our working assumptions about the representative mass function and the limit-

ing meteor magnitude for our simulated optical systems, we first compare the modelled and
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Figure 2.5: Ablation simulation for a V∞ = 20 km s−1 cometary meteoroid with mass of m =

0.1 g, density ρm = 1510 kg m−3 and zenith angle of ZG = 45°. At the limiting CAMS-like
system magnitude of MLM = +5.0M, the difference between the original (gravity corrected)
and initial velocity was ∆v = −130 m s−1. The acceleration due to gravity was removed from
the velocity in the top graph.
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observed beginning heights for each optical system. We found that our results of beginning

heights versus density agree with Kikwaya et al. (2011), an unsurprising result as that study

used the same ablation model.

2.6.1 CAMO influx system

Figure 2.6 shows the observed beginning heights of real meteors imaged by the CAMO influx

system as a function of speed, and their Tisserand parameters with respect to Jupiter. It can

be seen that most meteoroids with Vinit > 40 km s−1 are of HTC/NIC origin, while the sub-

40 km s−1 ones are either JFC or asteroidal in origin. The latter dominate at the lowest velocities

(Vinit < 13 km s−1). This is as expected given the required orbits accessible for a given range of

observed speeds at the Earth. Additionally, two branches of beginning heights can be seen, one

∼ 10 km higher than the other (Ceplecha, 1968). Most of the observed meteors were around

magnitude +5M and a large portion of them were sporadic meteors. Using the showers of the

IAU Meteor Data Center for possible association, we found only 13% were potentially from

any major shower.

Performing the meteor ablation simulations following the procedure described in section

2.5, the observed and simulated beginning heights are shown in figure 2.7. The simulations

generally reproduce the bulk of the observed beginning heights; lower density cometary me-

teoroids match the upper begin height branch, while denser asteroidal and iron meteoroids

match the lower branch. These results are consistent with the findings in Ceplecha (1958) and

Ceplecha (1968), where the higher branch was classified as type C (porous material) and the

lower branch as type A (stony type). We also note that there is almost no model-predicted

difference in beginning heights between asteroidal and iron-rich meteoroids. A small fraction

of simulated meteors have beginning heights above the main branches. These were meteoroids

with the largest masses. This is consistent with the data which show that meteors with very

high beginning heights have peak magnitudes significantly brighter than the rest.

Figures 2.8 through 2.10 show the simulation differences between the initial and pre-
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Figure 2.6: The observed dependence of velocity and beginning heights on the Tisserand pa-
rameter with respect to Jupiter for meteors detected by the CAMO influx system.
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Figure 2.7: Comparison of the observed and simulated beginning heights for the CAMO image
intensified influx system. Yellow, orange and brown dots represent cometary, asteroidal and
iron meteoroids respectively. Thick lines that follow the branches by the middle are median
beginning heights for every branch.
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atmosphere velocities for various meteoroid types for the CAMO influx system. Overall, the

deceleration at higher velocities and larger masses is only several tens of meters per second,

while for lower velocities and smaller masses the velocity difference can reach several hun-

dreds of meters per second. The influence of the zenith angle on the velocity difference is

minor and not shown here, but generally ∆v increases slightly with increasing zenith angle.

There is a strong dependence of the velocity difference on the type of meteoroid material -

cometary meteoroids decelerate less than asteroidal, which we believe is caused by the higher

apparent ablation coefficient of cometary meteoroids and their higher beginning heights. In

contrast, the velocity differences are higher for asteroidal meteoroids than for iron meteoroids,

despite having similar beginning heights. We believe this is a result of higher density of iron-

rich meteoroids, which leads to smaller meteoroid cross sections (where the cross section is

A
(

m
ρm

)2/3
in the ablation equations), as we have assumed the same masses for every meteoroid

type, as well as the higher apparent ablation coefficient which causes the iron-rich meteoroids

to melt rather than vaporize first.

An operational fit to our results is well represented by a sixth order polynomial such that

the velocity difference for any zenith angle is

∆v = x0 + x1ZG + x2Z2
G + x3Z3

G + x4Z4
G + x5Z5

G + x6Z6
G , (2.14)

where the zenith angle is in radians, ∆v in m s−1, and parameters x0 to x6 are given in Ap-

pendix A of Vida et al. (2018) for increments of 1 km s−1 in initial velocity and 20 different

peak magnitudes for every meteoroid type. We note that the above relation provides the min-

imum correction between initial and true pre-atmospheric velocity as we have assumed no

fragmentation.
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Figure 2.8: Cometary meteoroids - simulations for the CAMO influx image intensified systems.
The areas of the parameter space which were outside of the investigated values are hatched
using diagonal lines. Red lines represent the range of observed peak magnitudes, and contours
(−0.05,−0.10,−0.25,−0.5, and −0.75 km s−1) indicate discrete values of velocity difference.
The graph appears tilted due to the dependence of detectable masses on the velocity.
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Figure 2.9: Asteroidal meteoroids - simulations for the image intensified systems.
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Figure 2.10: Iron-rich meteoroids - simulations for the CAMO influx system.
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Figure 2.11: The dependence of velocity and beginning heights on the Tisserand parameter
with respect to Jupiter for CAMS data.

2.6.2 Moderate field of view system - CAMS

Figure 2.11 shows the observed beginning heights for actual CAMS optical system meteors as a

function of speed, and their Tisserand parameters with respect to Jupiter. The same distinction

in orbit - types for Vinit < 40 km s−1 and Vinit > 40 km s−1 meteors can be seen here as was

present with the CAMO influx system, as well as the same separation into two branches of

beginning heights. These data contain a substantially larger fraction of shower meteors (27.6

%), notably the Geminids at Vinit ≈ 35 km s−1, and Perseids and Orionids at Vinit ≈ 60 km s−1

and Vinit ≈ 66 km s−1 respectively.

Figure 2.12 compares observed beginning heights with our simulations - the reproduction is

satisfactory except for asteroidal and iron-rich material at very low velocities (Vinit < 12 km s−1)
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where only larger meteoroids are visible. These meteoroids are discussed in Jenniskens et al.

(2016b) who attribute them to an unexpected population of large and old Poynting-Robertson

drag evolved meteoroids at very low semi-major axes (TJ > 3.2), indicating collisional life-

times on the order of 106 years and possibly different physical properties than the rest of the

population. Alternatively, the luminous efficiency may change dramatically at lower speeds

and our mass model may no longer be valid. We also note that a small number have begin-

ning heights above our modelled range, which may be caused by different physical properties

of those meteoroids than modelled, seasonal changes in the atmosphere (see section 2.6.4), or

simply observational errors.

The beginning heights of the Perseids and Orioinids match those expected for cometary

material, consistent with their cometary origin (Borovička, 2005). The Geminids lie between

the two discrete branches, suggesting a larger spread in strength/densities and heterogeneity of

the meteoroid material, as also suggested by the results of Borovička et al. (2009), who found

the densities of Geminid meteoroids to range between 1000 kg m−3 and 3000 kg m−3 for the

same mass range. Furthermore, Ceplecha (1977) classified the Geminids as an intermediate

type B, between the asteroidal type A and cometary type C, also consistent with our results.

Figures 2.13 to 2.15 show the model differences between the initial and pre-atmosphere

velocities for various meteoroid types. Compared to the CAMO influx system, the overall

differences in velocities are similar, even though the beginning heights are lower, since the

meteoroid masses are larger. At high velocities, cometary meteoroids show velocity differ-

ences below 100 m s−1 down to 20 km s−1 when the difference exceeds 200 m s−1. Asteroidal

meteoroids show the highest absolute velocity difference, in excess of 500 m s−1 for the faintest

meteors at low velocities of v∞ ≈ 15 km s−1. Finally, as with the CAMO influx system, iron-

rich meteoroids exhibit velocity differences that are between the other two types.
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Figure 2.12: Observed and simulated beginning heights for the CAMS-type system. Yellow,
orange and brown dots represent cometary, asteroidal and iron meteoroids respectively. Thick
lines that follow the branches by the middle are median beginning heights for every branch.
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Figure 2.13: Cometary meteoroids - simulations for the CAMS-type system.
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Figure 2.14: Asteroidal meteoroids - simulations for the CAMS-type system.
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Figure 2.15: Iron-rich meteoroids - simulations for the CAMS-type system.
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Figure 2.16: Observed and simulated beginning heights for the all-sky system. Yellow, orange
and brown dots represent cometary, asteroidal and iron meteoroids respectively. Thick lines
that follow the branches by the middle are median beginning heights for every branch.

2.6.3 All-sky (SOMN) system

Figure 2.16 shows the comparison of observed beginning heights and our simulations for an

optical system with all-sky video sensitivity. The FM model reproduces the trend of beginning

heights well for both branches, across all modelled velocities. The only discrepancy is in

the upper regions of the cometary branch - simulations indicate that for the assumed physical

parameters cometary meteoroids should start higher. This may indicate that the centimetre-size

population lacks low-density cometary material, compared to smaller meteoroids seen by more

sensitive systems.

Figures 2.17 through 2.19 show the initial and pre-atmosphere velocity differences. Com-

pared to meteoroids seen by other systems, these have the smallest ∆v, indicating the reduction
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Figure 2.17: Cometary meteoroids - simulations for all-sky systems.

of the velocity difference with the rise in observed meteoroid masses. For all types of mete-

oroids with peak magnitudes brighter than −4M, the difference in velocity is below 50 m s−1.

The difference in velocity is only significant for very low velocity faint meteors, particularly

asteroidal meteoroids. It is close to or in excess of 0.5 km s−1 for v∞ < 25 km s−1 and peak

magnitudes below −2M, which are close to the detection limit of the system.

2.6.4 Dependence of the velocity difference on the varying atmospheric

density

Our results may be influenced by latitudinal and seasonal changes in the air mass density at

meteor heights, which can vary by up to 50% (Dr. Douglas Drob, personal communication).

Unfortunately, no currently available models implement these variances in detail. Thus, we
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Figure 2.18: Asteroidal meteoroids - simulations for all-sky systems.



70 Chapter 2. Measurement accuracy of initial velocities of meteors

Figure 2.19: Iron-rich meteoroids - simulations for all-sky systems.
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investigated the influence of the atmospheric mass density on the velocity difference in two

extreme cases, a 50 % increase and a 50 % decrease in atmospheric mass density. Figures

2.20 and 2.21 show simulations of the same meteor as in figure 2.5 but with different values

of the atmospheric mass density. Simulations were performed for a V∞ = 20 km s−1 cometary

meteoroid with a mass of m = 0.1 g, density ρm = 1510 kg m−3 and zenith angle of ZG = 45°,

as seen by the simulated CAMS-like system. The results show that the beginning heights shift

up or down, but ∆v remains approximately the same.

Figure 2.22 shows the comparison of beginning heights for meteoroids of different types.

As expected, in the case of a denser atmosphere, meteors start several kilometers higher. Simi-

larly, lower assumed atmospheric mass densities lead to meteors having lower starting heights.

In contrast to beginning heights, ∆v remains virtually unaffected (< 1 m s−1 difference) by at-

mosphere density changes of order a factor of two across all velocities and for all meteoroid

types, as shown in Figure 2.23.

2.7 Model Validation

As older meteoroid streams are expected to have inherent (physical) dispersions of velocities

inside the stream of order several kilometers per second (Abedin et al., 2017) it may be difficult

to argue that the velocity corrections we are proposing are significant if one considers only the

mean velocity of the stream. The largest absolute decelerations before the point of detection

are for smaller low-velocity meteoroids, which either do not belong to any meteoroid stream

or are very dynamically evolved. Due to these unfavourable circumstances, we are only able

to validate our model results for the case of the 2011 Draconid outburst. Maslov (2011) and

Vaubaillon et al. (2011) modelled the ejection of meteoroids from comet 21P/Giacobini-Zinner

and predicted that a very young stream of material ejected in 1900 and 1907 will produce an

outburst in 2011. Both authors predicted a model mean value of meteoroid geocentric velocities

of 20.9 km s−1 at Earth.
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Figure 2.20: Simulation for 50 % lower atmosphere mass density.
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Figure 2.21: Simulation for 50 % higher atmosphere mass density.
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Figure 2.22: Comparison of beginning heights for 3 meteoroid types and ±50% atmosphere
mass densities.
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Figure 2.23: Comparison of differences in ∆V for 3 meteoroid types and ±50% atmosphere
mass densities.
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The outburst was well observed: Toth et al. (2012) observed 62 Draconids from north-

ern Italy, but due to large deceleration they found it difficult to estimate the initial velocity

and used a fixed velocity from previous observations by Borovička et al. (2007). Borovička

et al. (2014) used the Borovička et al. (2007) meteoroid erosion model which takes deceler-

ation into account and matched it to their observations, which enabled them to more accu-

rately estimate pre-atmosphere initial velocities. They obtained a mean geocentric velocity of

Vg = 20.84 ± 0.15 km s−1, which match the model predictions well. Kero et al. (2012) used

meteor head echo data from the MU radar in Japan and showed directly that their meteoroids

decelerate significantly before ablation and detection. After applying a deceleration correction

they estimated a mean Vg = 20.9 km s−1, also matching the predictions exactly due to the very

high velocity precision possible with head echo measurements.

In contrast, optical observations which did not correct for deceleration before detection es-

timated geocentric velocities which were 150 − 200 m s−1 lower than predicted. Šegon et al.

(2014) determined the initial velocity of 53 video Draconids using the linear deceleration model

of Gural (2012) instead of average velocities. The model assumes that the meteoroid starts with

an initial velocity of Vinit and experiences a constant (fixed) deceleration with time. As there

is no information about the deceleration before detection, the initial velocity that was mea-

sured was the velocity at the beginning height. They found a mean geocentric velocity of

Vg = 20.74±0.71 km s−1. Trigo-Rodrı́guez et al. (2013) measured the velocity at the beginning

of the meteor trail and found Vg = 20.76 ± 0.43 km s−1 for 16 manually reduced video Dra-

conids. Jenniskens et al. (2016a) used an exponential deceleration model of Whipple & Jacchia

(1957) with the aim of reconstructing true pre-atmopshere velocities and cite a mean geocen-

tric velocity for the 2011 Draconids of Vg = 20.7 km s−1, consistent with other observations

measuring only the velocity at the beginning of the visible trail.

The geocentric velocity uncertainty in the three cases above are on the order of hundreds

meters per second; however, from our modelling we suggest that they all systematically under-

estimate the true speeds by ∼ 150 m s−1. Systems used by Šegon et al. (2014), Trigo-Rodrı́guez
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et al. (2013), and Jenniskens et al. (2016a) are comparable to our simulated CAMS-like system,

for which the predicted velocity difference for cometary meteoroids at 20 km s−1 ranges from

∼ 100 m s−1 to ∼ 500 m s−1, depending on the mass of the meteoroid. This value is a lower

boundary as we assume no fragmentation prior to detection, which certainly is not true of the

fragile Draconid meteoroids.

Jenniskens et al. (1997) noticed the difference in initial velocities of Quadrantids between

photographically determined initial velocities (meteor LM +0M, Betlem et al. (1997) data re-

duction method) and average velocities of image-intensified video meteors (meteor LM +6M)

to be as much as 0.7 km s−1. A large portion of the difference between the two was caused

by the overall deceleration of the meteor, but our results suggest that at least 100 m s−1 of this

difference could be due to the inherent observational biases of both systems. Finally, we note

that the 200 m s−1 to 500 m s−1 initial velocity underestimation for the Geminids described by

Hajdukova Jr et al. (2017) is well explained by our analysis.

2.8 Conclusions

We have modeled the velocities of meteoroids at the top of the atmosphere and compared these

to expected measured velocities at the moment of first luminous detection, i.e. initial velocities.

Our analysis shows that these velocities are expected to differ by a minimum value of order of

hundreds of meters per second, the velocity difference being heavily dependent on meteoroid

mass, composition, and velocity. In the mass range observed by all-sky fireball networks the

difference is almost negligible, while for optical systems detecting typical meteoroid masses

smaller than 1 g the difference is significant and can be in excess of 500 m s−1. This implies that

increasing the precision of measured initial velocities is not the limiting factor for obtaining

high accuracy meteoroid orbits. Improving accuracy requires numerical ablation modelling and

additional assumptions about the composition of each meteoroid. As a starting point for such

corrections, a table providing empirical lookup corrections per optical system and meteoroid
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type is given in the supplementary materials of the original paper.

We have reproduced the observed separation of meteoroids by their beginning heights

through ablation modeling and determined that it is largely density dependent, thus allowing

classification of meteoroids by their beginning heights into rough density groups, confirming

the predictions of Ceplecha (1968). Low-density meteoroids of cometary origin always start at

higher altitudes, while asteroidal and iron-rich meteoroids start lower, although the latter two

do not differ significantly in their beginning heights. Nevertheless, we notice a discrepancy

between our findings and those of Kikwaya et al. (2011) for low-density HTC meteors with

low beginning heights. Kikwaya et al. (2011) found a range of densities, while our model

predicts they should all have asteroidal densities. The similarity of beginning heights between

the asteroidal and iron-rich group might indicate that they are in fact the same population in

terms of bulk density, as proposed by Moorhead et al. (2017). Notably, that study found that

meteoroid densities correlate more strongly with Tisserand parameter than with the Ceplecha

(1958) KB parameter, which is based on beginning heights.

Our findings imply a non-negligible systematic observational bias resulting in underesti-

mation of the semi-major axis of low-velocity meteor showers.
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Borovička, J., Koten, P., Shrbený, L., Štork, R., & Hornoch, K. 2014, Earth, Moon, and Planets,

113, 15
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Borovička, J., Koten, P., Spurný, P., et al. 2009, Proceedings of the International Astronomical

Union, 5, 218

Borovička, J., Spurný, P., & Brown, P. 2015, Asteroids IV, 257
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Chapter 3

Novel meteor trajectory simulator and

solver - I. Theory

A version of this chapter has been published as:

Vida, D., Gural, P.S., Brown, P.G., Campbell-Brown, M., & Wiegert, P. (2020).

Estimating trajectories of meteors: an observational Monte Carlo approach – I.

Theory. Monthly Notices of the Royal Astronomical Society, 491, 2688.

3.1 Introduction

Schiaparelli & von Boguslawski (1871) were the first to show the connection between the

orbits of meteor showers and comets (Romig, 1966; Hughes, 1982). This physical connection

motivated development of various methods of estimating meteor trajectories, with the first

reasonably precise measurements made even earlier with the pioneering work of Brandes and

Benzenburg in the late 18th century (Burke, 1986). These techniques typically use optical

measurements from multiple sites to estimate atmospheric meteor trajectories. Gural (2012)

provides a good historical overview.

In this work we focus on three foundational papers which provide representative descrip-

83
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tions of the three most common modern meteor trajectory estimation methods. These are:

a) the intersecting planes (IP) method as described by Ceplecha (1987)

b) the lines of sight (LoS) method by Borovička (1990)

c) the multi-parameter fit (MPF) method of Gural (2012).

The goal of any trajectory solver is to reconstruct the atmospheric trajectory of a meteor,

leading ultimately to an estimate of its pre-atmospheric orbit. The trajectory is defined by a

position vector (a reference position in space) and a velocity vector. To compute a reliable

heliocentric orbit this should preferably be at a point before any significant deceleration of

the meteoroid occurs. A common assumption is that the trajectory is a straight line, a good

approximation for shorter meteors. However, longer meteors, particularly those entering at

shallow angles, may show significant deviation from a straight-line trajectory due to Earth’s

gravity (Ceplecha, 1979).

Existing methods usually estimate the geometry of the meteor path separately from the

dynamics of the meteoroid (i.e. the time dependent characteristics of the meteor: position,

velocity, acceleration). The velocity can be estimated by fitting an empirical model to the

observations of time versus path length from the beginning of the meteor. Gural (2012) was

the first to note that trajectories can be better constrained by fitting a meteor propagation model

to both the meteor trajectory geometry and the meteoroid dynamics at the same time. This

assumption makes use of the fact that all observers should see the same dynamical behaviour

of a particular meteoroid at the same point in time. A consequence of this approach is that it

allows an estimate of the absolute timing offsets between stations. A further recent advance in

this area is using a particle filter algorithm to directly fit numerical meteor ablation models to

better estimate trajectories of fireballs (Sansom et al., 2017).

The original motivation for this work was earlier analysis of two station meteor data ob-

tained by the Canadian Automated Meteor Observatory (CAMO) mirror tracking system (Weryk

et al., 2013). The system achieves an angular precision for meteor positions on the order of a
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few arc seconds (limited largely by the system’s ability to resolve the physical spreading of the

meteor itself (Stokan et al., 2013)), which translates to a spatial precision of a few meters. The

temporal precision of the system is 10 ms. This is sufficient to discern individual fragments of

fragmenting faint meteors (Subasinghe et al., 2016; Vida et al., 2018a). Similar to Egal et al.

(2017), we found that the existing methods of trajectory estimation do not always provide solu-

tions of satisfactory quality. For example, we often found with CAMO measurements that the

intersecting planes and the LoS methods produce solutions where the dynamics of the meteor

do not match at different stations. The MPF method, in some cases, depending on the velocity

model used, had convergence issues. This suggested that in some cases forcing the meteoroid

velocity to follow a closed-form empirical model did not result in a physically consistent solu-

tion. As a result of this experience we also wanted to objectively quantify the real uncertainties

and formally define the true accuracy of individually measured meteor radiants and velocities

as estimated using CAMO data, and by extension other optical systems.

This series of papers attempts to answer the following question: For a given type of optical

system, what is the best trajectory solver to use, and what quantitative accuracy should one

typically expect? We note that this is one step in the process of defining the best estimate

for a meteoroid’s original heliocentric orbit. The necessary additional step is accounting for

deceleration due to atmospheric drag on the earliest measured luminous point of the meteor, a

topic addressed in Chapter 2.

In the following sections we discuss in detail the theory behind various methods of trajec-

tory estimation and describe our novel Monte Carlo approach. Finally, for completeness, we

summarize the equations for analytically computing meteoroid orbits from trajectory informa-

tion, as previously published procedures were ambiguous in several crucial steps.
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3.2 Overview of trajectory solvers

A set of line-of-sight (angle-angle) measurements of meteor positions from an individual ob-

serving station describes a fan of rays when converted into a station-fixed Cartesian coordinate

system. By assuming that the position of an observer can be represented by a single point in the

same coordinate system (usually at the time of the middle of the meteor’s trajectory), a plane

can be fit through these points (Ceplecha, 1987). By repeating the procedure for N different

stations, one plane for each station is obtained. The intersection of every pair of planes,
(

N
2

)
pairs in total, results in a line which describes the optimal trajectory as measured from two

stations. If there are more than two trajectory lines, the average of the trajectories can be com-

puted weighted by the squared sine of the convergence angle between every plane pair. The

convergence angle is the angle between a pair of planes.

Borovička (1990) points out a disadvantage of the intersecting planes (IP) method: when

the planes are paired using observations from multiple stations, the information about the un-

certainty of individual measurements can be lost because only the whole plane is taken into

consideration when intersecting it with another to define a trajectory. An outlier line-of-sight

measurement can shift the whole plane in a certain direction and influence the resulting trajec-

tory. However the fit residuals will not show the influence from the sole outlier.

Instead of pairing planes from individual stations and producing the trajectory as a sec-

ondary product, Borovička (1990) proposes that one can consider every measurement of me-

teor position as a ray emanating from the observer in the direction of the meteor at a specific

point along its linear track. Each ray is usually referred to as a line-of-sight (LoS) measurement

of the meteor. The trajectory is then found as the three-dimensional line which results in the

minimal distance to all measurement lines-of-sight, with the solution computed using a least

squares minimization. Furthermore, Borovička (1990) points out that this method can com-

pensate for Earth’s rotation at each LoS observation directly during the trajectory estimation

process. In the absence of this compensation, fixed observers on the non-inertial rotating sur-

face of the Earth perceive a virtual force (the Coriolis force) on the apparent meteor trajectory.
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Additionally, the Borovička (1990) method makes possible compensation for diurnal aber-

ration, an effect due to the Earth’s rotation that occurs because of the changing observer’s

perspective of the meteor with respect to distant stars. Assuming one knows the absolute time,

an Earth-centred Inertial (ECI) reference frame can be adopted in which the observer’s coordi-

nates are constantly changing due to Earth’s rotation, but the meteor trajectory remains linear.

We use the definition of ECI coordinates where the x-axis is aligned with the mean equinox at

12:00 Terrestrial Time on January 1, 2000 (J2000).

In the original LoS paper, Borovička (1990) keeps the observers in the Earth-centred Earth-

fixed frame (ECEF), presumably because the timing of each individual measurement (taken on

a single photographic film in that era) was unknown. In contrast to the ECI system, which

does not rotate with respect to the stars but the coordinates of observers on Earth’s surface are

changing in time, coordinates of ECEF are fixed with respect to the Earth’s surface. Without

correcting for the changes in observer positions, Borovička (1990) found the results of the IP

and LoS comparable. The reason that it is not possible to account for moving observers in the

intersecting planes method is that the motion of the observer and the positions of the meteor

are not co-planar (unless all measurements coincide with the observer’s zenith, an impossible

geometry to have from two different stations).

To provide a concrete estimate of the magnitude of the diurnal aberration correction, let us

consider an observer at a latitude of 45° N where the Earth’s rotational E-W velocity is about

328 m s−1. For a meteor of 1 s duration, the real position of the observer will change ±164 m

with respect to the average time of the trajectory determination. There is also a small effect

when two observers are not at equal latitudes. A second observer at 46° N (∼120 km away)

experiences a rotational velocity of 322 m s−1, which causes a differential of 3 m between the

first and the last positions of the two observers. This effect is minor if positional errors are

orders of magnitude larger, but it has to be taken into account when estimating high precision

trajectories where positional measurements are on the order of meters. Figure 3.1 shows a

general comparison between the intersecting planes and the LoS method.
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Figure 3.1: Left: The intersecting planes method with only the two stations having the best
convergence angle shown. The planes are shown in blue and orange (semi-transparent) and
are coplanar with line-of-sight observations (blue arrows emanating from stations). Note that
stations are single points in the ECEF (Earth-centered Earth-fixed) frame, but here we show
them in the ECI (Earth-centered inertial) frame at a fixed time. The green arrows are plane
normals from each station, and the red arrow is the resulting estimated trajectory. Right: Lines
of sight method, where coordinates of all four stations are changing due to the Earth’s rotation.

The multi-parameter fit method with the underlying algorithmic details was first described

in Gural (2012). It had been developed for the Cameras for Allsky Meteor Surveillance

(CAMS) project where the full processing pipeline is described in Jenniskens et al. (2011).

In contrast to the IP and LoS methods, which are purely geometrical, the multi-parameter fit

(MPF) method uses a velocity model (i.e. dynamical information) as well. By assuming an em-

pirical velocity model that may include deceleration terms, the MPF finds a trajectory solution

(a line in 3D space) as well as the velocity and deceleration coefficients which bests describes

the observed meteor’s observations from all stations given the constraints of the empirical dy-

namical model. Because of the dynamical constraints, the method is also able to estimate

relative timing offsets between camera sites, as all observers must see the same velocity at the

same time.

To avoid issues of confusion with local minima in the method’s cost function, an initial

guess for the solution is obtained using the intersecting planes method. This guess is further

refined using the LoS method - the latter modified by minimizing the angles between the mea-



3.2. Overview of trajectory solvers 89

sured lines of sight and the model trajectory, instead of minimizing the distances between the

two. This refined guess is fed into a simplex-based non-linear equation solver where the angles

between the measured lines of sight and the positions predicted by the model are minimized.

This effectively ensures that all observers “see” the same dynamics of the meteor in time.

Because observing systems usually do not have absolute synchronized time, the time dif-

ference between the observers must be estimated as well in the MPF. In Gural (2012), the MPF

was compared to IP and LoS using data from wide-field systems. The results showed that

the measured radiant dispersion of meteor showers is significantly smaller if the MPF method

with a constant velocity model (ie. no deceleration) is used, especially for cases with small

convergence angles. The reduction in the dispersion indicates an improvement in the radiant

measurement accuracy. The authors proposed three meteor propagation models:

1) the constant velocity model:

d(t) = v0t , (3.1)

where d(t) is the distance of the meteor at a particular point in time after the beginning point,

and v0 is the constant velocity of the meteor.

2) the linear deceleration model:

d(t) =


v0t, if t < t0

v0t − 1
2a(t − t0)2, otherwise

, (3.2)

where t0 is the time when meteor begins decelerating with a constant deceleration a.

3) the empirical exponential deceleration model of Whipple & Jacchia (1957):

d(t) = v0t − |a1|e|a2 |t , (3.3)

where a1 and a2 are deceleration parameters.

The complexities due to the physical properties of the meteoroids and their resulting abla-
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tion behavior are not included in these models. The exponential deceleration model is the only

one motivated by a physical basis, namely that the meteoroid’s deceleration is proportional

to the atmospheric density, following classical single-body ablation models (Ceplecha et al.,

1998). As the atmospheric density increases exponentially with decreasing height, the velocity

should follow a similar functional trend. However, the single-body assumption breaks down

when a meteoroid starts fragmenting, a behaviour shown to exist for at least 90% of meteors

from high-precision observations (Subasinghe et al., 2016), a phenomenon understood to be

ubiquitous across all meteoroid masses (Ceplecha et al., 1998; Hawkes & Jones, 1975). Com-

paring the performance of different trajectory estimation methods even for single-body ablation

has not been rigorously addressed. Gural (2012) performed simulations for a constant velocity

model over an extensive range of encounter geometries and speeds. However, the comparison

did not examine other functional forms of deceleration.

In recent work by Egal et al. (2017) it was shown that the exponential model is difficult to fit

using local cost function minimization methods since it is mathematically ill-conditioned and

the associated model coefficients have linear dependencies. The authors showed the advantages

of global minimization methods over local techniques. In particular, they applied the particle

swarm optimization (PSO) method (Eberhart & Kennedy, 1995) for fitting the exponential

deceleration model and showed that it produced superior results, albeit at the expense of higher

computational costs. Their work has shown that the fit works well on simulated data produced

using the exponential deceleration model. In contrast, the fits were poorer when model data was

created using the meteor ablation model of Borovička et al. (2007). They concluded that of all

methods tested (IP, LoS and MPF), the multi-parameter fit consistently produced results with

the smallest residuals and good radiant solutions even for meteors with very low convergence

angles (Qc ∼ 1°). They also showed that the initial velocity estimated from all of the trajectory

solvers for ablation-simulated meteoroids was not accurately determined. This suggests that a

more reliable meteor propagation model is needed for the MPF in particular.

We have directly used all implementations of the three trajectory solvers including the
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PSO based implementation of the Gural (2012) method, to test their relative performance on

high-precision CAMO data. Given the performance limitations of existing algorithms, it was

decided to develop a novel trajectory solver specifically to attempt to improve the accuracy of

meteor trajectory solutions where high precision data is available. The details of this trajectory

solver are given in section 3.3. To verify the performance of this new method and compare to

the three other solvers, we also developed an observational meteor trajectory simulator. This

provides synthetic measurement inputs to each solver using known solutions; details are given

in section 3.4.

We emphasize that the ultimate limitation to the accuracy in the estimation of a meteoroid

orbit based on observations of a meteor in the atmosphere is the amount of deceleration that

occurs prior to the luminous phase. We use the term “initial velocity” for the velocity of the

meteor at the moment of first detection, and “pre-atmospheric velocity” for the velocity before

any significant deceleration has occurred (we assume this to be at a height of 180 km). The

difference between the initial velocity and the pre-atmospheric velocity for various types of

meteoroids as measured by several typical observation systems was analyzed in Vida et al.

(2018b). It was found that low-velocity meteors significantly decelerate (up to 750 m s−1 for

moderate and narrow field of view optical systems) prior to sensor detection of the visible

meteor trail. The proposed correction of Vida et al. (2018b) should be used to reconstruct the

real pre-atmosphere velocity from the measured initial velocity. Establishing the latter quantity

and its true uncertainty is the focus of this work.

3.3 Monte Carlo trajectory estimation method

Our newly developed method of trajectory estimation builds on the work of Gural (2012) and

expands on an earlier similar approach described in Weryk & Brown (2012). This technique

uses the intersecting planes and the LoS methods to obtain a first estimate of the trajectory

solution, then uses the observed angular residuals between the measurements and the fitted
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trajectory as a direct estimate of the angular measurement uncertainty. With these estimates in

hand, Monte Carlo runs are then generated by adding Gaussian noise to the observations using

the standard deviation of the angular residuals from the initial trajectory estimate and redoing

the trajectory solution using noise-added data.

This procedure gives a set of trajectories which are geometrically possible to fit within the

measurement uncertainty. We have empirically found that about 250 Monte Carlo runs sam-

ples the possible trajectory parameter space well. The lines of sight from individual stations

are then projected to the trajectory line and the dynamics of the meteor as seen from every

station are computed. Critically in this new technique, the best solution is chosen by compar-

ing the observed dynamics between different stations and choosing the trajectory which has

the most consistent dynamics as seen from all stations. This approach constrains the trajec-

tory solution both geometrically and dynamically without limiting the motion to an empirical

propagation/ablation model, while simultaneously keeping LoS vectors within measurement

uncertainty. Note that unlike in the MPF method, the geometry and dynamics are solved sepa-

rately; the dynamics is only used as an additional constraint on the geometry.

Here we provide detailed formulations of all the equations used by this trajectory solver,

with the exception of well known mathematical and numerical methods. The equations are

given in a way that would make their computer implementation unambiguous and thus may

slightly deviate from standard mathematical notation. Where the function for the four-quadrant

inverse tangent is used, we assume that the order of arguments is atan2(y, x), as in e.g. C,

FORTRAN, Python, and MATLAB. This differs from e.g. Mathematica and MS Excel whose

implementations have the two arguments reversed. mod is the modulo operator, the integer di-

vision remainder operation. The Python implementation of both the simulator and the solver is

open source and publicly available at https://github.com/wmpg/WesternMeteorPyLib.
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3.3.1 Inputs and conversions to rectangular coordinates

For every station k ∈ {1, ...Nstations}, we have measurements j ∈ {1, ...,Nmeas(k)}, producing

inputs to the trajectory solver:

a) Relative time tk j in seconds of each measurement from every station, relative to the ref-

erence Julian date JDre f .

b) Angular measurements of meteor positions in the horizontal coordinate system: azimuth

measured eastward from the north Ak j, and altitude above the horizon ak j for the epoch

of date from each station. Equivalently, right ascension α and declination δ may be used

which can be converted to azimuth and altitude using equations given in Appendix A.7.

If the equatorial coordinates are given in the J2000 epoch, care must be taken to first

precess them to the epoch of date (see Appendix A.8). The epoch of date is assumed to

be at JDre f .

c) Geographical coordinates of every station: geodetic latitude ϕk, longitude λk, and height

above a WGS84 Earth ellipsoid hk (note that this height is not the same as the Mean Sea

Level height reported by Google Earth and newer GPS devices - the difference can be up

to 100 meters).

The first step in the process is to compute the Julian date of every individual measurement

JDk j = JDre f + tk j/86400 . (3.4)

These times get updated in the second stage of the iteration when the trajectory is recom-

puted after the timing offset estimation. Next, measurements are converted to equatorial coor-

dinates for the epoch of date using equations given in Appendix A.6. Two sets of equatorial

coordinates are obtained: the first assumes the stations are fixed at JDre f and are used for the

intersecting planes method while the second one takes into account the movement of the sta-

tions at each measurement time step. Thus, When computing values for the intersecting plane
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method, the JDre f reference time should be used for all measurement points. When computing

values for the lines of sight method, the Julian date JDk j of the individual measurements should

be used. The measurements are then converted to Cartesian unit vectors using equation 3.5.

These vectors define the direction of the line of sight from a given station at each measurement

point in time.

ξ = cos δ cosα ,

η = cos δ sinα ,

ζ = sin δ .

(3.5)

The geographical positions of the stations are converted to Earth-Centered Inertial (ECI)

coordinates relative to the center of the Earth using equations given in Appendix A.4.1. Two

sets of coordinates are calculated: Xk j, Yk j, Zk j for the position of each station at every point in

time JDk j, and X′k,Y
′
k,Z

′
k for stations fixed at JDre f . ECI coordinates fixed at JDre f are needed

for the intersecting planes method, as this method implicitly assumes that the station is a point

and its coordinates cannot move in time.

3.3.2 Plane fits

The best fit plane for observations from one station can be defined as

a #»x + b #»y + d = − #»z , (3.6)

where #»x , #»y , #»z are data vectors containing Cartesian unit vectors of direction ξ, η, ζ, and a

zero, which represents the position of the station, taken to be the origin of the direction vector’s

coordinate system:
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#»x = [0, ξk1, ..., ξkNmeas(k)] ,

#»y = [0, ηk1, ..., ηkNmeas(k)] ,

#»z = [0, ζk1, ..., ζkNmeas(k)] .

(3.7)

The problem can be written in data matrix form as



x1 y1 1

x2 y2 1

...

xn yn 1




a

b

d

 = −



z1

z2

...

zn


. (3.8)

If we take the data matrix and pre-multiply both sides of the equation by its transpose, and

invert to solve for the unknowns, we perform the equivalent of a linear least squares fit. One

should normalize the points to be relative to their mean, x̄, ȳ, z̄, in which case d can be excluded

and one dimension can be dropped. Thus, the matrix equation solution can be written as

ab
 = −


∑n

i=1(xi − x̄)2 ∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(yi − ȳ)2


−1

×


∑n

i=1(xi − x̄)(zi − z̄)∑n
i=1(yi − ȳ)(zi − z̄)

 .
(3.9)

After solving the matrix, the direction normal to the fit plane is

#»n = [a, b, 1]T . (3.10)

3.3.3 Plane intersections

We now consider planes in point-normal form. After finding the unit plane normal n̂k for

observations from every station, we make use of the additional constraint that each normal

vector must go through the position of the station in ECI coordinates (X′k,Y
′
k,Z

′
k). For N stations,



96 Chapter 3. Novel meteor trajectory simulator and solver - I. Theory

there is a total of
(

N
2

)
combinations of different plane intersections. Although Ceplecha (1987)

shows how to compute the weighted average trajectory for all combinations of planes, we

follow the approach of Gural (2012), where only the solution with the pair of planes that have

the highest convergence angle is taken. This solution is usually satisfactory to estimate the

initial estimate of the trajectory for the lines of sight method which is then refined numerically.

For every pair of planes we have their normals, n̂A and n̂B, and position vectors for every

station, # »pA = [X′A,Y
′
A,Z

′
A] and # »pB = [X′B,Y

′
B,Z

′
B]. The convergence angle QAB between the two

planes is

cos QAB = n̂A · n̂B . (3.11)

The apparent radiant unit vector based on these two stations is

#»
R = n̂A × n̂B ,

R̂ =

#»
R

|
#»
R |
.

(3.12)

We also make sure that the radiant vector is pointing in the correct direction:

R̂ =


−R̂, if [ξA1, ηA1, ζA1] · R̂ < [ξAn, ηAn, ζAn] · R̂

R̂, otherwise
, (3.13)

where [ξA1, ηA1, ζA1] is the vector pointing to the first observed point on the meteor trajectory

from station A, and [ξAn, ηAn, ζAn] is the vector pointing to the last observed point from station

A. This condition follows from the fact that the radiant is always closer to the first observed

point.

The equatorial coordinates of the radiant are given by

δ = arcsin R̂z ,

α = atan2(R̂y, R̂x) mod 2π ,
(3.14)
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where the mod2π operation wraps the right ascension to the [0, 2π] range.

The intersection of the planes from each station forming the radiant line in three-dimensional

space is now known and unit vectors from each station to the closest point on the radiant line

to the respective station can be calculated as

#»w = R̂ × n̂ ,

ŵ =
#»w
| #»w |

,

ŵ =


−ŵ, if ŵ · [ξ1, η1, ζ1] < 0

ŵ, otherwise
.

(3.15)

The last equation ensures the vector is pointing from the station towards the radiant line.

These vectors, ŵA and ŵB, are calculated for both stations.

The range vectors from each station to the radiant line can be found as

∆ #»p = # »pA −
#»pb ,

cosω = ŵA · ŵB ,

#»rA =
cosω(∆ #»p · ŵB) − ∆ #»p · ŵA

1 − cos2 ω
ŵA ,

#»rB =
∆ #»p · ŵB − cosω(∆ #»p · ŵA)

1 − cos2 ω
ŵB ,

(3.16)

where #»rA and #»rB are vectors pointing from the stations to the respective point on the radiant

line closest in range to the station.

The ECI coordinates of the position portion of the state vector are calculated by adding the

ECI position of one of the stations to the appropriate range vector. We choose the station A

#»
S = # »pA + #»rA . (3.17)

The trajectory solution from these two stations alone is thus represented by the apparent

radiant unit vector R̂ and the reference position vector
#»
S .
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For the case with more than two stations we also compute weights Wk for every station k as

Pa = arccos
(
R̂ · ŵk

)
,

Wk = sin2 Pa .

(3.18)

where wk is computed from equation 3.15, and Pa is the perspective angle of the trajectory,

namely the angle made between the observer, the state vector, and the radiant line. In this ap-

proach the station which observes the meteor closest to perpendicular to the trajectory is given

the highest weight, while stations observing the meteor “head on” have the lowest weights. If

the perspective angle is low, small errors in meteor position measurement will propagate into

large errors on the trajectory when they get projected, thus the weight of those observations

needs to be reduced. The weights are kept at unity if only 2 stations are used in the solution.

The sin2 weighting scheme follows Ceplecha (1987), with the difference of using the perspec-

tive angle instead of the convergence angle. The weighting is only used for the lines of sight

method described below.

3.3.4 Line of sight method

After pairing all planes and finding the solution with the best convergence angle, the resulting

vectors R̂ and
#»
S are taken as the starting solution for the line of sight method. This method

seeks to find a radiant line (a line in 3D space) that minimizes the angular differences between

all observation sight lines and the radiant line.

Let
#      »
dobsk j = [ξk j, ηk j, ζk j] be the direction vector of every measurement from station k, and

#        »
dmodk j be the direction of the modelled radiant line as seen from that station. The trajectory

solution is then R̂ and
#»
S for which

min

∑Nstations
k=1

∑Nmeas(k)

j=1 Wk∠(d̂obsk j , d̂modk j)∑Nstations
k=1 Wk

. (3.19)

This sum is minimized numerically using the Nelder-Mead method. d̂modk j can be calculated
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using

#        »
dmodk j =

#  »

T ′k j −
#  »pk j ,

d̂modk j =

#        »
dmodk j

|
#        »
dmodk j |

,
(3.20)

where
#  »
T ′k j is the gravity-corrected point on the radiant line which is the closest to the measured

line of sight, and #  »pk j are the ECI coordinates of station k at time j.
#  »
T ′k j can be computed as

#  »

T ′k j =
#  »
Tk j − ∆h(tk j)

#  »
Tk j

|
#  »
Tk j|

, (3.21)

where
#  »
Tk j is a point on the radiant line which is the closest to the measured line of sight that

can be computed using equations given in Appendix A.2. ∆h is the height drop due to gravity

computed using the equations in Appendix A.1; adding this term effectively simulates the

curvature of the trajectory due to gravity. tk j here is the time the meteor is at point j as seen

from station k relative to JDre f .

The angle between the closest point on the 3D radiant line and the observed line of sight is

calculated as (note that unit vectors must be used)

∠(d̂obsk j , d̂modk j) = arccos
(
d̂obsk j · d̂modk j

)
. (3.22)

3.3.5 Computing meteor length, velocity and lag

Once a trajectory solution is found, the location of the estimated reference state vector position
#»
S along the radiant line is moved to the beginning of the meteor. This is done by setting

#»
S to

the ECI coordinates on the radiant line with the largest observed height, implicitly assuming

that a meteor is always descending downward (not necessarily true for Earth-grazers).

The length along the track is found by projecting the observations on the radiant line using

the equations given in Appendix A.2, producing
#        »
dmodk j . The meteor length is defined as the

distance from the reference state vector position
#»
S to every projected measurement ray along
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the radiant line,

lk j = |
#        »
dmodk j −

#»
S | . (3.23)

The time variation of velocity defines deceleration, but since it is the second derivative of

the length versus time, deceleration itself tends to have large point-to-point variances. As a

proxy for overall deceleration, we use lag. Following Subasinghe et al. (2017), we define lag

as “the distance that the meteoroid falls behind an object with a constant velocity that is equal

to the initial meteoroid velocity”. In that work, the authors use the first half of the meteor’s

trajectory to estimate the initial velocity. The limitation of this approach is that the time offsets

between observations from different stations can cause errors if all observations from all sites

are simultaneously used for velocity estimation. Thus, the time offsets have to be estimated

first.

3.3.6 Estimating timing offsets and the initial velocity

To estimate timing offsets we use the fact that the computed length is insensitive to offsets

in time. The timing offset estimation is performed by using the station that first recorded the

meteor as the station with reference time for all other stations, i.e. it has absolute time (∆t = 0).

The time offsets for all stations are then numerically estimated by minimizing the sum of time

differences for all combinations of station pairs. The minimization cost function f∆t is defined

as
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f∆t =
tsum

Wsumcsum
,

tsum =

Nstations∑
k=1

Nstations∑
r=1

Nmeas(r)∑
j=1

WkWr

(
tk(lr j) − tr j

)2
,

Wsum =

Nstations∑
k=1

Nstations∑
r=1

WkWr ,

csum =

Nstations∑
k=1

Nstations∑
r=1

Noverlap ,

(3.24)

where k is the station index, r the index of all other stations (iterations where k = r are skipped),

tr j is the time from station r, and tk(lr j) is the time from station k at length from station r. tk(lr j)

is obtained by linear interpolation of time vs. length. Wk and Wr are weights for the respective

stations as defined in Eq. 3.18, and Noverlap is the number of points that overlap in length

between stations k and r. Thus, only overlapping segments of the meteor path for stations k

and r are used. This requirement is the main limitation of the method: for the approach to

work an overlap of at least 4 points between stations is needed. If there is no overlap (e.g. one

station observed only the beginning, and the other only the end of a meteor) the approach will

not work and one has to assume a velocity model. For those cases we found the MPF method

of Gural (2012) worked well.

This approach of estimating time offsets is not sensitive to the functional form of the de-

celeration, it relies on that fact that a truly accurate trajectory solution must show the same

dynamics from all stations. If the observed dynamics differ, that indicates the trajectory was

not well estimated. This is the central foundation of our novel approach.

After an initial estimate is made of the timing offsets, the entire trajectory solution is re-

peated with updated timing offsets. JDre f is shifted to correspond to the new value of t = 0.

Because the state vector
#»
S is kept at the beginning of the meteor, this means that the position

of the meteor at time JDre f corresponds to
#»
S .

The initial velocity is then estimated by progressively fitting a line to the solution time vs.

length. This is done starting from the first 25% of points from all stations (at least 4 points for



102 Chapter 3. Novel meteor trajectory simulator and solver - I. Theory

short events) up to 80% of all points. The best estimate of the initial velocity is the fit with the

smallest standard deviation.

This modification mitigates the influence of deceleration on the initial velocity estimate,

although at best it is the average velocity of the first 25% of the trajectory. In practice we found

that this approach works well. This approach was adopted because the standard deviation of the

fit done on the first quarter of the trajectory is usually high due to the measurement uncertainty

as meteors tend to be faint at the beginning of the trail and thus the initial velocity may be

uncertain as well. As more points get included, the standard deviation tends to go down, but

it will rise again if significant deceleration is present. The approach is thus a balance between

choosing a fit that trades the effects of measurement uncertainty and deceleration.

To demonstrate the accuracy of the method we have simulated a Draconid as it would be

observed by a hypothetical network in Southern Ontario consisting of three stations with fields

of view of 64° × 48° which form an equilateral triangle with sides of 100 km and observe the

same volume of the sky (maximum overlap at height of 100 km, see the second paper for more

simulation details). The accuracy of measurements was σ = 0.5 arc minutes.

Figure 3.2 shows the map of these model stations and the trail of the meteor. The left

inset of figure 3.3 shows time vs. length prior to the timing correction. One can see that all

observations show the same trend (i.e. dynamics), but they are only offset in time. The right

inset shows the lengths after estimating timing offsets and the final fitted initial velocity. Note

that the observations start deviating slightly from the fitted velocity line at the end, indicating

significant deceleration.

The effect is more visible in figure 3.4 which shows the computed lag. Ideally, the lag would

remain zero (a vertical line) until the meteor starts decelerating, and that straight portion would

be used for initial velocity estimation. This may not always be the case if the deceleration

started prior to detection, as shown in the aforementioned figure. In that case, the initial velocity

will be underestimated and ablation modelling is needed to reconstruct the true initial velocity

(Vida et al., 2018b). Also, notice the larger scatter in lag and fit residuals (figure 3.5) from



3.3. Monte Carlo trajectory estimation method 103

Figure 3.2: Map of the hypothetical moderate FOV network and the simulated Draconid of
mass 6.45 × 10−5 kg, density 211 kg m−3 and initial velocity of 23.7 km s−1. The meteor had
an entry angle of 65°. Perspective angles for stations M1, M2 and M3 were 19°, 53° and 61°
respectively. The red line represents the ground track of the meteor.
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Figure 3.3: Left: Time vs. length before correction. Right: After time offset estimation, all
curves are one on top of the other. The cited residual is the average residuals between all lines
in seconds.

station M1 due to the low perspective angle of only 19°. The perspective angles of the other

two stations M2 and M3 are 53° and 61° respectively.

Finally, after the reference state vector, the apparent radiant, and the initial velocity are

known, the orbit is computed using equations given in Appendix A.3.

3.3.7 Refining the trajectory solution - a Monte Carlo approach

With a nominal trajectory solution now available, the next goal is to define uncertainties in the

solution and further optimize the solution using time vs. length consistency as the cost function

metric.

After estimating the initial “best” solution as described above, the angular residuals of

observations from all stations relative to this solution are computed using equation 3.22, as well

as the value of the root-mean-square deviation (RMSD). We assume that the computed RMSD

represents the standard deviation of the real (random) measurement uncertainty of individual

stations.

Figure 3.5 shows the computed angular residuals for the example meteor in figure 3.4.

Note that station M1 has the highest RMSD, again due to its low perspective angle. In this
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Figure 3.4: A lag of a simulated Draconid observed by a moderate FOV system from 3 stations.
”Jacchia fit” is a fit of equation 3.3 to the computed lag.
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Figure 3.5: Angular residuals of a simulated Draconid. RMSD is the root-mean-square devia-
tion in arc seconds.

case, a low station weight will prevent these measurements from significantly influencing the

trajectory solution.

Next, Gaussian noise is added to the original measurements from every station (using equa-

tion 3.36), with an a standard deviation estimated from the measured station residuals. The

entire trajectory is then recomputed from the beginning and a new positional state vector and

radiant are computed using the noise-added data. All dynamical parameters (velocity, lag) and

residuals are computed using the original data. Time offsets are independently recomputed in

every run. This procedure is repeated hundreds of times with randomized noise.

The best solution is chosen as the one with the smallest value of the f∆t function (equation
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3.24). This solution is the one where the most consistent dynamics of a meteor have been

observed across all stations and which is simultaneously consistent within measurement un-

certainty from all stations. This produces the best dynamical solution within the geometrical

uncertainty.

In many cases when the geometry is good and the measurements are reasonably precise, the

Monte Carlo refinement will not provide additional improvement beyond the initial solution.

The comparison of the performance of the Monte Carlo solver to other trajectory solvers on

simulated data is given in the second paper in this series.

The measurement uncertainty of every estimated parameter (including the orbital param-

eters) is computed using the subset of Monte Carlo trajectories which have values of the f∆t

function smaller than that of the initial purely geometrical solution. If all solutions were to be

used for uncertainty estimation, then the uncertainties would be completely driven by geomet-

ric uncertainties. This culling removes all solutions which have worse fits to the dynamics be-

tween stations than the geometrical solution, thus the dynamical constraints are included. Note

that this approach does not estimate possible systematic errors arising from the astrometric

calibration and position picks, which are system-dependent and should be handled separately.

Figure 3.6 shows the geocentric radiants of all Monte Carlo solutions (the value of the

square root of the f∆t function is color-coded), and figure 3.7 shows how the geocentric velocity

varies with the radiant position for the example model Draconid meteor. Figure 3.8 shows the

spread in orbital elements, in particular the strong dependence of individual orbital elements

on one another. This behaviour is not captured simply by describing independently computing

standard deviations of every orbital element.

To more realistically convey trajectory and orbital uncertainties, we compute covariance

matrices of both the orbit and the initial state vector. Note that the uncertainty in the geocentric

radiant is not properly represented by considering standard deviations in the right ascension

and declination separately. Most two station meteor events, particularly those with a low con-

vergence angle, show an elongated radiant uncertainty. Using a different model Draconid, just
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such an example is shown in figure 3.9.

Note that figure 3.6 shows a clear correlation of the timing residuals (the f∆t function)

relative to radiant position and a clear global minimum. In experimentation with model fits, we

have found this behaviour to be a strong indicator of an improvement in the trajectory solution

relative to the geometrical best solution, showing that the best Monte Carlo trajectory should

be taken as the solution with lowest lag residuals.

We note that for some model geometries, there are cases when no consistent gradient in

the residuals with radiant location is present. In these cases the values of the f∆t function are

randomly scattered among radiant solutions. In such cases, we found that keeping the original

purely geometric solution produced fits closer to the simulated trajectory.

3.4 Meteor shower and trajectory simulator

By developing a comprehensive meteor trajectory simulator we wish to generate synthetic mea-

surements for specific video systems in realistic conditions. This involves generating model

observations by stipulating real locations of meteor stations, instrument fields of view (FOV),

cadence, sensitivity, and measurement uncertainties. In this work we require the simulator to

produce simulated trajectories of shower meteors, but sporadic meteors can also be simulated

given a sporadic source model. Meteor showers are simulated by specifying the radiant, radiant

drift and radiant spread (assumed to be Gaussian), in addition to an activity profile.

The dynamics of the meteor’s motion within the model are generated using the meteor ab-

lation model of Campbell-Brown & Koschny (2004) for which the range of meteoroid masses,

the mass index, the meteoroid bulk density distribution and the ablation coefficient are defined

as inputs. The attraction of the meteoroid body to the Earth’s center due to gravity is taken into

account as well. Higher order gravitational coefficients are disregarded because their influence

is not measurable using these methods. In what follows, we describe the details of the simula-

tor and demonstrate that it produces meteor trajectories comparable to real observations. The
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Figure 3.6: Spread in the geocentric radiant of the model Draconid. The square root of the
timing residual f∆t is colour coded. The red circle marks the position of the initial solution
f∆t = 0.000326, and the green circle marks the position of the best solution f∆t = 0.000300.
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Figure 3.7: Spread in the geocentric radiant for the modelled Draconid; the geocentric velocity
is colour coded. The red circle marks the position of the initial solution (Vg =21.05 km s−1),
and the green circle marks the position of the best solution (Vg =21.00 km s−1).
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Figure 3.8: 2D histogram of the spread in orbital elements for the modelled Draconid. The red
circle marks the position of the initial solution, and the green circle marks the position of the
best solution. Brighter bins indicate more trials within the bin.
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Figure 3.9: A separate simulation done to illustrate how elongated the radiant uncertainty
can be. Here the geocentric velocity is colour coded. The red circle marks the position of
the initial (geometrical) solution, and the green circle marks the position of the best (low-
est lag cost function) solution. The original model input value of the geocentric veloc-
ity was Vg = 20.893 km s−1. The initial lines of sight solution underestimated the veloc-
ity by ∆Vg = −0.661 km s−1, while the Monte Carlo method slightly overestimated by only
∆Vg = 0.017 km s−1.
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trajectory simulator outputs sets of time, right ascension, declination, and apparent magnitude

for every simulated meteor, emulating what would be seen by observers on the ground.

3.4.1 Simulating radiants and activity

For each model station, the following parameters are defined:

1. The geographical coordinates longitude λ, geodetic latitude ϕ and elevation above a

WGS84 geoid of the Earth h

2. The sensor system parameters:

(a) cadence (i.e. frames per second (FPS) of the video camera)

(b) maximum possible deviation in time ∆tmax from the absolute time

(c) azimuth A and altitude a of the FOV center for each local site coordinates

(d) width and height of the rectangular FOV

(e) meteor limiting magnitude MLM

(f) The radiant power of a zero-magnitude meteor P0m (see Ayers, 1965)

For each station, the time offset from the absolute time and asynchronous timing shift be-

tween cameras is drawn from a uniform distribution U(0,∆tmax). The time offset and video

frame rate are assumed constant over the duration of the meteor. The measurement precision

of leading edge picks along the meteor track is simulated by adding Gaussian noise to each

simulated measurement with a standard deviation equal to the scatter in residuals for real mea-

surements.

To make the resulting trajectory solution averages per shower have realistic weighted ge-

ometries given the station locations, activity profiles for each shower are required. The activity

profile of simulated meteor showers is defined by the solar longitude of the peak λmax
�

and the

slope of the activity profile B, where the activity is approximated as ZHR = ZHRmax10
−B|λ�−λ

max
�
|
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following Jenniskens (1994). The activity profile is assumed to be symmetric with respect to

the peak. N samples are drawn from the activity profile using the inverse sampling transform

method - every sample represents one simulated meteor. First, N samples are drawn from a

uniform distribution U(0, 1), producing a vector (y1, ..., yN). Next, signs are drawn from a uni-

form distribution U(−1, 1), producing a vector (s1, ..., sN). The solar longitude of each sample

is then computed as

λ�i = λmax
� + sgn(si)

log10 yi

B
, (3.25)

and only those simulated shower meteors having solar longitudes which occurred between the

local astronomical twilight and dawn of all observers are used.

Simulated meteor shower radiants are defined by their geocentric right ascension αg and

declination δg taken to be the mean radiant at the peak together with the standard deviation of

the radiant dispersion σα, σδ. For times away from the peak, the radiant drift ∆α and ∆δ in

degrees on the sky per degree of solar longitude is used. The shower geocentric velocity Vg,

and speed dispersion σVg plus drift ∆Vg (if known) are also assigned.

N of individual meteor radiant realizations are drawn from a von Mises distribution (a close

approximation to the circular normal distribution) using the centre of distribution at µ = 0 and

the dispersion parameter κ = 1/σ2. α and δ are drawn independently. This procedure produces

vectors (α′1, ..., α
′
N) and (δ′1, ..., δ

′
N). These vectors are offsets in right ascension and declination

from the mean radiant position. To compute the proper distribution of radiants on the celestial

sphere centered around (αg, δg), the unit vector R̂g = (1, 0, 0) is rotated by −δ′i on the Y axis,

and then by α′i on the Z axis for every coordinate pair i. Next, the resulting vector is rotated by

the negative declination of the mean radiant −δg on the Y axis, and then by αg on the Z axis,

and converted to right ascension and declination using

αgi = atan2
(
R̂giy, R̂gix

)
,

δgi = arcsin R̂giz .

(3.26)
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The radiant drift is applied as

αgi = αgi + ∆α(λ�i − λ
max
� ) ,

δgi = δgi + ∆δ(λ�i − λ
max
� ) .

(3.27)

Geocentric velocities Vgi are drawn from a Gaussian distribution N(Vg, σVg), and a drift in

Vg is applied as

Vgi = Vgi + ∆Vg(λ�i − λ
max
� ) . (3.28)

3.4.2 Generating meteor state vectors and apparent radiants

The beginning of the luminous flight of the meteor is used as the point of reference (i.e. instan-

taneous measurement of the state vector). This point is randomly generated to be inside the

fields of view of at least two stations in the simulation for a given start height. We use a start

height of 120 km as a reference point between the trajectory and the ablation model. 120 km

was chosen because almost no meteors end above this height, so the reference point on the

trajectory is before or during the luminous phase.

The following paragraphs describe the procedure for generating initial meteor position vec-

tors in 3D space.

Four rays representing the four corners of the FOV of one camera emanate from the coordi-

nates of the station (equivalent to the center of the sensor focal plane). Earth-centered inertial

(ECI) coordinates are used. A frustum (truncated pyramid) is obtained by taking 8 points in

total, each laying on a FOV corner ray at heights −5 km and +5 km around the simulated be-

ginning height for a particular meteor. A random point is generated inside the frustum of one

station, and this random sampling is repeated until the point is inside a frustum of at least one

another station. The overlap is checked using the quickhull algorithm (Barber et al., 1996).

The resulting 3D position vector
#»
S is taken to be the beginning point of the simulated meteor

in ECI coordinates. All initial positions are generated inside overlapping fields of view of at
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least two cameras due to the computational simplicity of the approach.

From this initial point and the given geocentric radiant, the apparent radiant and the initial

velocity is computed in the ECI frame. The initial velocity v0 [m s−1] is computed from the

inverse of the geocentric velocity equation A.14 in Appendix A.3.2 as

v0 =

√
v2

g +
2 ∗ 6.67408 ∗ 5.9722 ∗ 1013

|
#»
S |

, (3.29)

and the apparent values of the radiant (αi, δi) are numerically inverted using forward mapping

equations (see Appendix A.3.2). The apparent radiant unit vector R̂ is computed by converting

the spherical coordinates (αi, δi) to their ECI components using equation 3.5. Note that the

vg is converted into the initial velocity by assuming that the stations are moving in the ECI

coordinates, and thus the whole coordinate system rotates with the Earth, making a correction

to the meteor velocity for Earth’s rotation unnecessary; such a correction would be needed

for an ECEF treatment. Radiants with zenith angles zc > 80° are skipped to avoid simulating

meteors which do not propagate down in the atmosphere.

3.4.3 Simulating meteoroid dynamics

To simulate realistic meteor dynamics, the meteoroid ablation model of Campbell-Brown &

Koschny (2004) is used. For each shower, a range of visible masses mmin, mmax and a mass index

s based on literature values for a particular shower are defined. The masses are sampled using

inverse transform sampling from the cumulative number as a function of mass distribution

f (m) = m1−s . (3.30)

Meteoroid densities are either sampled uniformly from a user defined range, or using den-

sity distributions given by Moorhead et al. (2017). The apparent ablation coefficient σ (usually

given in [s2 km−2]) is applied in the ablation model through modification of the energy needed

to ablate a unit mass L [J kg−1], (make sure to convert σ to s2 m−2) which is computed as
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L =
Λ

2σΓ
, (3.31)

where Λ = 0.5 is the heat transfer coefficient, and Γ = 1.0 is the drag coefficient. Note that in

the field of aerodynamics the notation Cd is used for the drag coefficient, where Γ = 2Cd. The

ablation model provides vectors of height, length, and luminosity along the meteor path from

the beginning point with a temporal resolution of 0.001 s. Note that σ is used throughout the

text with different meanings. In equation 3.31 it is used for the ablation coefficient, while at all

other places it is used for standard deviation.

3.4.4 Generating synthetic trajectory data

The duration tmeteor of a meteor is obtained from the ablation model. We assume the beginning

time t = 0 corresponds to a given solar longitude for the corresponding reference Julian date

JDre f . A vector of times is obtained by sampling the range (0, tmeteor) with the step 1/FPS .

The instantaneous model luminosity I at a given time is converted to a range-corrected ap-

parent magnitude Mv and only those points above the meteor limiting magnitude of individual

stations are taken

MA = −2.5 log10
I

P0m
,

Mv = MA − 5 log10
105

r
,

(3.32)

where MA is the absolute magnitude (magnitude at 100 km range) and r is the range in meters

from the station to the meteor. P0m is the power of a zero magnitude meteor for the appropriate

bandpass taken from Weryk & Brown (2013). No correction for angular velocity or extinction

loss is included.

The 3D meteor positions are projected to local spherical coordinates of stations to generate

synthetic observations. We simulate the real movement of the stations due to Earth’s rotation

by computing ECI coordinates
#       »
ECI j of stations at every model point in time tk. The position
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of the meteor in ECI coordinates at time t j is computed as

#»
T j =

#»
S − d(t j)R̂ , (3.33)

where
#»
S is the initial position at t = 0, and R̂ is the apparent radiant unit vector in ECI

coordinates. The additional decrease in height due to Earth’s gravity is applied using equation

3.21, where ∆h(t j) is the decrease in height at every point in time due to gravity since the

beginning (in meters). This procedure simulates the curvature of the trajectory due to gravity,

assuming the pull is perpendicular to the WGS84 reference ellipsoid. ∆h(t j) is computed as

described in Appendix A.1. A unit vector pointing from the station to the position of the meteor

on the trajectory is computed as

r̂ =

#»
T j −

#       »
ECI j

|
#»
T j −

#       »
ECI j|

. (3.34)

We simulate the observational precision of a system by adding Gaussian noise with a stan-

dard deviation σ, derived from real measurements of the actual systems, to the synthetic ob-

servations. We separate the vector r̂ into orthogonal components û and v̂

ẑ = [0, 0, 1] ,

û =
r̂ × ẑ
|r̂ × ẑ|

,

v̂ =
û × r̂
|û × r̂|

.

(3.35)

The direction vector (all in ECI) with the added noise is then

#»

r′ = r̂ +N (0, σ) û +N (0, σ) v̂ , (3.36)

where N (0, σ) is a scalar drawn from a Gaussian distribution with a mean of 0 and a standard

deviation of σ. The samples are drawn separately for each term. The direction vector is

converted to equatorial coordinates in the epoch of date
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r̂′ =

#»
r′

|
#»
r′ |
,

α j = atan2
(
r̂′y, r̂′x

)
,

δ j = arcsin r̂′z .

(3.37)

Finally, the appropriate timing offset ∆t for a given station (randomized on a per meteor basis)

is added to time t j, completing the set of synthetic measurements for each simulated meteor.

At the end of this procedure one obtains a set of Nmeas synthetic measurements from every

station for every generated meteor. Synthetic meteors are uniquely defined by the Julian date

of their beginning JDre f , set of relative times since the beginning (t0, ..., t j), a set of right ascen-

sions (α0, ..., α j) and declinations (δ0, ..., δ j) in the epoch of date. Note that the epoch here is

not J2000; to avoid confusion we convert the model measurements to local azimuth (A0, ..., A j)

and altitude (a0, ..., a j) in the epoch of date from a particular station using equations given in

Appendix A.6.

Although the simulator reproduces many features of the observed data, a major difference

with real meteors is that synthetic trajectories all start within the FOVs of at least 2 stations. It is

not clear that this limitation is significant for the current work. While this might be alleviated

by generating the state vectors slightly outside the FOV of one camera this would be at the

expense of having to compute the propagation as well, which would significantly increase the

computational load of finding a synthetic meteor that is actually visible from 2 or more stations.

3.5 Conclusion

In this work we developed a novel Monte Carlo meteor trajectory method which takes the dy-

namics of meteors into account without assuming any formulated meteor propagation model.

This leverages the fact that modern meteor electro-optical systems have sufficient precision to

routinely record deceleration, allowing an entirely independent check on the solution consis-

tency between stations.
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Next, we proposed improvements in weighting multi-station observations as well as a new

method of initial velocity estimation. A limitation of the new Monte Carlo solver is that it does

not work for meteors with no temporal overlap between stations. In those cases a dynamical

model must be used to estimate timing differences and the velocity, but the radiant and its

uncertainty can be estimated using purely geometrical methods, similar to earlier approaches

(Weryk & Brown, 2012; Gural, 2012).

We develop a meteor trajectory simulator which uses a numerical meteor ablation model

to simulate meteor dynamics. The simulator will be used in the second paper in this series to

investigate radiant and velocity accuracy that can be achieved for various real-world optical

systems and meteor showers.

Finally, we provide a detailed set of equations and explanations for estimating meteor tra-

jectories and computing orbits starting just from a set of multi-station observations. We also

have made the associated code-base openly available for all to use. Additional details are

included in the accompanying appendices. An improved version of the MPF method incorpo-

rating the findings of this paper will be published in the future. We invite readers to continue

to the second paper in this series for results.

3.5.1 Note on code availability

Implementation of the meteor simulator as well as implementation of all meteor solvers used in

this work are published as open source on the following GitHub web page: https://github.

com/wmpg/WesternMeteorPyLib. Readers are encouraged to contact the authors in the event

they are not able to obtain the code on-line.
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Chapter 4

Novel meteor trajectory simulator and

solver - II. Results

A version of this chapter has been published as:

Vida, D., Gural, P.S., Brown, P.G., Campbell-Brown, M., & Wiegert, P. (2020).

Estimating trajectories of meteors: an observational Monte Carlo approach – II.

Results. Monthly Notices of the Royal Astronomical Society, 491, 3996.

4.1 Introduction

This paper is a direct continuation of an earlier work (Vida et al., 2020, hereafter Paper 1),

in which we developed both a new method for estimating meteor trajectories and a meteor

trajectory simulator. Paper 1 also presented a summary of the theory behind earlier meteor

trajectory determination algorithms. In this paper we attempt to answer the following question:

For a given type of optical meteor observation system, what is the best trajectory solver to

use, and what is the associated expected quantitative accuracy? We note that this is only the

first step in the process of estimating a meteoroid’s original heliocentric orbit. The necessary

additional step is accounting for deceleration due to atmospheric drag prior to the earliest

123



124 Chapter 4. Novel meteor trajectory simulator and solver - II. Results

measured luminous point of the meteor, a topic addressed in Vida et al. (2018).

In Paper 1 we analyzed the shortcomings of existing methods of meteor trajectory estima-

tion, with particular focus on application to the high-precision data collected by the Canadian

Automated Meteor Observatory’s (CAMO) mirror tracking system (Weryk et al., 2013). In

Paper 1 we examined the most commonly used meteor trajectory estimation methods in detail,

including: the geometrical intersecting planes (Ceplecha, 1987) and lines of sight (Borovička,

1990) approaches, and the multi-parameter fit (MPF) method by Gural (2012). As pointed

out by Egal et al. (2017), the true measurement accuracy of these methods for various me-

teor observation systems and showers is unknown, and the most advanced of them, the MPF

method with the exponential deceleration velocity model, is numerically problematic to fit to

observations.

In an attempt to improve on existing algorithms, we developed a novel meteor trajectory

estimation method which uses both the geometry and the dynamics of a meteor to constrain a

trajectory solution, but without an assumed underlying kinematic model. We also developed

a meteor trajectory simulator which uses the meteor ablation model of Campbell-Brown &

Koschny (2004) to simulate realistic dynamics and light curves of meteors given their physical

properties as a means to compare and test meteor trajectory solvers.

In this work, we apply the simulator and explore the accuracy of each trajectory solver to

three types of typical optical meteor observation systems: a low-resolution all-sky system, a

moderate field of view system, and the high-precision CAMO mirror tracking system. For each

system we used the simulator to investigate the ability of each solver to properly recover the

geocentric radiant and velocity of three major showers spanning a wide range of meteor veloci-

ties and meteoroid types (Draconids, Geminids, Perseids). The parameters used for simulations

and the comparison between simulations and real-world observations are given in section 4.2.

We also perform dynamical modelling of the 2011 Draconid outburst, which was produced by

recently ejected meteoroids (Vaubaillon et al., 2011) and thus should have a very tight radiant.

We use this compact shower to estimate the radiant measurement accuracy needed to resolve
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the true physical dispersion of a meteor shower.

In section 4.3 we present simulation results and compare the performance of various meteor

trajectory estimation methods across all simulated meteor observation systems and our three

chosen showers. In section 4.3.5 we examine solver performances as applied to a specific case

study, namely the unique 2015 Taurid outburst. This outburst was arguably the first instance

where we have both strong a priori knowledge of the expected orbits (particularly semi-major

axis) and a large number of high - precision meteor trajectories (Spurnỳ et al., 2017). We also

consider the special case of long duration fireballs where the influence of gravity is particularly

important by simulating solver performance for an all-sky system as will be discussed in section

4.3.6. Finally, in section 4.3.7 we examine the accuracy of meteor trajectory error estimation

by comparing estimated radiant errors to offsets from the simulated ground truth.

4.2 Simulation-based performance analysis of trajectory solvers

4.2.1 Hardware models

To compare the performance of various existing meteor trajectory solvers with the new Monte

Carlo method, we appeal to simulations. The method of generating simulated meteor obser-

vations is described in detail in Paper 1 (Vida et al., 2020). We simulated three optical me-

teor observation systems to generate synthetic meteors to feed into each trajectory simulator.

These three systems follow the optical model system choices previously discussed in Vida et al.

(2018). The characteristics of these systems (which largely vary in terms of angular precision)

include:

1. A low resolution all-sky CCD video fireball system based on the hardware of the South-

ern Ontario Meteor Network (SOMN) (Brown et al., 2010).

2. A moderate field of view CCD video system typical of CAMS (Jenniskens et al., 2011),
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SonotaCo1, the Croatian Meteor Network (Gural & Šegon, 2009), and the Global Meteor

Network (Vida et al., 2019).

3. An image intensified mirror tracking system based on the Canadian Automated Meteor

Observatory (CAMO) (Weryk et al., 2013).

These systems cover a wide range of observed meteoroid masses, fields of view, and astromet-

ric precision. Details of each system are given in table 4.1.

Our simulated all-sky fireball network consisted of 3 stations in an equilateral triangle con-

figuration with 100 km long sides (stations A1, A2, A3 in the simulation). The cameras at

each station are pointing straight up and have a field of view (FOV) of 120° × 120°. Larger

FOVs were difficult to simulate as the volume of the sky that needed to be randomly sampled

becomes very high, and most of it was outside the FOV of other cameras. The measurement

uncertainly was assumed to be 2 arc minutes and the frames per second (FPS) of the cameras

30.

For the CAMS-like moderate FOV system, we also chose to use 3 stations in the equilateral

triangle configuration (stations M1, M2, M3 in the simulation). These had FOVs of 64° × 48°,

30 FPS and a measurement uncertainly of 30 arc seconds. The elevation of the centres of the

fields of view of all cameras was 65° and they where all pointed towards the centre of the

triangle.

Finally, the simulated CAMO system mimics the real system which has 2 stations (“tavis”

and “elgin” in the simulation) separated by 45 km, a FOV of 30° × 30°, cameras operated at

100 FPS, and a precision of 1 arc second. We note that the CAMO tracking is delayed by about

0.1 s after the detection in the wide-field camera.

1SonotaCo: http://sonotaco.jp/
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4.2.2 Simulated meteor showers

To explore the performance of various meteor trajectory estimation methods when observing

meteors of different velocities and physical properties we focused on generating synthetic me-

teors from three very different meteor showers. We simulated 100 meteors for every system for

each of the following three meteor showers:

1. The 2011 Draconids, a low-velocity (∼21 km s−1) shower with fragile and fresh (¡100

years of age) cometary meteoroids (Borovička et al., 2007) that experienced an outburst

in 2011 (Šegon et al., 2014; Ye et al., 2013).

2. The 2012 Geminids, a ∼34 km s−1 moderate speed shower of asteroidal origin containing

meteoroids of ages from 1000 to 4000 years (Beech, 2002).

3. The 2012 Perseids, a ∼59 km s−1 fast shower of Halley-type comet origin whose mete-

oroids were ejected > 2000 years ago (Brown & Jones, 1998).

Realistic trajectories and dynamics were simulated using the Campbell-Brown & Koschny

(2004) meteoroid ablation model procedure described in detail in Vida et al. (2018). Meteoroid

fragmentation was not directly simulated, but applied though the ablation coefficient in our

single-body simulations. Meteor shower parameters used in the simulations are given in table

4.2 - parameters of all showers except the Draconids were taken from observations published

in the literature.

Note that the 2015 Taurid fireball outburst was also simulated, but only for the all-sky

systems as discussed in section 4.3.5. The goal in applying our analysis to the unique 2015

Taurid outburst was to contrast the accuracy of various trajectory estimation methods when

using low-precision (video) all-sky systems as compared to higher precision fireball systems.
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4.2.3 Dynamical modelling of the 2011 Draconid outburst

The 2011 Draconids were the youngest of the simulated showers and should have the most

compact radiant. The measured radiant spread should be dominated by measurement uncer-

tainty when measured with less precise systems. To quantify the minimum accuracy required

to observe the true physical radiant and velocity dispersion of the 2011 Draconids, we appeal

to dynamical modelling of the shower, i.e. modelling the ejection of meteoroids from their

parent comet and integrating their motion until they interest the Earth’s orbit. Here we use the

method of Wiegert et al. (2009) to obtain an estimate of both the true average location of the

radiant and velocity of the outburst and its theoretical spread. We then use these as inputs to

our simulation model to generate synthetic 2011 Draconids to virtually ”observe” with each of

our three optical systems and apply each meteor trajectory solver in turn.

To dynamically model the 2011 Draconid outburst, the orbital elements of the 1966 appari-

tion of 21P/Giacobini-Zinner were integrated backwards 200 years with the RADAU (Everhart,

1985) integrator within a simulated Solar System containing the Sun and eight planets. The

parent comet was then advanced forward in time while ejecting meteoroids with radii between

100 µm and 10 cm when within 3 AU of the Sun. The ejection speed and direction follows the

approach of the Brown & Jones (1998) model with an assumed comet radius of 1 km, albedo

of 0.05 and bulk density of 300 kg m−3.

Meteoroids arriving at Earth in 2011 were found to be produced by the 1838 and 1907

comet perihelion passages, with smaller contributions from 1920 and 1953. The simulated

peak coincided with that reported by visual observers to the International Meteor Organization

(IMO) Visual Meteor Database2.

The radiants of the dynamically modelled stream that impacted the Earth are shown in

figure 4.1. Note that these model radiants are without observational biases because they were

directly computed from simulated meteoroids arriving at Earth. The position and the dispersion

2IMO VMDB 2011 Draconids: https://www.imo.net/members/imo_live_shower?shower=DRA&

year=2011
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Figure 4.1: Density map of simulated geocentric equatorial (J2000.0) radiants of the 2011
Draconids at the time of peak activity. A bi-variate Gaussian was fit to the radiants (αg =

263.387° ± 0.291°, δg = 55.9181° ± 0.158°). The corresponding 2σ level is shown as a black
contour. Draconid radiants observed by Borovička et al. (2014) in 2011 are also shown.
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of the modelled radiant at the time of peak activity was αg = 263.387°±0.291°, δg = 55.9181°±

0.158°. The values were derived by fitting a bi-variate Gaussian to the modelled radiants.

Distinct radiant structure can also be seen - we estimate that an observational radiant precision

of better than 3 to 6 arc minutes (0.05° - 0.1°) is needed for the true radiant structure to be

unambiguously reconstructed from observations. We use these values as the absolute minimum

radiant accuracy needed to resolve the true physical radiant spread for showers with the most

compact radiants.

The video and high power large aperture (HPLA) radar observations of the Draconid out-

burst measured an almost order of magnitude larger dispersion than our model predicts, sug-

gesting they did not record the intrinsic (physical) radiant spread of the shower (Šegon et al.,

2014; Trigo-Rodrı́guez et al., 2013; Kero et al., 2012). We note that the video observations of

the outburst incorporating high-quality manual reductions reported by Borovička et al. (2014)

are an excellent match to our simulations in both radiant position, dispersion, and the simulated

peak time, as shown in figure 4.1.

As both the Geminids and Perseids are older showers, we do not expect the physical radiant

dispersion to be as compact as the Draconids, thus for simulation purposes we have used ob-

served values for these quantities provided in Jenniskens et al. (2016) and Jenniskens (1994).

We summarize the modeling parameters adopted of the simulated meteors showers in table 4.2

and the physical properties of shower meteoroids used in the ablation modeling in table 4.3.
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Table 4.3: Physical properties of meteoroids adopted as input to the ablation model in simu-
lating our four meteor showers. Here s is the mass index, ρ is the range of bulk densities of
meteoroids, σ is the apparent ablation coefficient (Ceplecha & ReVelle, 2005), and L is the
energy needed to ablate a unit of meteoroid mass.

Shower s ρ (kg m−3) σ (s2 km−2) L (J kg−1)
Draconids 1.95, 1* 100 - 400, 2* 0.21, D-type, 3* 1.2 × 106

Geminids 1.7, 4* 1000 - 3000, 5* 0.042, A-type, 3* 6.0 × 106

Perseids 2.0, 7* HTC distribution, 6* 0.1, C-type, 3* 2.5 × 106

Taurids 1.8, 8* 1200 - 1600, 9* 0.1, C-type, 3* 2.5 × 106

1* - (Koten et al., 2014), 2* - (Borovička et al., 2007), 3* - (Ceplecha et al., 1998), 4* -
(Blaauw et al., 2011), 5* - (Borovička et al., 2009), 6* - (Moorhead et al., 2017), 7* - (Beech
& Nikolova, 1999), 8* - (Moser et al., 2011), 9* - (Brown et al., 2013)

4.2.4 Simulation validation

To confirm the appropriateness of the simulations, we compare some metrics among our suite

of simulated and observed meteors for the same optical system. Note that we did not attempt to

reconstruct particular observed events though simulation; we only identified meteors of similar

properties and quantitatively compared the trajectory fit residuals and deceleration. As an

indicator of deceleration we computed the meteor’s lag, i.e. how much the observed meteor

falls behind a hypothetical meteoroid moving with a fixed speed equal to the initial velocity.

We present several meteors from instrument data sets having comparable speed and duration to

those we simulated. Table 4.4 compares the initial speed, mass and zenith angle of a selection

of simulated and representative observed meteors. All observations were reduced using the

Monte Carlo method.

As a first example, figures 4.2 and 4.3 show a sporadic meteor with a geocentric velocity

Vg = ∼21 km s−1 observed with CAMO and comparable simulated CAMO Draconid. The

”Jacchia fit” curve in lag plots is a fit of the exponential deceleration model of Whipple &

Jacchia (1957) to the computed lag and is only used for visualization purposes. The amount of

deceleration and the scatter in the spatial fit residuals (<1 m) are similar. The scatter in residuals

shows that the dispersion due to random errors are comparable. CAMO measurements are

slightly noisier compared to the model at the beginning because the tracking mirrors require
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Figure 4.2: Left: Lag of a CAMO sporadic meteor observed on October 7, 2016 with Vg =

21.4 km s−1. As per the UWO station naming convention, the stations identifiers are numbers -
1 is Tavistock, 2 is Elginfield. Right: A simulated CAMO Draconid of similar mass and with
Vg = 20.9 km s−1.

several milliseconds to settle. The fit residuals were on the order of 1 arc second for both data

sets. We note that the observed meteor showed significant visible fragmentation which was not

included in the model; thus the magnitude of the observed lag is larger than in the simulation.

Figure 4.4 shows the lag for a Geminid observed by five CAMS stations in California

compared to a simulated CAMS Geminid. The two meteors had similar velocities, masses, and

entry angles. Both meteors show similar decelerations, and had spatial fit residuals of ∼20 m.

Finally, figure 4.5 shows the comparison for a low-resolution, all-sky system, namely the

Southern Ontario Meteor Network Brown et al. (2010) between an observed Southern Taurid

(Vg = 31.4 km s−1) and a simulated Geminid. Neither meteor shows visible deceleration due

to the low precision of the measurements. However, deceleration may become visible and

significant for much longer duration fireballs (see section 4.3.6).

4.3 Results

Following the theoretical development given in Paper 1, we numerically evaluated the perfor-

mance of the following trajectory solvers (abbreviations used later in the text):
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Figure 4.3: Left: Spatial residuals of a CAMO sporadic meteor observed on October 7, 2016
with Vg = 21.4 km s−1. Station 1 is Tavistock, 2 is Elginfield. Right: A simulated CAMO
Draconid of similar mass and with Vg = 20.9 km s−1.

Figure 4.4: Left: Lag of a CAMS Geminid observed on December 12, 2012 with Vg =

33.4 km s−1 by CAMS cameras in California. Right: A simulated CAMS Geminid of simi-
lar mass with Vg = 34.6 km s−1.
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Figure 4.5: Left: Lag of a SOMN Southern Taurid meteor observed on October 10, 2018 with
Vg = 31.4 km s−1. Ignored points are those with angular error more than 3σ above the mean
after the first trajectory estimation pass as described in Paper 1. Right: A simulated SOMN
Geminid with Vg = 34.0 km s−1.

Table 4.4: Comparison of several selected observed meteors and the close fits from among
the simulated set of meteors. The photometric masses were computed using a dimensionless
luminous efficiency of τ = 0.7% (Vida et al., 2018) and a bandpass specific P0m = 1210 W.
The observed (calculated) masses are similar to simulated masses. Note that the range of
simulated masses was taken from Vida et al. (2018) and is based on the masses calculated from
observations by each type of system.

System
Initial speed (km/s) Mass (g) Zenith angle (deg)
Obs Sim Obs Sim Obs Sim

CAMO 24.1 23.7 0.03 0.03 26 15
Moderate 35.2 36.4 0.02 0.01 22 21
All-sky 33.3 36.4 0.2 0.1 40 36



4.3. Results 137

• IP - The intersecting planes method of Ceplecha (1987). The initial velocity is computed

as the average velocity of the first half of the trajectory; better initial velocity accuracy

might be achieved by using the method of Pecina & Ceplecha (1983, 1984).

• LoS - Our implementation of the Borovička (1990) method with our progressive initial

velocity estimation method as described in Paper 1.

• LoS-FHAV - Our implementation of the Borovička (1990) method. The initial velocity

is computed as the average velocity of the first half of the trajectory.

• MC - The Monte Carlo method presented in Paper 1.

• MPF const - The multi-parameter fit method of Gural (2012) using a constant velocity

model.

• MPF const-FHAV - For this hybrid-solver, the radiant solution is taken from the MPF

constant velocity model, but the lines of sight are re-projected on the trajectory and the

initial velocity is estimated as the slope of the length vs. time along the track (effectively,

the average velocity) of the first half of the trajectory.

• MPF linear - The Gural (2012) multi-parameter fit method with a linear deceleration

velocity model.

• MPF exp - The Gural (2012) multi-parameter fit method with the exponential decelera-

tion model of Whipple & Jacchia (1957)

Global results for all tested trajectory solvers for all-sky systems are given in table 4.5,

for moderate FOV systems in table 4.6, and for CAMO in table 4.7 respectively. For every

combination of observation system, meteor shower and trajectory solver we list:

1. The column labelled F in each table is the total number of failures for a given method

out of 100 simulated runs. This is the number of trajectory solutions with radiant or
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velocity difference between the true (simulated) and estimated values larger than the

predetermined values given in the caption to each table.

2. The standard deviation between the estimated and true radiant angular separation (σR in

tables).

3. The standard deviation between the estimated and true geocentric velocity (σV in tables).

The standard deviations are computed after iteratively rejecting solutions outside 3σ.

A trajectory solution was considered to be a failure if the radiant error (difference between

estimated and true as initially input into the simulation) was more than ∆Rmax degrees from

the true radiant, or if the velocity error was more than ∆Vmax from the model velocity. For the

simulated all-sky system the values used were ∆Rmax = 5°, ∆Vmax = 5 km s−1, while for the

moderate FOV (CAMS-like) system we adopted ∆Rmax = 1°, ∆Vmax = 1 km s−1. Finally, for the

simulated CAMO–like system, we adopted ∆Rmax = 0.5°, ∆Vmax = 0.5 km s−1.

Solutions were also removed from further consideration if any of the multi-station conver-

gence angles were less than 15°, 10°, and 1° for the all-sky, CAMS, and CAMO simulations

respectively. This procedure was adopted so that the general performance of different solvers

can be compared, excluding excessive deviations due simply to low convergence angles. We

explore in more depth the dependence of solution accuracy on the convergence angle in section

4.3.4.

In what follows, we show representative plots of the spread in the radiant and velocity

accuracy for each trajectory solver for each optical system. In addition, we show a selection

of individual results per shower and per solver in the form of 2D histograms (e.g. figure 4.7)

which highlight the scatter of estimates among the 100 simulated meteors. On these plots, the

angular distance between the real and the estimated geocentric radiant is shown on the X axis,

the error in the geocentric velocity is shown on the Y axis, and the bin count is color coded

(darker color means higher count).
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Table 4.5: Comparison of solver accuracy for a simulated three station all-sky system. The
trajectory was taken to be valid for simulation if the converge angle was larger than 15°. F is
the number of failures (out of 100), i.e. the number of radiants that were outside the window
bounded by ∆Rmax = 5°, ∆Vmax = 5 km s−1.

Solver DRA GEM PER
F σR σV F σR σV F σR σV

IP 1 0.44° 0.38 km s−1 1 0.21° 0.38 km s−1 10 0.67° 0.99 km s−1

LoS 1 0.56° 0.47 km s−1 1 0.26° 0.42 km s−1 3 0.66° 0.46 km s−1

LoS-FHAV 1 0.51° 0.38 km s−1 1 0.26° 0.38 km s−1 7 0.66° 0.53 km s−1

Monte Carlo 2 0.52° 0.36 km s−1 1 0.24° 0.47 km s−1 4 0.80° 0.38 km s−1

MPF const 1 0.28° 0.46 km s−1 0 0.24° 0.84 km s−1 1 0.47° 0.37 km s−1

MPF const-FHAV 1 0.27° 0.38 km s−1 0 0.23° 0.41 km s−1 4 0.35° 0.80 km s−1

MPF linear 0 0.26° 0.54 km s−1 4 0.23° 1.76 km s−1 6 0.35° 0.60 km s−1

MPF exp 0 0.41° 1.39 km s−1 1 0.21° 1.65 km s−1 12 0.32° 1.18 km s−1

4.3.1 All-sky systems

Table 4.5 lists the accuracy of geocentric radiants computed for the simulated showers using

different methods of meteor trajectory estimation for a three station all-sky system. Figure 4.6

is a visualization of the values in the table. The numbers above the vertical bars for each solver

represent the failure rate (out of 100) for the Draconids, the Geminids and the Perseids (in that

order). Figure 4.7 shows the distribution of radiant and velocity errors as 2D hexbin histograms

for a selection of solvers applied to simulated Geminid data. The increasing bin count is color

coded with increasingly darker colors. The gray boxes show the 3σ standard deviation.

From figure 4.6 it is apparent that the IP and LoS methods achieve decent radiant accu-

racy, but tend to have a larger number of failures for faster meteors (Perseids). Moreover, the

estimated velocity accuracy decreases with meteor speed, a direct consequence of the smaller

number of data points on which the velocity can be estimated for these methods. The Monte

Carlo method does not provide any significant increase in accuracy as expected, as the limited

precision does not produce useful lag measurements.

Figure 4.7 shows that the MPF exponential velocity model tends to overestimate velocities

at infinity (a behaviour of the exponential deceleration function also noticed by Pecina & Ce-

plecha, 1983) and that it has a noticeably larger number of failures for faster meteoroids than
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Figure 4.6: Comparison of geocentric radiant and velocity accuracy for a simulated three sta-
tion all-sky system for three simulated showers and the various trajectory solvers. The numbers
at the top of each vertical bar show the number of failures for a particular method (given in red
text) for the Draconids, Geminids and Perseids simulated, respectively.
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Figure 4.7: Accuracy of geocentric radiants for the Geminids simulated for all-sky systems
shown as a density plot (darker is denser). Upper left: Intersecting planes. Upper right: Lines
of sight, initial velocity estimated as the average velocity of the first half of the trajectory.
Bottom left: Multi-parameter fit, constant velocity model. Bottom right: Multi-parameter fit,
exponential velocity model.
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other methods (except the IP). In contrast, the MPF constant velocity model is the most robust

all-around solver for all-sky data, simultaneously achieving good radiant accuracy and a low

number of failures, even for faster meteors. Note, however, that because the MPF constant

velocity model only computes the average velocity, the velocity estimation is precise but not

accurate; it is systematically underestimated. The use of the MPF const-FHAV was an attempt

to improve on this deficiency by computing the initial velocity as equal to the average velocity

of the first half of the trajectory. This works well for the Draconids and the Geminids, but

produces a significantly higher error for the faster Perseids, where the reduction in number of

measured points leads to a much larger error.

From our simulations, it appears that the optimal operational approach for low resolution

(video) all-sky systems would be to adopt the MPF solver with the constant velocity model,

plus a separate (empirical) deceleration correction. The expected geocentric radiant error with

this solver is around 0.25° (0.5° for the Perseids) and around 500 m s−1 in velocity (or 250 m s−1

if additional compensation for the early, pre-luminous deceleration is included).

4.3.2 Moderate FOV systems

Table 4.6 lists the accuracy of geocentric radiants computed for individual showers using dif-

ferent methods of meteor trajectory estimation for simulated meteors detected by a three station

CAMS-type optical system. Figure 4.8 shows the visualization of the values in the table.

The situation is more complex than was the case for the all-sky system. For convergence

angles >10°, the best results are produced by the classical intersecting planes and the lines

of sight solvers, while the solvers which include kinematics perform either marginally worse

in the case of the Monte Carlo solver, or significantly worse in the case of multi-parameter

fit methods. For all solvers, events which led to a solution within our acceptance window

correspond to expected radiant errors around 0.1°. The velocity error is around 200 m s−1

(around 100 m s−1 after deceleration correction) for the better solvers. The exception are the

Geminids which have a factor of 2 larger velocity uncertainties. They penetrate deeper into the
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Table 4.6: Solver performance comparison for the simulated moderate FOV system. The tra-
jectory was included in the statistics if the convergence angle was larger than 10°. F is the
number of failures (out of 100), i.e. the number of radiants that were outside the ∆Rmax = 1°,
∆Vmax = 1 km s−1 window.

Solver DRA GEM PER
F σR σV F σR σV F σR σV

IP 1 0.07° 0.15 km s−1 1 0.06° 0.31 km s−1 5 0.07° 0.17 km s−1

LoS 1 0.09° 0.17 km s−1 1 0.06° 0.29 km s−1 2 0.07° 0.16 km s−1

LoS-FHAV 1 0.09° 0.13 km s−1 1 0.06° 0.31 km s−1 5 0.08° 0.17 km s−1

Monte Carlo 2 0.08° 0.15 km s−1 1 0.06° 0.28 km s−1 2 0.09° 0.15 km s−1

MPF const 1 0.08° 0.26 km s−1 0 0.09° 0.67 km s−1 0 0.06° 0.22 km s−1

MPF const-FHAV 9 0.08° 0.35 km s−1 6 0.08° 0.37 km s−1 8 0.06° 0.32 km s−1

MPF linear 19 0.07° 0.39 km s−1 34 0.07° 0.45 km s−1 6 0.05° 0.19 km s−1

MPF exp 34 0.07° 0.50 km s−1 38 0.07° 0.34 km s−1 9 0.06° 0.37 km s−1

Figure 4.8: Comparison of the geocentric radiant and velocity accuracy for a simulated CAMS-
type system for three showers and various trajectory solvers.
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atmosphere due to their asteroidal composition, and decelerate more, which leads to a larger

underestimation of the initial velocity.

We emphasize that the MPF methods sometimes do produce better estimates of the radi-

ant, which is consistent with Gural (2012) who only investigated the precision of the radiant

position for various solvers. On the other hand, MPF-based velocity estimates are consistently

worse by a factor of 2 or more when compared to other methods, as shown in figure 4.9. The

MPF method with the constant velocity model does produce robust (precise) solutions, but

still requires either correcting for the deceleration or an alternate way of computing the initial

velocity (and improving accuracy).

Computing the initial velocity as the average of the first half (MPF const-FHAV) does not

result in an improvement but causes an even larger spread in the estimated velocities. Further-

more, the MPF method with the exponential deceleration model produces a high failure rate

for this type of data as well, predominantly due to the overestimation of the initial velocity.

On the other hand, the radiant estimation was as robust as the other solvers, for events which

met our acceptance criteria. This finding is worrisome as this velocity model was used by the

CAMS network (Jenniskens et al., 2016). Our simulations suggest that initial velocities ob-

tained with MPF-exp for moderate field of view systems should ideally be compared to other

solvers before acceptance.

4.3.3 CAMO system

Table 4.7 lists the accuracy of geocentric radiants for our three modelled showers using dif-

ferent methods of meteor trajectory estimation applied to simulated CAMO data. Figure 4.10

shows a visualization of the values in the table. Note that the Geminids are missing from the

graph for the MPF const method, as most Geminid velocities estimated with that method were

outside the 0.5 km s−1 threshold due to the larger deceleration of these asteroidal meteoroids.

Thus, in this section we use the Draconids for the comparison between solvers.

The upper left inset of figure 4.11 shows the results obtained using the LoS-FHAV method
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Figure 4.9: Accuracy of geocentric radiants for the Geminids simulated for CAMS-like sys-
tems. Upper left: Lines of sight, initial velocity estimated as the average velocity of the first
half of the trajectory. Upper right: Monte Carlo. Bottom left: Multi-parameter fit, constant
velocity model. Bottom right: Multi-parameter fit, exponential velocity model.

Table 4.7: Solver performance comparison for the simulated CAMO-like optical system. A
simulated trajectory was included in the final statistics if the convergence angle was larger than
1°. F is the number of failures (out of 100), i.e. the number of radiants that were outside the
∆Rmax = 0.5°, ∆Vmax = 0.5 km s−1 window.

Solver DRA GEM PER
F σR σV F σR σV F σR σV

IP 5 0.02° 0.18 km s−1 24 0.01° 0.33 km s−1 1 0.01° 0.14 km s−1

LoS 8 0.02° 0.15 km s−1 17 0.01° 0.27 km s−1 1 0.01° 0.12 km s−1

LoS-FHAV 5 0.02° 0.17 km s−1 23 0.02° 0.33 km s−1 1 0.01° 0.14 km s−1

Monte Carlo 6 0.02° 0.15 km s−1 18 0.01° 0.27 km s−1 1 0.01° 0.11 km s−1

MPF const 4 0.03° 0.29 km s−1 99 0.31° 0.47 km s−1 5 0.03° 0.23 km s−1

MPF const-FHAV 12 0.03° 0.18 km s−1 43 0.17° 0.35 km s−1 28 0.03° 0.26 km s−1

MPF linear 43 0.02° 0.22 km s−1 62 0.03° 0.33 km s−1 22 0.01° 0.19 km s−1

MPF exp 52 0.02° 0.21 km s−1 68 0.02° 0.27 km s−1 56 0.01° 0.26 km s−1
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Figure 4.10: Comparison of geocentric radiant and velocity accuracy for the simulated CAMO
system for three simulated showers and various trajectory solvers.
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for the Draconids. Only 5 out of 100 solutions failed. The geocentric velocities are system-

atically underestimated due to deceleration occurring prior to detection. For this system, the

average underestimation is around 200 m s−1 for cometary, and 300 m s−1 for asteroidal mete-

oroids (see Vida et al., 2018, for a complete analysis). The measurement precision of the initial

velocity is much better, around 50 m s−1. The accuracy of the radiant estimation is approxi-

mately 0.02°.

The upper right inset of figure 4.11 shows the results obtained using the Monte Carlo solver.

Overall this solver and the LoS solver provided the best precision for CAMO data. Both

have very low failure rates; the radiant accuracy was around 0.01° and the geocentric velocity

accuracy around 150 m s−1. The geocentric velocity was systematically underestimated due

to deceleration prior to detection; the accuracy could be improved by applying the correction

given in Vida et al. (2018).

The lower left inset of figure 4.11 shows simulation results using the MPF method with the

constant velocity model for the Draconids. The geocentric velocity was underestimated more

than with the LoS-FHAV method, as the initial velocity estimate is very heavily influenced

by deceleration. The average difference between the initial velocity and true velocity for our

100 simulated Draconids was around 300 m s−1. This difference drives the error in the radiant,

which had a standard deviation among our simulations of 0.04°. For the Geminds, the velocity

difference with this method was >1 km s−1, which strongly indicates that using average meteor

velocities is not suitable for computing orbits of asteroidal meteors.

Finally, the lower right inset of figure 4.11 shows results obtained using the MPF solver

with the exponential deceleration model. This solver had a very large failure rate, above 50%.

The failure was mostly driven by the overestimation of the initial velocity; in contrast the

estimation of the radiant position remained fairly robust.
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Figure 4.11: Accuracy of simulated CAMO geocentric radiants for the Draconids. Upper left:
Lines of sight, initial velocity estimated as the average velocity of the first half of the trajectory.
Upper right: Monte Carlo. Bottom left: Multi-parameter fit, constant velocity model. Bottom
right: Multi-parameter fit, exponential velocity model.
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4.3.4 Trajectory solution accuracy as a function of convergence angle

The maximum convergence angle between a meteor trajectory and stations is usually used

as an indicator for the trajectory quality. Gural (2012) has shown that the radiant error is

dependent on the convergence angle (among other factors). He found that the IP and LoS

methods produced on average a factor of 10 increase in radiant error at low (< 10°) convergence

angles. In that work, the constant velocity MPF method significantly improved the radiant

accuracy, and the error for low convergence angles was only a factor of 2 higher as compared

to larger angles. To test for convergence angle sensitivity amongst solvers, we generated 1000

synthetic Geminids with our ablation model for all three systems. We divided the range of

convergence angles into 30 bins of equal numbers of data points; thus 1000 simulations were

needed for better statistics.

Figure 4.12 shows radiant and velocity errors versus the convergence angle, Qc, for a sim-

ulated all-sky (SOMN-like) system. Only two stations (A1 and A2) were used for the con-

vergence angle analysis - when a third station is included, all maximum convergence angles

are usually > 30°. The plotted data shows the median error value in every bin which contains

∼ 33 meteors. The geometrical IP and LoS methods produce errors on the order of degrees

for Qc < 15°, while the Monte Carlo and MPF methods restrict the radiant error below 1°

even for very low values of Qc. Although the deceleration is not directly observable for such

all-sky systems, the estimated speeds at different stations at low convergence angles do not

match when geometrical methods are used. The Monte Carlo and MPF methods, in contrast,

are designed to “find” the solution which satisfies both the spatial and dynamical constraints.

As an example, figure 4.13 shows length vs. time of a low Qc synthetic Geminid estimated

by the LoS method (left inset) and the Monte Carlo method (right inset). Note that in all the

convergence angle plots, the IP and LOS-FHAV use the same approach to compute speed and

hence overlap exactly in the speed error (bottom) plots and are not separately observable in

these figures.

Next, we investigated a moderate field of view (CAMS-like) system. As with the all-sky



150 Chapter 4. Novel meteor trajectory simulator and solver - II. Results

Figure 4.12: Radiant and velocity error as a function of convergence angle for 1000 Geminids
simulated for an all-sky (SOMN-like) system.

Figure 4.13: Length as a function of time of a low Qc Geminid estimated with the LoS method
(left) and the Monte Carlo method (right).
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Figure 4.14: Radiant and velocity error vs convergence angle for 1000 Geminids simulated for
a moderate field of view (CAMS-like) system.

system, only two stations were used in this analysis, as three-station solutions always have

large convergence angles. As seen in figure 4.14, all trajectory solvers have a similar radiant

error of ∼0.1° for Qc > 10°. For smaller convergence angles, the IP and LoS solvers produce

errors on the order of 1°. On the other hand, the MPF and Monte Carlo solvers produce

robust radiant solutions throughout. The velocity error is less strongly correlated with the

convergence angle, but is completely dominated by solver-specific biases. In particular, the

MPF-exp overestimates the initial velocity across all convergence angles, a product of the

poorly conditioned convergence of this kinematic model. We are roughly able to reproduce the

results of Jenniskens et al. (2011), where they found that geometrical methods work well for

Qc>25°, and that MPF methods produce good radiant convergences even down to Qc∼2°.
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Figure 4.15: Radiant and velocity error as a function of convergence angle for 1000 Geminids
simulated for the CAMO system.

Finally, figure 4.15 shows the dependence of radiant and velocity errors on the convergence

angle for the CAMO system. The results of the MPF method with the constant velocity model

are excluded because it produces very large errors since it fails to model the deceleration visible

at the fine angular resolution of a CAMO-like system. Due to the limited geometry of the

CAMO system, the maximum expected convergence angle is less than 30°, but the solutions

using the IP, LoS and Monte Carlo solvers are very stable even down to Qc∼1°. The poorer

performance of the MPF-methods for this system, particularly in reconstructing initial speed,

likely reflect the high precision of CAMO which requires a more physical kinematic model

than the empirical models used in the MPF approach.
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4.3.5 The 2015 Taurid outburst - high-precision all-sky observations

In 2015 the Taurids displayed an activity outburst due to Earth encountering a resonant me-

teoroid swarm locked in a 7:2 resonance with Jupiter (Asher & Clube, 1993; Spurnỳ et al.,

2017). Securing accurate observations of fireballs for this resonant branch for the first time

is significant for planetary defence as the branch was also shown to contain asteroids on the

order of several 100s of meters in size. As the Earth encounters this swarm at regular intervals

it may be a major contributor to the overall impact hazard and supports some elements of the

proposed coherent catastrophism theory (Asher et al., 1994).

Spurnỳ et al. (2017) attribute the discovery of the Taurid branch, linked to the swarm return

in 2015, to the precision measurements made possible by their high-resolution all-sky digital

cameras and careful manual reduction of the data. Figure 14 in Spurnỳ et al. (2017) shows

that all meteoroids in the resonant swarm reside in a very narrow range of semi-major axes

(the extent of the 7:2 resonance given by Asher & Clube, 1993). This is arguably the strongest

evidence yet published for the real existence of the branch and swarm as the semi-major axis

is very sensitive to measurement errors in meteor velocity. Olech et al. (2017) also noticed a

possible connection to the 7:2 resonance, but their results were not as conclusive due to the

lower measurement accuracy.

Data for the outburst have only been published for fireball-sized meteoroids and we focus

on simulating these for comparison to measurements published in Spurnỳ et al. (2017). In this

section we investigate the precision needed to make a discovery of this nature and discuss the

limits of low-resolution all-sky systems.

We used the parameters of the Taurid meteoroid stream resonant branch as given in Spurnỳ

et al. (2017) and simulated 100 meteors from the branch as they would be detected by an

SOMN-like all-sky system. We only simulated meteors with the semi-major axis inside the

narrow region of the 7:2 resonance which spans 0.05 AU.

Figure 4.16 shows the comparison between the simulated semi-major axes and computed

values using various trajectory solvers for a three station SOMN-like system. As can be seen,



154 Chapter 4. Novel meteor trajectory simulator and solver - II. Results

Figure 4.16: The semi-major axes of simulated 2015 Taurids from the resonant branch (blue
dots bound within black dashed lines) and comparison with values estimated using different
trajectory solvers. The right plot shows a narrower range of semi-major axes.

the observed scatter in a is too large to detect the branch with any solver using such low-quality

data. This shows that existing low-resolution all-sky systems (circa 2019) have limited utility

for any orbital determination (on a per camera basis) requiring high precision but are better

suited to shower flux estimation or meteorite recovery. Deployment of higher resolution all-

sky systems (Spurnỳ et al., 2006; Devillepoix et al., 2018) which can achieve a radiant precision

on the order of 1 arc minute are clearly preferable for any orbit measurements requiring high

accuracy.

4.3.6 Influence of gravity on trajectories of long-duration fireballs

The orbits of meteorite-dropping fireballs are of special interest as knowing their velocities

allows a statistical estimate of the source region in the main asteroid belt and linkage to possible

parent bodies (Granvik & Brown, 2018). Because these fireballs may remain luminous for

long durations, often 5 or more seconds, their trajectories can be precisely estimated using

data even from low-precision all-sky systems. This is due to the large number of observed

points available in the data reduction. On the other hand, these events experience the largest

gravitational bending of the trajectory, e.g. after 5 s the drop due to gravity is on the order
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of 100 m. They violate the linear trajectory assumption implicit in many solvers. In extreme

cases, Earth grazing fireballs may last for tens of seconds and their path (ignoring deceleration)

is a hyperbola with respect to the Earth’s surface, requiring a special approach to solve (e.g.

Ceplecha, 1979; Sansom et al., 2019). Here we explore which trajectory solver is best for these

long fireballs and investigate the influence of gravitational bending on the radiant precision.

As the parameter space of possible radiants and lengths of possible meteorite-dropping

fireballs is beyond the scope of this paper, we use as a single case-study a specific fireball

that was observed above Southwestern Ontario on September 23, 2017 by 3 stations of the

SOMN. The fireball was first observed at 75 km and ended at 35 km, lasting 6.5 s. It entered

the atmosphere at an angle of 30° from the ground and with an initial velocity of 14 km s−1.

Simulations were performed using the estimated radiant and the velocity, but the initial po-

sitions of the fireball were randomly generated inside the fields of view of the simulated all-sky

network to cover a wide range of geometries. The dynamics of the fireball were simulated by

using the linear deceleration meteor propagation model. The deceleration prior to detection

was not included in the simulation because these bright fireballs do not significantly decelerate

prior to generating a visible trace in a video system (Vida et al., 2018). The duration of the

fireball was set to 6.5 s, the time of the beginning of deceleration t0 was randomly generated in

the range [0.3, 0.6] of the total duration of the fireball, and the deceleration was randomly gen-

erated in the range [1500, 2750] m s−2, which was comparable to the observed event, although

the real deceleration was of course not constant.

Due to the large range of simulated starting points, not all of the 100 simulated fireballs

were observed in full. Only those simulations in which all stations observed the fireball for at

least 4 s where chosen, bringing the number down to 74 simulated meteors. Table 4.8 gives

the comparison of the performance of various solvers applied to this simulated data. The

estimated trajectories were quite precise because of the long duration, thus it was decided to

constrain the failure window of interest to ∆Rmax = 0.5°, ∆Vmax = 0.5 km s−1. We justify the

reduction of these constraints compared to the SOMN constraints used above by the higher
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Table 4.8: Trajectory solver performance for a simulated long-duration fireball observed by a
three station all-sky system. The trajectory was incorporated in the simulation statistics if the
convergence angle was larger than 5° - we use a lower threshold in this case due to the larger
average duration of the event, which in turn means that there are more points for trajectory
estimation. F is the percentage of failures (total of 74 meteors), i.e. the percentage of radiants
that were outside the ∆Rmax = 0.5°, ∆Vmax = 0.5 km s−1 window.

Solver Fireball
F (%) σR σV

IP 22% 0.18° 0.03 km s−1

LoS 8% 0.07° 0.02 km s−1

LoS-FHAV 11% 0.13° 0.02 km s−1

Monte Carlo 12% 0.09° 0.03 km s−1

MPF const 92% 0.32° 0.07 km s−1

MPF const-FHAV 89% 0.22° 0.07 km s−1

MPF linear 50% 0.09° 0.02 km s−1

MPF exp 88% 0.37° 0.24 km s−1

number of observed points (thus better fits), and the fact that Granvik & Brown (2018) indicate

that the precision of a fireball’s initial velocity should be estimated to around 0.1 km s−1 for the

statistical distribution of initial source regions to be stable.

The best performing solver was the Borovička (1990) LoS method with the initial velocity

estimated using our newly proposed sliding fit and including compensation for gravity. The

expected radiant precision is around 4 arc minutes, while the initial velocity can be estimated

to within 20 m s−1. Figure 4.17 shows the 2D histogram of errors for all estimated trajectories.

The Monte Carlo solver performs slightly worse, but we haven’t manually chosen the solution

based on the existence of directionality of the f∆t function, as proposed in Paper 1. On the other

hand, MPF solvers have a high failure rate, even the MPF solver with the linear deceleration

model which should have been able to exactly estimate the trajectory parameters.

Next, we investigated the radiant accuracy if the compensation for the curvature due to

gravity was not taken into account, i.e. the term ∆h(tk j) was kept at 0 (see Paper 1 for details).

Figure 4.18 shows an offset of about 0.15° from the true radiant, caused by the shift of the

estimated radiant towards the local zenith. We point out that these results were obtained on

simulated data which ignore any other forces acting on the meteoroid (which are expected to
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Figure 4.17: Accuracy of geocentric radiants for simulated fireballs. The solutions were done
using the LoS method.
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Figure 4.18: Accuracy of geocentric radiants for a simulated long-duration fireball. The solu-
tions were done using the LoS method, with the option of compensating for the curvature due
to gravity turned off.

be negligible in any case), which demonstrate that the curvature of the trajectory due to gravity

should be compensated for directly during trajectory estimation, as it otherwise produces a sig-

nificant bias in the direction of the radiant. This becomes more pronounced with the increasing

duration of the fireball. Alternatively, an analytic zenith attraction correction could be devel-

oped (separate from the zenith attraction correction for computing geocentric radiants) which

is dependent on the geometry and the duration of the fireball.

4.3.7 Estimated radiant error and true accuracy

In this final section we investigate if the radiant error estimated as the standard deviation from

the mean accurately describes the true magnitude of the error. We do not investigate the ve-
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locity error estimate, because the accuracy of pre-atmosphere velocity for smaller meteoroids

is entirely driven by deceleration prior to detection (Vida et al., 2018), causing a systematic

underestimate of top of atmosphere speeds.

Using the results of the Monte Carlo solver, we compute the angular separation θ between

the estimated and the true geocentric radiant used as simulation input, and divide it by the

hypotenuse of standard deviations in right ascension and declination:

σerr =
θ√

(σα cos δ)2 + σ2
δ

. (4.1)

The value of σerr indicates how many standard deviations from the mean the true radiant is. In

an ideal case where the errors would be correctly estimated, the distribution of σerr values for

all trajectories would follow a truncated normal distribution with a standard deviation of one.

In practice, the errors seem to be on average underestimated by a factor two across all nine

combinations of systems and showers. Figure 4.19 shows the cumulative histogram of σerr

values for 1000 simulated Geminids for a CAMS-like system. We fit a truncated normal dis-

tribution using the maximum-likelihood method to σerr values and report standard deviations

for all showers and systems in table 4.9. It appears that the truncated normal distribution is not

representative of the underlying distribution of σerr values, although its standard deviation is

a rough proxy for the scale of the error underestimation. We also fit a χ2 distribution which

appears to be better suited (p-values are consistently high).

Regarding CAMO, the real radiant errors are 2 to 4 times larger than estimated, as seen

in figure 4.20 which shows the error analysis for simulated Draconids. These results indicate

that for a robust understanding of errors, a detailed analysis must be done for each system and

shower using the shower simulator.
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Figure 4.19: Quality of error estimation for a CAMS-like system and 1000 Geminids.

Table 4.9: Parameters of fitted truncated normal and χ2 distributions to values of σerr for
different simulated showers and systems. σ is the standard deviation of fitted truncated normal
distributions (it can be considered as a rough proxy for the magnitude of error underestimation),
and ”k” and ”scale” are parameters of the χ2 distribution.

Shower DRA GEM PER
σ k, scale σ k, scale σ k, scale

All-sky 2.37 3.23, 0.57 2.03 3.99, 0.42 2.43 4.70, 0.45
CAMS 2.02 4.61, 0.37 1.93 4.47, 0.36 2.02 6.37, 0.28
CAMO 3.57 12.00, 0.33 3.74 4.82, 0.67 2.35 2.84, 0.61



4.3. Results 161

Figure 4.20: Quality of error estimation for CAMO and 100 Draconids.
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4.4 Conclusion

In Paper 1 (Vida et al., 2020) we described and implemented in Python several trajectory

solvers. In this paper we have applied each solver in turn to synthetic meteors with radi-

ants, speeds, and physical properties appropriate to the Draconids, Geminids and the Perseids

as they would be recorded by various simulated meteor observation systems. While we have

generically investigated solver performance for common optical systems, the simulator allows

for detailed simulation of individual real-world meteor observing systems and estimation of

the measurement accuracy of meteor showers or individual events of interest. While we sum-

marize some major trends of our simulation comparisons, it is important to emphasize that

these results pertain only to the geometry and number of cameras assumed for each simulated

system and shower. Ideally, for real observations, simulations would be repeated for specific

geometries and camera systems on a per event basis.

With this caveat in mind, based on our simulations, the following is a summary of which

trajectory solver performed best for our chosen showers for each meteor observation system:

• All-sky systems (SOMN-like) - As meteor deceleration is not usually seen by these sys-

tems, the MPF method with the constant velocity model produces the most robust fits and

estimates radiants the most precisely, to within 0.25°. The method significantly underes-

timates the initial velocity, but if a correct deceleration correction is applied an accuracy

of ∼250 m s−1 could be achieved.

• Moderate field of view systems (CAMS-like) - The intersecting planes and the lines of

sight methods produce good results overall when employed in conjunction with more

advanced methods of initial velocity estimation, because meteor deceleration becomes

visible at the resolutions of such systems. The Monte Carlo solver results are comparable

to these solvers and does not provide further improvement of the solution except for

meteors with low convergence angles. We recommend using this solver operationally

for these systems. The MPF methods improve the radiant precision, but their estimates
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of the initial velocity are a factor or 2 worse than with other methods. The expected

average radiant and velocity accuracy is around 0.1° and 100 m s−1, provided the pre-

detection deceleration correction from Vida et al. (2018) is used.

• The CAMO, high-precision system which observes meteor dynamics (deceleration) well

- The Monte Carlo and LoS solvers perform the best. The expected average radiant

accuracy is around 0.01° and 50 m s−1, provided the pre-detection deceleration correction

from Vida et al. (2018) is used. The MPF approach enforces meteor propagation models

which are mismatched to the actual deceleration behavior, resulting in fits with larger

errors for these high angular and temporal resolution measurements.

• Meteoroid physical properties strongly influence the velocity accuracy. Meteoroids of

asteroidal origin have a factor of 2 higher velocity uncertainties due to larger decelera-

tion, a conclusion previously reported in Vida et al. (2018).

We show that a minimum radiant accuracy of order 3 to 6 arc minutes (0.05° - 0.1°) is

needed to measure the true radiant dispersion of younger meteor showers. This value was

derived by simulating the 2011 Draconids outburst, a year where the encounter with recently

ejected meteoroids having a very low dispersion. With the use of an appropriate trajectory

solver, this accuracy can be achieved using moderate FOV and CAMO resolution systems,

i.e. systems with the angular resolution better than 3 arc-minutes per pixel (assuming a real

precision of around 1 arc-minute is achievable through centroiding).

Simulation of the accuracy of low-precision all-sky systems with approximately 20 arc-

minute per pixel angular resolution, shows that they are not precise enough to observe struc-

tures in meteor showers such as the Taurid resonant branch (Spurnỳ et al., 2017). For accurate

orbital measurements we strongly suggest installation of more precise all-sky systems with

angular resolutions approaching or exceeding one arc-minute per pixel so that the velocity ac-

curacy of less than 0.1 km s−1 can be achieved, as recommended by Granvik & Brown (2018).

We show that compensation for trajectory bending due to gravity should be taken into account
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for longer fireballs (> 4 seconds) due to its significant influence on the radiant accuracy, as

noted earlier by Ceplecha (1979) and Sansom et al. (2019).

Finally, we investigated the quality of our radiant error estimation approach by comparing

estimated errors to known absolute error from the simulation input. We find that radiant errors

are underestimated by a factor of 2 for all-sky and CAMS-like systems, and by a factor of 3 to

4 for CAMO.
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Chapter 5

A new method for measuring the meteor

mass index: application to the 2018

Draconid meteor shower outburst

A version of this chapter has been published as:

Vida, D., Campbell-Brown, M., Brown, P.G., Egal, A., and Mazur, M. (2020). A

new method for measuring the meteor mass index: application to the 2018 Dra-

conid meteor shower outburst. Astronomy & Astrophysics, accepted for publica-

tion

5.1 Introduction

The Draconids are an annual meteor shower whose parent body is the Jupiter-family comet

21P/Giacobini-Zinner. The shower usually has very low activity with a Zenithal hourly rate

(ZHR) of ∼ 1 (Jenniskens, 2006). It produced large meteor storms in 1933 and 1946 and

strong outbursts in a number of other years (Egal et al., 2019). Many of these outbursts were not

predicted beforehand. The occasionally high intensity and unpredictability of the shower have

169
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made it a focus of research, particularly as it can pose a significant impact risk to spacecraft in

the near-Earth environment (Beech et al., 1995; Cooke & Moser, 2010; Egal et al., 2018).

In recent years, the shower has produced several notable outbursts. In 2011 an outburst

was predicted in advance (Watanabe & Sato, 2008; Maslov, 2011; Vaubaillon et al., 2011) and

was well observed using both radar (Kero et al., 2012; Ye et al., 2013a) and optical methods

(Trigo-Rodrı́guez et al., 2013; Borovička et al., 2014; Koten et al., 2014; Šegon et al., 2014;

Vaubaillon et al., 2015). That year the outburst reached a ZHR of 350, and had an average

mass index of 2.0 ± 0.1, but this latter varied between 1.84 and 2.30 over 1hr during the peak

(Koten et al., 2014).

In contrast, the 2012 outburst was not predicted and was only well observed by the Cana-

dian Meteor Orbit Radar (CMOR) (Brown & Ye, 2012). The shower produced a meteor storm

at radar sizes (ZHR ≈ 9000 ± 1000), but visual observers reported a ZHR almost two orders

of magnitude lower, ZHR ∼ 200, suggesting a high mass-distribution index, that is, the stream

was rich in small meteoroids. Unfortunately, due to the timing of the peak (maximum over

central Asia) and unfavorable weather conditions elsewhere, no optical orbits associated with

the outburst were secured. The 2012 outburst was also peculiar in that modeling suggested a

very high (> 100 m/s) meteoroid ejection velocity from the parent comet was needed (Ye et al.,

2013b).

The 2018 outburst was predicted by various authors (Kresák, 1993; Maslov, 2011; Ye et al.,

2013b; Kastinen & Kero, 2017; Egal et al., 2018), but the predicted activity varied from weak

(ZHR 10 - 20; Maslov, 2011) to possible meteor storm levels (Kastinen & Kero, 2017). The

most recent work by Egal et al. (2018), which accurately reproduced most historic Draconid

activity, predicted a peak ZHR of ∼ 80 at 00:00 UTC on October 9, 2018.

In this work we analyze 1.5 hours of optical observations from Southwestern Ontario just

after the peak1 of the 2018 outburst, from 00:00 UTC to 01:30 UTC. We also develop a novel

method of population and mass index estimation, and compute these indices using our obser-

1According to visual observations in the IMO database: https://www.imo.net/members/imo_live_
shower?shower=DRA&year=2018
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vations. Finally, we compare model-predicted radiants with our multi-station observations and

compute the shower flux.

5.2 Instruments and observations

Optical observations were conducted using low-light-level video systems in Southwestern On-

tario, Canada, operated by the University of Western Ontario Meteor Physics Group. The

observations started shortly after local sunset between October 8 and 9 at around 00:00 UTC

and ended at 01:30 UTC due to cloudy weather – thus only a short period after the peak was

observed.

The double station observations were made using four Electron Multiplying Charge Cou-

pled Device (EMCCD) Nüvü HNü 1024 cameras2 with Nikkor 50 mm f/1.2 lenses. The sys-

tems were operated at 32 frames per second, had a limiting stellar magnitude of +10.0M, and a

field of view of 15×15 degrees.

Despite clear skies in the region, none of the dozen Southern Ontario Meteor Network

(SOMN) all-sky cameras (Brown et al., 2010) observed a single Draconid during all of Octo-

ber 8-9. These all-sky cameras have an effective limiting meteor magnitude of −2M, qualita-

tively suggestive of an absence of larger meteoroids in the falling branch of the outburst. The

EMCCD cameras did observe many Draconid meteors, which we use in the following analy-

sis. In this section we describe the EMCCD hardware and give details of the data-reduction

procedure.

5.2.1 Electron Multiplying Charge Coupled Device systems

The Nüvü HNü 1024 EMCCD cameras are the most recent addition to the Canadian Automated

Meteor Observatory (CAMO) systems (Weryk et al., 2013). These 16-bit cameras use electron

multiplying technology to increase the number of electrons accumulated in the registers before

2http://www.nuvucameras.com/fr/files/2019/05/NUVUCAMERAS_HNu1024.pdf
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they are amplified, digitized, and read out, which greatly increases the signal-to-noise ratio.

In combination with a fast 50 mm f/1.2 lens, the single-frame limiting magnitude at 32 frames

per second for stars is around +10.0M, and +7.5M for meteors. The native resolution of the

camera is 1024× 1024 pixels, but the frames are binned to 512× 512 to make the higher frame

rate possible, which allows better trajectory precision. The data was saved to disk in the raw

format, without any lossy compression. The field of view is 14.75° × 14.75°, and the pixel

scale is 1.7 arcmin/pixel. All cameras were run at a gain setting of 200. These systems are

more sensitive and have less noise than the previous generation of systems which relied on

Gen III image intensifiers (Campbell-Brown, 2015). The cameras each have external Global

Positioning System (GPS) timing directly encoded at the frame acquisition stage. Figure 5.1

shows a sample meteor captured with the EMCCD camera and Figure 5.2 shows the light

curve of the same meteor. We highlight the agreement between the sites in range-corrected

magnitudes (normalized to 100 km).

Two cameras are deployed at the each of the two CAMO sites in Southwestern Ontario.

Cameras 01F and 01G are located at Tavistock (43.264 20° N, 80.772 09° W, 329 m), and 02F

and 02G at Elginfield (43.192 79° N, 81.315 65° W, 324 m). The distance between the stations

is about 45 km. Both pairs are pointed roughly north, one pair (the G cameras) at the elevation

of 45 degrees, the other (F cameras) at 65 degrees. There was no volume overlap between

the F and G cameras. One camera from each site had the Draconid radiant inside the field of

view. We are aware that this geometry is not favorable, but the systems were a part of another

long-term study and the pointing was thus not modified to preserve continuity. The EMCCDs

captured a total of 92 double station Draconids ranging in peak magnitudes from +1M to +6.5M,

of which only 68 had complete light curves from at least one camera.
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Figure 5.1: Stack of raw frames showing a +1M Draconid recorded with camera 01G on Octo-
ber 9, 2018 at 00:01:48 UTC. The meteor was first detected at an apparent magnitude of +7.0M.
V-band magnitudes of a selection of stars are shown as well. The vertical gradient of the image
background is intrinsic to this specific camera and is compensated for by flat field correction
during data reduction. The two thinner and fainter lines left of the meteor are satellites.
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Figure 5.2: Absolute GAIA G-band magnitude light curve of the meteor in Figure 5.1. The
error bars are ∼ 0.1 magnitude. Observations from camera 01G (Tavistock) are shown in blue,
and observations from camera 02G (Elginfield) are shown in red.
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5.2.2 Data reduction and calibration

Using the tools available in the open-source RMS (Raspberry pi Meteor Station) library3, au-

tomated meteor detection (described in detail in Vida et al., 2016) was run on all collected

data and both the astrometric and photometric calibrations were performed manually. The

automated detections were manually classified and only Draconids were extracted for further

analysis.

The astrometric and photometric calibrations were done using the Gaia DR2 star catalog

(Gaia Collaboration et al., 2018) as the GAIA G spectral band matches the spectral response of

the EMCCDs well. We applied flat fields and bias frames to the video data using the method

described in Berry & Burnell (2000). The average residuals of the astrometric calibration

were ∼ 1/10 pixels or ∼ 10 arcseconds, and the accuracy of the photometric calibration was

±0.1 mag. Figure 5.3 shows the photometric calibration, and Table 5.1 details the astrometric

calibration for the 01F EMCCD camera.

3RMS GitHub web page: https://github.com/CroatianMeteorNetwork/RMS
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Figure 5.3: Photometric calibration of the 01F camera. The uncalibrated magnitude is simply
−2.5 log10 Is, where Is is the background-subtracted sum of pixel intensities of all star pixels
(LSP in the figure). The sensor response was linear (Gamma = 1.0). The magnitudes of stars
used for calibration ranged from +2.3M to 9.9M.
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5.3 Maximum likelihood estimation method of computing

population and mass indices

Population and mass indices are essential for computing meteor shower fluxes and investigating

their evolutionary history. It is usually assumed that the cumulative number of meteor peak

magnitudes and the cumulative logarithm of the number of meteoroids above a certain mass

threshold follow single power-law distributions.

Brown & Rendtel (1996) define the population index r as

r =
N(Mv + 1)

N(Mv)
, (5.1)

where N(Mv) is the number of meteors with peak magnitude M ≤ Mv.

Assuming that dN is the number of meteoroids with a range of masses between m and

m + dm, McKinley (1961) defines the mass index s as

dN ∝ m−sdm . (5.2)

The population and the mass index are the slopes of the best fit lines on a log-log (magni-

tude or logarithm of mass vs. logarithm of the number of meteors) cumulative distribution of

magnitudes or masses. These lines can be simply parameterized as

f (x) = 10ax+b , (5.3)

where x is either the magnitude (in case of the population index) or the logarithm of the mass

(mass index). We note that we assume that the cumulative distribution is normalized to the

[0, 1] range.

Because all observation systems have some limiting sensitivity, the number of observed

meteors is finite and detection efficiency drops off rapidly at magnitudes close to the limiting

sensitivity. Thus there is only one part of the parameter space in which the power-law assump-
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tion is valid. As a result, operationally a power law is only fit up to some limiting sensitivity

xmin. A similar approach is used in other fields as well, although ways of estimating the value

of xmin differ (Corral & González, 2019). Pokornỳ & Brown (2016) suggested fitting two pa-

rameters xmin, xmax which describe the range of magnitudes or radar echo amplitudes for which

the linear approximation is valid. Pokornỳ & Brown (2016) argue that the addition of the up-

per boundary xmax is necessary as small-number statistics may skew the power law at larger

amplitudes or masses. They used MultiNest (Feroz et al., 2009) to fit their model, an advanced

Bayesian regression method which can also perform robust error estimation.

Note that it has historically been assumed that meteor peak magnitudes follow a power-

law distribution, and that most of the terminology and data reduction procedures have been

developed with this in mind. With the advent of low-light meteor cameras for which good

photometric calibration can be obtained, we appeal to using photometric meteoroid masses

instead, which should follow a power-law distribution.

In many studies (e.g., Brown et al., 2002), the meteoroid mass or population index is found

by constructing a cumulative histogram and performing linear regression on binned data. This

approach has many serious problems, as detailed in Clauset et al. (2009), the most important

of which is that the result may change with histogram binning, especially when data sets with

a small number of meteors are used. Molau et al. (2014) proposed a more advanced method

capable of estimating the population index and the meteor flux at the same time. The drawback

of this latter method is that it requires a running estimation of the meteor limiting magnitude

from observations. Furthermore, it is constructed such that estimating the exact value of the

population index is rather subjective, and no details of the error analysis are provided.

5.3.1 Description of the new method

To estimate the population and the mass index robustly, in a statistical manner, and with a reli-

able error estimate, we use the maximum likelihood estimation (MLE) method to fit a gamma

distribution to the observed distribution of magnitudes and/or masses. This approach was in-
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spired by the work of Clauset et al. (2009) where they question the validity of the power-law

assumption in many real-world applications.

First, we tried to fit a Gumbel distribution to the mass distribution following Blaauw et al.

(2016), but we found that it always produced fits with smaller p-values than the gamma distri-

bution; under the null hypothesis the data and model distributions are identical.

Our choice of the gamma distribution for our probability distribution has a theoretical basis.

If we assume that meteors appear at a rate λ per unit time, then the time between meteors

follows an exponential distribution with rate λ while the total number of meteors in a given

time span t follows a Poisson distribution P(λt). A gamma distribution Gamma(n, λ) is the

sum of independent exponentially distributed random variables, and describes the length of

time needed to observe a number of meteors n (Akkouchi, 2008; Leemis & McQueston, 2008).

By replacing the time in this analogy with magnitude or mass, the theory still applies.

Given a meteor rate per unit magnitude or mass (i.e., a population or mass index), a gamma

distribution describes the distribution of magnitudes or masses one expects given a certain total

number of meteors. In the special case where the rate is a constant in our chosen time interval,

the sum can be simplified to an Erlang distribution. Because historical observations show that

the mass index is not constant even on short timescales for certain showers (Koten et al., 2014),

we use the more general gamma distribution.

We can show the above argument is correct quantitatively. We note that in the paragraph

above we implicitly assume an exponential distribution, not a power law. The power law

assumption for the distribution of meteoroid masses used in meteor astronomy comes from the

foundational theoretical paper by Dohnanyi (1969) who assumed that when asteroids and/or

meteoroids collide, the resulting fragment mass distribution follows a power law (Clauset et al.,

2009)

p(x) =
s − 1
xmin

(
x

xmin

)−s

, (5.4)

where s is the scaling parameter (differential mass index in our example) and xmin is the lower
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bound of the power-law behavior. The power-law assumption continues to propagate through

the analytical derivation of Dohnanyi (1969), resulting in a population-wide differential mass

distribution index of s = 1.834, assuming collisional steady-state conditions. Dohnanyi (1969)

justified the use of the power law by appealing to the experimental work of Gault et al. (1963),

who showed that the cumulative mass–size distribution of fragmented rock from craters formed

by hyper-velocity impacts in the lab follows a power-law, a result confirmed in more recent

experiments and simulations (e.g., Kun & Herrmann, 1996).

In reality, the number of meteors naturally tapers off as the limiting system magnitude is

approached. This can be modeled as a power-law distribution with an exponential cutoff. Its

probability density function p(x) is given by Clauset et al. (2009):

p(x) = C f (x) , (5.5)

f (x) = x−se−λx , (5.6)

C =
λ1−s

Γ(1 − s)
, (5.7)

where λ is the decay rate, f (x) the basic functional form, C the normalization constant such

that
∫ ∞

0
C f (x)dx = 1, and Γ is the gamma function. If we define a shape parameter as k = 1− s,

it can easily be shown that the resulting probability distribution is the gamma distribution

p(x) =
λkxk−1e−λx

Γ(k)
. (5.8)

Figure 5.4 shows a comparison of the cumulative density functions (CDFs) of a power law

and those of a gamma distribution. Both distributions follow the same trend at smaller values,

but the exponential tapering overwhelms the power-law component in the gamma distribution

at around x ∼ 10−1 in this example. To estimate the power-law scaling parameter from the

gamma distribution, one can compute the slope of the gamma CDF before the tapering be-

comes significant. In theory, one may derive the slope directly as s = 1 − k, but in practice
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(especially when one works on a small data set) we find that this does not give robust esti-

mates of population and mass indices. It appears that the fit sometimes prefers larger values

of s which it compensates for by using larger values of λ. For that reason, we develop a more

robust method described below.

We use the gamma distribution MLE fit from the functions in the Python scipy library4.

We refer readers to the documentation of the scipy library for details. The Python source code

of our new method can be found in the Western Meteor Python Library5 under

wmpl/Analysis/FitPopulationAndMassIndex.py.

Figure 5.5 shows an example of the gamma distribution fit to meteor magnitude data. After

the fit is performed, the inflection point in the probability density function (PDF) is found (the

minimum of the first derivative of the PDF). This inflection point is taken as the limiting sensi-

tivity at which data are complete; this means that the number of meteors has started decreasing

at this point purely due to sensitivity losses. In our approach, the inflection point is used as an

anchor; it indicates that the optimal position where the slope of the population or mass index

should be estimated is at brighter magnitudes or larger masses from that point.

We operationally define the optimal reference point xre f for: the population index, as one

magnitude brighter than the inflection point; and for the mass index, as 0.4 dex larger in mass

than the inflection point – a 0.4 dex in mass roughly corresponds to the difference of one meteor

magnitude (Vida et al., 2018).

Assuming an 8-bit camera is used to capture meteor data, it gives log2.512 256 ≈ 6 mag-

nitudes of dynamic range. As shown by the examples below, the data are often not complete

for the faintest three magnitudes, leaving only three magnitudes before reaching the point of

saturation. One magnitude brighter than the completeness magnitude is a rough midpoint be-

tween the point of completeness and sensor saturation, allowing for some leeway in case the

saturation point is shifted because of different meteor angular speeds.

4Gamma function, scipy library: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.gamma.html
5WMPL source code: https://github.com/wmpg/WesternMeteorPyLib
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Figure 5.4: Comparison of the probability and cumulative density function for a power law and
a gamma function. An exponent of s = 2.3 is used. Note that the greatest difference between
the two distributions is in their tails.
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The mass index s or the population index r can then be computed from the slope a of the

log survival function S (i.e., complementary cumulative distribution function) of the gamma

distribution at the reference point xre f as

as = 10−
d
dx log S s(xs,re f ) , (5.9)

s = 1 + as , (5.10)

ar = 10−
d
dx log S r(xr,re f ) , (5.11)

r = 10ar , (5.12)

where S s and xs,re f are fit to logarithms of mass, and S r and xr,re f are fit to magnitudes. Given

a generic cumulative density function F(x), the survival function S (x) is simply

S (x) = 1 − F(x) , (5.13)

and we compute the derivative in a numerically. The intercept b in equation 5.3 can be com-

puted as

b = log S (xre f ) + axre f . (5.14)

The two-sample Kolmogorov-Smirnov test is used to compute the p-value which we use as a

measure of goodness of fit.

Next, we compute the effective meteor limiting magnitude or mass lm used in flux estima-

tion as a point where the line f (x) = 10ax+b is equal to the normalized cumulative value of 1,

i.e., F(x) = 1

lm = −b/a . (5.15)

We find that this approach is equivalent to the method of Blaauw et al. (2016) who take the
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mode of the fitted Gumbel distribution as the effective limiting magnitude. We suggest that

estimating the limiting meteor magnitude directly from meteor data is preferable to estimating

it using the stellar limiting magnitude and then applying angular velocity corrections, as our

approach naturally includes all observational and instrumental biases.

The uncertainty of measured slopes is estimated using the bootstrap method (Ivezić et al.,

2014, page 140). The input data set is resampled with replacement, with the sample size being

equal to the size of the input data set, and the fit is repeated on the sample. The procedure is

repeated 1000 times and population or mass indices are computed for each run. Slopes that are

outside 3 sigma of the mean are rejected, and the resulting standard deviation is reported as the

uncertainty.

We note that in this work we assumed that the distribution of peak magnitudes is contin-

uous, and not binned. This is valid for masses because they are computed from integrated

meteor light curves with tens of points, and thus any magnitude binning due to measurement

uncertainty is mitigated. Furthermore, we also assume that the magnitudes are not binned be-

cause hundreds of pixel values are added together to compute the meteor intensity on every

video frame, thus all intensity quantization is smoothed out. Finally, our implementation of the

method automatically shifts the data to xmin (the smallest number in the data set), as equation

5.8 is only defined for x > 0.

5.3.2 Testing the method

Figure 5.5 shows the distribution of peak magnitudes of 2604 manually reduced double station

sporadic meteors captured by the Canadian Automated Meteor Observatory’s (CAMO) influx

camera (Weryk et al., 2013). The data set covers a period between June 2009 and August 2014,

and only those meteors which had complete light curves (i.e., both the beginning and the end

was visible inside the field of view of at least one camera) were used in the analysis. We note

that imposing the visibility criterion was essential, as including meteors with partially observed

tracks produced a bimodal magnitude distribution which greatly skewed the results. Although
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the CAMO influx camera is not used for the analysis of the Draconids, we use this high-quality

data set used in previous work (e.g., Campbell-Brown, 2015) to demonstrate the robustness of

the method. The system has a meteor limiting magnitude of +5.5M, but using our approach we

find that the data set is complete only up to magnitude +3.2M, indicated by the inflection point,

while the population index is estimated at magnitude +2.2M.

Figure 5.6 shows the cumulative distribution of peak magnitudes and the line represent-

ing the tangent to the log cumulative distribution function of the fitted gamma function. The

estimated slope of the line, that is, the population index, is r = 2.55 ± 0.06, which is consis-

tent with other studies which have measured the expected yearly average sporadic population

index from video data (e.g. Molau, 2015). We note that the estimated slope follows the data

histogram well. If the slope was to be estimated at the inflection point, the population index

would be r = 2.20 and the slope would significantly deviate from the data histogram.

Figures 5.7 and 5.8 show the distribution of masses and the cumulative histogram of masses

for the same CAMO data set. The computed mass index of s = 2.18 ± 0.05 is very consistent

with expected values from other authors (e.g., Blaauw et al., 2011a). We note that Pokornỳ &

Brown (2016) used the same data set, but their algorithm fitted a line to the histogram on the

part after the inflection point, slightly reducing the value of the mass index to s = 2.09.

Due to the large number of data points, the estimate of the mass index of sporadic meteors

can be accurately estimated, but often in practice, only tens of shower meteors are available.

To demonstrate the robustness of the method, we estimate the mass index from 38 Geminids

(all observed in 2012 within 0.5° of solar longitude around the peak) from the CAMO influx

data set (Figures 5.9 and 5.10). The fit is much more uncertain, but the estimated value of the

mass index for the Geminids is s = 1.70 ± 0.14, which is consistent with previous work (Jones

& Morton, 1982; Arlt & Rendtel, 2006; Blaauw et al., 2011b).

In the examples above, the p-values derived using the Kolmogorov-Smirnov test are larger

than 0.05, which means that the null hypothesis that the model fits well to the data cannot be

rejected with a 95% confidence level in any of the cases, even for the Geminids with a small



190 Chapter 5. Novel mass index estimation applied to 2018 Draconids

Figure 5.5: Distribution of peak R-magnitudes of sporadic meteors from the CAMO influx
camera (histogram) and the gamma distribution fit (blue line is the main fit, black lines are all
Monte Carlo runs). Equation 5.8 was used for the fit, and x in the equation is the meteor peak
magnitude.
The jaggedness of the histogram is due to the limited precision of the magnitudes in the data
file. The yellow shaded area around the inflection point represents the uncertainty in the in-
flection point location, and the green shaded area the uncertainty around the reference point.
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Figure 5.6: Cumulative distribution of peak magnitudes of sporadic meteors captured by the
CAMO influx camera. The population index r was computed from the fitted gamma distri-
bution using equation 5.9. The red line indicates the slope of the fitted population index, the
jagged line is the histogram of the data, and black lines are all slopes estimated during the
bootstraping uncertainty estimation procedure.
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Figure 5.7: Distribution of masses of sporadic meteors from the CAMO influx camera (his-
togram) and the gamma distribution fit (blue line). The mass index s was computed from the
fitted gamma distribution using equation 5.9. Black lines are all slopes estimated during the
bootstraping uncertainty estimation procedure. Masses were computed using a fixed dimen-
sionless luminous efficiency τ = 0.7%.
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Figure 5.8: Cumulative distribution of masses of sporadic meteors from the CAMO influx
camera. The red line indicates the slope of the fitted mass index, while the shaded black lines
represent the Monte Carlo fits of the resampled set as described in the text.
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Figure 5.9: Distribution of masses of 38 Geminid meteors from the CAMO influx camera and
the gamma distribution fit. See Fig 5.5 caption for the explanation of plot details.
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Figure 5.10: Cumulative distribution of masses of 38 Geminid meteors from the CAMO influx
camera. The line indicates the slope of the fitted mass index. See Fig. 5.5 caption for the
explanation of plot details.
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number of meteors. This suggests that our theoretical assumptions are valid.

We investigated how the population and the mass index of sporadic meteors change through-

out the year using the new method. The results are shown in Figures 5.11 and 5.12. The data

were divided into ten bins of equal number of meteors (around 260 in each bin) but of variable

ranges of solar longitudes. Large variations in both population and mass index can be seen

at these optical meteoroid sizes, variations that are larger than the fairly stable values in radar

sizes (Blaauw et al., 2011a; Pokornỳ & Brown, 2016) but following the same trend. The varia-

tions and features in the population index are comparable to those derived from visual data by

Rendtel (2004), except after λ� > 250° where the number of CAMO observations is very low

due to bad weather conditions in winter and large bins of solar longitude had to be used. In

Figure 5.12, the mass index estimated using our novel method is plotted as a solid line, and the

mass index computed from the population index using the classical relation s = 1 + 2.3 log r

(McKinley, 1961) is shown as a dashed line. Comparing the two, it can be seen that the peak

magnitude alone is not a good proxy of the total meteoroid mass or the mass distribution for

sporadics.

Finally, we apply the method to EMCCD data collected on the night of August 13, 2018

(λ� = 140°). The meteors were detected using a hybrid cluster–template-matching matched

filter algorithm (Gural, 2007, 2016), which detects even very faint meteors close to the noise

floor. The method will be described in a future paper. In total, 134 double-station Perseids

were observed with the two pairs of cameras during 6.5 hours of observation. The meteor

limiting magnitude was +5.0 for these fast Perseid meteors, and only those meteors which

had complete light curves obtained by at least one camera were used in the analysis. We

measured the population index for the Perseids to be r = 2.43 ± 0.29, and the mass index to

be s = 1.90 ± 0.12, comparable to long-term visual measurements at the same solar longitude

(Rendtel, 2014). In the same night, there were 283 sporadics whose population index was

r = 3.56 ± 0.50 and mass index s = 2.30 ± 0.14, significantly higher than that of the Persieds,

as expected.
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Figure 5.11: Annual variation in the population index for sporadic meteors using data from the
CAMO influx camera.
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Figure 5.12: Annual variation in the sporadic mass index (solid line) as derived using the
CAMO influx camera. The dashed line is the mass index derived from the population index
using the classical relation s = 1 + 2.3 log r.
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5.4 Mass and population index of the 2018 Draconids

We apply the new population and mass index estimation method to the Draconids observed on

the night between October 8 and 9, 2018, using the EMCCD cameras. Meteor detection and

calibration was done using RMS software (Vida et al., 2016). Instead of computing photometric

masses, we computed the integrated luminous intensity and used it as a proxy for mass.

Following Vida et al. (2018), the meteoroid mass m can be computed as

I(t) = P0m10−0.4MA(t) , (5.16)

m =
2

v2τ

∫ t

0
I(t) , (5.17)

where I is the luminous intensity, P0M is the power of a zero-magnitude meteor, MA the range-

corrected GAIA G-magnitude (normalized to 100 km), τ the luminous efficiency, and v the

velocity of the meteor. P0M and the term before the integral simply scale the mass, and as we

are only interested in the slope of cumulative logarithms of mass, the scaling has no influence

on the slope if we assume that all meteors have similar velocities. This is exactly the case,

as all meteors are members of the same shower. Thus, we drop these terms and compute the

dimensionless integrated luminous intensity I∗ as a proxy for mass

I∗ =

∫ t

0
10−0.4MA(t) . (5.18)

The two pairs of EMCCDs recorded a total of 68 double-station Draconids with complete

light curves, ranging in peak magnitudes from +1M to +6.6M. We divided the data into two

time bins: Bin (1) is a ∼ 30 minute bin from 00:03:33 UTC (beginning of observation) to

00:32:01 UTC that had a total of 30 Draconids and captures a part of the predicted peak; and

Bin (2) is a ∼ 60 minute bin from 00:32:01 UTC to 01:28:58 UTC (end of observation) that

had a total of 38 Draconids and captures the post-peak declining activity.



200 Chapter 5. Novel mass index estimation applied to 2018 Draconids

5.4.1 Bin 1

The first bin close to the peak, Bin 1, produced a population index of 1.98 ± 0.50 with an

estimated completeness magnitude of +4.30M ± 0.97. Figure 5.13 shows that the observations

roughly follow a power-law until the reference point at +3.30M ± 0.97, after which there is a

rapid drop-off in the number of observed meteors. The model fit in this case does not seem to be

robust, as indicated by the uncertainty, despite the large p-value of 0.843. The population index

might have been underestimated due to the overabundance of meteors with peak magnitudes

of around 4M, possibly because of small-number statistics. Alternatively, the population index

might have been increasing rapidly, as evidenced by the measured value in the second bin; thus

the measured value is only the average of the population index function. Because this would

break the underlying assumption of a fixed power-law, this population index, the associated

effective meteor limiting magnitude of +5.42M ± 0.64, and the flux derived from it are to be

taken with caution.

Figure 5.14 shows the cumulative histogram of dimensionless integrated luminous inten-

sities and the mass index estimate of 1.74 ± 0.18 with the value of integrated intensity com-

pleteness being −2.40 ± 0.39. The fit appears to be robust, and we note that the mass index

estimate has a much lower uncertainty than the population index estimate. This value of the

mass compares well with the value for the 2011 outburst at the peak (Koten et al., 2014).

5.4.2 Bin 2

For the data in the second bin, Bin 2, we measure a much larger and more uncertain popula-

tion index of 3.36 ± 1.31 (Figure 5.15), and a mass index of 2.32 ± 0.26 (Figure 5.16). The

large difference from the values estimated for Bin 1 indicates a fast change in the particle size

distribution as the Earth moves through the stream. This rapid change is the probable cause of

the increased uncertainty, and this 60-minute bin likely encompasses a range of meteoroid size

distributions. We note that the speed of the mass index increase is similar to what was observed

for the 2011 Draconids, when the mass index changed from 1.84 to 2.30 in one hour (Koten
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Figure 5.13: Cumulative histogram of magnitudes using the Draconid data in Bin 1. Note that
the population index in some runs was significantly different than the one from the nominal
solution - this was due to resampling such a small sample of data.
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Figure 5.14: Cumulative histogram of integrated luminous intensities using the Draconid data
in Bin 1.
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Figure 5.15: Cumulative histogram of magnitudes using the Draconid data in Bin 2.

et al., 2014).

5.5 Flux

Collecting areas for the two pairs of EMCCD cameras were calculated using the method of

Campbell-Brown et al. (2016). A grid of points spaced by 4 km was placed at heights of be-

tween 92 and 98 km to capture the typical heights of Draconid meteors. At each height, the bias

for each point in the grid was calculated, taking into account the radial speed of Draconids at

the time of the observation, the sensitivities of the two cameras, and the range to each camera.

The area of the 4×4 km region was scaled to account for meteors not seen due to lower sensi-

tivity using the measured mass index of the stream. An average of the areas at the heights of
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Figure 5.16: Cumulative histogram of integrated luminous intensities using the data in Bin 2.
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interest was taken, though the collecting area of both systems was relatively constant at those

heights.

The flux was calculated by dividing the number of single-station Draconids by the collect-

ing area of each camera. The collecting area used here is the effective collecting area, which

accounts for the changing sensitivity due to the range to each camera, the sensitivity of the

cameras, and the angular speed in each part of the field of view. The sensitivity correction is a

strong function of mass index. Furthermore, there are two effects from the zenith distance θ:

the first is the usual cos θ factor which takes into account how much fainter meteors are when

they come in at a grazing angle than if they come straight down. The second is the change in

angular speed in the cameras with the changing radiant position. The same two time intervals

used in the mass index calculation were used for this calculation, and the flux of the first (half-

hour) bin multiplied by two to get the number of meteoroids per hour. This calculation was

performed for each pair of cameras separately, and then the numbers and collecting areas were

added and the flux from both sets of cameras was calculated. The flux was then corrected using

the s value from the system limiting magnitudes of +5.4 and +4.5 to a limiting magnitude of

+6.5, which is standard when, for example, calculating ZHRs. All of these numbers, including

the ZHR, are given in Table 5.2. The ZHR was computed using the expression given in Brown

& Rendtel (1996).
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It is obvious that the collecting area of these systems is a strong function of the mass

index: if the population index is higher (more faint meteors) the effective collecting area is

smaller because many more meteors are expected to be missed in the less sensitive parts of the

collecting area. We expect the flux in the second time bin to be lower than in the first because

the peak occurred a short time before observations began, but the flux is nearly an order of

magnitude larger, and the ZHR slightly higher. We note that both camera pairs were pointed

close to the apparent radiant, which may skew flux calculations. Furthermore, the geometric

overlap for the G cameras is nearly twice that of the F cameras. The range is larger, so they

don’t see as faint meteors as the F cameras, but the effects do not cancel out. The numbers

could be an effect of small number statistics.

To get a sense of the uncertainty in the flux, which comes from the uncertainty in the mass

index, for the first time bin we recomputed the collecting area with the mass index varying the

uncertainty limits from 1.56 to 1.92. At the limiting magnitude of the system, this changed

the flux from 0.047 meteoroids km−2 hr−1 (at the lowest mass index) to 0.061 (at the highest);

extrapolating to a limiting magnitude of +6.5 produced values from 0.081 to 0.15 meteoroids

km−2 hr−1. The uncertainty in the ZHR is significantly higher, varying from 389 to 1150 for the

two different mass indices. There is some uncertainty in the limiting magnitude as well, which

will contribute further uncertainty to these values. All of the ZHR values are higher than those

observed visually by the IMO6, which were of order 100. Because of the rapidly changing

mass index, the flux values here should be treated with caution.

5.6 Radiant distribution

Trajectories and orbits were computed with the Monte Carlo method of Vida et al. (2020b), and

the initial velocities were estimated using the sliding fit proposed in this latter paper using 40%

or more points from the beginning of the meteor. We did not apply the deceleration correction

6IMO web site: www.imo.net/draconids-outburst-on-oct-8-9/
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proposed by Vida et al. (2018) as accurate velocities were not the focus of this work, and this

should not influence the radiant dispersion.

Figure 5.17 shows a probabilistic radiant map in Sun-centered geocentric ecliptic coordi-

nates generated by combining trajectory solutions of all Monte Carlo runs (200 per meteor)

using kernel density estimation and a Gaussian kernel. Figure 5.18 shows the nominal radiants

with error bars in equatorial coordinates with color-coded solar longitude. Both plots include a

comparison between the observed and simulated radiants as produced by Egal et al. (2018). In

the simulation, the meteors were produced by meteoroids ejected in 1953, and we only selected

simulations which hit the Earth in the range of solar longitude between 195° and 196°.

The observed radiant is quite compact and the bulk of the shower falls within a circle of 0.6°

in diameter (dashed circle in the plot), centered around a median shower radiant αg = 261.997°

and δg = 56.007°, or λg − λ� = 50.985° and βg = 78.786°. The bulk of radiants with small

measurement uncertainties are within this circle, while most with large uncertainties are outside

it. We note that were are also several radiants with low uncertainties that are outside it, which

we believe to be sporadic meteor that were classified as Draconids by our automated meteor

shower classification algorithm. The probabilistic radiant map shows an area of higher density

at αg = 262.140° and δg = 56.095°, or λg −λ� = 51.2° and βg = 78.9°, which is marked with a

smaller circle in Figure 5.17, but we cannot exclude this being an artifact due to small-number

statistics (only five concentrated radiants with small uncertainty). The observed radiants match

the width of simulated radiants well, but there is an offset in solar longitude.

Following Kresák & Porubčan (1970), we compute the dispersion as the median angular

offset from the mean radiant. Because the observation period was short, we did not perform

the radiant drift correction. Figure 5.19 shows a histogram of angular offsets from the mean

radiant. The median angular offset was 0.25°.

In Figure 5.18, the Egal et al. (2018) simulations show an obvious correlation of the radiant

position with the solar longitude. Our observing period spanned the solar longitudes from

195.400 696° to 195.456 238°, but the simulated radiant positions matched the observations



5.7. Conclusions 209

best for λ�∼195.8°, indicating that the position of simulated particles is shifted along the

orbit when compared to observations. Due to the high precision of these observations, it may

possible to optimize the meteoroid ejection and integration parameters until a good match in

both the position and time is achieved, improving future predictions.

Figure 5.20 shows histograms of simulated and measured geocentric velocities for the 2018

Draconids. The histograms were normalized so that their area is equal to 1. The mean and stan-

dard deviation were 20.05 ±0.93 km s−1 and 20.94 ±0.08 km s−1 for observed and simulated

data, respectively. The observed geocentric velocities have a larger scatter than the simula-

tions due to the limited velocity measurement precision. Furthermore, there is a systematic

∼0.9 km s−1 underestimation of the geocentric velocity, a combined effect of meteor deceler-

ation prior to detection (Vida et al., 2018) and using the average velocity of the first 40% (or

more) of the meteor as the initial velocity. In Table B.1 we give a list of all meteors and their

geocentric radiants, orbits, magnitudes, and mass proxies. We note that due to the underes-

timation of the geocentric velocity from lack of deceleration correction, the semi-major axes

listed in the table are also underestimated.

5.7 Conclusions

We analyzed 90 minutes of optical meteor data of the 2018 Draconid meteor shower outburst.

The observations started shortly after the predicted peak at 00:00 UTC on October 9, 2018.

We performed multi-station observations with the SOMN all-sky network and four sensitive

EMCCD cameras. The all-sky system did not record any bright Draconid meteors, but 68

multi-station Draconids with complete light curves were recorded with the EMCCD systems.

The astrometric and photometric calibration of the EMCCD systems has been discussed in

detail, and we show that the EMCCD systems have a limiting stellar magnitude of +10.0M and

an astrometric precision of 10 arc seconds.

We developed a novel method of population and mass index computation which is based
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Figure 5.17: Sun-centered geocentric ecliptic radiant distribution of the 2018 Draconids ob-
served with the EMCCD systems. The normalized density is color coded.
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Figure 5.18: Geocentric radiant distribution of the 2018 Draconids observed with the EMCCD
systems. The solar longitude is color coded, and the error bars show the one standard deviation
uncertainty. The squares show the simulated radiants by (Egal et al., 2018).
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Figure 5.19: Distribution of angular offsets from the mean radiant of the 2018 Draconids. The
vertical line marks the median angular offset of 0.25°.
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Figure 5.20: Comparison of simulated (blue) and observed (red) geocentric velocities.
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on maximum likelihood estimation. The method fits a gamma function to the distribution of

magnitudes or logarithms of mass to estimate the slope of the cumulative distribution (i.e.,

population or mass index) before the sensitivity effects become important. We validated this

approach on past data obtained with the CAMO influx system. The method also enables robust

error estimation.

We divided EMCCD data of the 2018 Draconid outburst into two time bins of approxi-

mately equal number of meteors: the first bin spanned the time from 00:00 UTC to 00:30

UTC, and the second bin spanned from 00:30 UTC to 01:30 UTC, on October 9, 2018. The

mass index was 1.74 ± 0.18 in the first bin and 2.32 ± 0.27 in the second bin, an increase of

similar magnitude and rate of change to the 2011 Draconids (Koten et al., 2014).

Because of the rapid rate of change of the mass index of the shower and small-number

statistics, the values derived for the mass index and flux are very uncertain, particularly for the

first time bin. The fluxes in the two bins were 0.11 and 0.99 meteoroids km−2 hr−1, respectively,

corrected to a limiting meteor magnitude of +6.5. From visual observations, we expect the flux

was actually falling from the first to the second time interval; the reversed trend in this data

is most likely due to the assumption of a single power law in each time bin, which does not

adequately describe the data. For this reason, we do not attempt to describe the flux profile of

the shower.

The measured shower radiant diameter was ∼0.6° which matches simulations by Egal et al.

(2018) well, but there is an offset in solar longitude of 0.4°. The measured radiant dispersion is

a good match to the 2011 outburst, both the high-precision radiant measurements by Borovička

et al. (2014), and the meteoroid ejection simulations by Vida et al. (2020a).

5.7.1 Complete input data and trajectory solutions for EMCCD meteors

We provide the input data and detailed trajectory solutions for the Draconids observed with the

EMCCD systems, in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr

(130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/.



BIBLIOGRAPHY 215

Bibliography

Akkouchi, M. 2008, J. Chungcheong Math. Soc, 21, 501

Arlt, R., & Rendtel, J. 2006, Monthly Notices of the Royal Astronomical Society, 367, 1721

Beech, M., Brown, P., & Jones, J. 1995, Quarterly Journal of the Royal Astronomical Society,

36, 127

Berry, R., & Burnell, J. 2000, Astronomical Image Processing (Willmann-Bell)

Blaauw, R., Campbell-Brown, M., & Weryk, R. 2011a, Monthly Notices of the Royal Astro-

nomical Society, 412, 2033

—. 2011b, Monthly Notices of the Royal Astronomical Society, 414, 3322

Blaauw, R. C., Campbell-Brown, M., & Kingery, A. 2016, Monthly Notices of the Royal

Astronomical Society, 463, 441. https://doi.org/10.1093/mnras/stw1979
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6.1 Introduction

Most currently operational optical meteor observation systems consist of a fixed low-light cam-

era operating at typical video frame rates of 25 to 30 frames per second. Such systems vary

from all-sky to moderate fields of view, with plate scales at best 1 arcmin/pixel (e.g. Tóth et al.,

2015; Jenniskens et al., 2011). Since the appearance of low-light CCD sensors in the early

1990’s, video meteor cameras have proved to be an invaluable source of data used for me-

teoroid orbital studies, models of meteoroid fragmentation and physical structure, as well as

recovery of meteorites produced by meteorite-dropping fireballs (Koten et al., 2019).

Dynamical and photometric data from such cameras have allowed the densities of mete-

oroids, a critical parameter used in spacecraft risk models (Kikwaya et al., 2011; McNamara

et al., 2005), to be systematically estimated. However, such fixed optical systems are not able

to observe individual meteor fragments as they move relative to the fixed sensor during frame

integration, and the pixel scale on the order of 10s of meters per pixel at 100 km does not allow

the meteor morphology to be fully resolved (Stokan et al., 2013). This obscures the true amount

and nature of fragmentation and deceleration, which are essential for constraining the physical

properties of meteoroids through ablation modelling (Vojáček et al., 2019) and are the limiting

factor in improving accuracy of meteoroid orbits (Vida et al., 2018b). Finally, moderate field

of view optical systems, in ideal conditions, can achieve meteor trajectory radiant accuracy of

0.1°, which is near the limit of resolving the true radiant dispersion of the tightest (youngest)

meteor showers (Vida et al., 2019a).

The Canadian Automated Meteor Observatory’s (CAMO) mirror tracking system is an op-

tical system consisting of a wide-field camera (34° × 34°) which runs a real time meteor de-

tection algorithm. Upon detection, it cues a pair of mirrors to track the meteor and redirect its

light through an 80 mm telescope with a very narrow field of view (1.5°×1.5°) equipped with a

3rd generation image-intensifier lens coupled to a high frame rate machine vision CCD camera,

giving a plate scale of 6 arcsec/px (Weryk et al., 2013). A block diagram of the tracking system

is shown in Figure 6.1 and more details about the hardware are given in Section 6.2.1. The data
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Figure 6.1: Block diagram of the CAMO mirror tracking system.

collected with CAMO provide a direct way of studying the details of fragmentation for mm-

sized meteoroids and offer the prospect of order of magnitude more precise meteoroid orbits as

compared to classical fixed-camera systems (Vida et al., 2019a). Observing meteor morphol-

ogy and distinguishing the wake reveals the underlying physics of ablation and fragmentation,

and allows direct measurements of individual fragments: their dynamics, differential decelera-

tion, mass, mass distribution, and strengths. Figure 6.2 shows an example composite image of

two meteors observed with the CAMO narrow field of view camera.

6.1.1 Previous research done using CAMO data

The CAMO mirror tracking system has been operational since 2009. An early study by Sub-

asinghe et al. (2016) showed that 90% of the mm-sized meteors observed by CAMO display

observable fragmentation while Campbell-Brown (2017) recognized that light curves of mete-

ors with short or invisible wakes (resembling single-body meteors) cannot be explained without

including continuous fragmentation in the ablation model. In an effort to explain meteors with

double-peaked light curves, Subasinghe & Campbell-Brown (2019) found that even allowing

for large compositional differences within meteoroids to produce multiple peaks, fragmenta-
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Figure 6.2: Composite grey-inverted image of two meteors recorded using the narrow-field
camera. Both meteors are rotated and their leading edges aligned so the evolving meteor mor-
phology is highlighted in this vertical stack, with time increasing from top to bottom and frame
number given to the left. Left: An α Capricornid recorded on August 4, 2019 at 06:02:42
UTC. Right: An α Capricornid recorded on July 27, 2019 at 04:21:22 UTC. Note that even
though they are of the same origin, the meteor on the left erodes away leaving a single distinct
fragment with no wake, while the one on the right completely disintegrates into a long cylinder
of dust.
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tion still had to be included to explain the observed span of ablation heights. These conclu-

sions from direct observations are in accordance with classical works (e.g. Verniani, 1969),

and strongly support the notion that meteors cannot be modelled as single bodies and that

fragmentation is an essential process of the meteor phenomenon.

Stokan et al. (2013) directly measured optical trail widths of meteors using CAMO, a pa-

rameter vital for computing meteoroid masses from radar observations. Stokan & Campbell-

Brown (2014) were the first to recognize a class of fragmenting mm-sized meteors produc-

ing large lateral fragment separations. The transverse speeds of fragments produced by these

faint meteors approached 100 m s−1, constraining the range of meteoroid strengths by assuming

rotational- or charge-based fragmentation. Subasinghe et al. (2016) classified meteors by their

fragmentation morphology and found that the frequency and type of fragmentation does not

correlate with orbital classes, i.e. meteoroids on asteroidal-type orbits fragment in the same

way and as often as those on cometary-type orbits. Subasinghe & Campbell-Brown (2019)

found that meteors with double-peaked light curves on asteroidal-type orbits usually have a

very sharp second lightcurve peak, indicating that the meteoroid either disrupted or suddenly

released many small grains; in contrast, meteoroids on cometary-like orbits had smooth two-

peaked light curves.

Using the fact that the CAMO mirror tracking system is able to gather data allowing for

precise measurement of meteoroid deceleration, Subasinghe et al. (2017) and Subasinghe &

Campbell-Brown (2018) derived luminous efficiencies of meteors by comparing the dynamic

and photometric masses. Their results were broadly consistent with both theory and previ-

ous measurements, but measurement errors were still too high to accurately identify the best-

matching theoretical model of luminous efficiency. In contrast to the luminous efficiencies

estimated for fireballs (Ceplecha & Revelle, 2005), Subasinghe & Campbell-Brown (2018)

found a negative linear correlation of luminous efficiency with initial meteoroid mass, a trend

also recently reported by Čapek et al. (2019) who computed luminous efficiencies for iron

meteoroids by comparing observed and simulated meteor re-radiation energies.
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As meteor wakes are easily visible with CAMO, they provide an additional constraint on

meteoroid ablation and fragmentation models beyond observed light curves and deceleration.

Campbell-Brown et al. (2013) compared fits of the thermal disruption model of Campbell-

Brown & Koschny (2004) and the thermal erosion model of Borovička et al. (2007) for several

CAMO meteors. In most cases, they were able to match the observed light curve and decel-

eration, but not the wake. Campbell-Brown (2017) was able to fit all three features of one

meteor with a short and faint wake using a modified ablation model, where short bursts of

fragments were continuously released, a fragmentation model similar to the Borovička et al.

(2007) erosion model.

This emphasizes the complexity of fragmentation for mm-sized meteoroids as well as the

different modes of such fragmentation. In some instances, for example, discrete fragments are

visible in CAMO imagery and the fragment release heights are measurable. For such cases,

it may be possible to extend CAMO observations to infer the compressive strengths of small

meteoroids, an otherwise difficult to measure parameter.

6.1.2 Introduction to meteoroid strength measurements

Measuring mechanical strengths of meteoroids provides insights into the corresponding surface

strengths of their parent bodies. Biele et al. (2009) thoroughly reviewed past meteoroid strength

studies for the purpose of designing the landing gear and landing procedure for Rosetta’s ill-

fated Philae comet lander. As comets consist of the most pristine material leftover from the

formation of the Solar System (Blum et al., 2017), understanding mechanical properties of

their constituent particles informs models of dust aggregate growth in protoplanetary disks

(Güttler et al., 2009). Finally, understanding the comet mechanical surface strength is essential

for models of comet activity and dust mass distribution (Gundlach et al., 2018).

Global-scale strengths of comets can be investigated though some types of comet and aster-

oid break-ups, such as rotational (e.g. Lisse et al., 1999; Davidsson, 2001; Sánchez & Scheeres,

2014), or tidally-driven (Asphaug & Benz, 1996). At millimeter to meter scales, strengths can
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be derived either theoretically (e.g. Güttler et al., 2009) or from direct measurements. The

measurements done in-situ are rather limited in number due to the complexity of the task.

Hornung et al. (2016) analyzed the dust from comet 67P /Churyumov-Gerasimenko at sizes

between 10 µm and 300 µm, collected by the COSIMA instrument onboard the Rosetta space-

craft. They found that particles smaller than 100 µm remained largely undamaged when they

collided with the instrument collection plate at velocities of several meters per second, but that

particles larger than 100 µm (i.e. optical meteor sizes) mostly fragmented upon collision into

smaller grains of several tens of microns in size. They estimate that the mechanical strength

of larger particles is of the order of several kilopascals (± factor of 2), a result supported by

subsequent experimental work of Gundlach et al. (2018).

Microscopic imaging of dust particles collected by COSIMA (Hornung et al., 2016) shows

that the dust has an agglomerate structure, with the constituent particles on the order of a few

tens of microns. Their critical observation with implications for meteoroids is, quoting from

Hornung et al. (2016): “... these sub-units, which we denoted as ‘elements’ for not-fragmented

dust particles are essentially within the same size range as the individual ‘fragments’ dispersed

by the impact-fragmented dust particles. This observation seems to show that the fragments are

not formed by the impact, but pre-existing in the parent dust agglomerate, and simply broken

apart during the impact.” In section 6.6.2 we discuss a meteor observed by CAMO which

supports this statement. We also note that the sizes of elemental grains observed by Hornung

et al. (2016) match the grain size distribution derived from meteor flares (Simonenko, 1968)

and meteoroid erosion models (Borovička et al., 2007; Vojáček et al., 2019).

Due to the unsuccessful landing of the Philae lander, during which it bounced off the surface

of 67P/Churyumov-Gerasimenko several times, Biele et al. (2015) were able to estimate that

the compressive strength of softer surface regions was on the order of 1 kPa on 10cm-to-meter

scales, the maximum being between 2 – 3 kPa. The lander finally landed on a hard surface with

a compressive strength of >2 MPa.

For the purpose of understanding the physics of planetesimal formation in protoplanetary
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disks, many authors have performed experiments in which they investigate growth of dust

agglomerates from micron-sized dust through sticking (Blum et al., 2000; Blum & Wurm,

2000; Krause & Blum, 2004). The growth to mm-sized fractal dust aggregates is supported

by the theoretical relative collision velocities found in protoplanetary disks, but as the particles

grow in size so do the velocities, which should in theory lead to fragmentation of these larger

particles (Blum & Wurm, 2008). To overcome the mm-size fragmentation boundary, lower

collision velocities are needed to facilitate further sticking. It is believed that gas compression

may play a role at those sizes (Kataoka et al., 2013; Birnstiel et al., 2016). To determine how

low the velocities must be, Weidling et al. (2012) performed a microgravity experiment where

they investigated the sticking of mm-sized SiO2 dust aggregate analogs at velocities as low as

1 mm s−1. They reproduced the sticking behaviour and shown that the contact strength of dust

aggregates in their experiments is at least 640 Pa.

6.1.3 Strength measurements from meteoroid fragmentation in the at-

mosphere

Mechanical strengths can also be derived from fragmentation of meteoroids in the atmosphere.

If the height of fragmentation is known, one can assume that the dynamic ram pressure ex-

erted on the meteoroid at the moment of fragmentation is a proxy for the compressive strength.

Note that other authors may call this the “tensile” strength (Baldwin & Sheaffer, 1971; Trigo-

Rodrı́guez & Llorca, 2006) due to the assumption of e.g. differential thermal heating causing

internal thermal stress, or bending due to a non-spherical shape. Because we do not use a

thermal model, nor attempt to measure the meteoroid shape, we assume that the fragmenta-

tion happens due to mechanical failure caused the by pressure difference between the front

and the back of the meteoroid, thus we use the term “compressive” strength (Kataoka, 2017).

Nevertheless, we note that thermal stress due to differential thermal heating may play a role

for >1 mm sized meteoroids (it is negligible at smaller sizes; Verniani, 1969). Past models

of thermal stresses within meteoroids during entry often assume cm-sized meteoroids to be
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non-porous (basalt-like) stony particles. These are expected to show large internal temperature

gradients (Elford, 1999; Bariselli et al., 2020) which should in theory catastrophically fragment

before ablation begins (Jones & Kaiser, 1966). However, high resolution CAMO observations

reported by Subasinghe et al. (2016) show that gross fragmentation only occurs in 5% of the

cases, and most happen after the onset of ablation. It is unclear whether thermal fragmentation

remains a plausible process for highly porous dust aggregates; the recent work by Markkanen

& Agarwal (2019) shows that 0.5 mm porous aggregates are able to withstand internal tem-

perature gradients of more than 150 K. This mechanism should be investigated in more detail.

Here we assume dynamic pressure is the dominant process of gross fragmentation.

Using a model of atmosphere mass density, the dynamic pressure can be simply computed

using the following expression:

Pdyn = Γv2ρ(h) , (6.1)

where Γ is the drag coefficient (usually assumed to be unity in free molecular flow, appropriate

to most events observed by CAMO), v is the meteoroid speed at the moment of fragmentation,

and ρ(h) is the atmosphere mass density at the height of fragmentation h.

It has long been understood that if smaller meteoroids do fragment when they enter the

atmosphere, this fragmentation occurs at the dynamic pressure of around 1 – 2 kPa (Verniani,

1969). Past in-atmosphere meteoroid strength studies either used a rule of thumb or an ablation

model to estimate when this fragmentation may occur; Blum et al. (2014) gives an overview

of past work. Trigo-Rodrı́guez & Llorca (2006) measured strengths in the range from 400 Pa

for the Draconids to 340 kPa for the Taurids, assuming that meteoroids disrupted at the point

of maximum brightness. On the other hand, Borovička et al. (2007) fit observed meteor light

curves and decelerations to a meteoroid ablation model and concluded that except for bright

fireballs, fragmentation does not coincide with the point of maximum brightness. They esti-

mated that the compressive strengths of more compact parts of Draconid meteoroids are in the

range of 5 – 20 kPa. They also note that meteoroid erosion (continuous fragmentation into con-
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stituent grains) can start earlier and may not be due to mechanical forces, and that only fireball

flares are caused by disruption (catastrophic fragmentation) which could reveal the compressive

strength. Regardless of the possible mechanisms of disruption/fragmentation, precise determi-

nation of the fragmentation time can set concrete upper limits to mechanical bulk strengths of

meteoroids.

6.1.4 Motivation and overview

This paper was preceded by two theoretical papers which investigated the limits of meteor tra-

jectory accuracy achievable with CAMO. When computing meteoroid orbits, understanding

the accuracy of two separate components is essential: the meteoroid pre-atmosphere velocity

and the radiant. In Vida et al. (2018b) an ablation model was used to simulate meteoroids of

different physical properties as they would be observed by various optical observations sys-

tems, including CAMO. In particular, they investigated whether measuring the meteor velocity

at the beginning of the luminous trajectory produced accurate pre-atmosphere velocity mea-

surements. They found that meteoroids producing optical meteors can significantly decelerate

before their ablation becomes visible, up to 750 m s−1, which is an order of magnitude more

than the velocity measurement precision of the CAMO system. Vida et al. (2018b) have also

shown that this deceleration is highly influenced by meteoroid density and other physical prop-

erties, implying that ablation models must be used to fit the observed meteor to invert for the

true pre-atmosphere velocity; thus the ultimate limitation on velocity accuracy is the efficacy

of the adopted ablation model.

Vida et al. (2019b) and Vida et al. (2019a) investigated the radiant accuracy that can be

achieved by CAMO and found that it is an order of magnitude more accurate (∼0.01°) than

what is needed to measure the model-estimated true physical radiant dispersion of the most

compact meteor showers, specifically the Draconids. They also found that existing methods of

meteor trajectory estimation were not suitable for the high-precision CAMO data, so an im-

proved method was developed which simultaneously uses both the geometrical and dynamical
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information to constrain meteor trajectory solutions, but without forcing a kinematic model.

In this work, we first describe recent upgrades to the CAMO hardware, software, and data

reduction procedure in detail. In section 6.5 we present the first results of high-precision meteor

reductions on CAMO data and discuss the implications of the observed meteor morphology on

trajectory accuracy. Next, in section 6.6, we estimate compressive strengths of select meteors

by taking the dynamic pressure at the moment of observable gross fragmentation as a proxy

of strength. The measurements were only done for meteoroids where the exact moment of

fragmentation was directly visible in the CAMO recordings. In section 6.6.1 we perform a

brief sensitivity analysis of computing dynamic pressures in practice, with a special focus

on the uncertainty of the atmosphere density. Next, in section 6.6.2 we describe an event

observed with the CAMO tracking system on July 21, 2017 which shows the exact moment

of gross fragmentation that prompted us to develop a method of direct compressive strength

measurement (Vida et al., 2018a). Finally, in section 6.6.3 we present compressive strength

results for a small number of events by applying our approach to several meteors showing

gross fragmentaion.

6.2 CAMO mirror tracking system specifications

The first version of the CAMO system started regular operations in 2009 and was described by

Weryk et al. (2013). CAMO is comprised of two identical systems in Southwestern Ontario,

Canada, separated by ∼45 km. The first is located near Tavistock and is co-located with the

Canadian Meteor Orbit Radar (CMOR) (43.264 20° N, 80.772 09° W, 329 m), while the other

is at the Elginfield Observatory (43.192 79° N, 81.315 65° W, 324 m). Both systems are pointed

roughly northward at an elevation of 45° to avoid sunlight, moonlight, and the galactic plane.

Their common volume overlap is optimized for heights between 70 km and 120 km. This

configuration limits the maximum convergence angle between stations to ∼27°, but this has no

detrimental effect on meteor trajectory accuracy due to the fine astrometric scale of the data
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when an appropriate trajectory solver is used (Vida et al., 2019a).

6.2.1 System hardware

In mid-2017, the system hardware was upgraded to extend CAMO’s operational lifespan. Both

the wide and the narrow-field cameras, which are lens coupled to Generation 3 image intensi-

fiers, were replaced with 14-bit Prosilica GX1050 digital progressive scan CCD cameras which

use a Gigabit Ethernet interface, and have an image resolution of 1024×1024 pixels. The video

is cropped to 900 × 900 pixels, as the edges of the field of view are not covered by the inten-

sifier. The wide-field camera is operated at 80 frames per second, and the narrow-field camera

at 100. The intensifiers were upgraded to new 18 mm diameter ITT FS9910 series Generation

3 image intensifiers with 64 line pairs per millimeter resolution, providing a close to 1:1 match

to the camera resolution. The intensifier on the wide-field camera is operated continuously

during observations, but the narrow-field intensifier is gated and only turns on if a meteor is

being tracked. This saves up to 99% of intensifier time, significantly prolonging its lifetime.

The lens setup remained the same as before, with a 25 mm f/0.85 lens on the wide-field,

giving a field of view of 34° × 34°. The narrow-field optics are also unchanged and consist

of an 80 mm aperture APO telescope with a 545 mm focal length. As the telescope is looking

at mirrors with an effective radius of 50 mm, the narrow-field setup’s focal ratio is reduced to

f/11, giving it a field of view of 1.5° × 1.5° and a plate scale of 6 arcsec per pixel.

Assuming that ideal centroiding can improve position measurements by a factor of three,

this system is at the limit of the average atmospheric seeing in Southwestern Ontario, thus no

further improvement in resolution can be achieved under these conditions. The two mirrors on

orthogonal axes are attached to a Cambridge Technology 6900 optical scanner, a galvanometer-

based system with a maximum slew rate of 2000 deg/s and a field of regard of 39°×38°. Figure

6.3 shows the comparison of the fields of view of all optical subsystems. The mirrors on the

optical scanner are precisely positioned by changing the voltage of each axis between −10 V

and 10 V using a 16-bit digital-to-analog converter, giving an angular step-size resolution of
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∼ 2.2 arcsec/ADU, equivalent to 1/3 of a pixel in the narrow-field camera.

The clock on the computers that operate each camera is GPS conditioned using the network

time protocol (NTP), but the video frames are timestamped on the camera to avoid timing er-

rors due to Ethernet network latency. We found that the camera’s internal clock drifts over

time relative to the NTP computer clock, so we apply a frame time correction by occasionally

checking the temporal drift and fitting a linear model through the time differences during night-

time observations. Total time drifts remain sub-frame between time calibrations, which occur

every two hours during operations.

The optical system is contained within a weather-resistant enclosure inside a roll-off roof

shed which only opens during optimal weather conditions (Weryk et al., 2013). The system

layout is shown in Figure 6.4.

6.2.2 Detection software and tracking

The meteor detection algorithm used by CAMO has been described in detail in Weryk et al.

(2013). In this paper we only give a short summary, but thoroughly describe the calibration

methods which were not discussed in detail in Weryk et al. (2013).

As image-intensified video is dominated by high frequency shot noise, we use a normalised

first-order low-pass finite impulse response filter in our detection algorithm (Weryk & Brown,

2012). This approach eliminates bright and short bursts of noise, while being sensitive to any

medium frequency events (such as meteors) which appear above the static background. The

shot noise does not typically have enough trigger pixels to form a detection. The algorithm

runs in real time on the wide-field video feed and once it detects a meteor in 8 frames, it

fits a constant angular speed model based on these detections. The mirrors then slew to and

track according to the model-predicted motion, having their positions updated 2000 times a

second. Due to the mirror inertia and high speed of position updates, their motion becomes

fluid, allowing the imaging to match the reference frame of each tracked meteor. A record

of mirror position at every update is kept, making high-precision astrometry using narrow-
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Figure 6.3: Fields of view of all CAMO optical subsystems at the Elginfield site. The narrow
field of view can move to any location inside the mirror field of regard.
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Figure 6.4: Layout of CAMO systems. The enclosure of the mirror tracking system with BK7
glass windows of individual cameras is shown. The position of the telescope (inside the block
enclosure) is outlined and superimposed on the image. The CAMO influx camera (Musci et al.,
2012) is at the lower right, but is not used in this work.

field data possible. Note that there are no encoders which read the actual position, thus the

“commanded to” and the actual position may differ. We find that this simple tracking algorithm

is able to keep meteors within the narrow field of view camera in most cases over their full

visible trajectory. Finally, note that because of the tracking delay of 8 frames (0.1 s at 80 FPS),

the high-precision position measurements are also delayed, which may cause initial velocities

of meteors to be underestimated.

6.3 Calibration

6.3.1 Operational plates for tracking

To steer the mirrors when a meteor is being tracked, wide-field camera imagery coordinates

(wx,wy) are converted into analog-digital units (hx, hy) of the 16-bit voltage controller which

positions the mirrors. As the telescope optical axis is fixed with respect to the mirror, it also
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points at hx, hy - this always corresponds to the centre of the narrow-field camera image axis.

This mapping is achieved using a guide plate, an affine transform mapping between wx,wy

and hx, hy. Thus when a good guide plate is used, tracked meteors should be in the centre of

the field of view of the narrow-field camera. guide plates are created by pairing stars in the

wide-field camera imagery with the same stars centred in the narrow-field camera, and fitting

an affine AFF type plate (see C.2 for details). As the narrow-field camera has a very small field

of view, it would be difficult to do this pairing manually, so a mosaic of narrow-field images

taken across the whole mirror field of regard is constructed to produce a first fit when the optical

system components are installed or have been moved.

The fitting procedure requires the paired stars to be centered in the narrow field of view

images to produce a quality fit. When the mosaic is created, the stars can be anywhere inside

the narrow field of view. To “virtually” center them, a scale plate is used which maps offsets

from the narrow-field image centre (∆nx,∆ny) to offsets in mirror units (∆hx,∆hy). Thus the

scale plate is used to compute hx, hy coordinates of paired narrow-field stars, and a guide

plate can be fit.

A scale plate is made by locking and centering the mirrors onto a bright star, then moving

the mirrors by small steps in a specific pattern to obtain pairs of ∆nx,∆ny and ∆hx,∆hy. An

affine type (AFF) plate is fit on those data pairs. Figure 6.5 shows the movement pattern

which produces a set of points in the scale plate parameter space which form a hexagon. The

data points are distributed in such a way as to equalize the distance between the edges of the

parameter space and the points themselves, optimally populating the parameter space.

In general the scale plate does not change over long periods as it reflects the stability

of the fixed effective focal length of the narrow field optics. The guide plate is also relatively

invariant as long as the wide field and narrow field systems remain fixed relative to one another;

this typically does not require updating more than a few times per year.
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Figure 6.5: Left: One of four patterns used for moving a star within the narrow-field system
which produces a hexagonal pattern in the scale plate phase space. The pattern starts after
the star has been centered. The first movement is represented with the darkest arrow. Right:
Points organized in a hexagon in the scale plate phase space produced by all four patterns of
movement. The black rectangle outlines the range of possible input values of the scale plate,
which is ± half the image size in each dimension. The points outside the rectangle are used
to improve the fit at the edges of the phase space and were obtained by moving a star past the
centre of the image. One such movement is represented by the lightest long diagonal arrow in
the left inset, which produced a point around ∆nx = 450, ∆ny = −450 in this example.
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6.3.2 Astrometry calibration plates

Table 6.1 summarizes all calibration plates used by CAMO. To compute meteor trajectories

after data collection, image and mirror coordinates have to be converted into celestial coordi-

nates. The astrometric calibration of the wide-field camera is done by manually pairing image

stars with catalog stars and fitting an astrometric AST type plate (see appendix C.1 for details).

Star positions and magnitudes are taken from the SKY2000 catalog (Weryk et al., 2013). This

procedure produces a calib plate which maps wide-field image coordinates wx,wy into local

horizontal celestial coordinates: the zenith angle θ, the azimuth ϕ measured North of East. The

calib plate may change slightly under different thermal conditions as the wide field camera

mounting moves, but this is usually a small change night-to night (of order a few hundredths

of a degree).

The exact plate maps mirror coordinates hx, hy into θ, ϕ and is used for computing high-

precision astrometry using narrow-field video data. The exact plate is created in several steps.

First, a list of stars in the wide field of view sorted by their brightness is produced using the

star catalog and the calib plate. Next, the mirrors are pointed to the 80 brightest stars using

the guide plate. Off-center stars are moved to the center of the narrow field of view using

the scale plate. This procedure is done every two hours during system operations to ensure

the quality of the astrometry. Finally, the collected pairs of mirror coordinates hx, hx and star

coordinates θ, ϕ are used to fit an exact AST type plate. The exact plate avoids using the

calib plate which is limited by the spatial resolution of the wide-field camera. The exact

plate is the most time-varying, as very slight changes in the mirror directions produced by

thermal effects may cause drift in the encoder positions relative to the sky. The exact plate

has to be computed and updated nightly, sometimes even multiple times per night to maintain

the full narrow field positional accuracy.
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Table 6.1: Meaning of the various plates used for CAMO calibration. wx, wy are pixel coordi-
nates of the wide-field camera, nx, ny are pixel coordinates of the narrow-field camera, and hx,
hy are mirror encoder coordinates. θ, ϕ are local coordinates, namely the zenith angle and the
azimuth (+N of due E), as described in Appendix C.1.

Plate Input Output Type Description
calib wx, wy θ, ϕ AST Wide-field astrometric calibration.
guide wx, wy hx, hy AFF Pointing mirrors to the given wide-filed pixel.
scale ∆nx, ∆ny ∆hx, ∆hy AFF Narrow-field offsets from image centre to

offsets in mirror encoder coordinates.
exact hx, hy θ, ϕ AST Mirror astrometric calibration.

6.4 Data reduction

6.4.1 CAMO tracking system weblog

After a full night of automated meteor detection is complete, event data (cutouts of wide-

and narrow-field videos) are sent to a central server where meteoroid orbits are computed

based on the operational astrometric plates. Every morning, a weblog page is generated with

images and preliminary orbits of events based on wide-field imagery automatically detected

the previous night. CAMO successfully detects and tracks about a dozen meteors to a limiting

stellar magnitude of +5 at two stations on an average clear night with nominal meteor activity.

Videos of tracked events can be inspected which helps to identify events suited for further in-

depth study (through manual data reduction). Figure 6.6 shows a screenshot of the weblog

page showing three Perseid meteors from August 13, 2019.

6.4.2 Manual reduction of wide-field data

The reduction of data from the wide FOV camera is described in detail in Weryk et al. (2013).

Briefly, the ASGARD automated meteor detection software (Weryk et al., 2007), stores raw

video frames of meteor detections. Flat fields are created by median co-adding a large number

of video frames from throughout the night, which eliminates star trails. calib astrometric

plates are manually fit on the video data from both the Elginfield and Tavistock sites to ensure
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Figure 6.6: Screenshot of the CAMO weblog page showing three Perseids. Co-added video
frames from all sites and both wide and narrow field of view cameras are shown.
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good quality of the astrometry and photometry.

Meteor position picks are done by manually defining the centroiding region position and

radius (the semi-automated algorithm computes intensity-weighted centre of mass) and the

photometry is done by masking which pixels belong to the meteor on each video frame. The

astrometric picks are run through the meteor trajectory estimation code based on Borovička

(1990) which uses a lines of sight method, and a heliocentric meteoroid orbit is computed.

This initial solution is only used to decide whether the meteor warrants additional manual

reduction.

6.4.3 Manual reduction of narrow-field data

Narrow-field data is manually reduced using the mirfit software (previously used in Subas-

inghe et al., 2017). With this software, the raw video frames and astrometric plates (exact

and scale) which were created closest to the time of each event are loaded. The quality of

the astrometric solution is confirmed by reverse mapping star catalog positions onto each video

frame, and checking that they match the true positions of stars. Figure 6.7 shows the mirfit

graphical user interface and an example with two stars in the narrow field of view.

Making meteor position picks on every frame is often difficult and subjective due to the

complex morphology and fragmentation that may be present. In many cases, the precision

of the meteor trajectory is limited by the morphology, regardless of the resolving power and

precision of the CAMO tracking system. For example, Figure 6.8 shows a meteor that disin-

tegrated into a long cylinder of luminous dust, making any consistent and precise astrometric

picks after fragmentation impossible. However, we found that the best approach is to centroid

on the most consistent leading fragment or feature that exists throughout the event as long as

possible. This maximizes the number of picks, and better ensures a common feature is tracked

from both sites. Sometimes the picks must be set manually to a pixel at the leading edge of the

trail during fragmentation, as individual features cannot always be resolved.

Computing celestial coordinates of observed meteors using narrow-field data is done in
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Figure 6.7: mirfit graphical user interface. A video frame with a meteor is shown, and the
centroid pick for the current frame is marked with a large red plus sign, while astrometric
picks on previous and subsequent video frames are marked with smaller red plus signs. Two
diamonds mark the predicted positions of stars in the image, which become trailed as the
mirrors track the meteor. The diamonds are the exact plate estimates of the two catalog star
positions, and are at the end of each trail due to the camera timestamping each video frame at
the end of the exposure.
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Figure 6.8: Three video frames from a meteor observed on May 17, 2017 at 04:54:26 UTC.
The top plots show cropped video frames around the meteor, while the bottom plots shows
their respective 3D intensity profiles.

several steps. Figure 6.9 shows a diagram of the procedure. First, assuming picks of meteor

positions with coordinates nx, ny were done on a particular narrow-field video frame, offsets

∆nx,∆ny from the narrow-field image center are computed. ∆nx,∆ny are then mapped into

offsets in mirror units, ∆hx,∆hy using the scale plate. ∆hx,∆hy indicate the mirror encoder

position offset required to centre the meteor in the narrow field. On average, a change of 3

mirror units will shift the narrow-field image by 1 pixel.

As the narrow-field camera’s frame rate is not phase synchronized with mirror position up-

dates, the equivalent mirror pointing coordinates hx, hy at the time the video frame was recorded

are computed by linearly interpolating the recorded mirror positions in time. The offset in mir-

ror units (∆hx, ∆hy) is added to the actual mirror positions (hx, hy) at the frame time. Using the

exact plate, the resulting mirror units are mapped onto the celestial sphere. One pixel in the

narrow-field image roughly corresponds to 6 arc seconds on the sky (3 m resolution at 100 km

range), and thus 1 mirror unit corresponds to about 2 arc seconds on the sky.

The narrow-field photometry is not used operationally because a meteor is usually spread
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Figure 6.9: Schematic showing how the computation of narrow-field astrometry is performed.
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over a large number of pixels in the image, which significantly reduces its signal to noise ratio,

especially for fainter wakes. Also, there is a factor of 2 variation in sensitivity across the

mirror field of regard, as the total mirror overlap is less on the edges of the field of regard.

Nevertheless, photometry can be manually measured for individual events.

Once the narrow-field astrometric reduction is done from both sites, the meteor trajectory

is computed using the Monte Carlo trajectory solver (Vida et al., 2019b). This algorithm com-

putes the radiant, heliocentric orbital elements, and associated uncertainties using the variance

in the measured look angles as estimators for the precision of the measurements.

6.5 Examples of reduced meteors

In this section, we show three representative examples of ultra-high precision meteor trajectory

solutions computed from CAMO narrow-field data and comment on their radiant and veloc-

ity accuracy. We show that the accuracy is mainly limited by meteor morphology; the three

examples cover meteors having the most to the least favourable morphology.

6.5.1 Morphologies allowing for high precision measurements

Figure 6.10 shows a composite image of a sporadic meteor observed by the CAMO tracking

system on October 7, 2016, with the meteor being well tracked from both sites. As seen in

the figure, the spatial fit residuals are below one meter (the corresponding angular residuals are

∼ 1 arc second), and the point-to-point velocities are very compact and show obvious smooth

deceleration. The lag, defined as the “distance that the meteoroid falls behind an object with

a constant velocity that is equal to the initial meteoroid velocity” (Subasinghe et al., 2017),

matches well between both stations, an indication of a good trajectory solution (Vida et al.,

2019b). The meteor showed only continuous fragmentation and no gross fragmentation; this

favourable morphology contributed to the quality of the trajectory solution.

In Table 6.2 we give the radiant and osculating orbital elements computed using the Monte
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Figure 6.10: Reduction of a meteor observed on October 7, 2016 at 05:27:49 UTC. Upper
left: A composite image of the last 13 narrow-field video frames rotated and cropped so that
the leading edge is aligned in every frame. The time progresses from left to right at 10 ms
increments. Upper right: Spatial fit residuals from the Tavistock site. Lower left: Point-to-
point velocities. Lower right: Lag of the leading edge compared to a fixed velocity model. The
“Jacchia fit” shows a fitted exponential deceleration model given in equation 6.2.

Carlo trajectory solver (Vida et al., 2019b). The stated uncertainties are small, but there are

several caveats. First, the compensation for deceleration prior to detection was not done, thus

the initial velocity may be underestimated as much as 500 m s−1 (Vida et al., 2018b). Con-

sequently, the stated velocity measurement uncertainty gives the precision, not the accuracy.

Second, Vida et al. (2019a) have shown that radiant uncertainties for CAMO are usually un-

derestimated by a factor of 3 to 4 with this solver based on comparison with simulations. Thus

the real radiant accuracy is probably ∼ 0.025°, well within the minimum precision of 0.1°

necessary to measure the true physical dispersions of meteor showers (Vida et al., 2019a).
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6.5.2 Morphologies with deteriorating measurement precision

Figure 6.11 shows a Southern δ Aquariid meteor observed on August 10, 2019 at 06:09:57

UTC. This meteor had a sudden change in morphology halfway through the observation caused

by an increase in the rate of continuous ablation. Prior to the change, the meteor had compact

morphology with a short wake. The whole meteor was centroided prior to the morphology

change during the manual reduction, excluding the short wake, which produced robust astrom-

etry picks and well-matched velocities from both sites. After the morphology change, the wake

became longer and the meteoroid morphology became elongated, showing a leading fragment

at the front. At that point the leading fragment was followed, but due to the lower signal to

noise ratio and interference from released grains and the wake, the picks were less consistent,

which caused a large spread in point-to-point velocities. The change can be seen in the lag

as a sudden shift back towards the zero lag line, as the reference point moved forward to the

leading fragment by a fixed amount. However, this change did not influence the trajectory fit

residuals as the leading fragment did not have a transverse velocity component, though this is

not always the case (e.g. Stokan & Campbell-Brown, 2014). Table 6.2 provides the orbital ele-

ments and uncertainties for this event. The uncertainties in the radiant and the orbital elements

are larger than for the previous event, mainly due to the larger pick scatter in the second half

of the meteor trajectory. In contrast, the geocentric velocity uncertainty remained low because

the initial velocity used for orbital computation is found using data from the first part of the

meteor, in this case prior to the morphology change.

6.5.3 Morphologies which severely limit measurement precision

As a final end-member example, Figure 6.12 shows a meteor on an asteroidal orbit with a

probable higher bulk density than the earlier cases, judging from the height range and small

deceleration. It exhibited complex morphology (no leading fragment, extended meteor lumi-

nosity mostly consisting of a wake), and as a consequence, it was difficult to make consistent

position picks. This is reflected in the higher scatter of spatial residuals, velocity, and lag. In
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Figure 6.11: Reduction of a meteor observed on August 10, 2019 at 06:19:57 UTC. Upper left:
A composite image of the middle 19 narrow-field video frames rotated and cropped so that the
leading edge is aligned in every frame. The morphology change occurs halfway though the
shown frames. The time progresses from left to right. Upper right: Spatial fit residuals from
the Tavistock site. Lower left: Point-to-point velocities. Lower right: Lag with an inflection
corresponding to the change in morphology which is visible from both stations.



248 Chapter 6. CAMO data reduction pipeline and mechanical strength measurements

Figure 6.12: Reduction of a meteor observed on August 31, 2019 at 09:12:42 UTC. Upper left:
A composite image of 21 selected narrow-field video frames rotated and cropped so that the
leading edge is aligned in every frame. The time progresses from left to right. Upper right:
Spatial fit residuals from the Tavistock site. Lower left: Point-to-point velocities. Lower right:
Lag in distance relative to a constant velocity.

this particular case, the meteor morphology was the limiting factor in achieving better astro-

metric precision. The radiant and the orbital elements are given in Table 6.2. All uncertainties

are larger than for the two previous events due to the larger scatter in astrometric picks. As-

suming that the radiant uncertainty was underestimated by a factor of 4, the true total radiant

uncertainty is ∼0.2°, which may not be sufficiently accurate to measure true physical radiant

dispersions of compact meteor showers.
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Table 6.2: The geocentric radiant in J2000 and corresponding heliocentric orbital elements of
example meteor events. The stated uncertainties are one sigma errors.

October 7, 2016 meteor August 10, 2019 meteor August 31, 2019 meteor
αg (deg) 11.476 14 ±0.0015 348.615 55 ±0.0033 337.233 62 ±0.0086
δg (deg) 15.991 38 ±0.0057 −14.049 97 ±0.0068 12.020 91 ±0.0450
vg (km/s) 21.474 53 ±0.0010 39.488 92 ±0.0008 17.805 44 ±0.0181
a (AU) 1.915 483 ±0.0001 2.555 910 ±0.0005 1.338 224 ±0.0005
q (AU) 0.556 308 ± < 0.0001 0.100 421 ± < 0.0001 0.593 527 ±0.0003
e 0.709 573 ± < 0.0001 0.960 710 ± < 0.0001 0.556 482 ±0.0004
i (deg) 7.502 682 ±0.0044 26.368 226 ±0.0204 12.390 136 ±0.0373
ω (deg) 273.906 34 ±0.0032 147.014 49 ±0.0070 278.774 75 ±0.0286
Ω (deg) 194.156 40 ± < 0.0001 317.090 80 ± < 0.0001 157.436 69 ± < 0.0001

6.6 Meteoroid compressive strengths derived from direct ob-

servations of gross fragmentation

In contrast to optical meteor systems used for previous estimates of meteoroid compressive

strengths (see the summary in Section 6.1.3), CAMO can directly observe gross fragmenta-

tion of meteoroids. Earlier we described the CAMO data calibration and reduction tools, and

demonstrated how meteor morphology limits the ultimate trajectory accuracy. In this section,

we discuss those CAMO meteors which show gross fragmentation of the main meteoroid body

into several discrete fragments, a process which we assume results from structural failure of the

meteoroid under the action of atmospheric dynamic pressure. Meteors with this morphology

make up about 5% of all observed meteors with CAMO, and this morphology is not correlated

with orbital type (Subasinghe et al., 2016).

These events often have the least accurately defined astrometry because there is no single

consistent point of reference that can be tracked. Frequently at the beginning of the luminous

track the meteor may resemble a single object, but the amount of continuous fragmentation is

usually high and any further consistent astrometric picks become impossible once gross frag-

mentation occurs. Thus, we only use the wide-field data to compute the reference trajectory,

and we project the narrow-field astrometric picks of individual fragments onto it to determine
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their dynamics. High-precision measurement of fragment deceleration allows us to compute

precise values of the aerodynamic ram pressure as we know the height and speed at each frame.

By observing when fragmentation occurs in the narrow field imagery, we can estimate precise

values of meteoroid compressive strength.

6.6.1 Sensitivity analysis

First we examine the uncertainty of individual parameters used to compute the dynamic pres-

sure from equation 6.1. For the drag coefficient, we use Γ = 1, a value appropriate for a sphere,

which is a common assumption for meteoroid ablation in free molecular flow (Fisher et al.,

2000; Campbell-Brown & Koschny, 2004; Borovička et al., 2007; Vida et al., 2018b). In fact,

many works even exclude the drag coefficient from the equation, implicitly assuming it is unity

(e.g. Blum et al., 2014; Trigo-Rodrı́guez & Llorca, 2006).

Observations of the morphology of cometary dust particles by Hilchenbach et al. (2016)

indicate that meteoroid components are oblate spheroids, although we are not aware of any

works showing detailed shape analysis. If the axial ratios of spheroid meteoroid components

were to vary from 0.5 to 1.0, drag coefficients may also vary within a factor of two (List et al.,

1973). If that was the case, and the meteoroids were not rotating, we would expect to see a

comparable variation in dynamic pressures at points of fragmentation among fragments of one

meteoroid, assuming a fixed velocity, atmospheric mass density, and homogeneous strength.

In section 6.6.2 we further discuss the possibility of drag coefficient variation using direct

observations of fragments of one meteoroid. Γ also varies with the Reynolds number, but

Thomas & Whipple (1951) show that spherical meteoroids moving in a highly rarefied gas and

at hypersonic speeds have Γ ∼ 1, thus in this work we fix it to unity.

For our events, uncertainty in Pdyn is not driven by the uncertainty in the velocity measure-

ment. Vida et al. (2019a) have shown that initial velocities can be reliably measured to within

0.5 km s−1. Even if one assumes a low initial velocity of only 10 km s−1, the maximum error in

dynamic pressure is only 10%.
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The last term required to compute the dynamic pressure is atmospheric mass density. The

most sophisticated atmosphere mass density model available to date is the NRLMSISE-00

model (Picone et al., 2002) which gives the atmosphere mass density as a function of geo-

graphical location, time, and solar activity. The time component takes the influence of sea-

sonal changes into account. The solar activity is modelled by using the 10.7 cm solar flux

F10.7 which slowly changes with the 11 year solar cycle, although it can change dramatically

on shorter time scales due to the evolution of active regions and solar flares (Tapping, 2013).

Picone et al. (2002) show that the influence of changes in F10.7 can cause the air mass density

in the upper atmosphere (>600 km altitude) to change with an amplitude of half an order of

magnitude.

Comprehensive models like The Whole Atmosphere Community Climate Model (WACCM)

(Qian et al., 2013) or the Spectral Mesosphere/Lower Thermosphere Model (SMLTM) (Ak-

maev et al., 2006) provide some insight into the mass density changes over time due to green-

house gas cooling in the mesosphere or solar effects. Recently, these trend studies were updated

using WACCM-X (Solomon et al., 2019), echoing the previously reported density changes at

the Mesosphere and Lower Thermosphere (MLT). It was found that changes in mass den-

sity in the MLT are larger as compared to the altitudes below and directly above the MLT

(150 – 200 km).

From meteor radar observations with the co-located CMOR (Canadian Meteor Orbit Radar)

a neutral air density change of approx. 6% per decade was obtained (Stober et al., 2014), which

corresponds well to the WACCM and SMLTM results. Additionally, a solar cycle duration

response of 2-3% in the neutral air density was estimated. Other meteor radar studies using

the meteor ablation altitude (Jacobi et al., 2011; Lima et al., 2015; Liu et al., 2017) or from

vertical profiles of the ambipolar diffusion measurements (Yi et al., 2019) have also estimated

the seasonal variability of the neutral air density.

However, it is the short term variability of the neutral air density induced by atmospheric

waves that is most germane for uncertainty analysis for compressive strength estimation from



252 Chapter 6. CAMO data reduction pipeline and mechanical strength measurements

CAMO. Stober et al. (2012) explored the magnitude of the neutral air density at heights of

interest for CAMO and showed that they can vary due to planetary waves during the winter

season 2009/2010 using three meteor radars across Europe.

We investigated the short term variability of the neutral air density using meteorological

fields from the NAVGEM-HA (Navy Global Environmental Model- High Altitude) numerical

weather prediction system (Hogan et al., 2014; McCormack et al., 2017; Eckermann et al.,

2018). NAVGEM-HA combines a global forecast model of the atmosphere with a 4DVAR

hybrid data assimilation scheme (Kuhl et al., 2013) to produce global atmospheric specifica-

tions for a given time period extending from the surface to ∼116 km altitude. NAVGEM-HA

assimilates a over 3 million ground-based and satellite-based observations every 6 hours. In the

altitude region from 20 – 100 km the primary observation sources are temperature, ozone, and

water vapor retrievals from the Microwave Limb Sounder (MLS) on board the Aura satellite

and temperature retrievals from the SABER instrument on board TIMED. The NAVGEM-HA

output used in this study consists of global 6-hourly wind, temperature, and geopotential height

fields on a 1° latitude/longitude grid over 74 vertical levels from 1 January to 31 December

2010. At the upper two model levels (above ∼95 km altitude), enhanced horizontal diffusion

(i.e., a “sponge layer”) is applied to reduce wave reflection (McCormack et al., 2015). A val-

idation of the NAVGEM-HA fields at the CAMO Tavistock site can be found in Stober et al.

(2019).

The annual mass density variation at the Tavistock site based on NAVGEM-HA is shown

in Figure 6.13. The upper panel shows the absolute density values as contour plot with log-

arithmic scaling, and the lower panel shows the relative variability in percent. We computed

a median density value for each geopotential altitude for the whole year of 2010 and used it

to normalize all values. Hence, the variability plot not only contains the seasonal variability

but also the atmospheric waves. From the plots, it is apparent that the mass density at meteor

heights can vary by up to ±25% on short time scales. It is therefore the main driver of the un-

certainty in the dynamic pressure. We adopt this ±25% value as representative of the air mass
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Figure 6.13: Measurement of atmosphere mass density using NAVGEM-HA above the CAMO
Tavistock site. The upper panel shows absolute values of the mass density as daily mean values
for the year 2010. The lower panel visualizes the relative density variation from the mean.

density uncertainty and use it in what follows to estimate all dynamic pressure measurement

uncertainties.

6.6.2 July 21, 2017 event

We begin with a specific case study of an unusual fragmenting meteoroid observed on July 21,

2017. It had a very shallow entry angle of 8° degrees and was observed for almost 4 seconds

and shows a clear double-peaked lightcurve. It was observed by the wide-field cameras from

both sites almost in its entirety, but was only well tracked by the Tavistock narrow-field camera

- the tracking parameters were not well estimated from Elginfield (possibly due to the long
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wake) where it was only tracked for a few frames before it exited the field of view. Figure 6.14

shows the co-added video frames captured by the wide-field cameras from both sites.

Morphology

The tracking at Tavistock started 0.45 seconds after it was initially observed in the wide-field

camera, as the meteor was below the automated detection threshold before that time. Fig-

ure 6.15 is a mosaic of 24 narrow-field video frames from Tavistock which shows the mor-

phological evolution. When the tracking started, an extended wake could be seen in the

wide-field video. For the complete narrow-field video, see the supplementary materials or

http://meteor.uwo.ca/˜dvida/IMC2017/20170721_tavis_narrow.gif.

The narrow-field video showed that the wake consisted of unresolvable grains (or dust)

lagging behind several fragments - the fragments themselves were also enveloped in the dust.

Starting 1.4 seconds after the tracking began, the dust was completely gone, leaving 12 discrete

fragments visible. During this time, the fragments noticeably decelerated and some showed

transverse motion. Several fragments with lower deceleration, which were always brighter and

presumably more massive, overtook fainter fragments. During this period devoid of wake, the

wide-field video shows a significant dip in the brightness of the meteor as a whole, as shown

in Figure 6.16.

After one more second, the fragments developed short wakes and themselves disintegrated,

and the total brightness increased again. At this point, the measurements from the wide-field

camera show that the bulk of the meteoroid started to rapidly decelerate, as shown in Figure

6.17 (around 2.5 seconds), and that this disintegration produced a second peak in the light

curve. Meteors with double peaked light curves were investigated by Roberts et al. (2014) and

Subasinghe & Campbell-Brown (2019). However, the observed behaviour of this event does

not match any of their proposed meteoroid ablation or fragmentation mechanisms.
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Figure 6.14: Grey-inverted co-added video frames of the July 21, 2017 event. The images are
heavily speckled by intensifier shot noise due to co-adding; individual video frames have a
much better signal to noise ratio. Top: Tavistock wide-field camera. Bottom: Elginfield wide-
field camera. The black arrow indicates the direction of flight, and the white arrow indicates
the point on the trajectory where the tracking from the Tavistock site ended.
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Figure 6.15: Mosaic of 24 narrow-field video frames from the Tavistock site for the July 21,
2017 meteor. Each discrete fragment has been tracked and labeled with a unique number.
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Figure 6.16: Wide-field light curve of the July 21 fragmenting event. Station 2 is Elginfield,
station 4 is Tavistock. Vertical lines show the moments of gross fragmentation visible in the
narrow field imagery.
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Figure 6.17: Wide-field lag for the leading edge of the visible meteor. Station 2 is Elginfield,
station 4 is Tavistock.
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Radiant and orbit

Because narrow-field data was only available from the Tavistock site, we used wide-field data

from both sites for trajectory and orbit calculation. Due to its long duration, the meteor experi-

enced significant bending of the trajectory from a straight line due to gravity. This is taken into

account using the Vida et al. (2019b) meteor trajectory estimation method which we use here.

Figure 6.18 shows the total trajectory fit residuals computed with respect to the radiant line,

showing how significant the deviation from the straight line approximation is in this case. The

average trajectory fit residuals from both sites were around 25 m, which translates to about 1

arc minute.

From the wide field imagery light curve, we computed a photometric mass of m = 0.27 g

using the bolometric power of a zero-magnitude meteor P0m = 840 W (Weryk & Brown, 2013)

and a dimensionless luminous efficiency τ = 0.7% (Campbell-Brown et al., 2013) in the red

bandpass. Because the end of the meteor was not observed, this mass is a lower limit. Fur-

thermore, due to the uncertainty of the luminous efficiency, the mass uncertainty is at least a

factor of 2 (Subasinghe & Campbell-Brown, 2018). Assuming a bulk density of 700 kg m−3,

the meteoroid had a diameter of 9(2) mm.

The meteor entered the atmosphere at an angle from the horizontal of only 7.8°. It was first

observed at a height of 87.849 km and it exited the wide camera field of view 3.89 s later at a

height of 79.882 km. The velocity at the beginning was 15.9626 ± 0.0051 km s−1, although it

had certainly decelerated from its true pre-atmosphere velocity due to the low entry angle, low

velocity, and small size (Vida et al., 2018b).

To quantify the amount of deceleration prior to detection, we used the single-body version

of the ablation model of Campbell-Brown & Koschny (2004) to simulate the meteoroid and

compute the deceleration from the top of the atmosphere (assumed at 180 km) until it was

detected by the wide-field cameras. The simulation roughly reproduces the observed conditions

at the point of detection assuming a mass m = 0.17 g, bulk density ρ = 700 kg m−3, heat

of ablation Q = 4600 kJ kg−1, a dimensionless luminous efficiency of 1.4%, and a beginning
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Figure 6.18: Wide-field camera trajectory fit residuals. The bending of the trajectory due to
gravity is visible. This should be ∼ 50 m for 3.5 seconds of flight. Note that the residuals are
computed with respect to a straight line aligned with the radiant, and not a curved trajectory;
thus the vertical residuals show an offset near the end. Black circles indicate 3σ outliers which
were excluded from the trajectory fit.
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Table 6.3: Radiant and orbital elements (in J2000) of the July 21, 2017 fragmenting meteor.

Parameter Nominal v0 + 400 m s−1 Uncertainty*
αg 253.626 254.399 0.017°
δg -30.216 -29.500 0.103°
vg 11.839 12.381 0.007 km s−1

λ� 118.482 118.482 NA
Lg − λ� 137.292 137.883 0.008°
Bg -7.583 -6.796 0.032°
a 3.199 3.588 0.005 AU
e 0.703 0.736 0.0005
q 0.952 0.948 0.0001 AU
Q 5.447 6.229 0.010 AU
ω 32.258 32.860 0.010°
i 2.400 2.233 0.033°
π 330.644 331.239 0.094°
T j 2.742 2.574 0.002

* uncertainties indicate measurement precision, not accuracy

entry angle of 15°, although we emphasize this is not a unique solution.

Note that the entry angle in the simulation is the entry angle relative to the surface of the

Earth above the simulation start point, at a height of 180 km. The change in the initial entry

angle was caused by the curvature of the Earth as the ground distance between the beginning of

the simulation and the first observed point was over 800 km. Here a higher luminous efficiency

had to be adopted compared to earlier because no fragmentation was included in the model.

To reproduce the measured initial velocity, we had to assume a velocity which was 400 m s−1

higher at the beginning of the simulation, indicating that the semi-major axis was ∼ 0.4 AU

higher than the nominal value.

Table 6.3 lists the meteoroid’s radiant and orbital elements, with and without the initial

velocity correction. The meteoroid came from the antihelion source and was not associated

with any known meteor shower. Its Tisserand’s parameter with respect to Jupiter suggests it

might have a Jupiter-family comet (JFC) origin. We believe that the ejection from its parent

comet happened very recently as it was on a Jupiter crossing orbit, and such orbits have short

dynamical lifetimes.
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Deceleration, strength, and mass distribution of fragments

Narrow-field video data from Tavistock was reduced in mirfit by manually picking the cen-

troids of all discernible fragments. The fragments were labeled from 1 to 12, according to

their order of appearance. The celestial coordinates of each fragment were projected onto the

trajectory estimated from wide-field observations. As there was no multi-station narrow-field

data, only along-track positions of fragments could be precisely determined. Fragments 4 and

7 show a perpendicular offset from the trajectory (a sudden jump at the moment of fragmenta-

tion to a position parallel to other fragments), but only lower limits of transverse positions can

be computed. Interestingly, these transversely offset fragments show no constant transverse ve-

locity after fragmentation, indicating that they received and immediately lost momentum in the

transverse direction. We are unsure what physical process caused this behaviour, but Stokan &

Campbell-Brown (2014) give some possible explanations.

The exact moment of fragmentation could not be observed because the fragments were

obscured by luminous dust. To extrapolate the motion of fragments shortly before they became

observable, we fit a simplistic kinematic model proposed by Jacchia & Whipple (1961) to the

along-track distance of every fragment from the beginning of the meteor

D(t) = k + v0t + a1ea2t , (6.2)

where t is the relative time since the beginning of the meteor, v0 is the initial velocity of every

fragment at t = 0, and a1 and a2 are deceleration coefficients. This model is plotted with all lag

measurements throughout this work.

We assumed that the v0 is equal to the meteor’s initial velocity estimated from wide-field

data. Next, we propagated the positions of fragments back in time using the model fits and

identified when the positions intersected, which we took to be the time of a fragmentation event.

Candidate fragmentation events were visually confirmed by inspecting the narrow-field video.

We found that all fragments, except possibly 1 and 6, emerged from larger fragments. For
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fragments 1 and 6 it was not possible to visually confirm any prior points of fragmentation. As

a singular point of fragmentation from which all fragments were born could not be determined,

we believe that the observed fragments were created by progressive fragmentation; the 12 that

were visible had strengths large enough not to fragment further for 1 second.

Figure 6.19 shows the lag of individual fragments, normalized to the first visible fragment

which starts at 0 s and has a lag of 0 m. Because all other fragments are in front of fragment

1, they all have a more positive lag. Fragment 10 was leading the “fragment train”. The

deceleration of fragments was not uniform, which caused fragments to overtake one another,

indicative of an underlying mass distribution.

Fragment 6 became visible in the middle of the “fragment train”, but it overtook fragments

7, 12, 9, and 11 (in that order). It had the largest mass/area ratio and presumably had the

largest mass, thus the smallest deceleration, indicating that there was no sorting by mass along

the trajectory prior to fragmentation. A similar behaviour showing fragments overtaking one

another has also been observed for fragmenting fireballs (Borovička & Kalenda, 2003). All

fragments were sufficiently separated in the transverse direction from one another as to not

collide.

The dynamic pressure for every fragment is shown in Figure 6.20. The figure shows that

the dynamic pressure at the moment of fragmentation was around 2.0(5) kPa. The fragments

themselves started to disintegrate at a height of 82.5 km, which corresponds to a dynamic

pressure of around 3 kPa. This suggests that the upper limit of the compressive strength of

more compact parts of fresh JFC material is in the range of 2 – 3 kPa.

If the dust seen at the beginning of narrow-field observations is the eroding matrix in which

these fragments were embedded it would indicate that the upper limit of its overall global

strength is 1 kPa, possibly on the order of several hundreds of pascals for cm-sized JFC mete-

oroids. Note that the erosion might have also been caused by thermal effects (Borovička et al.,

2007). In Figure 6.16 we superimpose the estimated moments of fragmentation onto the wide-

field light curve. The figure shows that the moments of fragmentation coincide with the first
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Figure 6.19: Lags of individual fragments. Solid lines show the observed lag, the dashed lines
show the extrapolated lag using the exponential function fit (equation 6.2). Solid circles show
the estimated points of fragmentation.
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Figure 6.20: Dynamic pressures of individual fragments. Solid circles mark the moments of
fragmentation. The horizontal uncertainty bars show the spread in dynamic pressure at the
fragmentation point due to the expected variance of the neutral atmosphere mass density.

peak in the light curve, and that the fragments themselves started visibly disintegrating into

their constituent grains at the beginning of the second peak.

These results are in accord with the in-situ measurements by the Philae lander (Biele et al.,

2015) which estimated the surface strength of 67P to be 1 – 3 kPa, a result similar to that found

for individual particles by the COSIMA instrument (Hornung et al., 2016). Because all frag-

ments appear to fragment at the same time and dynamic pressure, it appears that they have a

similar drag coefficient, i.e. similar axial ratio or rapid rotation. We also note that the strength

of the fragments themselves is only marginally larger than the strength at initial fragmentation.

The fine separation of fragment strengths in this unusual case was made possible by the low

entry angle of the meteoroid which caused a very gradual increase in the dynamic pressure.



266 Chapter 6. CAMO data reduction pipeline and mechanical strength measurements

Mass and size distribution of fragments

We also attempted to measure the fragment mass distribution. The dynamic mass was com-

puted by using the velocity from the exponential deceleration fit, due to which it was rapidly

decreasing, indicating that the fragments themselves were eroding, although that did not be-

come visibly obvious until they developed wakes at the end of luminous flight. The complete

photometric mass of fragments was equally challenging to compute because the fragments

were either very close to each other or enveloped in dust.

We were able to estimate lower limits to the photometric mass per fragment by measuring

the brightness of fragments in one common interval when they were all clearly visible and

distinct. Figure 6.21 shows the magnitude of every fragment; vertical lines mark the time range

used for computing the mass, when all were visible. Table 6.4 lists the computed masses using

the same τ and P0m as used for the wide-field photometric mass, and diameters computed using

a bulk density of ρ = 3000 kg m−3. Although these masses are half or less of their original

value, their relative values to each other should be valid if we assume that they all started

ablating at the same time and they ablated with a similar and constant ablation coefficient.

We note that photometric masses of some fragments do not correspond to their dynamical

behaviour. For example, fragment 5 was decelerating more than fragment 4, despite having

three times larger photometric mass. This may indicate that these fragments had either different

shapes, densities, or composition. Alternatively, some fragments may have been an unresolved

group of smaller fragments.

Figure 6.22 shows the cumulative distribution of fragment masses. We estimated the mass

index using two separate approaches. First, we performed a simplistic least squares (LSQ) line

fit to the approximately linear part in the cumulative histogram. The measured mass index is

s = 2.84 ± 0.21, with the uncertainty only indicating the line fit uncertainty to those select

points (red dots in the plot). This is not a robust approach of fitting power-law distributions to

data (Clauset et al., 2009), so we performed a separate fit using maximum likelihood estimation

(MLE) and obtained a value of s = 2.80, which is close to the line fit value.
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Following the procedure of Alstott et al. (2014), we compared the goodness of fit between

the power-law and the exponential distribution and found neither distribution is a significantly

stronger fit (p-value = 0.29). The Kolmogotov-Smirnov D statistic (Ivezić et al., 2014) was

0.19 for the power-law, and 0.13 for the exponential distribution, indicating that the latter is a

slightly better fit. This indicates that either the fragment mass distribution was not a power-law,

or that the power-law distribution quickly tapered off due to small number statistics. Thus, we

believe that these s values are lower limits.

Using the MLE approach, we also fitted a power-law to the distribution of fragment radii.

The sizes changed with αs = 6.4, and the exponent is insensitive to the choice of bulk density.

This is consistent with theoretical transformations where the size index exponent is equal to

αs = 3s − 2 (Appendix C in Vaubaillon et al., 2005). This is a very large exponent value

compared to Rosetta measurements where they measured αs = 1.8, s = 1.27 for particles

>150 µm, and αs = 2.9, s = 1.63 for particles in the 30 – 150 µm range (Merouane et al.,

2016). This steepness, and the fact that all observed fragments could not be tracked to a single

fragmentation event, might indicate that the fragments we measured are daughter-fragments

of progressive fragmentation, and that the observed fragments were not pre-existing in the

meteoroid. Note that Merouane et al. (2016) give a cumulative size index αsc which relates to

the size index αs used here as αs = αsc + 1.

6.6.3 Identification and analysis of a larger population of fragmenting

meteors

Having established and presented our analysis methodology in detail for this first case study,

we expand our analysis to additional events. We identified 19 more events which showed gross

fragmentation with measurable fragments, and list their details in Table 6.5. These events were

not as favourable as the July 21 event because they had steeper entry angles and consequently

shorter trajectories (resulting in fewer data points), and had fewer measurable fragments (usu-

ally only 2-3). The error in the initial height was not estimated because all moments of frag-
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Figure 6.21: Light curve of individual fragments. Vertical lines indicate the portion of time
when all fragments were visible, and this was used to compute the partial fragment mass. Not
all fragments were visible all the time, so we linearly interpolated the magnitudes in the gaps.

Table 6.4: Estimated partial fragment masses and diameters, sorted by increasing value. The
diameters of spherical particles were computed using a bulk density of 3000 kg m−3.

Fragment No. Mass (kg) Diameter (mm)
4 1.96 × 10−6 2.31
8 2.53 × 10−6 2.52
3 2.62 × 10−6 2.54
7 3.06 × 10−6 2.68
12 3.53 × 10−6 2.81
2 3.98 × 10−6 2.92
11 4.10 × 10−6 2.95
9 5.02 × 10−6 3.16
1 5.33 × 10−6 3.22
5 5.99 × 10−6 3.35
10 7.92 × 10−6 3.68
6 8.28 × 10−6 3.73
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Figure 6.22: Cumulative distribution of fragment masses. The least squares fit (LSQ) on the
selected range of masses (red dots) is shown in red, and the maximum likelihood estimation
(MLE) fit is shown in blue.
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mentation were visually confirmed in the video, thus it was only perhaps off by one or two

video frames.

The observed events span a range of velocities and orbital types, indicating that gross frag-

mentation is not restricted to any one orbital type (a result also previously found by Subasinghe

et al., 2016). We emphasize that these events comprise only 5% of all observed meteors; thus

this sample should not be considered an unbiased survey of the entire meteoroid population.

According to Subasinghe et al. (2016), 95% of all meteors observed by the CAMO tracking

system show no discernible fragments, and most (> 85%) have a distinct wake, likely caused

by erosion of the meteoroid into constituent grains in the 1 – 100 µm size range, a process not

triggered by mechanical failure (Borovička et al., 2007).

Figure 6.23 shows the measured compressive strengths based on the fragmentation height

as function of initial meteoroid speed. The shaded zone represents the 2 – 3 kPa strength range

measured for 67P by the Philae lander (Biele et al., 2015). The nominal strengths of most

meteoroids lie in the range of 1 – 5 kPa, in excellent accord with results reported by other

authors discussed in sections 6.1.2 and 6.1.3. Figure 6.24 shows the measured compressive

strengths versus the Tisserand’s parameter with respect to Jupiter. There is no trend in strength

with orbital type. All measurements, except one, are within the measurement uncertainty of

the Philae in-situ measured upper strength limits.
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Figure 6.23: Height vs. initial velocity of measured meteors. Dashed lines indicate contours
of dynamic pressures at the given height and speed.
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Figure 6.24: Measured compressive strengths vs. Tisserand’s parameter with respect to Jupiter.
The error bars indicate the uncertainty range in dynamic pressure corresponding to an atmo-
spheric mass density variance of ±25%.
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6.7 Conclusions

We have summarized hardware and software reduction details of the upgraded CAMO mirror

tracking system, compared to the original instrument (Weryk et al., 2013). The current CAMO

system achieves an effective astrometric precision of 1 arc second, and a temporal resolution

of 10 ms.

Using three representative types of meteors observed with CAMO, we have shown that

the resolved trail morphology is the limiting factor in precision and ultimately, the obtainable

trajectory accuracy. In ideal conditions, CAMO achieves trajectory fit precision of <1 m and

initial velocity measurement precision on the order of 1 m s−1. Both the radiant and speed of

heavily fragmenting and eroding meteors have an order of magnitude higher uncertainty than

meteors with short wakes. For highly fragmenting meteors, the radiant precision is similar to

what can be achieved with moderate field of view non-tracking systems.

We used direct observations at the instant of gross meteoroid fragmentation to measure the

compressive strengths of meteoroids. We used the aerodynamic ram pressure exerted on the

meteoroid at the moment of fragmentation as a proxy for the compressive strength. A case

study of an unusually long and shallow entry event on July 21, 2017, where narrow-field video

showed the exact moment of fragmentation, resulted in 12 distinct fragments whose positions

were tracked. A very shallow entry angle of 8° enabled precise determination of the moments

of fragmentation, and consequently precise strength measurements. The meteoroid started

eroding at dynamic pressures below 1 kPa - this was not observed directly, but it was deduced

from the long wake visible at the beginning of narrow-field tracking. We note that the cause of

erosion might be thermal and not due to mechanical failure.

Next, the meteoroid visibly fragmented at 2 kPa, and the fragments themselves disinte-

grated at 3 kPa. We estimated a fragment mass index of s = 2.8 but believe this to be a lower

limit. This value is much larger than that derived from in-situ measurements by Rosetta of

comet 67P’s dust, and also larger than the mass indices of major meteor showers. This may

indicate that the observed fragments were not pre-existing in the meteoroid matrix, but created
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by progressive fragmentation.

Nineteen more meteors showing visible fragments after gross fragmentation were used

to survey compressive strengths. The majority had compressive strengths between 1 – 4 kPa

which were not correlated with orbital type. These measurements are in excellent accordance

with the in-situ measurements of comet 67P by the Philae lander (where the maximum strength

was between 2 – 3 kPa) and the Rosetta COSIMA instrument (strength on the order of several

kPa), as well as other theoretical and experimental work summarized in Section 6.1.2.

The overall measurement uncertainty of compressive strengths was about ±25% due to the

uncertainty in the atmosphere mass density. We note that only 5% of all meteors observed by

CAMO show gross fragmentation, thus these measurements do not represent all meteoroids,

although both cometary and asteroidal orbits are represented in this sample.

Having developed and validated these methods for the analysis of high temporal and spatial

resolution meteors observed with CAMO, in the future we aim to accurately measure the or-

bits of select meteor showers and use the high-precision constraints set by CAMO to improve

meteor shower prediction models. The focus of our future work will be on those meteor show-

ers caused by recently ejected meteoroids whose dispersion is solely caused by their ejection

velocity from the parent body, as gravitational and non-gravitational forces do not have time to

disperse the stream on such short timescales.
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Borovička, J., Spurnỳ, P., & Koten, P. 2007, Astronomy & Astrophysics, 473, 661
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Chapter 7

Radiant dispersion of the 2019 Orionids

measured using the CAMO mirror

tracking system

7.1 Introduction

The Orionids are an annual meteor shower that occurs around October 22 and whose parent

body is the comet 1P/Halley. The shower is moderately strong with a mean ZHR of around

25 (Jenniskens, 2006), and has a fast geocentric velocity of ∼66.5 km s−1. The Orionids have

a twin shower, the η Aquariids, which occur in early May each year. These two showers from

one parent reflect the fact that both nodes of 1P/Halley are close enough to the Earth that a

shower is visible at the ascending node (Orionids) and the descending node (ηAquariids). Each

stream’s evolution is distinct and complex; the encountered particles have different dynamical

histories (Yeomans & Kiang, 1981; McIntosh & Hajduk, 1983). While both showers have mm-

sized particles, the Orionids show occasional fireball outbursts (cm-sized objects) while the η

Aquariids are particularly rich in small (sub-mm) sized meteoroids (Chau & Galindo, 2008).

Observations of the 2006 Orionid fireball outburst have shown that large meteoroids are in a

284
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1:6 resonance with Jupiter (Sato & Watanabe, 2007; Spurnỳ & Shrbenỳ, 2008). Despite the

estimated age of the Orionid shower of around 20,000 years (Jones et al., 1989), the 1:6 reso-

nance appears to be impeding the dispersion process, causing stream meteoroids to concentrate

and leading to possible future outbursts (Sekhar & Asher, 2014).

Many previous studies investigated the structure of Orionid radiants (e.g. Znojil, 1968;

Porubčan, 1973; Hajduk, 1970), but the precision of their measurements was not well defined

per observation and was likely on the order of the expected physical dispersion itself. Kresák

& Porubčan (1970) measured an Orionid radiant dispersion of 0.84° which they defined as the

median offset from the mean radiant. They used high-fidelity multi-station Super-Schmidt data

reduced by Jacchia & Whipple (1961), although the data set does not contain any individu-

ally determined uncertainties. Spurnỳ & Shrbenỳ (2008) measured the median offset from the

mean radiant of the resonant Orionid branch in 2006 to be only 0.12°. Although they also do

not report uncertainties, their trajectories are likely more precise than the data used in Kresák

& Porubčan (1970) as fireballs usually have more data points for the trajectory fit, despite the

higher astrometric uncertainty of individual measurements on all-sky images. For larger me-

teoroids which are not very affected by non-gravitational forces, tighter radiants are naturally

expected if the meteoroids were locked in a resonance, so it is not clear if the true radiant dis-

persion was resolved by Kresák & Porubčan (1970), or the fireball outburst truly had a tighter

spread in radiants.

In this work, we use high-precision observations of the 2019 Orionids collected by the

Canadian Automated Meteor Observatory (CAMO) mirror tracking system (see Chapter 6 for

hardware details) to characterize the radiant dispersion of the Orionids. In particular, we esti-

mate uncertainties on a per event basis using the Monte Carlo approach described earlier, with

estimated measurement errors extracted from the variance in the observed picks from a straight

line trajectory. This allows us to sub-select events having the highest measurement precision.

Moreover, if the spread in radiant locations exceeds the typical radiant measurement precision

we may assume that we are detecting the true physical dispersion of the radiant, not limited by
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measurement error.

In Chapter 4 we show that in an ideal case the CAMO mirror tracking system has a ra-

diant precision of ∼0.01°, although this is predicated on favourable meteor morphology. As

shown in Chapter 6, radiant measurements might be an order of magnitude less precise for

highly fragmenting meteors. Nevertheless, we also demonstrated that using our Monte Carlo

methodology, the actual measurement uncertainty can be well estimated for CAMO observa-

tions. The results suggested that the CAMO system provides the most precise measurements

of faint meteor trajectories to date.

7.2 Observations details and data reduction

From October 23 to October 29 2019, the CAMO mirror tracking system observed a total

of 15 Orionids that were well tracked from both CAMO sites and had precise trajectories.

Five additional Orionids were observed, but had large measurement uncertainties due to either

unfavourable geometry or poor morphology, or were not well tracked. For these reasons they

were rejected from further analysis. We also manually rejected 6 meteors that the automated

shower association algorithm misclassified as Orionids (all meteors within 5° of the mean

Orionid radiant and with geocentric velocities within 30% of the nominal value) - their radiants

were significantly more scattered than the 15 used in this analysis.

The observations were manually reduced following the procedure described in Chapter 6.

As a reminder, astrometric picks were done by manually centroiding meteor positions using

narrow-field data, and wide-field data were used for photometry measurements. Radiants and

orbits of all 15 Orionids are given in Table 7.1. The velocity correction discussed in Chap-

ter 2 was not applied because it does not take into account the delay between meteor detec-

tion and the beginning of narrow-field tracking, which leads to further underestimation of the

initial velocity. In the future, we will fit a meteor ablation model to observations to invert

pre-atmosphere velocity and an updated list of Orionid orbits will be published.
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Figure 7.1: Composite gray-inverted image of seven Orionids recorded using CAMO narrow-
field camera. The frame number increases from top to bottom. All meteors show the leading
fragment morphology type.

A particularly unusual qualitative observation we noted is that all 15 Orionids had the same

“leading fragment” fragmentation morphology (Subasinghe & Campbell-Brown, 2018). An

example is shown in Figure 7.1. It is notable that examination of more than 1000 CAMO

tracked events showed leading fragments present in only about 3% of cases.

At the beginning of their visible trajectory, leading fragment meteors usually exhibit a wake

caused by continuous fragmentation. After some time one apparently single-body fragment

emerges at the front of the meteor, showing no further fragmentation nor wake and ultimately

dimming as a star-like point-spread function below the noise floor. One simple interpretation

is that this might indicate that the dust of 1P/Halley is refractory inclusion-rich, although we

cannot even speculate on the composition of these inclusions without spectral data.

Further confirmation of these observations can be done by analyzing η Aquariid meteors

using the same approach. If these really are refractory inclusions, similar to those found in the

dust of comet 81P/Wild 2 (Simon et al., 2008), this would further support the notion of large

scale radial mixing between reservoirs of solids in the inner and outer solar nebula during the

formation of the Solar System.
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The leading fragment morphology is favourable for achieving a high trajectory accuracy

because there is a consistent leading reference point with high signal to noise ratio that can

be picked. The top inset of Figure 7.2 shows an example of such event, demonstrating the

high precision achievable. Nevertheless, due to a different perspective from the two sites it

was sometimes difficult to pick the same features in both videos during manual data reduction.

Hence, the observed lags from both sites do not match in some cases.

The middle inset of Figure 7.2 shows one such case where the spatial fit residuals are

good, reflecting consistent picks along the meteor straight line trajectory. However, as the

same meteor features were not able to be located from both sites, there is an offset in the

lag of several to tens of meters (1 to 10 pixels in the image), reflecting poor along-track pick

consistency.

Finally, the bottom inset of Figure 7.2 shows an event which did not have a constant point

of reference. In this case, the transition happened during the moment of separation between the

dust and the leading fragment, so the lags show a discontinuous break. Nevertheless, the initial

velocity could still be computed with reasonable precision (note the near vertical lag over the

first 0.1 sec of the measurement).

As the lags between stations were sometimes inconsistent, in these cases the meteor trajec-

tory was computed using our implementation of the lines of sight method (Borovička, 1990)

and uncertainties were computed using the Monte Carlo method of Vida et al. (2020), described

in Chapter 3.

7.3 Radiant dispersion

Figure 7.3 shows the radiant and associated uncertainty for the 15 observed Orionid in Sun-

centred ecliptic (SCE) coordinates; the solar longitude is colour coded. As detailed modelling

of the Orionid radiant structure has not been published to date, we have no theoretical reference

to compare our observations. Hence, we can only speculate on the nature and groupings of the
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Figure 7.2: Orionids observed on: Top - October 28, 2019, at 05:16:22 UTC. Middle - October
23, 2019, at 08:45:02 UTC. Bottom - October 28, 2019, at 05:18:34 UTC. Left column: Spatial
fit residuals from a straight line. Right column: Distance along the trajectory lag relative to an
assumed constant velocity model.
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Figure 7.3: Radiants of Orionids observed by CAMO show in in Sun-centered ecliptic coor-
dinates. Here the uncertainty bars represent the one standard deviation in the Monte Carlo
estimated radiant location per event. Note the very different range in the x and y scales. The
cuts at (λg − λ�) = 246° and βg = −7.5° are shown as well.

observed radiant structure.

The data show a distinct radiant structure and one interpretation is that there are several

groups of radiants. One possible way to group them is in the following two groups: a group

of radiants with ecliptic latitudes βg < −7.5° which occur near the peak (solar longitude of

λ· ≈ 210°), and a second group with higher ecliptic latitudes which shows a larger spread in

SCE longitudes. The radiants of the second group appear to be drifting with the increasing

solar longitude, from λ· of 210° to 215°.

Alternatively, the radiants can perhaps be separated into a bulk of radiants with the SCE

longitude (λg − λ�) > 246° near the peak of activity, and a second group (a “tail”) extending

along βg ≈ −7.4° after the peak. Due to unfavourable weather conditions CAMO did not

observe the activity before the peak. Suggested cuts for both ways of separating the groups are

shown in Figure 7.3.

Table 7.2 lists positions of theoretical radiants computed by varying the argument of per-

ihelion and inclination (method H by Neslušan et al., 1998) of the past orbital elements of
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Figure 7.4: Radiants of the Orionids observed by CAMO compared to theoretical radiants.
Theoretical radiants are computed from the osculating orbit of 1P/Halley at a particular epoch
(Yeomans & Kiang, 1981) and are colour coded by the solar longitude of the closest intersec-
tion between the Earth’s and the comet’s orbit. The year of the comet’s perihelion passage is
marked for a selection of radiants.

comet 1P/Halley taken from Yeomans & Kiang (1981). This provides a basic framework for

interpreting the radiant structure, but more robust modelling looking at evolution of individual

trails ejected from the comet and integrating these particles forward to the present epoch are

highly desirable.

Theoretical radiants are compared with observations in Figure 7.4. This simplistic approach

shows that the radiants observed close to the peak of activity correspond well to theoretical

radiants computed using the comets orbital elements from about 0 to 1000 CE. The observed

off-peak branch with (λg − λ�) ≤ 246° is far from these theoretical radiants and may either be

the result of dynamical interactions not modelled in this work or much older ejecta. We also

note that theoretical radiants derived from older perihelion passages extend south and roughly

follow the beginning of the “Orionid tail” (Jenniskens et al., 2016).

We compare the CAMO Orionid observations to Cameras for All-sky Meteor Surveillance
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(CAMS)1 and Global Meteor Network (GMN)2 data. These systems observe a similar mete-

oroid mass range to CAMO. CAMS observations were collected in 2010-2013 using low-light

Watec 902H2U CCD cameras operated at 30 frames per second (FPS) and 12 mm f/1.2 lenses,

which gave a plate scale of 2.57 arcminutes per pixel and a limiting stellar magnitude of +5.5M

(Jenniskens et al., 2011, 2016). The GMN data was collected in 2019 using IMX291 CMOS

cameras operated at 25 FPS and 16 mm f/1.0 lenses corresponding to a plate scale of 0.94 ar-

cminutes per pixel and a limiting stellar magnitude of +9.0M. Note that GMN trajectory anal-

ysis and measurement uncertainty were performed using the same methodology as CAMO.

Radiants from both data sets with convergence angles Qc < 15° and velocity errors larger than

15% were rejected. All solutions having radiant errors larger than 0.5° for CAMS (following

Jenniskens et al., 2016) and 0.075° for GMN data were rejected. The difference in the radiant

error threshold is a reflection of the stated uncertainties in the data sets themselves. After fil-

tering, the median radiant error for Orionids recorded with CAMS was 0.297°, for GMN data

0.043°, and for CAMO data 0.050°. Figure 7.5 shows a comparison of Orionid radiants from

all three systems - CAMO and GMN seem to follow the same pattern while CAMS data do not

seem to be precise enough to resolve the structure observed by the other two systems.

Figure 7.6 shows observed CAMO and GMN Orionid radiants with the solar longitude

colour coded. Both data sets show the same radiant motion over time, although the presence

of the two branches is not as clearly visible in the GMN data set. We conclude that the inde-

pendent GMN observations broadly support the radiant structure, dispersion, and the radiant

position dependence on the solar longitude that is present in the CAMO data set.

Taking the whole of CAMO data together, we model the radiant drift as a linear offset in

SCE coordinates over time (i.e. solar longitude) as

1CAMS data can be obtained at: http://cams.seti.org/
2GMN data can be obtained at: https://globalmeteornetwork.org/
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Figure 7.5: Comparison of Orionid radiants captured using CAMS, GMN, and CAMO sys-
tems. The error bars for CAMS data were not plotted to reduce visual clutter, but they are on
average 6 times larger than for the other two data sets.

Figure 7.6: Comparison of radiants and solar longitudes of GMN and CAMO Orionids.



294 Chapter 7. Orionids dispersion

Figure 7.7: Drift in Sun-centred ecliptic longitudes and latitudes for the 2019 Orionids ob-
served by CAMO.

(λg − λ�)′ = 246.76◦ − 0.30 (λ� − 209◦) , (7.1)

β′g = −7.69◦ + 0.06 (λ� − 209◦) , (7.2)

and Figure 7.7 shows the radiant drift in both the SCE longitude and latitude. Figure 7.8 shows

the radiant positions after the drift correction. The median offset from the mean radiant is 0.43°,

but this is entirely due to the scatter in the drift-corrected SCE longitude of 0.41°, compared to

the median offset in the latitude of only 0.09°.

Splitting the radiants into two groups by SCE latitude at βg = −7.5° provides only a

marginal decrease in the dispersion. The point with the smallest value of the SCE longitude (the
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Figure 7.8: Drift corrected CAMO Orionid radiants.

rightmost point in Figure 7.3) appears as an outlier which substantially deviates from the fitted

drift of all other points, thus is was removed from the fit. The upper branch with βg > −7.5° has

a median offset from the mean radiant of 0.29° which is again entirely driven by the dispersion

in the SCE longitude (0.29° vs 0.02° in the latitude). The lower branch with βg ≤ −7.5° has

a similar median offset from the mean radiant of 0.32° (the longitude/latitude split is 0.31° vs

0.02°). Figure 7.9 shows the drift corrected radiants from the mean of every group.

If the split is done by the SCE longitude (λg − λ�) = 246°, and with the outlier removed

as described above, one of the branches shows a significant decrease in dispersion. The branch

with SCE longitude > 246° still has a similar median offset from the mean radiant than before,

around 0.40° (0.33° vs 0.15° longitude/latitude split). On the other hand, the branch with SCE

longitude ≤ 246° has a dispersion of only 0.12° (0.11° vs 0.02° longitude/latitude split), as

seen in Figure 7.10. We note that there are only five radiants in the tighter branch, thus no

hard conclusions can be made about the structure due to low number statistics, but the data are

suggestive.

It has been suggested in the past that different branches of the Orionids may have different

masses (Znojil et al., 1987), hence we also computed observed meteoroid masses. Photometric
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Figure 7.9: Drift corrected CAMO Orionid radiants split into two branches at βg = −7.5°.
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Figure 7.10: Drift corrected CAMO Orionid radiants split into two branches at (λg−λ�) = 246°.
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Figure 7.11: Orionid radiants in SCE coordinates with the photometric mass colour coded.

masses were computed from CAMO wide-field light curves using equation 5.16 (in Chapter

5) and a fixed dimensionless luminous efficiency of τ = 0.7% and P0M = 840 W. Figure 7.11

shows the radiant plot with the logarithm of masses colour coded. All observed meteoroids

had masses in the 2 – 10 µg range. There is no strong grouping by radiant position, although

the first four meteoroids from the right (excluding the rightmost outlier) have a similar mass of

∼6 µg.

Finally, we plot the radiants in equatorial coordinates and give them in Figures 7.12 and

7.13. As it can be seen, there is a strong radiant drift in right ascension which may obscure the

structure. For this reason, we recommend using Sun-centered ecliptic coordinates.
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Figure 7.12: Orionid radiants in equatorial coordinates - comparison between CAMS, GMN,
and CAMO observations.

Figure 7.13: Orionid radiants in equatorial coordinates colour coded by solar longitude - com-
parison between CAMS, GMN, and CAMO observations.
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7.4 Conclusions

Multi-station observations of the Orionid meteor shower were performed using the CAMO

mirror tracking system in October 2019. The narrow field data was manually reduced and

high-precision trajectories were computed. The median radiant error for individual Orionids

detected by CAMO was 0.05°.

All observed Orionids show a leading fragment morphology, permitting high trajectory

precision. Although spectral observations and ablation modelling is required to derive physical

properties of these leading fragments, their non-fragmenting nature and lower deceleration

would be consistent with refractory inclusions. If so, this would mean that these thermally

processed particles were mixed into 1P/Halley, which presumably formed in the outer Solar

System.

The Orionid radiant spread shows an elongated structure which is also visible in the high-

precision Global Meteor Network data set. The radiant dispersion was measured as the median

offset from the mean drift-corrected radiant. Including all observations, the dispersion is 0.41°,

but almost entirely in the Sun-centred ecliptic longitude direction - the median spread in the

ecliptic latitude is only ∼0.1°. This dispersion is considerably larger than our median measure-

ment precision and is about half the the dispersion measured by Kresák & Porubčan (1970). It

represents our best estimate of the physical radiant dispersion of the Orionid shower near the

time of its maximum appropriate to 1 – 10 µg masses.

A significant decrease in the dispersion can achieved if the radiants are split into two groups

of SCE longitude at (λg − λ�) = 246°. The group with ≤ 246° has a dispersion of only 0.12°,

but only five radiants are a part of this group. Four out of five radiants in this group had pho-

tometric masses around to 6 µg, while masses of the whole data set were uniformly distributed

in the 2 – 10 µg range. This may indicate that only meteoroids in this specific mass range were

scattered into the branch after a close encounter with a planet. However, the small number

statistics make this breakdown into groupings uncertain; more high precision measurements of

the Orionids are needed to see if this structure remains.
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We have demonstrated that the CAMO mirror tracking system can resolve the true physical

dispersion of the Orionids, which we find to be about an order of magnitude larger than the

measurement precision. Nevertheless, more high-precision observations of the Orionids are

needed to confidently deduce its radiant structure. Numerical modelling of the Orionid mete-

oroid stream is necessary to understand its dynamical evolution, and these observations can be

used to constrain the model parameters.
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Chapter 8

Conclusion

8.1 Thesis summary

The main goal of this work is to improve understanding of meteor trajectory and orbit accuracy

as a means specifically to measure the physical dispersion of radiants within meteor showers.

As discussed in Chapter 1, the current understanding of methods, uncertainty estimation, and

the total accuracy of measuring meteor trajectories is insufficient to claim that physical meteor

shower radiant dispersions can be resolved. It has been suggested in the past that measured ra-

diant dispersions are dominated by measurement error for all but the oldest and most disperse

showers. This suggests that radiant dispersions derived through dynamic modelling of mete-

oroids ejected from their parent comets might be an order of magnitude smaller than observed

dispersions. Measuring the real physical dispersion of young meteor shower radiants, before

non-gravitational forces and stochastic processes significantly influence the meteoroid stream,

may make it possible to directly derive ejection velocities of meteoroids from their parent bod-

ies (comets and asteroids). As meteor orbits are computed from two distinct measurements,

the meteor radiant and the meteoroid pre-atmosphere velocity, we investigated the orbital accu-

racy one may expect to achieve using state-of-the-art optical meteor observation systems and

methods.

311
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In Chapter 2, numerical models of meteor ablation were used to demonstrate that small

meteors decelerate up to 750 m s−1 (up to 5%) prior to becoming visible by common optical

observation systems. The total amount of deceleration prior to detection depends on mete-

oroid size (smaller ones decelerate more), compositional type (asteroidal decelerate more than

cometary), and zenith angle (meteors with steeper entry angles decelerate less). This work

demonstrates that despite being able to precisely measure velocities of meteors at the point

where they first become visible, the ultimate accuracy of the pre-atmosphere (no deceleration)

velocity is model-dependent. Thus, the main limitation to measured orbital accuracy is the

fidelity of meteor ablation models and the quality of fit to data.

In Chapters 3 and 4 a novel meteor trajectory simulator and a novel method of meteor

trajectory estimation are developed and tested. It was demonstrated that the novel trajectory

estimation method is superior to previous methods, especially for data with high-precision

measurements where meteor deceleration is visible. Critically, the novel method uses the ob-

served dynamics of meteors to constrain the trajectory, but without forcing meteor kinematic

models. Furthermore, through dynamical meteoroid stream modelling of the 2011 Draconid

outburst, it was shown that a minimum radiant measurement accuracy of 0.1° is needed to re-

solve the physical dispersion of structure of the tightest (i.e. the youngest) meteor showers.

This radiant measurement accuracy can be achieved by moderate field of view systems, as

well as the Canadian Automated Meteor Observatory’s mirror tracking system (which has an

accuracy approaching 0.01°).

In Chapter 5 a novel method of estimating mass indices of meteor populations based on

the maximum likelihood estimation method was developed. The method was applied to the

2018 outburst of the Draconid meteor shower. Multi-station observations of the shower were

conducted using sensitive EMCCD cameras, and radiants and orbits of observed meteors were

computed. Critically for this thesis, the measured dispersion of the shower was 0.25° (me-

dian offset from the mean radiant), which is in good agreement with previous high-precision

observations and simulations.
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Chapter 6 presents hardware and data reduction pipeline details of the CAMO mirror track-

ing system. It was shown that the meteor trajectory measurement precision is not only depen-

dent on the optical resolving power but for such a high optical resolution system the meteor

morphology becomes a limiting factor. Compact and non-fragmenting meteors have the best

radiant precision, approaching the theoretical value of 0.01° for CAMO, while highly fragment-

ing meteors have a significantly worse precision which is on par with non-tracking moderate

field of view systems. As a by-product of this work, the compressive strength of 20 highly

fragmenting meteors was measured. The dynamic pressure at the moment of directly observed

fragmentation was used as a proxy for meteoroid bulk compressive strength. It was found

that the measured values of 1 – 4 kPa are in excellent accordance with in-situ measurements by

Rosetta.

Finally, in Chapter 7 the physical dispersion of the 2019 Orionid meteor shower was mea-

sured. Taking all radiants together, the dispersion (measured as the median offset from the

drift-corrected radiant) was ∼0.4°. Dividing the radiant into branches by Sun-centred ecliptic

longitude, a further reduction of the dispersion can be achieved to about 0.1°, but more obser-

vations are needed to confidently deduce the true structure. The median radiant measurement

error of 0.05° was a factor of two to an order of magnitude smaller than the observed disper-

sion. It was also noticed through high-resolution CAMO observations that all Orionids show

the leading fragment morphology, which has implications to the understanding of Solar System

formation.

8.2 Future Work

Future work using the CAMO mirror tracking system to gather high quality radiants to mea-

sure dispersion is contingent on favourable observing conditions during the activity of meteor

showers of interest. To continue the study described in Chapter 7, more observations of the

Orionids need to be collected. The ultimate goal would be to measure physical dispersions of
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all major meteor showers to characterize their age, such as the Lyrids, η Aquariids, southern δ

Aquariids, Perseids, Draconids, Leonids and Geminids. While the physical spread for young

streams is a proxy for ejection speed, the dispersion of older streams is useful as a direct proxy

for age; thus the true radiant spread of a shower may give an independent estimate for stream

age. The usefulness of low-cost systems used by the Global Meteor Network for dispersion

measurements should be investigated, as they may also provide high-quality data. The mor-

phology of all shower meteors observed by the CAMO mirror tracking system will be analyzed

to infer their physical properties and dynamical histories.

In the future, meteoroid ablation models may be used to fit Orionid light curves, decel-

eration profiles, and wakes in an attempt to infer physical properties of Orionid meteoroids

and leading fragments. Such detailed models yield as a side-product accurate meteoroid pre-

atmosphere velocities, which may help to constrain the orbital parameter space populated by

the Orionids and in turn inform their dynamical history.

Finally, an ablation model fit to high-fidelity observations of the 2018 Draconid outburst

to infer meteoroid grain size distribution and density would be useful in constraining radiant

dispersion. As the Draconids are the youngest observed shower, they are the best candidate

for constraining the ejection speed from the parent comet through dynamical meteoroid stream

modelling.

Ablation models are complex due to different possible modes of fragmentation and the

number of free parameters, hence they are usually fit manually to data. A machine learning

approach might be useful to automate the process and facilitate parameter estimation for a

larger number of meteor events.



Appendix A

Equations and transformations for

trajectory and orbit computation

A.1 Bending of the trajectory due to gravity

The straight line approximation for trajectories breaks down in the case of long (> 4 s) meteors,

when they will show vertical curvature that should be visible even with less precise systems.

At a height of 100 km the gravitational acceleration is g = ∼9.5 m s−2, although it changes as

the meteor descends through the atmosphere with the classical relation

g(r) =
GME

r2 , (A.1)

where ME is the mass of the Earth and r is the distance of the meteor from the centre of the

Earth. To compute the changing value of the gravitational acceleration, we assume that at the

begin point, the downward vertical component of the meteor’s velocity vz is equal to the vertical

component of the initial velocity

vz = −v0 cos zc , (A.2)

315
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where v0 is the initial velocity and zc the apparent zenith angle. Thus, the gravitational acceler-

ation at a relative time t after the beginning of the meteor is

g(t) =
GME

(r0 + vzt)2 , (A.3)

where ME is the mass of the Earth and r0 is the distance from the centre of the Earth to the

beginning height of the meteor. The total drop of the meteor due to gravity after time T is then

∆h(T ) =

∫ T

0
g(t)t dt . (A.4)

After integration we obtain the following relation:

∆h(T ) =
GME

v2
z

(
r0

r0 + vzT
+ ln

r0 + vzT
r0

− 1
)
. (A.5)

To avoid domain issues when vz ≈ 0 we only use this expanded equation if |vz| > 100 m s−1,

otherwise we use equation A.1 with r = r0 to compute g and the classical way of computing

the additional drop in height due to gravity

∆h(T ) =
1
2

gT 2 . (A.6)

Applying ∆h to the vertical component of the meteor at every point in time effectively

simulates the curvature of the meteor’s trajectory due to gravity.

A.2 Distance between lines in 3D space

Let vector
#»
P be the position of the observer in an arbitrary rectangular coordinate system,

and
#»
U be the direction vector of the line of sight emanating from the observer. Let

#»
S be the

position of the state vector, and
#»
R be the radiant vector. The closest points of approach can be

calculated as
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#»w =
#»
P −

#»
S ,

a =
#»
U ·

#»
U ,

b =
#»
U ·

#»
R ,

c =
#»
R ·

#»
R ,

d =
#»
U · #»w ,

e =
#»
R · #»w ,

QC =
be − cd
ac − b2 ,

TC =
ae − bd
ac − b2 ,

#»
Q =

#»
P + QC

#»
U ,

#»
T =

#»
S + TC

#»
R ,

d = |
#»
Q −

#»
T | ,

(A.7)

where
#»
Q is the point on the observer’s line of sight closest to the radiant line, and

#»
T is the point

on the radiant line closest to the line of sight of the observer. d is the distance between those

two points. The equations are taken from Eberly (2006) in a modified form.

A.3 Orbit computation

The orbit is computed from 4 parameters: The apparent radiant unit vector R̂, the initial velocity

v0, the ECI coordinates of the state vector
#»
S , and the reference Julian date of the beginning of

the meteor JDre f . The equations below assume that the radiant and the state vector are given

in the epoch of date, not J2000. Furthermore, we assume that the location of the state vector

is at the beginning of the meteor, not at an average point on the trajectory. The state vector
#»
S should be in meters and the initial velocity v0 in m s−1 to be consistent with constants and

parameter units used herein.

First, the geocentric latitude of the state vector is calculated as
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ϕ′ = atan2
(
S z,

√
S 2

x + S 2
y

)
. (A.8)

Next, care must taken to use the Barycentric Dynamical Time T DB in calculations where

necessary. For epochs in 1972 and later the dynamical time is simply calculated as the Julian

date with the added leap seconds ∆t up to the given JD, plus a constant of 32.184 s (Clark,

2010). The number of leap seconds can be obtained from the United States Naval observatory

FTP site1. For example, ∆t for a meteor observed between 2006 and 2009 is 33 s, while for a

meteor observed after January 1, 2017 (until a future leap second is added) is 37 s.

T DB = JDre f +
∆t + 32.184

86400
(A.9)

Next, the geodetic latitude ϕ and the longitude λ of the beginning point of the meteor

projected onto the Earth’s surface are calculated from the ECI coordinates of the state vector

using the method described in A.4.2.

A.3.1 Correcting the apparent radiant and the velocity for Earth’s rota-

tion

If the trajectory was estimated with the intersecting planes method, or if the stations were kept

fixed, one needs to correct the radiant for Earth’s rotation. Please note the important fact that the

correction described in this section must not be applied if the ECI coordinates of the stations

were moving in time in the trajectory estimation procedure. Thus, if the station coordinates

were moving during the meteor event, the velocity vector is simply calculated as

#»v0 = v0R̂ , (A.10)

and the rest of the equations in this subsection A.3.1 can be skipped. Otherwise, the procedure

1USNO leap seconds file, ftp://maia.usno.navy.mil/ser7/tai-utc.dat, (Accessed February 18,
2018)
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described below must be followed.

The rotation velocity of the Earth (in m s−1) at the height of the state vector can be calculated

as

ve =
2π|

#»
S | cosϕ′

86164.09053
, (A.11)

where the number in the denominator is the duration of the sidereal day in seconds.

Next, as the direction of the Earth’s rotation vector is always towards the east, we can

calculate the components of the velocity vector of the meteor #»v0 as

v0x = v0R̂x − ve cosαe ,

v0y = v0R̂y − ve sinαe ,

v0z = v0R̂z ,

(A.12)

where αe is the right ascension of the direction of the rotation of the Earth. This can be calcu-

lated using the equations given in Appendix A.6 if we take the azimuth to be A = π
2 (i.e. due

East) and elevation a = 0.

It is very important to note that this correction only influences the direction of the radiant,

but not the initial velocity itself. This is only true if ECI coordinates are used throughout, re-

gardless of keeping the stations fixed or not. This arises from the way the velocity is computed

in this work, which is always done with the time in mind, and using moving stations. Once

the trajectory is computed, we can estimate the time offsets easily and compute the rotation-

corrected velocity. But as we have used a fixed radiant to do that, we only have to correct it,

and not the velocity.

A.3.2 Geocentric radiant

First, we calculate equatorial coordinates of the apparent radiant following Ceplecha (1987) as
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v̂0 =
#»v0

| #»v0|
,

α = atan2
(
v̂0y, v̂0x

)
,

δ = arcsin v̂0z .

(A.13)

The geocentric velocity is calculated as

vg =

√
v2

0 −
2 ∗ 6.67408 ∗ 5.9722 ∗ 1013

|
#»
S |

, (A.14)

where the second term under the square root is the square of the escape velocity
(

2GME
r

)
at the

height of the state vector. Next, the zenith attraction correction is applied using the Schiaparelli

method (Gural, 2001):

zc = arccos
(
sin δ sinϕ′ + cos δ cosϕ′ cos

(
θ′ − α

))
,

∆zc = 2 atan2
(
(v0 − vg) tan

zc

2
, v0 + vg

)
,

zg = zc + |∆zc| ,

(A.15)

where zc is the apparent zenith angle, θ′ is the apparent local sidereal time (see Appendix A.5),

∆zc the zenith attraction correction, and zg the zenith angle of the geocentric radiant.

The azimuth Ac of the radiant (possibly corrected for Earth’s rotation) is calculated using

the equations given in Appendix A.7. The apparent α and δ should be used, and care must be

taken to use the geocentric latitude ϕ′ instead of the geodetic latitude. The geocentric radiant

in equatorial coordinates (αg, δg) is then calculated using the equations given in Appendix A.6,

where the azimuth is A = Ac, the elevation is a = π
2 − zg, and the geocentric latitude ϕ′ must be

used as well.

Next, the radiant is precessed from the epoch of date (JDre f ) to J2000 using the equations

given in Appendix A.8. The geocentric ecliptic longitude λg and latitude βg are calculated

with equations given in Appendix A.9; care must be taken to use the Julian date of J2000

(JD = 2451545) when computing ecliptic coordinates, not JDre f .
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A.3.3 Precessing ECI coordinates to J2000

As the ECI coordinates of the meteor are in the epoch of date, they have to be precessed to

J2000. This can easily be done by converting them to spherical coordinates

rECI = |
#»
S | ,

αECI = atan2
(
S y, S x

)
,

δECI = arccos
S z

rECI
,

(A.16)

were rECI is the distance from the center of the Earth to the reference position of the meteor,

and αECI and δECI are angular components. αECI and δECI are precessed to J2000 from JDre f

using equations given in Appendix A.8, after which α′ECI and δ′ECI are obtained. Finally, these

coordinates can be converted back to rectangular ECI coordinates in J2000

S ′x = rECI sin δ′ECI cosα′ECI ,

S ′y = rECI sin δ′ECI sinα′ECI ,

S ′z = rECI cos δ′ECI .

(A.17)

A.3.4 Position and the velocity of the Earth

JPL DE430 ephemerids (Folkner et al., 2014) are used for computing Cartesian heliocentric

ecliptic coordinates and the velocity of the Earth at the reference dynamical time T DB. As the

implementation of the ephemerids does not allow the calculation of the heliocentric ecliptic

coordinates of the Earth directly, the following procedure was adopted:

1. The position
#       »
REMB and the velocity

#       »
VEMB of the Earth-Moon barycentre with respect

to the Solar System Barycentre is obtained from the model in heliocentric equatorial

coordinates (kilometers).

2. The position
#    »
RS B and the velocity

#    »
VS B of the centre of the Sun with respect to the So-

lar System barycentre is obtained from the model in heliocentric equatorial coordinates
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(kilometers).

3. The position
#        »
REEM and the velocity

#        »
VEEM of the centre of the Earth with repect to the the

Earth-Moon barycentre is obtained from the model in heliocentric equatorial coordinates

(kilometers).

The heliocentric position and the velocity of the centre of the Earth in equatorial coordinates is

then computed as

#    »
REH =

#       »
REMB −

#    »
RS B +

#        »
REEM ,

#    »
VEH =

#       »
VEMB −

#    »
VS B +

#        »
VEEM ,

(A.18)

where
#    »
REH and

#    »
VEH are in km and km s−1, respectively.

A.3.5 Heliocentric coordinates of the meteor

Coordinates of the meteor in heliocentric equatorial coordinates can be calculated by simply

adding the position of the Earth in heliocentric equatorial coordinates to the ECI coordinates

of the meteor in J2000

#»
M =

#    »
REH +

#»
S ′

1000
. (A.19)

Care must be taken to match the units, as the ECI coordinates were given in meters, while
#»
M

should be in kilometers. Both the coordinates of the meteor
#»
M and the velocity of the Earth

#    »
VEH have to be converted to the ecliptic reference frame by rotating them on the X axis by the

negative value of the mean obliquity of the Earth at J2000, εJ2000 = 23.439 291 111 1°


xecliptic

yecliptic

zecliptic

 =


1 0 0

0 cos(−εJ2000) sin(−εJ2000)

0 − sin(−εJ2000) cos(−εJ2000)




xequatorial

yequatorial

zequatorial

 , (A.20)

after which
#  »
M′ and

#    »
V ′EH in heliocentric ecliptic coordinates are obtained.
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The heliocentric velocity vector of the meteor is calculated by adding the geocentric veloc-

ity of the meteor to the velocity of the Earth. As
#    »
V ′EH is in heliocentric ecliptic coordinates,

we convert the geocentric velocity into an ecliptic velocity vector (λg and βg can be computed

using equations in Appendix A.9):

vgEx = −vg cos λg cos βg ,

vgEy = −vg sin λg cos βg ,

vgEz = −vg sin βg ,

(A.21)

and add it to the velocity of the Earth around the Sun to obtain the heliocentric velocity vector

# »vH:

# »vH =
#    »

V ′EH +

#  »vgE

1000
, (A.22)

where # »vH and
#    »
V ′EH are km s−1, and #  »vgE is in m s−1.

A.3.6 Heliocentric ecliptic radiants

Tsuchiya et al. (2017) have shown that low-velocity meteor showers suffer from large disper-

sion in geocentric equatorial coordinates due to the component of Earth’s velocity. They pro-

pose calculating radiants in heliocentric ecliptic coordinates, as slower meteor showers show

significantly lower dispersions in that coordinate system. For completeness, we give the equa-

tions below.

The unit heliocentric velocity vector of the meteoroid is calculated as

V̂c =
# »vH

| # »vH |
, (A.23)

and the radiant in heliocentric ecliptic coordinates is then calculated as
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λh = atan2
(
V̂cy, V̂cx

)
+ π ,

βh = − arcsin V̂cz .

(A.24)

A.3.7 Keplerian orbital elements

The solar longitude λ� can be calculated from the ecliptic heliocentric position of the Earth
#    »
R′EH, which can be computed by rotating the equatorial heliocentric position

#    »
REH using equation

A.20.

λ� = atan2
(
R′EHy,R

′
EHx

)
+ π (A.25)

The specific orbital energy ε can be calculated as

ε =
| # »vH |

2

2
−
µ�

|
#  »
M′|

, (A.26)

where # »vH is the heliocentric ecliptic velocity vector of the meteor, µ� = 1.327 124 400 18 × 1011 km3 s−2

is the gravitational constant of the Sun, and
#  »
M′ is the heliocentric ecliptic position vector of the

meteoroid.

The semi-major axis in AU is

a =
−µ�
2εrAU

, (A.27)

where rAU = 149 597 870.7 km is one astronomical unit in kilometers. Mean motion in radians

per day can be calculated as

n = 86400

√
GM�

(1000|a|rAU)3 , (A.28)

where G = 6.673 84 × 10−11 m3 kg−1 s−2 is the gravitational constant, and M� = 1.988 55 × 1030 kg

is the mass of the Sun. The orbital period in years is
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T =
2π

86400YS

√
(rAUa)3

µ�
, (A.29)

where YS = 365.256363004 is the sidereal year in days. Next, we calculate the orbital angular

momentum vector

#»
h =

#  »

M′ × # »vH ; (A.30)

the inclination is then simply

i = arccos
hz

|
#»
h |
, (A.31)

and the eccentricity is then the magnitude of the eccentricity vector

#»e =
# »vH ×

#»
h

µ�
−

#  »
M′

|
#  »
M′|

,

e = | #»e | .

(A.32)

We follow Jenniskens et al. (2011) on calculating the perihelion distance:

q =


|

# »

M′ |+ #»e ·
# »

M′

1+| #»e | , e = 1

a(1 − e), otherwise
; (A.33)

the aphelion distance is then simply

Q = a(1 + e) . (A.34)

The ascending node Ω is calculated following Clark (2010) as

#»
k = [0, 0, 1] ,

#»n =
#»
k ×

#»
h ,

(A.35)
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Ω =


0, | #»n | = 0

atan2
(
ny, nx

)
, otherwise

, (A.36)

where #»n is a vector pointing from the Sun to the ascending node. Please note that the ascending

node loses meaning for inclinations close to 0°, thus we keep the node at 0° when the magnitude

of the #»n vector is 0.

If | #»n | , 0, the argument of perihelion ω is calculated as

ω = arccos
#»n · #»e
| #»n || #»e |

, (A.37)

and if ez < 0 then ω = 2π − ω. If on the other hand | #»n | = 0, then

ω = arccos
ex

| #»e |
. (A.38)

The longitude of perihelion $ is simply

$ = Ω + ω . (A.39)

True anomaly ν is calculated as

ν = arccos
#»e ·

#  »
M′

| #»e ||
#  »
M′|

, (A.40)

and if
#  »
M′ · # »vH < 0 then ν = 2π − ν.

The eccentric anomaly E is

E = atan2
(√

1 − e2 sin ν, e + cos ν
)
, (A.41)

from which the mean anomaly M can be calculated as

M = E − e sin E . (A.42)
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The time in days since the last perihelion passage, reference to T DB, is

∆t$ =
Ma3/2

k
, (A.43)

where k = 0.01720209895(AU)3/2(day)−1(solar mass)−1/2 is the Gaussian gravitational con-

stant.

Finally, we calculate the Tisserand parameter with respect to Jupiter as

TJ =
aJ

a
+ 2

√
(1 − e2)

a
aJ

cos i , (A.44)

where aJ = 5.204267AU is the semi-major axis of Jupiter.

A.4 Earth-centered inertial coordinates

The Earth-centered inertial (ECI) coordinates are a Cartesian coordinate system where the

X-Y plane coincides with the equatorial plane of the Earth, and the X axis passes through

the equinox of the given epoch. The Z axis passes through the Earth’s North pole. As the

coordinate system is permanently fixed to the celestial sphere, a fixed point on the surface of

the Earth will have changing coordinates in time. As we assume that the observations are given

in the epoch of date, we keep the ECI coordinates in the epoch of date as well. The equations

in this chapter are reproduced from Chatfield (1997) and Archinal (1992) in a modified form.

Let the distance from the centre of the Earth to the position given by geographical coordi-

nates in the WGS84 system be calculated as follows:

N =
re√

1 − e2
e sin2 ϕ

, (A.45)

where re is the equatorial radius of the Earth as defined by the WGS84 system, re = 6 378 137.0 m,

and ee is the equatorial ellipticity of an oblate Earth
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ee =

√
1 −

r2
p

r2
e
, (A.46)

where rp is the polar radius of the Earth, rp = 6 356 752.314 245 m. The polar ellipticity is

ep =

√
r2

e − r2
p

r2
p

. (A.47)

A.4.1 Converting geographical coordinates to ECI

Let ϕ be the geodetic latitude, λ the longitude, h the height above a WGS84 model for Earth,

and θ′ the apparent local sidereal time (LST). Note that the height is not the same as the Mean

Sea Level (MSL) height reported by Google Earth and some GPS devices. If the MSL height

is used, it has to be first converted to WGS84 height (Pavlis et al., 2012). The apparent LST

θ′ can be calculated using the procedure described in Meeus (1998) page 88 and Clark (2010),

see Appendix A.5 for equations.

First, the coordinates are transformed into Earth-Centred Earth-Fixed (ECEF) coordinates

xECEF = (N + h) cosϕ cos λ ,

yECEF = (N + h) cosϕ sin λ ,

zECEF =
(
(1 − e2

e)N + h
)

sinϕ .

(A.48)

The radius of the Earth at the given geodetic latitude is then

Rh =

√
x2

ECEF + y2
ECEF + z2

ECEF . (A.49)

Using the geocentric latitude ϕ′

ϕ′ = atan2
(
zECEF ,

√
x2

ECEF + y2
ECEF

)
, (A.50)

the ECI coordinates in the epoch of date are then calculated as
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xECI = Rh cosϕ′ cos θ′ ,

yECI = Rh cosϕ′ sin θ′ ,

zECI = Rh sinϕ′ .

(A.51)

A.4.2 ECI to geographical coordinates

Given the apparent sidereal time at Greenwich θ′0 (see equation A.60), the longitude can be

calculated as

λ = atan2 (yECI , xECI) − θ′0 . (A.52)

The geodetic latitude ϕ is calculated as

p =

√
x2

ECI + y2
ECI ,

ϑ = atan2
(
zECIre, prp

)
,

ϕ = atan2
(
zECI + e2

prp sin3 ϑ, p − e2
ere cos3 ϑ

)
.

(A.53)

Care must be taken when calculating the height near exact poles due to numerical instabil-

ities. If the coordinates are near the poles, and we take this as being within 1000 m from the

poles, which can be determined by testing if both conditions |xECI | < 1000 and |yECI | < 1000

are true, the height is calculated as

h = |zECI | − rp , (A.54)

otherwise, the height above a WGS84 ellipsoid is calculated as

N =
re√

1 − e2
e sin2 ϕ

,

h =
p

cosϕ
− N .

(A.55)

This height is given in the WGS84 convention, if the height above mean sea level (MSL) is
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desired, a correction described in Pavlis et al. (2012) has to be applied.

A.5 Local apparent sidereal time

First, we calculate the nutation components ∆ψ and ∆ε in equation A.57 as given in Meeus

(1998), chapter 22. We use the set of equations which give around 0.5′′ precision, which we

deem sufficient for needs of meteoroid orbits. The dynamical time T DB is used. Ω is the

longitude of the ascending node of the Moon’s mean orbit on the ecliptic measured from the

mean equinox of the date, L is the mean longitude of the Sun, and L′ is the mean longitude of

the Moon. The values are in degrees.

T =
T DB − 2451545

36525
,

Ω = 125.04452 − 1934.136261T ,

L = 280.4665 + 36000.7698T ,

L′ = 218.3165 + 481267.8813T .

(A.56)

The nutation in longitude ∆ψ and the nutation in obliquity ∆ε are calculated in arc seconds

as

∆ψ = −17.2 sin Ω − 1.32 sin 2L − 0.23 sin 2L′ + 0.21 sin 2Ω ,

∆ε = 9.2 cos Ω + 0.57 cos 2L + 0.1 cos 2L′ − 0.09 cos 2Ω .

(A.57)

Next, we calculate the mean sidereal time of the Earth (Greenwich Sidereal Time) in de-

grees. Note that the time used here is not dynamical.

t =
JD − 2451545

36525
,

θ0 = 280.46061837 + 360.98564736629(JD − 2451545)

+0.000387933t2 −
t3

38710000
.

(A.58)

The mean obliquity of the Earth in arc seconds ε0 is calculated using U, which is the time
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measured in units of 10000 Julian years from J2000 (note that the dynamical time is used)

U =
T DB − 2451545

3652500
,

ε0 = 84381.448 − 4680.93U

−1.55U2

+1999.25U3

−51.38U4

−249.67U5

−39.05U6

+7.12U7

+27.87U8

+5.79U9

+2.45U10 .

(A.59)

The apparent sidereal time at Greenwich in degrees is calculated as

θ′0 = θ0 +
∆ψ

3600
cos

ε0 + ∆ε

3600
. (A.60)

After converting to radians, care must be taken to wrap the computed value inside the [0, 2π]

range using modulus operator

θ′0 = θ′0 mod 2π . (A.61)

Finally, the apparent local sidereal time θ′ can be calculated as

θ′ = (θ′0 + λ + 2π) mod 2π , (A.62)

where λ is the geodetic longitude of the observer.
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A.6 Horizontal to equatorial coordinate conversion

Right ascension α and declination δ are calculated from azimuth A, altitude a, Julian date JD,

and geographical coordinates of the observer, longitude λ and latitude ϕ, as

H = atan2 (− sin A, tan a cosϕ − cos A sinϕ) ,

α = θ′ − H ,

δ = arcsin (sinϕ sin a + cosϕ cos a cos A) ,

(A.63)

where H is the local hour angle and θ′ is the apparent local sidereal time (see Appendix A.5).

A.7 Equatorial to horizontal coordinate conversion

The azimuth A and altitude a are calculated from right ascension α, declination δ Julian date

JD, and geographical coordinates of the observer, longitude λ and latitude ϕ, as

H = θ′ − α ,

A = π + atan2 (sin H, cos H sinϕ − tan δ cosϕ) ,

a = arcsin (sinϕ sin δ + cosϕ cos δ cos H) ,

(A.64)

where H is the local hour angle and θ′ is the apparent local sidereal time (see A.5).

A.8 Precessing equatorial coordinates

We follow the rigorous method of Meeus (1998), pages 134 - 135, for precessing the right

ascension α and declination δ from epoch JD0 to epoch JD. The beginning of each epoch is

defined by their respective Julian dates. Please note that ζ, z and θ are given in degrees.
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T =
JD0 − 2451545

36525
,

t =
JD − JD0

36525
,

ζ =
1

3600

[
(2306.2181 + 1.39656T − 0.000139T 2)t

+(0.30188 − 0.000344T )t2 + 0.017998t3
]
,

z =
1

3600

[
(2306.2181 + 1.39656T − 0.000139T 2)t

+(1.09468 + 0.000066T )t2 + 0.018203t3
]
,

θ =
1

3600

[
(2004.3109 − 0.85330T − 0.000217T 2)t

−(0.42665 + 0.000217T )t2 − 0.041833t3
]
,

A = cos δ sin(α + ζ) ,

B = cos θ cos δ cos(α + ζ) − sin θ sin δ ,

C = sin θ cos δ cos(α + ζ) + cos θ sin δ ,

α′ = atan2(A, B) + z ,

δ′ = arcsin C ,

(A.65)

where α′ and δ′ are precessed coordinates. If the declination is close to the celestial poles

(which we define this as less than 0.5° from the poles), it is calculated differently due to nu-

merical instabilities. If (90° − |δ|) < 0.5° is true, the declination should be calculated as

δ′ = arccos
√

A2 + B2 . (A.66)

A.9 Ecliptic coordinates

The geocentric right ascension αg and declination δg at the given epoch (the epoch defined by

a Julian date JD, usually at J2000, thus JD = 2451545) can be converted to geocentric ecliptic

longitude λg and latitude βg with the procedure described below. First, a precise obliquity of
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the Earth at the JD of the epoch has to be calculated; ∆ε can be calculated using equation A.57

and the mean obliquity ε0 using equation A.59. The true obliquity of the Earth in degrees is

then simply

ε =
ε0 + ∆ε

3600
. (A.67)

The ecliptic longitude and latitude are then

λg = atan2
(
sin ε sin δg + sinαg cos δg cos ε, cosαg cos δg

)
,

βg = arcsin
(
cos ε sin δg − sinαg cos δg sin ε

)
.

(A.68)
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Appendix C

CAMO plate formats

C.1 AST plate

The AST (ASTrometry) plate is a type of plate mapping developed in Weryk & Brown (2012)

for use with the ASGARD system. It maps any cartesian (x, y) pair (e.g. image or mirror

coordinates) into celestial horizontal coordinates (θ, ϕ), where θ is the zenith distance and ϕ

is the azimuth (+N of due E). To avoid the discontinuity at the azimuth branch cut (where

ϕ = ±180), the angles on a hemisphere (assuming that only θ < 90° angles are observable)

are projected onto a plane. The vertical axis of the projection, defined by angles (θ0, ϕ0), is

chosen to correspond close to the image centre. Thus, we can define the rotation matrix of the

projection as

M =


− sinϕ0 − cos θ0 cosϕ0 sin θ0 cosϕ0

cosϕ0 − cos θ0 sinϕ0 sin θ0 sinϕ0

0 sin θ0 cos θ0

 . (C.1)

The columns of matrix M define an orthogonal basis set. Star positions (θ, ϕ) are rotated

using M′ (the inverse of M) to obtain (β, γ) pairs
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sin β cos γ

sin β sin γ

cos β

 = M′


sin θ cosϕ

sin θ sinϕ

cos θ

 , (C.2)

which are relative to (θ0, ϕ0). The positions are then projected onto the p, q plane

p = sin β cos γ ,

q = sin β sin γ .
(C.3)

The (x, y) image centroids are then fitted to the (p, q) values for each star using third order

polynomials

p = a0 + a1x + a2x2 + a3x3 + a4y + a5y2

+a6y3 + a7xy + a8x2y + a9xy2 ,

q = b0 + b1x + b2x2 + b3x3 + b4y + b5y2

+b6y3 + b7xy + b8x2y + b9xy2 .

(C.4)

The reverse mapping polynomials are fit separately, enabling the conversion from (p, q) to

(x, y). As discussed in Weryk et al. (2013), this method is advantageous in comparison to a

typical gnomonic projection for larger fields of view, by producing smaller fit residuals.

C.2 AFF plate

The AFF plate represents an affine transform, which is a combination of translation, scaling,

rotation and mirroring, described by the following equation:

x′

y′

 =

M11 M12 M13

M21 M22 M23



x

y

1

 . (C.5)
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The M coefficients are the fit parameters. In this implementation, x′ and y′ are orthogonal,

meaning that there is no shearing.
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