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Abstract This paper studies nonparametric identification and counter-

factual bounds for heterogeneous firms that can be ranked in terms of

productivity. Our approach works when quantities and prices are latent

rendering standard approaches inapplicable. Instead, we require observa-

tion of profits or other optimizing-values such as costs or revenues, and

either prices or price proxies of flexibly chosen variables. We extend

classical duality results for price-taking firms to a setup with discrete

heterogeneity, endogeneity, and limited variation in possibly latent prices.

Finally, we show that convergence results for nonparametric estimators

may be directly converted to convergence results for production sets.
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Introduction

This paper studies nonparametric identification of production sets and counter-

factual bounds for firms, allowing multiple inputs and outputs, in an environment

where both quantities and prices can be latent. We assume an analyst has data on

the values of an optimization problem, such as profits, costs, or revenues, as well as

prices or price proxies.

Identifying heterogeneous production sets is challenging in situations where the

observability of some outputs/inputs or prices is problematic. For instance, in the

housing market output quantities and output prices cannot be directly observed be-

cause houses provide different services that are hard to measure. However, housing

values that can serve as price proxies may be observed (Epple et al., 2010). Other

industries, such as health and banking, suffer from similar issues with unobservable

inputs or outputs.1 The latency of quantities makes standard approaches to estimate

production functions not directly applicable. In addition, the latency of prices makes

classical approaches using duality theory impossible to apply as well. In contrast, we

require observability of values and prices or price proxies. While these variables are

not always observed, they are available in many existing data sets.2

In order to obtain identification of firm-specific production possibility sets we ex-

ploit variation in prices or price proxies across markets and variation of optimization

values across firms. Our framework extends classical duality theory by allowing (i)

rich forms of complementarity and substitutability between outputs and inputs with

discrete heterogeneity across firms, (ii) endogeneity between prices and productivity

due to simultaneity and market entry decisions, and (iii) omitted prices of flexibly

chosen variables. Classical duality theory focuses on either a nonstochastic or repre-

sentative agent framework in which all prices are observed. Important contributions

include Shephard (1953), Fuss & McFadden (1978), and Diewert (1982) among many

others.

We assume that firms can be ranked in terms of productivity that can take

1In the health industry, it is difficult to measure inputs such as drugs since they vary widely in
their physical characteristics. However, prices and total costs may be observable (Bilodeau et al.,
2000). In the banking industry, outputs such as business loans and consumers loans are difficult
to measure because a loan is a financial service that entails many unobservable goods and services.
However, the price of a loan is observed as well as profits in some settings (Berger et al., 1993).

2See Epple et al. (2010), Combes et al. (2017), and Albouy & Ehrlich (2018) in the context of
housing; Burke et al. (2019) in the context of agriculture; Nerlove (1963) and Fabrizio et al. (2007) in
the context of electricity generation; Roberts & Supina (1996), Foster et al. (2008), and Doraszelski
& Jaumandreu (2013) in the context of manufacturing.
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finitely many values. This assumption is key to unpack heterogeneity in multiple

output/input production sets across firms from data such as prices or price proxies

and scalar values of an optimization problem. We formalize this by assuming that

a firm with higher productivity has access to all the production possibilities of a

less productive firm, and more. Our framework covers Hicks-neutral heterogeneity in

productivity as a special case.

Our approach exploits the rich shape constraints in our environment for identifi-

cation and counterfactual analysis. With price-taking behavior, the structural value

function is a convex and homogeneous function of prices. We present a new technique

for identification that leverages these properties, together with the assumption that

firms can be ranked according to productivity, to identify the structural value func-

tion (e.g. profit function). This technique relies on discrete heterogeneity, but allows

flexible forms of selection into market. We require a monotone presence assumption,

so that if a firm is present in some market with certain observables, then each more

productive firm must be present in some market with the same observables. This

handles certain monotone selection rules, e.g. only firms that can make nonnegative

profits enter, but is much more general.

We next tackle the important possibility that not all prices are observed. Instead,

we use price proxies, which are unknown functions of the missing prices. As one

example, we show that aggregate market-level quantities can serve as price proxies.

We leverage homogeneity of the value function to recover these unknown functions.

This technique is new and is applicable to other settings with homogeneity of a

structural function, and is therefore of independent interest.

Once the structural value function is identified, we turn to recoverability of the

production sets. Here we leverage the classic insight that the value function serves

as the support function of the production set. This allows us to characterize the

most that can be said about heterogeneous production sets, even when price varia-

tion is limited. Building on this, we present a general framework for counterfactual

questions such as sharp bounds on quantities or profits at a new price. Importantly,

these bounds hold for each level of productivity, and thus characterize features of the

distribution of firm behavior.

As mentioned previously, relative to classic work on duality we make several con-

tributions by incorporating heterogeneity, endogeneity due to selection, and potential

lack of prices.3 Even when prices are observed but contain limited variation, we con-

3Outside of the firm problem, duality has been used in the presence of heterogeneity in dis-
crete choice (McFadden, 1981), matching models (Galichon & Salanié, 2015), hedonic models (Cher-
nozhukov et al., 2017), dynamic discrete choice (Chiong et al., 2016), and the additively separable
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tribute by providing new results using structural value functions to recover sets and

conduct counterfactual analysis. There is little existing work concerning identifica-

tion with limited variation in prices. One such paper is Hanoch & Rothschild (1972),

which focuses on finite deterministic datasets of individual firms’ profits or costs, and

prices. Hanoch & Rothschild (1972) does not study identification of the production

set or the profit function, but focuses on providing necessary and sufficient conditions

under which an observed production function is consistent with profit maximization or

cost minimization.4 Another paper studying limited price variation is Varian (1984),

which works with quantities and prices and does not study unobservable heterogene-

ity.5 While observation of prices and quantities implies observation of profits, the

reverse is not true.

This paper contributes to the recent literature on identification and estimation of

multi-output production with unobservable heterogeneity (e.g., Cunha et al., 2010,

De Loecker et al., 2016, and Grieco & McDevitt, 2016). We differ since we do not

observe quantities and we do not impose separability or parametric restrictions on the

shape of production sets. Because we allow production of multiple outputs in flexible

ways, use cross sectional variation, and do not observe quantities, we also differ from

an important recent literature studying single output production in dynamic panel

settings using quantities data, including Griliches & Mairesse (1995), Olley & Pakes

(1996), Levinsohn & Petrin (2003), Ackerberg et al. (2015), and Gandhi et al. (2017).6

We also contribute to the literature studying recoverability of sets. We build on the

tight relationship between the structural value function and the production possibility

sets of firms, by providing an equality relating estimation error of value functions

and estimation error of production possibility sets. This result allows one to adapt

consistency results for any nonparametric estimators of the value function for the

purpose of set estimation. The result is related to a classical result in convex analysis

linking the distance of support functions with the distance of the corresponding sets,

which has been exploited previously in the literature on partial identification.7 We

cannot apply the classical result since it would require seeing negative prices, which

framework of Allen & Rehbeck (2018).
4Cherchye et al. (2016) studies the identification of profits and production sets with a finite

deterministic dataset on prices and quantities.
5See also Cherchye et al. (2014) and Cherchye et al. (2018). Cherchye et al. (2018) differs from

us because they assume observed input quantities in the context of cost minimization.
6As noted in Ackerberg et al. (2015), some output and input data often come in the form of sales

and expenditures that need to be transformed into quantities. We work directly with total values
(e.g. profits, total costs, or revenues).

7See, for instance, Beresteanu & Molinari (2008), Beresteanu et al. (2011), Kaido & Santos (2014),
Kaido (2016), and Kaido et al. (2019).
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requires a generalization.

The rest of this paper proceeds as follows. In Section 1 we present a model of

heterogeneous production in which firms are rankable in terms of productivity. Sec-

tion 2 shows how to identify the structural value function. In Section 3 we extend

our methodology to environments where one observes proxies that determine unob-

servable prices. Our main identification result for production possibility sets is in

Section 4. Section 5 provides a general framework to conduct sharp counterfactual

analysis in production environments. In Section 6 we show duality between estima-

tion error in value functions and production sets. We conclude in Section 7. All

proofs can be found in Appendix A. Appendix B contains extensions and additional

results.

1. Setup

This paper studies recoverability of the technology of heterogeneous firms given

data on the value function of their maximization problems, as well as data on prices

or price proxies that alter the maximization problems.

The technology of heterogeneous firms is described by a correspondence Y : E ⇒

R
dy . Each set Y (e) describes the possible input/output (or “netput”) vectors that

are feasible for a firm of type e. The variable e captures unobservable heterogeneity

in productivity. Negative components of Y (e) correspond to net demands by the firm

and positive components correspond to net supply. This formulation allows us to

treat single output and multi-output firms in a common framework.8 We require the

following conditions.

Definition 1. A correspondence Y : E ⇒ R
dy is a production correspondence if, for

every e ∈ E,

(i) Y (e) is closed and convex;

(ii) Y (e) satisfies free disposal: if y in Y (e), then any y∗ such that y∗
j ≤ yj for all

j ∈ {1, · · · , dy} is also in Y (e);

8An alternative approach is to use transformation functions. See Grieco & McDevitt (2016) for
a recent application.
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(iii) Y (e) satisfies the recession cone property: if {ym} is a sequence of points in

Y (e) satisfying ‖ym‖ → ∞ as m → ∞, then accumulation points of the set

{ym/ ‖ym‖}∞
m=1 lie in the negative orthant of Rdy .

These conditions rule out infinite profits and ensure that the maximization prob-

lems we consider have a solution.9

We study the general restricted profit maximization problem

πr(y−z, pz, e) = max
yz :(y−z ,yz)∈Y (e)

p′
zyz ,

where y−z is a vector of restricted or fixed variables, yz denotes the variables of choice,

and pz is a vector of prices of yz. The variable of choice yz is constrained to belong

to the convex set Yr(y−z, e) defined as

Yr(y−z, e) =
{

yz ∈ R
dyz : (y−z, yz) ∈ Y (e)

}

.

We refer to Yr(y−z, ·) as the restricted production correspondence.10

The behavioral restriction of this model is that given y−z, the firm chooses yz

to maximize restricted profits, taking prices pz as given. In the special case where

y−z is not present, this is the usual profit maximization setup. When y−z consists of

inputs, this covers revenue maximization. When y−z consists of outputs, this is cost

minimization once we interpret negative yz as inputs and write

max
yz : (y−z ,yz)∈Y (e)

p′
zyz = − min

yz : (y−z ,yz)∈Y (e)
p′

z(−yz).

We emphasize that throughout, y−z can be a vector, and so we cover cost minimization

with multiple inputs, and revenue maximization with multiple outputs.

Overall, we consider firms that are price-taking in the variables of choice yz, and

study a static problem without uncertainty. We note though that in principle the

production set Y (e) is general enough to describe paths of production possibilities

throughout time, as would arise if there is investment.

9See Kreps (2012), p. 199 for more details.
10More formally, it is only a multi-valued mapping because it can be empty for certain combina-

tions of y−z and e.
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1.1. Setting and Data

We study identification in settings in which an analyst observes many realizations

of certain values of the restricted profit maximization problem as prices vary. In the

most general version, we observe noisy measurements of restricted profits, which are

the values of the restricted problem. Specifically, we consider the setup

πr = πr(y−z, pz, e) + η a.s.,

where y−z is observed,11 η is unobserved measurement error, and e is unobservable

productivity level. For each component of pz, the analyst either observes the cor-

responding price, or more generally observes a price proxy xj that is linked to the

unobserved price by the relationship pz,j = gj(xj, x̃), where x̃ consists of some control

variables. We provide further examples and discussion of such proxies in Section 3.

As an example of observables for cost minimization of hospitals (Bilodeau et al.,

2000), the analyst observes total cost (possibly measured with error) on variable

inputs yz (labor, supplies, food for patients, drugs, and energy), input prices or input-

price proxies, fixed outputs (inpatient car and outpatient visits), and the fixed inputs

(number of physicians and capital). We emphasize that we do not need to observe

the quantities yz of the flexibly chosen variables.12

Now we turn to the description of the sources of variation in our setup. Although

we do not fully flesh out an equilibrium model incorporating selection we provide

an informal discussion of these forces. First, prices vary because of variation across

markets. Our results apply when an analyst observes a single firm from each market,

and has observations from many markets. Our results also apply when an analyst

observes multiple firms in each market. We focus on the former case to simplify

presentation, so that we can avoid market-level subscripts.

To further describe why prices can vary, suppose in each market a consumer facing

prices p, income m, and with preferences ξ has net demand yd
j (p, m, ξ) for each of the

j flexibly chosen goods. Given a restricted variable y−z, let yj(y−z, pz, e) denote the

net supply of the flexibly chosen variable j for a firm of type e and facing prices pz.

In each market, market clearing for the j-th good is then written

∫

yd
j (p, m, ξ)dFm,ξ(m, ξ) =

∫

yj(y−z, pz, e)dFy−z ,e(y−z, e) + ωj,

11We use bold font for random variables and vectors and regular font for their realizations.
12As discussed in the introduction, for additional data sets, see Nerlove (1963), Roberts & Supina

(1996), Fabrizio et al. (2007), Foster et al. (2008), Epple et al. (2010), Doraszelski & Jaumandreu
(2013), Combes et al. (2017), Albouy & Ehrlich (2018), and Burke et al. (2019).

7



where Fm,ξ is the joint distribution over income and preferences of consumers, and

Fy−z ,e is the joint distributions of restricted variables and productivity. Here, the

endowment of good j is denoted ωj.

In our most general analysis, equilibrium prices can vary across markets due to

variation in endowments (ωj), income and tastes of consumers (Fm,ξ), or variation in

productivity or determination of the restricted variables (Fy−z,e). In particular, the

determination of restricted variables can vary across markets due to different forms

of competition in the restricted variables.

2. Recoverability of Restricted Profit Function

Our ultimate goal is to learn about the production correspondence. We proceed

in three steps. In this section, we first identify the restricted profit function (or value

function) for heterogeneous firms assuming that the prices are perfectly observed.

In Section 3 we show how to apply our analysis to the general case with unobserved

prices. In subsequent sections we show how to use information on the restricted profit

function to recover features of the production correspondence and describe the most

that can be learned concerning counterfactual questions.

Identifying the restricted profit function for heterogeneous firms is challenging.

The value function is nonseparable in latent productivity. Both the restricted vari-

ables y−z and prices pz may be endogenous. This leads to simultaneity and selection

biases. We consider a setting without panel data or instruments. We present a new

technique to identify the restricted profit function that addresses these challenges.

The key restrictions of the technique are that (i) heterogeneity is one dimensional

and allows us to rank firms, and (ii) there are finitely many types of firms.

2.1. Production Monotonicity

It is well-known that the firm problem admits a representative agent, and in

principle this observation can be used to recover a representative agent restricted profit

function. Even a representative agent analysis here is nontrivial because of challenging

selection/simultaneity issues discussed previously. Here, we wish to recover not only

a representative agent restricted profit function, but also recover the heterogeneous

8
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Y (ẽ)

Y (e)

Figure 1 – Nested Production Sets. ẽ > e.

structural restricted profit functions. Recovering heterogeneous structural functions

allows us to a conduct rich counterfactual analysis concerning how different types of

firms are differentially affected by a policy.

To get traction on this problem, we assume firms are rankable in terms of produc-

tivity. We think of heterogeneous productivity as an ability to produce more with a

given level of inputs (or produce the same output using lower levels of inputs). In

other words, the production set of a firm with lower value of e is a subset of the pro-

duction set with a higher value of e (see Figure 1). Note that Yr(y−z, e) ⊆ Yr(y−z, ẽ) if

and only if πr(y−z, pz, e) ≤ πr(y−z, pz, ẽ) for all pz. This means that more productive

firms have access to a bigger set of production possibilities, and will make more prof-

its or pay lower costs given prices. We formalize this monotonicity by the following

ranking assumption on the restricted profit function.

Assumption 1 (Strict Monotonicity). For every y−z, pz, e, and ẽ in the support, if

e < ẽ, then πr(y−z, pz, e) < πr(y−z, pz, ẽ).

Assumption 1 is satisfied in many settings. For instance, it is satisfied in a standard

single output production function setting with Hicks-neutral productivity. To be

more specific, let the single output be yo and let inputs be l and k, interpreted as

labor and capital. Then the set Y (e) is described by tuples (yo, −l, −k) that satisfy

yo ≤ f(l, k, e), where f is the production function. If f(l, k, e) = A(e)f̄(l, k) for

some nonnegative, strictly increasing function A, and f̄ is always nonnegative strictly

convex function, then f(l, k, e) is strictly increasing in e. In this case, π(p, ·) satisfies

Assumption 1.

More generally, the function f(l, k, e) = Ao(e)f̄(Al(e)l, Ak(e)k) for strictly increas-

ing functions Ao, Al, and Ak fits into our setup.13 A more general setup would allow

13Li & Sasaki (2017) study a related setup with random coefficients Cobb-Douglas technology,
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e1

e2

e3

π(p, e1)

π(p, e2)

π(p, e3)

Figure 2 – Nonmonotonic supply.

a different shock to enter Ao, Al, and Ak (e.g. Doraszelski & Jaumandreu, 2018) and

would be outside of our framework. Overall, while Hicks-neutral heterogeneity is a

special case of our framework when there is a single output, it is considerably more

restrictive than needed for the monotonicity assumption to hold.

The assumption that production sets are nested in e is equivalent to the profit

function being weakly increasing in e. Thus, value functions are the “right” structural

function in which to impose monotonicity if we think of higher productivity as leading

to more production possibilities. One may draw the intuition that in general other

structural functions are monotone in unobservable heterogeneity. This intuition is

false without more structure.

Example 1 (Nonmonotonicity of Inputs/Outputs ). Consider the production sets

depicted in Figure 2. Each production set is given by Y (ei) = {(yo, l)′ ∈ R×R+ : yo ≤
f(l, ei)}, where f(l, e1) < f(l, e2) < f(l, e3) for all l > 0. Here, π(p, e1) < π(p, e2) <

π(p, e3) for all positive p and Assumption 1 is satisfied. Given the price vector p =

(po, pk)′ in Figure 2, the optimal levels of inputs and outputs are nonmonotone in

productivity since l∗(p, e1) < l∗(p, e3) < l∗(p, e2) and y∗
o(p, e1) < y∗

o(p, e3) < y∗
o(p, e2).

For a numerical example see Appendix B.2.

Failures of monotonicity in the optimal choice of input or output have been dis-

cussed as well in Pakes (1996, Section 4). Thus, rather than focus on the structural

functions describing optimal input/output choices, this paper focuses instead on the

restricted profit function, which is monotone in a scalar unobservable under the as-

sumption that production sets are nested in e.

imposing that the ratio of random coefficients is a monotone function of a single latent scalar
random variable.
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2.2. Discrete Heterogeneity and Monotone Selection

With this setup, we consider a new technique to identify the restricted profit func-

tion allowing endogeneity. The reason endogeneity is a central concern in such prob-

lems is that constraints may be endogenous. For example, in the cost minimization

problem, output (y−z = yo) is typically a choice variable for the firm. Endogeneity in

prices pz is also a potential concern if firms with different productivity can choose in

which markets to operate (selection into markets). As discussed in Section 1.1 price

variation in our setting arises because firms operate in different markets, which have

difference endowments or consumer tastes.

The key restriction we impose is that there are finitely many types of firms. We

formalize this as follows.

Assumption 2 (Finite Heterogeneity). E = {1, 2, . . . , de} with de finite and unknown

to the researcher.

This assumption allows us to identify structural functions without instruments. If

instruments are available, continuous heterogeneity can be tackled by existing tech-

niques provided there is no measurement error; see for example Appendix B.1. We

emphasize that heterogeneity here is in terms of the production types, but due to

measurement error in the data we may see continuous distributions of the restricted

values, even when we condition on all other observables. In this modeling decision

we are close to structural dynamic discrete choice literature that often assumes unob-

served discrete heterogeneity that is smoothed out by some continuous idiosyncratic

noise (e.g. extreme value distributed preference shock). See, for instance, Arcidiacono

& Miller (2011).14 We are not aware of any identification results that allow for both

measurement error and continuous nonseparable structural unobserved heterogeneity

in cross sectional data.

We allow rich selection into markets, but impose a monotonicity restriction relat-

ing the types of firms that can be present, conditional on certain observables.

Assumption 3 (Monotone Presence).

P (e = e|y−z = y−z, pz = pz) > 0 =⇒ P (e = ẽ|y−z = y−z, pz = pz) > 0

for all y−z, pz, e, and ẽ in the support such that e < ẽ.

14For applications of discrete unobserved heterogeneity in multinomial choice models with random
coefficients and panel data estimators see Fox & Gandhi (2016) and Bonhomme & Manresa (2015),
respectively.
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This means that if we see a firm of type e active in some market and producing

y−z, then there has to be some market with the same conditioning variables such that

any higher type ẽ is present. In principle, this other “market” could be the same

market in which e is present. The key restriction is that since we also condition on

quantities, we need the higher type to also produce the same quantities.

As an example, consider the (unrestricted) profit function, if entry depends on

whether a firm obtains nonnegative profits. Specifically,

e enters ⇐⇒ π(p, e) ≥ 0,

where there are no restricted variables. Since we assume monotonicity of π in e, this

is a monotone threshold rule, and satisfies Assumption 3.

Assumption 3 is considerably more general than a one-sided selection rule. Im-

portantly, it is only about the support of e conditional on some other variables. The

reason we require this is that while reasonable selection rules into markets may result

in a one-sided threshold rule, here we also need to allow selection into the quantities

of the restricted variables y−z. For example, as e increases the optimal quantity of the

restricted variables may change. Assumption 3 allows this and is satisfied if, for ex-

ample, there are other unobserved variables that shift the optimal choice of restricted

variables y−z (e.g. unobserved prices of the restricted variables).

2.3. Identification

We now turn to identification of the restricted profit function. First, recall that

we observe potentially mismeasured restricted profits:

πr = πr(y−r, p−z, e) + η.

Let ∆πr(y−z, pz, e) = πr(y−z, pz, e)−πr(y−z, pz, e−1) denote the restricted profit differ-

ence between firms with adjacent productivity. We impose the following assumption

on the measurement error η.

Assumption 4. (i) η is independent of y−z, pz, and e, mean zero, and satisfies

P (|η| ≤ K/2) = 1 for some K < ∞;

12



(ii) (Separatedness) There exists a known (y∗
−z, p∗

z, e∗) in their support such that

K <























∆πr(y
∗
−z, p∗

z, e∗ + 1), if e∗ = 1,

∆πr(y
∗
−z, p∗

z, e∗), if e∗ = de,

min
{

∆πr(y
∗
−z, p∗

z, e∗ + 1), ∆πr(y
∗
−z, p∗

z, e∗)
}

, otherwise.

We note that multiplicative measurement error can be handled by similar inde-

pendence and separatedness assumptions.15

Assumption 4(i) means that the measurement error is classical. It also imposes

a location normalization on the boundedly-supported measurement error. Assump-

tion 4(ii) is more substantial. It assumes that we can find a firm with a particular

productivity such that after conditioning on observables the measurement error does

not break the ranking imposed by Assumption 1. Note that Assumption 4(ii) has to

be imposed on one triplet (y∗
−z, p∗

z, e∗) only. Thus, in general the measurement error

may completely change the ranking of restricted profits. A simple sufficient condition

for Assumption 4(ii) that uses shape restrictions of the restricted profit function is

stated in the following result.

Lemma 1 (Rich Support). If Assumption 1 holds and there exist y∗
−z and p∗

z such that

∪λ>0{λp∗
z} is in the support of pz conditional on y−z = y∗

−z, then Assumption 4(ii)

is satisfied.

This exploits homogeneity in prices, i.e. πr(y
∗
−z, λp∗

z, e) = λπr(y
∗
−z, p∗

z, e) for all

e and λ > 0. The idea behind Lemma 1 is that although the difference between

profits evaluated at a particular price may not be big enough to offset the effect of

the measurement error (e.g. ∆πr(y
∗
−z, p∗

z, e∗ + 1) ≤ K) by exploiting homogeneity we

always can find λ∗ big enough such that

∆πr(y
∗
−z, λ∗p∗

z, e∗ + 1) = λ∗∆πr(y
∗
−z, p∗

z, e∗ + 1) > K.

The conditions of Lemma 1 guarantee that an extreme price λ∗p∗
z can be found in

the support for every finite K. Thus, the support of of prices does not have to be

unbounded, just sufficiently large relative to the initial difference.

Now we can state our main identification result for the restricted profit function.

Theorem 1. Suppose Assumptions 1-4 hold. Then πr is identified from Fπr|y−z ,pz

over the joint support of y−z, pz, and e.

15The bounded support and separatedness conditions in Assumption 4 can be relaxed using results
in Schennach (2016) if one has access to repeated cross sections.
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Here, we may not be able to identify the structural restricted profit function for

certain arguments outside of the support. This is particularly relevant for low types;

there many be many combinations of prices and quantities such that low types do

not produce either because it is infeasible for them or unprofitable.

Importantly, Theorem 1 only imposes a mild restriction on the stochastic depen-

dence between unobservable heterogeneity e and observed y−z and pz. In particular,

in cost minimization settings, the output level and input prices can be related to

the distribution of productivity in flexible ways. What is key is the monotonicity

restriction on selection into markets described in Assumption 3.

The intuition behind Theorem 1 is that without restricting the dependence struc-

ture, monotonicity in the restricted profit function implies that firms always can be

ranked. The assumption of the discrete heterogeneity allows us to match firms with

the same ranking across different markets, and thereby construct the restricted profit

function.

Theorem 1 can be used to weaken assumptions usually made in analysis of re-

stricted profit maximizing behavior. For instance, with cost minimization, Bilodeau

et al. (2000) focuses on a parametric setup with additively separable heterogeneity

and assumes that fixed variables are exogenous. While working with the same observ-

ables, our methodology does not require parametric restrictions, and does not assume

exogeneity.

3. Unobservable Prices and Proxies

In Section 2 we showed how to identify the restricted profit function when the

entire vector of prices of flexibly chosen variables, pz, is observed. In many empirical

applications not all prices are observed. This may cause concern about omitted price

bias (Zellner et al., 1966, Epple et al., 2010). However, the researcher may have access

to some observable proxies that are informative about unobservable prices. For exam-

ple, the rental rate of capital may be linked to market-specific characteristics such as

short-term and long-term interest rates. Wages may be linked to the unemployment

level or aggregate labor supply. De Loecker et al. (2016) uses output price, market

shares, product dummies, firm location, and export status as proxies for unobservable

input prices. In the housing market, an analyst may use location as a price proxy for
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a house as in Combes et al. (2017).16

This section studies how to identify the function linking prices proxies to unob-

served prices through

pj = gj(xj, x̃),

where gj is an unknown function and pj is a component of pz. We assume that

every price has its own excluded proxy xj, which is a proxy that affects its own price

and does not affect any other prices. The vector of common proxies x̃ may include

common market characteristics such as size of the market or other macroeconomic

characteristics. Importantly, since gj is fully nonparametric, x̃ can include categorical

variables such as location (e.g. country or state) and time (e.g. month or year)

identifiers. The above formulation covers the case when price is observed. In that

case gj(xj, x̃) = xj, where xj is the price of yj. To simplify the exposition we drop

x̃ from the notation, and analysis may be interpreted conditional on x̃. For instance,

we write gj(xj) instead of gj(xj, x̃).

Note that we assume prices are not a function of e or any other unobservables. In

our setup prices vary across markets but are constant within a given market. Price-

taking behavior implies that prices can be a function of the distribution of e in a

market, but not the firm-specific productivity e. More generally, prices are determined

by market clearing conditions, where preferences and productivity are integrated out,

making gj a function of market characteristics (x). For specific examples of a structure

with a function g mapping market characteristics to prices see Sections 3.2 and 3.3.

We first present an informal outline how to identify g when one observes profits.

We denote x = (xj)j=1,...,dyz
∈ X and g(x) = (gj(xj))j=1,...,dyz

. Profits are given by

π(g(x), e). If the function g were known, we could identify π directly by previous

arguments. What remains is to identify g. Recall that the profit function π(·, e) is

homogeneous of degree 1, which from Euler’s homogeneous function theorem yields

the system of equations
dy
∑

j=1

∂pj
π(p, e)pj = π(p, e) .17

Replacing prices with price proxies, we obtain

dy
∑

j=1

∂pj
π(g(x), e)gj(xj) = π(g(x), e) . (1)

16Hedonic pricing models also exhibit similar structure. However, in that literature it is assumed
that both prices and proxies are observed. See, for instance, Ekeland et al. (2004).

17Recall that we work with the unrestricted profit function for notational simplicity, but the
restricted profit function is also homogeneous of degree 1 in prices.
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Define π̃(x, e) = π(g(x), e). We thus have

∂pj
π(g(x), e)∂xj

gj(xj) = ∂xj
π̃(x, e) .

Plugging this in to (1) we obtain

dy
∑

j=1

∂xj
π̃(x, e)

gj(xj)

∂xj
gj(xj)

= π̃(x, e) . (2)

Assume for now that π̃(·, e) is identified. Thus the only unknowns involve g. By

varying x, holding everything else fixed, Equation 2 can be used to generate a system

of equations. We show that when a certain rank condition is satisfied, it is possible to

identify the entire function g using an appropriate scale/location normalization. We

note that if all prices are observed except one, then we may directly apply Equation 2

to learn about gj.

To formalize this, we impose location/scale conditions and some regularity condi-

tions on g.

Assumption 5. (i) gdyz
(xdyz

) = xdyz
for all xdyz

, i.e. the price of the dyz
flexibly

chosen variable is observed;

(ii) The value of g is known at one point, i.e. there exist known x0 and p0 such that

g(x0) = p0;

(iii) X =
∏dy

j=1 Xj where each set Xj ⊆ R is an interval with nonempty interior;

(iv) gj(·) is differentiable on the interior of Xj, and the set

{

xj ∈ Xj : ∂xj
g(xj) = 0

}

has Lebesgue measure zero for every j.

Assumptions 5(i)-(ii) allow us to identify the scale and the location, respectively,

of the multivariate function g. Since we can always relabel both outputs and inputs,

Assumption 5(i) is equivalent to assuming that at least one price (not necessary pdyz
)

is observed.

We now turn to our rank condition. This condition ensures that the system

of equations generated from (2) has sufficient variation to recover terms such as

gj(xj)/∂xj
gj(xj).
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Definition 2. We say that h :
∏dyz

j=1 Xj → R satisfies the rank condition at a point

x−dyz
∈ R

dyz −1 if there exists a collection of {xdyz ,l}dyz −1
l=1 such that

(i) x∗
l = (x′

−dyz
, xdyz ,l)

′ ∈ ∏dyz

j=1 Xj;

(ii) The square matrix















∂x1h(x∗
1) . . . ∂xdyz −1

h(x∗
1)

∂x1h(x∗
2) . . . ∂xdyz −1

h(x∗
2)

. . . . . . . . .

∂x1h(x∗
dyz −1) . . . ∂xdyz −1

h(x∗
dyz −1)















is nonsingular.

We will apply this rank condition to π̃ in place of h. It is helpful to recall that by

Hotelling’s lemma, partial derivatives of π̃ take the following form

∂xj
π̃(x, e) = ∂pj

π(p, e)|p=g(x)∂xj
gj(xj), = yj(g(x), e)∂xj

gj(xj) ,

where yj(g(x), e) is the supply function for good j. Thus, this rank condition applied

to π̃ may equivalently be interpreted as a rank condition involving the supply function

for the goods as well as certain derivatives of g (i.e., variation in observed prices should

induce enough variation in supply of goods with unobserved prices).

The following result provides conditions under which either a heterogeneous re-

stricted profit function, or the conditional mean of πr given x is sufficient to recover

the price-proxy function g.

Theorem 2. Suppose Assumption 5 holds. Then g is identified over the support of

x if for some y∗
−z one of the following conditions holds:

(i) π̃(x, e) = πr(y
∗
−z, g(x), e) is identified for each x and e. In addition, for every

x−dyz
, there exists e∗ ∈ [0, 1] such that π̃(·, e∗) satisfies the rank condition at

x−dy
;

(ii) π∗
r = πr(y−z, g(x), e) + η a.s., where π∗

r is observed, πr is homogeneous of

degree 1 in the second argument; Fe|pz ,y−z
(e|pz, y∗

−z) is homogeneous of degree

0 in pz; η satisfies Assumption 4(i); and E

[

π∗
r|x = ·, y−z = y∗

−z

]

satisfies the

rank condition at every x−dy
.

To interpret (i), recall that Theorem 1 provides conditions under which π̃ is iden-

tified from the conditional distribution of πr(y−z, g(x), e) conditional x and y−z. To

17



apply those results one just needs to replace pz by x. Here we clarify that given some

way to identify a structural function of the form of π̃, we can identify g.

Part (ii) requires different structure. We state it because our technique is new

and this result may be of independent interest. In particular, it does not require

discreteness of e and monotonicity of the restricted profit function in the unobservable

e, and thus applies to more general forms of heterogeneity than we consider. However,

such generality comes with the cost of assuming homogeneity of degree 0 in prices of

the conditional distribution of productivity conditional on prices and quantities, which

was not required by part (i). Homogeneity of the distribution function in prices means

that the distribution of productivity in the market depends only on relative prices.

This trivially happens if productivity is independent from flexible prices conditional

on fixed quantities. It also may naturally happen in profit maximizing environments

where entry decisions are driven by the threshold rule where firms with nonnegative

profits enter. Since the profit function is homogeneous of degree 1 in prices, we can

deduce that the entry decision is only determined by the direction of the price vector,

not by its norm: π(p, e) ≥ 0 if and only if π(p/ ‖p‖ , e) ≥ 0.

To further interpret the rank condition, we study it in two parametric examples

in Appendix B.3. There we show that the rank condition can be satisfied for the

Diewert (1973) profit function, but can fail for every possible parameter value with

Cobb-Douglas technology.

We conclude this section by noting it is straightforward to generalize our technique

to a homogeneous function of any degree α ≥ 0 (e.g. the supply function) since the

main identifying equation (2) can be rewritten as

dy
∑

j=1

∂xj
π̃(x, e)

gj(xj)

∂xj
gj(xj)

= απ̃(x, e) .

3.1. Other Observables

Theorem 1 applies when (only) values of the restricted profit function, restricted

variables, and price proxies are observed. When other variables are observed, it can

be adapted to handle other settings.

To illustrate this suppose that p1 is not observed, does not have a proxy, and does

not vary across markets. Suppose further that for each good j ≥ 3, xj is a price

proxy conditional on p2. That is, pj = gj(xj, p2) for j ≥ 3. The fact that p2 is in this

function means it violates our previous exclusion restriction and so Theorem 1 cannot
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directly be applied. Nonetheless, we can adapt the technique to cover this case.

To see this, recall Euler’s homogeneous function theorem states

dy
∑

j=1

∂pj
π(p, e)pj = π(p, e),

while Hotelling’s lemma reads

yj(p, e) = ∂pj
π(p, e).

These imply
dy
∑

j=3

∂pj
π(p, e)pj = π(p, e) − p1y1(p, e) − p2y2(p, e) .

Moreover, for j 6= 2

∂pj
π(g(x, p2), e)∂xj

gj(xj, p2) = ∂xj
π̃(x, p2, e) .

Hence we obtain

dy
∑

j=3

∂xj
π̃(x, p2, e)

gj(xj, p2)

∂xj
gj(xj, p2)

= π̃(x, p2, e) − r̃(x, p2, e) , (3)

where

r̃(x, p2, e) = p1y1(p1, p2, g(x, p2), e) + p2y2(p1, p2, g(x, p2), e)

is the contribution of goods 1 and 2 to profits. The difference from Equation 2 is that

in order to build a system of ordinary differential equations that identifies g we need

to identify

π̃(x, p2, e) − r̃(x, p2, e)

as well. If π̃(x, p2, e) and r̃(x, p2, e) can be identified, we are done. More generally, it is

not necessary to identify the heterogeneous structural functions separately. Instead, it

is enough to identify their aggregate versions, because homogeneity aggregates (recall

Theorem 1(ii) and the subsequent discussion). In sum, it is possible to identify prices

that vary across markets even if there are prices that are unobserved but are fixed

across markets (like p1) and there are observed prices that do not satisfy the exclusion

restriction (like p2). We will use this insight about prices that are unobserved but

fixed across markets in Section 3.3 to show how our approach can be used to generalize

Epple et al. (2010).
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3.2. Aggregate Quantities as Proxies

This section provides a foundation for use of aggregate quantities in a market as

price proxies. This applies even if the firm-level quantities are not observed. We show

this for an equilibrium model in which variation in aggregate quantities or (possibly

unobserved) prices occurs due to variation in endowments.

Consumers have preferences over quantities y described by the utility function

u(y, ξ), where ξ represents unobservable heterogeneity. The key assumption we make

is that preferences are separable in the goods for which we require price proxies.

Assumption 6. Preferences are quasilinear and additively separable, i.e.

u(y, ξ) =
dy
∑

j=1

uj(yj, ξ) + ydy+1.

The budget constraint takes the form

dy
∑

j=1

pjyj + ydy+1 ≤ m,

where m is income and the choice of ydy+1 can be negative.

Allowing ydy+1 to be negative (or assuming m is high enough) is standard so that

the model does not have income effects.

Suppose further that the quantity demanded is unique (for almost every ξ given

the distribution of heterogeneity ξ), so that we can write

yd(p, ξ) = arg max
y

dy
∑

j=1

uj(y, ξ) −
dy
∑

j=1

pjyj.

Because of the separable preferences, the quantity demanded of good j can be written

as yd
j (pj, ξ). This is weakly decreasing in prices by standard arguments, and weak

monotonicity is preserved under expectations.

Building on this, we have the following result.

Lemma 2. Let Assumption 6 hold. In addition, assume the distribution of preferences

Fξ is the same across markets, and define the aggregate consumer demand

xj(pj) =
∫

yd
j (pj, ξ)dFξ.
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If xj is strictly increasing, then xj is a price proxy for pj. That is,

pj = gj(xj)

for some function gj.

In particular, gj is the inverse demand for good j. Importantly, this argument

states that market-level aggregate consumer demand of good j is a valid price proxy

for good j, provided the aggregate quantity is constructed using the same measure

across markets. Thus, the distribution of unobservable demand heterogeneity has to

be the same across markets in order to apply this type of proxy. Importantly, this

approach does not rule out selection of firms into markets.

3.3. Value as Proxy

While the previous subsection showed that restrictions on the demand side allow

us to use aggregate consumer demand as price proxies, we now show an example

building on Epple et al. (2010) in which restrictions on the supply side allow us to

use certain values as price proxies.

Epple et al. (2010) consider the production of housing in which the analyst sum-

marizes all goods and services provided by a house per-acre (i.e., per unit of land) as

a single output yo. The analyst does not observe housing goods and services yo, which

is recognized as an important problem for the estimation of a production function for

housing. Instead, the analyst observes total revenue of selling a house poyo, where

po is the price of housing, and the price of land pl. Variation in these observables is

driven by market variation.18

In contrast to Epple et al. (2010), who worked with a representative firm, we

study identification in the presence of heterogeneity. Assume that for each e ∈ E,

production of housing satisfies constant returns to scale in inputs, so that we can

write

yo = f(m, e),

where f is the production function per-acre and m are materials per-acre used in

construction. The production set associated with this production function is Y (e) =

18Epple et al. (2010) observes the exact value of the house and the land quantity. Since they
assume constant returns to scale, the problem can be reformulated relative to units of land.
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{(yo, −m) : yo ≤ f(m, e)}. Then the profit function per-acre is

π(po, pm, pl, e) = max
(yo,−m)∈Y (e)

poyo − pmm − pl.

Epple et al. (2010) assume that pm is the same across markets and equals 1 since pm is

unobserved. We will make the same assumption and drop pm from the notation. As a

result there is no variation in pm and we cannot use homogeneity of the profit function

in all prices. Nonetheless, as we have explained in Section 3.1, using Hotelling’s lemma

we can still leverage the intuition behind Theorem 2.19

Since we consider per-acre production, the optimal yo(po, e) and m(po, e) will not

depend on pl. Hence, the value of housing v(po, e) = poyo(po, e) and the average value

of housing in a market v(po) =
∫

v(po, e)dFe(e) do not depend on price of land pl.

Since yo(po, e) is monotone in po, then v(po) is also monotone in po. Importantly, v is

identified when we observe total revenue poyo.

Lemma 3. Suppose the distribution of firm productivity Fe is the same across markets

and the other assumptions of this section hold. If v(po) is strictly increasing in po,

then average value of housing per market v is a price proxy, i.e. there exists a function

g̃ such that

po = g(v).

This equation is analogous to Equation 6 in Epple et al. (2010) if we interpret

their results as a representative agent analysis. Moreover, pl is an observable price

that does not affect po.

We will use a generalization of the zero-profit assumption from Epple et al. (2010).

While they assume a single type of firm, which attains zero profits, we assume that

profits are zero on average in a given market20:

∫

π(po, pl, e)dFe(e) = poyo(po) − m(po) − pl = 0,

where yo and m are the aggregate output per-acre and the aggregate demand for

materials per-acre in a given market. Since pl and v are observed, the equilibrium

assumption nonparametrically recovers a reduced form revenue function from produc-

19In the notation of Section 3.1 the price of land pm is p1.
20Melitz & Redding (2014) show that free-entry and constant returns of scale imply that ex-ante

expected profits are zero, net of entry cost. Here we can assume entry cost is zero. In equilibrium,
firms will have zero-profits on average just before firms with negative profits leave the market.
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tion minus materials cost (recall that pm = 1)

pl = π̃(v) := g(v)yo(g(v)) − m(g(v)).

Moreover, since g(v)yo(g(v)) = v by definition, we also identify material costs

r̃(v) = −m(g(v)).

Similar to Equation 3 we identify function g since we identify π̃(v) and π̃(v) − r̃(v).

In particular, g will solve the following differential equation, which is implied by

Equation 3:
∂vg(v)

g(v)
=

∂vπ̃(v)

π̃(v) − r̃(v)
=

∂vπ̃(v)

v
.

Knowing g we can identify yo(po, e) for different levels of heterogeneity since the

observed v is equal to g(v)yo(g(v), e). Thus, our approach generalizes Epple et al.

(2010) to allow for unobserved heterogeneity in productivity.

4. Identification of the Production Correspondence

In Section 2 we showed how to identify the restricted profit function allowing

endogenous entry and correlation between fixed quantities and productivity, without

requiring instruments. Section 3 extends this result to settings when some prices are

not observed but the analyst has price proxies, and provides examples of such proxies.

We now focus on how any of these identification results (or results not presented

here) for the restricted profit function can be used to identify the primitive object of

interest: the production correspondence. For the sake of notational simplicity from

now on, we focus on the profit function though the results can be adapted to the

restricted profit function by conditioning.

Recall that we can identify the profit function π(p, ·) only over the support of

prices (or more generally over the support of g(x), where x is the vector of price

proxies). The support of prices may consist of all nonnegative numbers, or may be

much smaller, i.e. finite. We present a sharp identification result for the production

correspondence that covers both cases.

First, we note that π(·, e) is homogeneous of degree 1 in prices. It is also convex
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p1

p2

Figure 3 – The set P (e) (depicted by black curve) satisfies Assumption 7 and has an
empty interior. Dots represent “holes” in the support. Thus, P (e) is not a
connected set.

in prices, hence continuous. These features lead to consideration of the following

richness assumption, which ensures Y (·) may be recovered uniquely. Let P (e) denote

the conditional support of p conditional on e = e (if p and e are independent, then

P (e) does not vary with e).

Assumption 7.

int



cl





⋃

λ>0

{λp : p ∈ P (e)}






 = R
dy

++

for all e, where cl(A) and int(A) are the closure and the interior of A, respectively.

The set
⋃

λ>0

{λp : p ∈ P (e)}

consists of all prices where π(·, e) is known because of homogeneity. If that set has

“holes,” then we can fill them by taking the closure of the set since π(·, e) is convex,

hence continuous.21 Assumption 7 means that after we consider the implications of

homogeneity and continuity, it is as if we have full variation in prices. Figure 3 is

an example of a set satisfying this assumption. Another example is the Cartesian

product of all natural numbers, P (e) = {1, 2, . . .}dy . Thus, Assumption 7 does not

impose that the support of p contains an open ball.

21Beyond continuity, the manner in which convexity affects the data requirements that ensure
point identification is subtle, and depends on the shape of Y (·). We provide an illustrative example
in Appendix B.4.
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y2

y1

Figure 4 – Ỹ (e) and Y ′(e) for dy = 2 and P (e) = {p∗, p∗∗}. Ỹ (e) is the area under
the dashed lines. Y ′(e) is the area under the solid curve. Dashed lines
correspond to two hyperplanes p∗′y = π(p∗, e) and p∗∗′y = π(p∗∗, e). They
are tangential to the solid curve.

Theorem 3. Let π(p, e) be identified by some previous argument, over the set p ∈ P (e)

for all e. Moreover, let Ỹ (·) be defined via

Ỹ (e) =
{

y ∈ R
dy : p′y ≤ π(p, e), ∀p ∈ P (e)

}

for all e ∈ E. Then

(i) Ỹ (·) can generate the data and for each e ∈ E, Ỹ (e) is a closed, convex set that

satisfies free disposal.22

(ii) A production correspondence Y ′(·) can generate the data if and only if

max
y∈Y ′(e)

p′y = max
y∈Ỹ (e)

p′y

for every e ∈ E and p ∈ P (e). It follows that for any such Y ′(·), Y ′(e) ⊆ Ỹ (e),

for each e ∈ E.

(iii) If Assumption 7 holds, then Ỹ (·) is the only production correspondence that can

generate the data.

Parts (i) and (ii) of Theorem 3 are a sharp identification result, stating the most

that can be said about the production correspondence under our assumptions. These

results are related to Varian (1984), Theorem 15.23 However, Varian (1984) works

22By generate the data we mean that the profit function induced by Ỹ agrees with the identified
profit function π(p, e) for all e ∈ E and p ∈ P (e).

23The set Ỹ (e) is related to the “outer” set considered in Varian (1984), Section 7. The set Ỹ (e) is
constructed from price and profit information, however, rather than price and quantity information
as in Varian (1984).
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only with finite datasets, which are comparable to having a finite support of prices in

our setting. In addition, Varian (1984) observes prices and quantities while we observe

prices and profits. Recall that observing prices and quantities implies observation of

profits. Finally, Varian (1984) does not consider unobservable heterogeneity.

Theorem 3(ii) establishes that Ỹ (·) is the envelope of all production correspon-

dences that can generate the data (see Figure 4). We note, however, that Ỹ (·) may

not be a production correspondence because it need not satisfy the recession cone

property (recall Definition 1(iii)).24

Theorem 3(iii) is related to classic work on the identification of a deterministic

production set from a deterministic profit function.25 In this paper, however, we

begin with the distribution of profits and prices. Part (iii) shows that with this

distribution, it is possible to identify the distribution of features of Y (·), such as

the distribution of possible profit-maximizing quantities. We emphasize that this is

true even if quantities are unobservable. An additional manner in which (iii) differs

from textbook analysis is that, in econometric settings, it is not always natural to

assume that all prices are observed (P (e) = R
dy

++). Theorem 3 clarifies the variation

in prices sufficient for nonparametric identification of production sets. We note that

while Assumption 7 is sufficient for point identification of Y , it is not necessary as

illustrated in Appendix B.4.

Remark 1. Our identification analysis does not impose any a priori restrictions that

certain dimensions of Y (e) correspond to inputs, i.e. weakly negative numbers. This

additional restriction can be imposed by modifying the set constructed in Theorem 3.

Specifically, the set Ỹ (e) constructed in this theorem may be intersected with an ap-

propriate half-space that encodes that certain dimensions (corresponding to inputs)

must be nonpositive. We note that an analogous restriction for outputs is not infor-

mative because of the assumption of free disposal.

24To see this, suppose that a firm of type e ∈ E has 2-dimensional output/input set, prices are a
constant vector P (e) = {(1, 1)′}, and profits at that price are given by π((1, 1)′, e) = 0. Then the
set Ỹ (e) is

{

y ∈ R2 : y1 + y2 ≤ 0
}

. This set induces infinite profits for a price-taking firm whenever
p1 6= p2. Hence, this set violates the recession cone property, which is necessary for the firm problem
to have a maximizer since Ỹ (e) is closed and nonempty, e.g. Kreps (2012), Proposition 9.7. Note
from part (iii), when Assumption 7 holds it follows that Ỹ is a production correspondence, and thus
satisfies the recession cone property.

25See e.g. Kreps (2012), Corollary 9.18 for a textbook result.
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5. Sharp Counterfactual Bounds

Theorem 3 makes use of a shape restriction to characterize the identified set of the

production correspondence for profit-maximizing, price-taking firms. This shape re-

striction may be used for a dual purpose of providing sharp counterfactual bounds. In

this section we provide several such bounds including bounds on profits or quantities

for new prices outside of the support of the data.

Since homogeneity and convexity of the heterogeneous profit function allow us to

identify it over cl (
⋃

λ>0 {λp : p ∈ P (e)}), we can associate the conditional support

P (e) (of prices condition on e) with the set where π(·, e) is identified. That is why, for

notational simplicity and in this section only, we assume that P (e) is a closed subset

of the unit sphere S
dy−1 for all e, and we consider counterfactual prices with norm

normalized to 1.

We first present a result characterizing quantities consistent with profit maximiza-

tion. Theorem 3(ii) is the basis for the following proposition.

Proposition 1. Let P (e) be a finite subset of the unit sphere S
dy−1. Given P (e) and

{π(p, ·)}p∈P (·), the set of output/input functions {yp(·)}p∈P (·) can generate {π(p, ·)}p∈P (·)

if and only if

p′yp(e) = π(p, e) , ∀p ∈ P (e), e ∈ E ,

p∗′yp∗(e) ≥ p∗′yp(e) , ∀p, p∗ ∈ P (e), e ∈ E .

The vector yp(e) is interpreted as a candidate supply vector given price p and

productivity e; it need not be unique and thus may not be equivalent to the supply

function. Recall that as discussed in Remark 1, we do not impose a priori restric-

tions that certain components of Y (e) are inputs; this would correspond to imposing

additional sign restrictions on the functions yp(·) described in the proposition.

Proposition 1 essentially states that for each e there must exist output/input

vectors such that the weak axiom of profit maximization holds (Varian, 1984). We

note, however, that the primitive observables of our paper are the distribution of

profits and prices.

We can adapt Proposition 1 to answer counterfactual questions by considering a

hypothetical tuple (pc, ypc) of prices and quantities. If Proposition 1 applies with these

additional counterfactual values, then they are feasible given the theory.26 In more

26Varian (1982, 1984) has exploited the close connections between empirical content, recoverability
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detail, we present bounds on counterfactual objects, potentially with additional re-

strictions. The upper bound on a functional C given a restriction s and heterogeneity

level e is given by

C(e) = sup
pc,ypc ,{yp}p∈P (e)

C(pc, ypc) ,

s.t. s(pc, ypc) = 0 ,

p′yp = π(p, e) , ∀p ∈ P (e) ,

p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P (e) ∪ {pc} .

The lower bound is given by

C(e) = inf
pc,ypc ,{yp}p∈P (e)

C(pc, ypc) ,

s.t. s(pc, ypc) = 0 ,

p′yp = π(p, e) , ∀p ∈ P (e) ,

p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P (e) ∪ {pc} .

We provide some examples covered by this general setup. Note that these bounds

hold for each e, and thus one may also bound the distribution of Cs(e) and Cs(e).

We reiterate that these upper and lower bounds apply to prices on the unit sphere,

though they may be adapted for prices off the unit sphere as illustrated in the following

examples.

Example 2 (Profit bounds for a counterfactual price). Suppose that we are interested

in upper and lower bounds for profits at a given counterfactual price pc. When prices

pc are on the unit sphere, we may specify C(pc, ypc) = pc′ypc and s(pc, ypc) = pc − pc.

Then the problem can be simplified to get

Cs(e) = sup
y∈Ỹ (e)

pc′y ,

Cs(e) = max
p∈P (e)

inf
y∈Ỹ (e) : p′y=π(p,e)

pc′y ,

where Ỹ (e) is the envelope of all production possibility sets consistent with the data

defined in Theorem 3. The above bounds are sharp in the following sense: if Cs(e)

of structural functions, and counterfactuals. Recent work in demand analysis building on these
connections includes Blundell et al. (2003), Blundell et al. (2017), Allen & Rehbeck (2018), and
Aguiar & Kashaev (2018).
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is finite, then it is feasible, i.e. there exists a production set that can generate Cs(e).

If Cs(e) is not finite, then for any finite level K there exists a production set that

can generate C(pc, ypc) > K. Analogous statements hold for the lower bounds Cs(e).

Recall that we assume the support of prices P (e) is a subset of the unit sphere.

This may be imposed in empirical settings by replacing prices with normalized prices

p/ ‖p‖. For counterfactual questions involving a price off the unit sphere pc, one can

bound counterfactual profits at price pc/ ‖pc‖ and then multiply the upper and lower

bounds by ‖pc‖.

Example 3 (Quantity bounds for a counterfactual price). Suppose that we are in-

terested in the upper and lower bounds for u′ypc for a given counterfactual price pc,

where u is a vector. For example, with u = (1, 0, . . . , 0)′ we are interested in bounds

on the first component of y. Then C(pc, ypc) = u′ypc and r(pc, ypc) = pc − pc.

Example 4 (Profit bounds for a counterfactual quantity). Suppose a regulator is

considering imposing a new regulation that the first component of the output/input

vector is fixed at yc
1. For example, in analysis of health care (Bilodeau et al., 2000)

a hospital may be required to treat a certain number of patients. To bound profits

we may write the objective function as C(pc, ypc) = pc′ypc . The constraint is given

by s(pc, ypc) = y1,pc − yc
1.

27 Bounds on profits with this quantity may be useful for

a regulator wondering whether a hospital of type e would be profitable with the

hypothetical regulation. If the upper bound on profits is negative, the answer is

definitively no. If the lower bound on profits is positive, the answer is definitively

yes.28 An additional question a regulator might ask is which types of firms could

still be profitable. This can be addressed by studying functions Cs(·) and Cs(·) as

e varies. Note that the constraints s are general, and inequality constraints may be

incorporated as well by using indicator functions.

Since P (e) is finite, computing bounds in the first two examples is straightforward

since they are the values of linear programs. In the last example the problem is

quadratic since some constraints are quadratic (e.g. r(pc, ypc) = pc′ypc − πc = 0).

27Note that the problem may not have a solution since the set of parameters that satisfy restrictions
may be empty.

28This maintains the assumptions of price-taking, profit-maximizing behavior with a technology
that is described by a production correspondence.

29



6. Estimation and Consistency

While the previous identification results describe how to identify the profit or

restricted profit function, this paper does not study estimation of the restricted profit

function. Instead, we present a result that links any estimator of the restricted profit

function to an induced estimator of the corresponding set. As in previous section, for

notational convenience we work with the profit function, though the analysis applies

to the restricted profit function by conditioning.

We now describe how an estimator π̂(·, e) of the profit function may be used to

construct an estimator Ŷ (e) of the production possibility set for a firm with produc-

tivity level e. The main result in this section relates the estimation error of π̂ (for

π) and that of the constructed set Ŷ (for Y ). Consistency and rates of convergence

results for π̂ thus have analogous statements for Ŷ .

As setup, we now formalize our notions of distance both for functions and sets.

We present our result for a fixed e ∈ E. We assume that π(·, e) is identified over

P (e) = P = R
dy

++ (we assume Assumption 7). Given a fixed e ∈ E and π̂(·, e), a

natural estimator for Y (e) is the following random convex set:

Ŷ (e) =
{

y ∈ R
dy : p′y ≤ π̂(p, e), ∀p ∈ P

}

.

This set is a plug-in estimator motivated by Theorem 3. A commonly used notion

of distance between convex sets is the Hausdorff distance. The Hausdorff distance

between two convex sets A, B ⊆ R
dy is given by

dH(A, B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖ , sup
b∈B

inf
a∈A

‖a − b‖
}

.

Unfortunately, the Hausdorff distance between Y (e) and Ŷ (e) can be infinite. For

this reason we will consider the Hausdorff distance between certain extensions of these

sets. The following example illustrates why the original distance may be infinite.

Example 5. Suppose that dy = 2 and for some e ∈ E,

Y (e) =
{

y ∈ R × R− : y1 ≤ √−y2

}

,

Ŷ m(e) =
{

y ∈ R × R− : y1 ≤ (1 − 1/m)
√−y2

}

, m ∈ N.

Note that although limm→∞(1 − 1/m)
√−y2 =

√−y2 for every finite y2 ≤ 0, the

Hausdorff distance between these sets is infinite for every finite m ∈ N.
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p∗∗

p∗

Figure 5 – Y (e) and YP̄ (e) for dy = 2 and P̄ = {p ∈ P : δ ≤ p2/p1 ≤ 1/δ, ‖p‖ ≤ 1},
0 < δ < 1. Y (e) is the area under the solid curve. YP̄ (e) is the area under
the dashed lines. Dashed lines correspond to two hyperplanes p∗′y = π(p∗, e)
and p∗∗′y = π(p∗∗, e). They are tangential to the solid curve. p∗ is such that
p∗

2/p∗
1 = δ and p∗∗ is such that p∗∗

2 /p∗∗
1 = 1/δ.

Example 5 illustrates a technical concern with the Hausdorff distance that arises

because of the unboundedness of production possibility sets. However, in empirical

applications one may be interested in production possibility sets in regions that cor-

respond to prices that are bounded away from zero. Thus, instead of working with

all possible prices we will work only with certain empirically relevant compact convex

subsets of R
dy

++. We consider the Hausdorff distance between extensions such as

YP̄ (e) =
{

y ∈ R
dy : p′y ≤ π(p, e), ∀p ∈ P̄

}

ŶP̄ (e) =
{

y ∈ R
dy : p′y ≤ π̂(p, e), ∀p ∈ P̄

}

,

where P̄ ⊆ P is convex and compact. These sets nest the original sets (e.g. Y (e) ⊆
YP̄ (e)) because the inequalities hold only for p ∈ P̄ , not for every p ∈ P . Moreover,

the parts of the production possibility frontiers of the sets Y (e) and YP̄ (e) coincide

at points that are tangential to price vectors from P̄ (see Figure 5).

We now turn to the main result in this section, which establishes an equality

relating the distance between π̂ and π, and the distance between extensions of Ŷ and

Y . Our distance for these profit functions is given by

ηP̄ (e) = sup
p∈P̄

∥

∥

∥

∥

∥

π̂(p, e) − π(p, e)

‖p‖

∥

∥

∥

∥

∥

.

To state the following result, let P̄ be a collection of all compact, convex, and

nonempty subsets of P .

Theorem 4. Maintain the assumption that π(·, e) is homogeneous of degree 1 and
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convex.29 Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e)

that is homogeneous of degree 1 and continuous. If π̂(·, e) is convex, then

dH(YP̄ (e), ŶP̄ (e)) = ηP̄ (e) a.s.

for every P̄ ∈ P̄.

Theorem 4 is a nontrivial extension of a well-known relation between the Hausdorff

distance and the support functions of convex compact sets to convex, closed, and

unbounded sets.30 Homogeneity of an estimator can be imposed by rescaling the data

by dividing by one of the prices. Unfortunately, convexity can be more challenging to

impose and so we turn to a related result that covers cases in which π̂ is not convex.

To formalize our result, we introduce two additional parameters:

RP̄ (e) = sup
p∈P̄

π(p, e)

‖p‖ , rP̄ (e) = inf
p∈P̄

π(p, e)

‖p‖ .

Proposition 2. Maintain the assumption that π(·, e) is homogeneous and convex.

Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e) that is

homogeneous of degree 1 and continuous. If ηP̄ (e) = op(1) and 0 < rP̄ (e) < RP̄ (e) <

∞, then

dH(YP̄ (e), ŶP̄ (e)) ≤ ηP̄ (e)
RP̄ (e)

rP̄ (e)

1 + ηP̄ (e)/RP̄ (e)

1 − ηP̄ (e)/rP̄ (e)

with probability approaching 1, for every P̄ ∈ P̄. In particular,

dH(YP̄ (e), ŶP̄ (e)) = op(1) .

Convexity of an estimator is difficult to impose in general, in which case Propo-

sition 2 is relevant. It is computationally feasible to impose convexity for certain

functional forms of π, which allows one to invoke the stronger Theorem 4. See Ap-

pendix B.5 for an example with the flexible functional form of Diewert (1973).

29Recall that this is equivalent to price-taking, profit-maximizing behavior with technology de-
scribed by a production correspondence.

30See Kaido & Santos (2014) for a recent application of this result for convex compact sets.
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7. Conclusion

In this paper we have provided an update to classical duality theory in order to

identify heterogeneous production sets in the presence of endogeneity, measurement

error, omitted prices, and unobservable quantities. Our framework’s main strength

is to unpack rich heterogeneity as well as rich substitution/complementarity patterns

with market level variation, using values of optimization problems. We achieve this

by exploiting all shape constraints imposed by the economic environment we consider.

This includes a key restriction that firms can be ranked in terms of productivity, and

there are finitely many types of firms. Our identification results are constructive and

can be applied in many available data sets.
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A. Proofs of Main Results

A.1. Proof of Lemma 1

Fix y∗
−z and p∗

z. By homogeneity of degree 1 of the restricted profit function in

prices and Assumption 1,

∆πr(y
∗
−z, λp∗

z, e) = λ∆πr(y
∗
−z, p∗

z, e) > 0

for every e and λ > 0. Since ∪λ>0{λp∗
z} in the conditional support, we always can

find λ large enough and e∗ such that Assumption 4(ii) is satisfied.

A.2. Proof of Theorem 1

Under Assumption 4 we can find an interval [a, b] in the support of πr conditional

on y−z = y∗
−z, e = e∗, and pz = p∗

z such that

P

(

a ≤ πr(y
∗
−z, p∗

z, e∗) + η ≤ b
)

= 1

and

P

(

a ≤ πr(y
∗
−z, p∗

z, e) + η ≤ b
)

= 0

for any e 6= e∗. Hence, we identify

πr(y
∗
−z, p∗

z, e∗) = E

[

πr|a ≤ πr ≤ b, y−z = y∗
−z, e = e∗, pz = p∗

z

]

,

where we leverage that η has mean zero even after conditioning.
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Thus, we can also recover the distribution of η by subtracting the identified

πr(y
∗
−z, p∗

z, e∗) from the known distribution of πr|a ≤ πr ≤ b, y−z = y∗
−z, e = e∗, pz =

p∗
z. Since η and πr(y−z, pz, e) have bounded support and are independent conditional

on y−z = y−z and pz = pz, we can constructively identify the moment generating func-

tion of πr(y−z, pz, e) conditional on y−z = y−z and pz = pz as the ratio of the moment

generating functions of πr conditional on y−z = y−z and pz = pz and η. Since the

distribution of πr(y−z, pz, e) conditional on y−z = y−z and pz = pz is discrete, its

moment generating function is sufficient for its identification. Note that the moment

generating function of η is well-defined and is never equal to zero since η is a bounded

random variable.

Assumption 3 implies that whenever a type e occurs with positive probability

conditional on y−z and pz, then higher types also occur with positive probability.

Assumption 1 then implies that the ranking over restricted profits is equivalent to the

ranking over productivity e. As a result, if some firm type e does not operate given

y−z and pz, then it has to a low type. Let Πr(y−z, pz) be the support of πr(y−z, pz, e)

conditional on y−z = y−z and pz = pz. Fix some y−z and pz. Since the support of e

is finite, the set Πr(y−z, pz) will also be finite. As a result, Assumption 1 implies that

πr(y−z, pz, de) = max [Πr(y−z, pz)] .

That is, the most productive firm will make more profits than any other firm. Note

that the firm with productivity e = de − 1, if it is present in the market, will be the

second one in terms of restricted profits :

πr(y−z, pz, de − 1) = max [Πr(y−z, pz, s) \ {πr(y−z, pz, de)}] .

In general, given y−z and pz, if the firm with productivity e operates (|Πr(y−z, pz)| >

de − e), then

πr(y−z, pz, e) = max



Πr(y−z, pz) \
⋃

e′>e

{πr(y−z, pz, e′)}


 .

Note that we may not be able to identify the structural restricted profit function for

arguments in which e is too low.
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A.3. Proof of Theorem 2

To prove sufficiency of (i), fix some x−dy
, and take y∗

z from the statement of the

theorem and e∗ ∈ E from condition (i). We abuse notation and drop e∗ and y∗
−z. By

homogeneity of degree 1 of πr(·) we have that for every x

dy
∑

j=1

∂gj
πr(g(x))gj(xj) = πr(g(x)) . (4)

Moreover, since π̃(x) = πr(g(x)), we have that

∂gj
πr(g(x))∂xj

gj(xj) = ∂xj
π̃(x) , (5)

for every j = 1, . . . , dy. Combining (4) and (5) we get that

dy
∑

j=1

∂xj
π̃(x)

1

∂xj
(log(gj(xj)))

= π̃(x) (6)

as long as 0 <

∣

∣

∣

∣

∣

∂xj
gj(xj)

gj(xj)

∣

∣

∣

∣

∣

< ∞ for every j = 1, . . . , dy. This latter condition is

satisfied for almost every xj with respect to Lebesgue measure by Assumption 5(v).

Let t =

(

1

∂xj
(log(gj(xj)))

)

j=1,...,dy−1

. Note that t does not depend on xdy
. Since

π̃ satisfies the rank condition there exists nonsingular A(π̃(x∗)) such that equation

(6) can be rewritten as

At = b , (7)

where b = (bj)j=1,...,dy−1 and bj = π̃(x∗
j)−∂xdy

π̃(x∗
j)xdy ,j. Since A(π̃(x∗)) is of full rank

and is identified, t is identified. Since the choice of x−dy
was arbitrary and we know

the location (Assumption 5(ii)) we identify gj(·) for every j = 1, . . . , dy − 1.

To prove sufficiency of (ii), recall that we assume that for all e and pz in the

support, and λ > 0

Fe|p,y−z
(e|λpz, y∗

−z) = Fe|p,y−z
(e|pz, y∗

−z).

Hence, under Assumption 4(i), the function

E

[

πr(y−z, pz, e)|pz = ·, y−z = y∗
−z

]
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is homogeneous of degree 1 in p−z and

E

[

π∗
r|x = ·, y−z = y∗

−z

]

= E

[

πr(y−z, pz, e)|pz = g(·), y−z = y∗
−z

]

.

Thus, the result follows from applying the same arguments as in the proof of sufficiency

of (i) to the function E

[

π∗
r|x = ·, y−z = y∗

−z

]

instead of π̃(·).

A.4. Proof of Theorem 3

It is immediate that Ỹ (e) is closed, convex, and satisfies free disposal for every

e ∈ E. Moreover, maxy∈Ỹ (e) p′y = π(p, e) for every p ∈ P (e) and e ∈ E. Thus,

conclusion (i) follows from the fact that π(p, e) is identified for each p ∈ P (e) and

e ∈ E by Theorem 1.

To establish conclusion (ii), recall that under the assumptions of Theorem 1, any

given production set Y ′(e) can generate the data if and only if maxy∈Y ′(e) p′y = π(p, e)

for every p ∈ P (e). The set Ỹ (e) is constructed as the largest set (not necessary pro-

duction set) consistent with profit maximization. This set is closed, convex, and

satisfies free disposal. Since a production correspondence also must satisfy the reces-

sion cone property, we obtain that Y ′(e) ⊆ Ỹ (e).

To prove (iii), note that since π(·, e) is homogeneous of degree 1 for every e ∈ E

we can identify π(·, e) over
⋃

λ>0

{λp : p ∈ P (e)} .

Next, since π(·, e) is convex it is continuous, hence it is identified over

int



cl





⋃

λ>0

{λp : p ∈ P (e)}






 .

When Assumption 7 holds, identification of Y (·) follows from Corollary 9.18 in Kreps

(2012).

A.5. Proof of Proposition 1

Fix some e ∈ E. To simplify notation we drop e from the objects below (e.g.

π(p, e) = π(p) and yp(e) = yp). Suppose {yp}p∈P can generate {π(p)}p∈P . Since

{yp}p∈P are profit-maximizing output/input vectors we must have p′yp = π(p). To
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prove that p∗′yp∗′ ≥ p∗′yp for all p, p∗ ∈ P , assume the contrary. But then yp∗
is not

maximizing profits at p∗ since yp is available. The contradiction proves necessity.

To prove sufficiency consider

Y ∗ = co({yp}p∈P ) + R
dy

− ,

where co(A) denotes the convex hull of a set A, i.e. the smallest convex set containing

A. The summation is the Minkowski sum. Y ∗ is sometimes referred to as the free-

disposal convex hull of {yp}p∈P . In particular, note that Y ∗ is convex, closed, and

satisfies free disposal.

We obtain that for every p ∈ R
dy

++ ∩ S
dy−1,

sup
y∈Y ∗

p′y = sup
y∈co({yp}p∈P )

p′y + sup
y∈R

dy
−

p′y = sup
y∈co({yp}p∈P )

p′y .

Because P is finite, {yp}p∈P is bounded. Thus, its convex hull co({yp}p∈P ) is also

bounded. This implies that supy∈Y ′ p′y is finite for every p ∈ R
dy

++ ∩ S
dy−1, hence the

recession cone property is satisfied for the set Y ∗.31

It is left to show that

π(p, e) = p′yp = sup
y∈Y ∗

p′y

for every p ∈ P ∩ S
dy−1. The first equality is assumed. Suppose the second equality

is not true for some p∗. Then there exists ỹ ∈ Y ∗ such that p∗′yp∗ < p∗′ỹ. Since

ỹ ∈ Y ∗ it can be represented as a finite convex combination of points from {yp}p∈P .

But since

p∗′yp∗ ≥ p∗′yp ,

for all p, p∗ ∈ P it has to be the case that

p∗′yp∗ ≥ p∗′ỹ.

The contradiction completes the proof. Since the choice of e was arbitrary the result

holds for all e ∈ E.

31We note that Varian (1984) studies a result related to this proposition, taking as primitives a
deterministic dataset of prices and quantities. He does not verify the recession cone property.
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A.6. Proof of Theorem 4 and Proposition 2

The Hausdorff distance between two convex sets A, B ⊆ R
dy is given by

dH(A, B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

.

Alternatively, the Hausdorff distance can be defined as

dH(A, B) = inf{ρ ≥ 0 : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1} ,

where B
dy−1 = {y ∈ R

dy : ‖y‖ ≤ 1} is the unit ball and inf{∅} = ∞. The support

function of a closed convex set A is defined for u ∈ R
dy via hA(u) = supw∈A u′w. If A

is unbounded in direction u, then hA(u) = ∞.

As preparation, we need a technical lemma. This lemma involves a polar cone,

which for a set C is defined by

PolCon(C) = {u ∈ R
dy : u′p ≤ 0, ∀p ∈ C}.

Lemma 4. Let P̄ ⊆ S
dy−1 be a closed set such that ∪λ>0{λp, p ∈ P̄} is a closed,

convex cone, and let a : R
dy → R be a convex, homogeneous of degree 1 function.

Define

A = {y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄}.

If PolCon(P̄ ) is nonempty, then for any u ∈ S
dy−1,

hA(u) =











a(u), if u ∈ P̄ ,

+∞, otherwise.

Proof. Case 1. Take u ∈ P̄ . Since a(·) is convex and homogeneous of degree 1

hA(u) = a(u).

Case 2. Take u ∈ S
dy−1 \ P̄ . First, we establish that there always exists u∗ ∈

PolCon(P̄ ) such that u′u∗ > 0. To prove this suppose to the contrary that for every

u∗ ∈ PolCon(P̄ ), u′u∗ ≤ 0, it follows that u ∈ PolCon(PolCon(P̄ )). The latter is not

possible, since PolCon(PolCon(P̄ )) is the smallest closed convex cone containing P̄

(Rockafellar, 1970, Theorem 14.1), and u 6∈ P̄ by assumption.

For some u∗ that satisfies u′u∗ > 0, consider ym = y0 + mu∗, m = 1, 2, . . . , where

y0 is an arbitrary point from A. Since u∗ ∈ PolCon(P̄ ), by construction u∗′p ≤ 0 for
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all p ∈ P̄ . Using this fact, note that ym ∈ A for all m = 1, 2, . . . since

p′ym = p′y0 + mu∗′p ≤ a(p) + 0

for all p ∈ P̄ . Finally,

hA(u) ≥ u′ym = u′y0 + mu′u∗

diverges to +∞, since u′u∗ > 0. �

We now provide a key lemma. This result generalizes a classical result that holds

for P̄ = S
dy−1. To our knowledge this result is new, and it may be of independent

interest.

Lemma 5. Let dy ≥ 2 and let the functions a, b : R
dy

++ → R be convex and homoge-

neous of degree 1. Define

A =
{

y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄

}

,

B =
{

y ∈ R
dy : p′y ≤ b(p), ∀p ∈ P̄

}

,

where P̄ ⊆ R
dy

++ is convex and compact. Then

dH(A, B) = sup
p∈P̄

‖a(p/ ‖p‖) − b(p/ ‖p‖)‖ .

Proof. For closed convex sets C, D ⊆ R
dy the following is true: C ⊆ D if and only if

hC(u) ≤ hD(u) for all u ∈ S
dy−1. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1} ⇐⇒
{ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u), hB(u) ≤ hA+ρBdy−1(u), ∀u ∈ S

dy−1} .

Because P̄ is a subset of R
dy

++, its polar cone PolCon(P ) is nonempty; in particular

the polar cone contains the negative unit vector (−1, . . . , −1)′. The set P̄ satisfies

the conditions of Lemma 4, and so we obtain that hA(u) = hB+ρBdy−1(u) = hB(u) =

hA+ρBdy−1(u) = ∞ for all u ∈ S
dy−1 \ {p/ ‖p‖ , p ∈ P̄}. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1}
= {ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u),

hB(u) ≤ hA+ρBdy−1(u), ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + hρBdy−1(u),
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hB(u) ≤ hA(u) + hρBdy−1(u), ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + ρ, hB(u) ≤ hA(u) + ρ, ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : sup

u∈{p/‖p‖ : p∈P̄ }

‖hA(u) − hB(u)‖ ≤ ρ} .

Now note that a(p) and b(p) are values of the support functions of A and B evaluated

at p ∈ P̄ , respectively, since a(·) and b(·) are homogeneous of degree 1 and convex.

Thus,

dH(A, B) = sup
p∈P̄

‖a(p/ ‖p‖) − b(p/ ‖p‖)‖ .

�

To prove Theorem 4 note that since π(·, e) and π̂(·, e) are homogeneous of degree

1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,

π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) ,

for all p ∈ P̄ and e ∈ E. Thus, Theorem 4 is obtained as corollary.

We now turn to the proof of Proposition 2. We first present two lemmas, which

are modifications of Lemmas 6 and 7 in Brunel (2016).

Lemma 6. Assume that P̄ ⊆ S
dy−1 ⋂P is compact and ∪λ>0{λp : p ∈ P̄} is convex.

Let a : P̄ → R be a continuous function. Let A = {y ∈ R
dy : p′y ≤ a(p), p ∈ P̄} be

nonempty. It follows that for all p∗ ∈ P̄ there exists y∗ ∈ A such that hA(p∗) = p∗′y∗.

Moreover, there exists P ∗ ⊆ P̄ such that

(i) The cardinality of P ∗ is less than or equal to dy;

(ii) p′y∗ = a(p) for all p ∈ P ∗;

(iii) p∗ =
∑

p∈P ∗ λpp for some nonnegative numbers λp.

Proof. Fix some p∗ ∈ P̄ . Note that hA(p∗) ≤ a(p∗) < ∞. Since A is closed, by the

supporting hyperplane theorem hA(p∗) = p∗′y∗ for some y∗ ∈ A.

The rest of the lemma follows from Theorem 2(b) in López & Still (2007) if we

show that P ′ = {p ∈ P̄ : p′y∗ = a(p)} is nonempty. By way of contradiction assume

that P ′ is empty. Hence, p′y∗ < a(p) for all p ∈ P̄ . Since the function a(·) − ·′y∗

is strictly positive on a compact P̄ , there exists ν > 0 that bounds a(·) − ·′y∗ from
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below. Hence, for every p ∈ P̄ ,

p′(y∗ + νp∗) = p′y∗ + νp′p∗ ≤ a(p) − ν + νp′p∗ ≤ a(p) .

Thus, (y∗+νp∗) ∈ A. But the later is not possible since p∗(y∗+νp∗) = a(p∗)+ν > a(p∗)

implies that y∗ is not a maximizer. Thus, P ′ is nonempty. �

Lemma 7. Assume that P̄ ⊆ S
dy−1 ⋂P is compact and ∪λ>0{λp : p ∈ P̄} is

convex. Let a : P̄ → R be continuous convex homogeneous of degree 1 function and

{bn : P̄ → R} be a sequence of continuous homogeneous of degree 1 functions such

that

A =
{

y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄

}

,

Bn =
{

y ∈ R
dy : p′y ≤ bn(p), ∀p ∈ P̄

}

,

are nonempty for all n ∈ N. Assume that ηn = supp∈P̄ ‖a(p) − bn(p)‖ = o(1) and

0 < r = infp∈P̄ a(p) < R = supp∈P̄ a(p) < ∞. Then there exists N > 0 such that

sup
p∈P̄

‖a(p) − hBn
(p)‖ ≤ ηn

R

r

1 + ηn/R

1 − ηn/r

for all n > N .

Proof. Fix some p∗ ∈ P̄ and some n such that ηn < r. By Lemma 6 there exists a

finite set P ∗
n , a collection of nonnegative numbers {λp,n}p∈P ∗

n
and y∗

n ∈ Bn such that

hBn
= p∗′y∗

n, p∗ =
∑

p∈P ∗
n

λp,np, and p′y∗
n = bn(p) for all p ∈ P ∗

n . Note that for all

p ∈ p∗
n we have that bn(p) = hBn

(p). Then

a(p∗) = hA(p∗) = hA





∑

p∈P ∗
n

λp,np



 ≤
∑

p∈P ∗
n

λp,nhA(p) =
∑

p∈P ∗
n

λp,na(p) ≤
∑

p∈P ∗
n

λp,n(bn(p) + ηn)

(8)

=
∑

p∈P ∗
n

λp,np′y∗
n + ηn

∑

p∈P ∗
n

λp,n = p∗′y∗
n + ηn

∑

p∈P ∗
n

λp,n = hBn
(p∗) + ηn

∑

p∈P ∗
n

λp,n .

Moreover,

hBn
(p∗) ≤ bn(p∗) ≤ a(p∗) + ηn . (9)

Hence, ‖a(p∗) − hBn
(p∗)‖ ≤ ηn max{1,

∑

p∈P ∗
n

λp,n}.
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Next note that the inequality in (9) implies that

∑

p∈P ∗
n

λp,np′y∗
n = p∗′y∗

n = hBn
(p∗) ≤ a(p∗) + η ≤ R + ηn .

In addition,

∑

p∈P ∗
n

λp,np′y∗
n =

∑

p∈P ∗
n

λp,nbn(p) ≥
∑

p∈P ∗
n

λp,n(a(p) − ηn) ≥
∑

p∈P ∗
n

λp,n(r − ηn) .

Hence,
∑

p∈P ∗
n

λp,n ≤ R + ηn

r − ηn

.

As a result,

‖a(p∗) − hBn
(p∗)‖ ≤ ηn max







1,
∑

p∈P ∗
n

λp,n







= ηn max

{

1,
R + ηn

r − ηn

}

= ηn
R

r

1 + ηn/R

1 − ηn/r
.

�

To prove Theorem 4 note that since π(·, e) and π̂(·, e) are homogeneous of degree

1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,

π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) .

To prove Proposition 2, note that by Lemma 5, with probability 1,

dH(YP̄ (e), ŶP̄ (e)) = sup
p∈P̄

∥

∥

∥π(p/ ‖p‖ , e) − hŶP̄ (e)(p/ ‖p‖)
∥

∥

∥ .

The conclusion then follows by applying Lemma 7 to the right hand side of the equality

above.
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B. Supplemental Results

B.1. Continuous Heterogeneity

In this section we consider the possibility of continuous heterogeneity. Unfortu-

nately, in contrast to our main result in Theorem 1, when facing continuous hetero-

geneity we will need more observables (instruments) and more assumptions. Moreover,

we will need to assume that there is no measurement error η.

For simplicity we state the results for the profit function. The analysis of the gen-

eral restricted profit function is similar. Assume that the analyst observes (π, p′, w′)′,

where the instrumental variable w is supported on W and π = π(p, e) are perfectly

measured profits. We normalize e to be uniformly distributed.

Assumption 8. The distribution of e is uniform over [0, 1].

The following assumption is an independence condition that requires the instru-

mental variable to be independent of the unobservable heterogeneity e.

Assumption 9. Fe|w(·|w) = Fe(·) for all w ∈ W .

Assumption 9 together with the requirement that the profit function π(p, ·) is

monotone (Assumption 1) imply the following integral equation familiar from the

literature on nonparametric quantile instrumental variable models.

Lemma 8. If Assumptions 1, 8 and 9 are satisfied, then the following holds:

P (π ≤ π(p, e)|w = w) = e (10)

for all e ∈ E and w ∈ W .

Proof. Fix some w ∈ W and e ∈ E. First, note that by the law of iterated expecta-

tions

P (π − π(p, e) ≤ 0|w = w) = E [E [1 ( π(p, e) − π(p, e) ≤ 0 ) |p = p, w = w] |w = w] .

By strict monotonicity of π(p, ·) it follows that

E [1 ( π(p, e) − π(p, e) ≤ 0 ) |p = p, w = w] = E [1 ( e ≤ e ) |p = p, w = w] .
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The law of iterated expectations together with Assumptions 8 and 9 then imply that

P (π − π(p, e) ≤ 0|w = w) = e .

�

This lemma says that in the presence of endogeneity, we can still rank firms con-

ditional on the instrumental variable. Note that Equation 10 is an integral equation

that connects the unknown profit function, the distribution of observables, and pro-

ductivity e. Indeed, Equation 10 can be rewritten as

∫

Pw

Fπ|p,w(π(p, e)|p, w)fp|w(p|w)dp = e ,

for all w ∈ W and e ∈ E, where Pw denotes the support of p conditional on w = w

and we assume the conditional p.d.f. of p conditional w = w exists for all w. The

above integral equation has a unique solution in

L2(P ) =
{

m(·) :
∫

P
|m(x)|2dx < ∞

}

,

for every e ∈ E, if the operator Te : L2(P ) → L2(W ) defined by

(Tem)(w) =
∫

Pw

Fπ|p,w(m(p)|p, w)fp|w(p|w)dp,

is injective for every e ∈ E. Injectivity of integral operators is closely related to

the notion of completeness. Numerous sufficient conditions for injectivity of integral

operators are available in the literature.32 Next we establish identification of π(·)
based on the results of Chernozhukov & Hansen (2005).

Note that Equation 10 is equivalent to the IV model of quantile treatment effects

of Chernozhukov & Hansen (2005). Thus we can directly invoke their identification

result. For some fixed δ, f > 0, define the relevant parameter space P as the convex

hull of functions π′(·, e) that satisfy: (i) for every w ∈ W , P (π ≤ π′(p, e)|w = w) ∈
[e − δ, e + δ], and (ii) for each p ∈ P ,

π′(p, e) ∈ sp =
{

π : fπ|p,w(π|p, w) ≥ f for all w with fw|p(w|p) > 0
}

.

Moreover, let fǫ|p,w(·|p, w; e) denote the density of ǫ = π − π(p, e) conditional on p

32See for example Newey & Powell (2003), Chernozhukov & Hansen (2005), DH́aultfoeuille et al.
(2010), Andrews (2011), DH́aultfoeuille (2011), and Hu et al. (2017).
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and w. The following theorem follows from Theorem 4 in Chernozhukov & Hansen

(2005).

Theorem 5. Suppose that

(i) π(p, ·) is strictly increasing for every p ∈ P ;

(ii) Assumptions 8 and 9 hold;

(iii) π and w have bounded support;

(iv) fǫ|p,w(·|p, w; e) is continuous and bounded over R for all p ∈ P , w ∈ W , and

e ∈ E;

(v) π(p, e) ∈ sp for all p ∈ P and e ∈ E;

(vi) For every e ∈ E, if π′, π∗ ∈ P and E [(π′(p, e) − π∗(p, e))ω(p, w; e)|w] = 0 a.s.,

then π′(p, e) = π∗(p, e)a.s., for ω(p, w; e) =
∫ 1

0 fǫ|p,w(δ(π′(p, e)−π∗(p, e))|p, w; e)dδ >

0;

Then for any π′(·, e) ∈ P such that

P (1 ( π ≤ π′(p, e) ) |w = w) = e

for all w ∈ W , it follows that π′(p, e) = π(p, e) a.s..

B.2. Nonmonotonicity of Supply

Consider the following production sets that correspond to three different levels of

productivity. Y (ei) = {(yo, l)′ ∈ R × R+ : yo ≤ fi(l)}, where

f1(l) = l0.4, f2(l) = 2 · l0.4

and

f3(l) =























l0.2 0.01 ≥ l ≥ 0

7 · (l − 0.01) + 0.010.2 0.03 ≥ l ≥ 0.01

2 · l0.4 + 7 · 0.02 + 0.010.2 − 2 · 0.030.4 0.03 ≤ l.

Note that by construction f1(l) < f2(l) < f3(l) for all l > 0. Hence, Y (e1) ⊆ Y (e2) ⊆
Y (e3) and π(p, e1) < π(p, e2) < π(p, e3) for all positive p. If one takes p = (po, pl)

′
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such that po/pl = 0.12, then the optimal levels of inputs and outputs are

0.007 > l∗
1 = 0.0485/3 > 0.006, 0.2 > y∗

o,1 = 0.0482/3 > 0.1

0.03 > l∗
2 = 0.0965/3 > 0.02, 0.5 > y∗

o,2 = 2 · 0.0962/3 > 0.41

0.01 > l∗
3 = 0.0245/4 > 0.009, 0.40 > y∗

o,3 = 0.0241/4 > 0.39.

Thus, for this price vector neither the optimal level of the input nor the optimal level

of the output are monotone in productivity since l∗
1 < l∗

3 < l∗
2 and y∗

o,1 < y∗
o,3 < y∗

o,2.

B.3. Parametric Examples and Price Proxies

Section 3 shows that if prices are not observed but price proxies are, then it is

possible to reproduce price variation from such proxies. The technique requires a

high level rank condition. We present two examples to better understand this rank

condition.

Example 6 (Diewert function, dy = 3). Let

π(p, e) =
3
∑

s=1

3
∑

j=1

bs,j(e)p1/2
s p

1/2
j .

Suppose that p3 is observed, and p1 = g1(x1) and p2 = g2(x2). Assume, moreover,

that ∂xs
gs(xs) 6= 0, for all xs and s = 1, 2. Fix any x1 and x2. Then the rank condition

is satisfied if and only if there exists e∗ such that

b1,1(e
∗)
√

g1(x1) + b1,2(e
∗)
√

g2(x2)

b2,2(e∗)
√

g2(x2) + b1,2(e∗)
√

g1(x1)
6= b1,3(e∗)

b2,3(e∗)
.

In particular, if g1(·) = g2(·), then the rank condition is satisfied if and only if

b1,1(e
∗) + b1,2(e

∗)

b2,2(e∗) + b1,2(e∗)
6= b1,3(e

∗)

b2,3(e∗)
.

In Example 6 the rank condition is satisfied except for a set of parameter values

with Lebesgue measure zero. However, as the following example demonstrates, the

rank condition may fail to hold for all possible values of parameters.

Example 7 (Cobb-Douglas). For a fixed e, let yo ≤ kαlβ be such that α + β < 1 and
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α, β > 0. Then

π(p, e) = (1 − α − β)
[

pk

α

]

α

α + β − 1
[

pl

β

]

β

α + β − 1
(po)

−
1

α + β − 1 ,

where p = (po, pk, pl)
′. Suppose that only po is perfectly observed. Suppose pk =

gk(xk) and pl = gl(xl). Then for any two p∗
o and p∗∗

o let p∗ = (p∗
o, pk, pl)

′ and p∗∗ =

(p∗∗
o , pk, pl)

′. The matrix A(π̃, x∗) is singular since it is equal to











απ(p∗, e)

(α + β − 1)gk(xk)
∂xk

gk(xk)
βπ(p∗, e)

(α + β − 1)gl(xl)
∂xl

gl(xl)

απ(p∗∗, e)

(α + β − 1)gk(xk)
∂xk

gk(xk)
βπ(p∗∗, e)

(α + β − 1)gl(xl)
∂xl

gl(xl)











.

It can be shown that the rank condition is never satisfied for Cobb-Douglas production

function if only one of the prices is perfectly observed.

The rank condition is not satisfied for the Cobb-Douglas production function

because the ratios of any two different quantities chosen (e.g. l/k, or yo/l) do not

depend on the price of the quantity not described in the ratio. Indeed, recall that

∂xj
π̃(x, e) = yj(g(x), e)∂xj

gj(xj) .

Thus, if yj(g(x), e)/ys(g(x), e) does not depend on observed price pdy
, then the s-th

column of A(π̃, x∗) is a scaled version of the j-th column of A(π̃, x∗). Hence, A(π̃, x∗)

is singular.

B.4. Point Identification and Assumption 7

It is natural to wonder when Assumption 7 is necessary and sufficient for point

identification of Y (·). Unfortunately, this question is technical. It is essentially equiv-

alent to asking when the function πP , defined as π restricted to P × E, has a unique

extension π̃ : R
dy

++ × E → R
dy such that π̃ is homogeneous of degree 1, convex, and

satisfies π̃(p, e) = π(p, e) for every (p′, e)′ ∈ P × E.

First, we note that by exploiting continuity and homogeneity of degree 1, we know
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that there is a unique extension of πP to the set

int



cl





⋃

λ>0

{λp : p ∈ P}






× E

that satisfies the properties described above. It is, however, possible that this set is

strictly nested in R
dy

++ ×E, and yet there is a unique extension of πP to all of R
dy

++ ×E.

Example 8 (Unique Extension without Assumption 7). Consider π(p, e) = e
∑dy

j=1 |pj|
with E = [0, M ], 0 < M < ∞. This functions is homogeneous of degree 1 and convex

in p, and hence the profit function for price-taking firms, indexed by e (Kreps, 2012,

Proposition 9.14). Let ∆dy−1 = {p ∈ R
dy

++ :
∑dy

j=1 pj = 1} denote the relative interior

of the probability simplex, and let S = {p ∈ ∆dy−1 : |yj − 1/dy| ≤ 1/dy for each j}
denote a convex set centered at the midpoint of the simplex. Let P be the probability

simplex with the region S removed, i.e. P = ∆dy−1 \ S. Note that P is a subset of

the affine space {p ∈ R
dy :

∑dy

j=1 yj = 1}, and πP (·, e) is equal to e over P . Any

convex extension of πP (·, e) to the convex hull of P , ∆dy−1, must also be equal to e.

In more detail, there is a unique such extension because ∆dy−1 has dimension dy − 1

(i.e. the smallest affine space containing this set has dimension dy − 1). Because

there is a unique convex extension of πP (·, e) to all of ∆dy−1, there is a unique convex

and homogeneous extension to all of R
dy

++. By Corollary 9.18 in Kreps (2012) the

production correspondence is identified even though Assumption 7 fails to hold.

For additional geometric intuition behind this example, consider a line segment

from (0, 0) to (1, 0) in R
2. If one deletes a chunk out of the middle of this line segment,

but maintains each endpoint, then the convex hull of this modified set is actually the

original set.

This example also shows that it is possible to uniquely determine π(p, e) at values

p that are not in the set int (cl (
⋃

λ>0 {λp : p ∈ P})). We are only able to construct

“knife edge” examples in which the support restriction of Assumption 7 is not equiv-

alent to point identification of Y (·). We note that strict convexity of π(·, e) rules out

this sort of example.

B.5. Parametric Estimation of the Diewert (1973) Functional Form

We outline a specific approach to estimating π by adapting the flexible functional

form of Diewert (1973) to our setting. This class of functions applies with multiple

outputs and inputs.
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Consider a profit function of the form

π(p, e) =
dy
∑

s=1

dy
∑

j=1

bs,j(e)p1/2
s p

1/2
j ,

where bs,j(·) = bj,s(·) for all s, j. The original class of Diewert (1973) considers a

deterministic model or representative agent model, in which each bs,j(·) is constant.

We allow unobservable heterogeneity by allowing bs,j(·) to be a function of e. This

functional form exhibits several desirable properties: (i) it is linear in the coefficients

bs,j(e); (ii) monotonicity of π(p, ·) can be imposed by assuming that each bs,j(·) is

increasing; (iii) convexity can be also imposed using linear inequalities on the coef-

ficients;33 (iv) homogeneity of degree 1 in p is built-in. These features facilitate its

estimation using constrained linear quantile regression (Koenker & Ng, 2005). The

supply function for good s is described by the formula

ys(p, e) =
dy
∑

j=1

bs,j(e)(pj/ps)
1/2 .

Thus, if quantities are observed in addition to prices and profits, then this equation

provides overidentifying information.

33A sufficient condition for convexity in prices is that bs,j(e) ≤ 0 for all s 6= j and bj,j(e) ≥ 0.
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