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ABSTRACT

In this dissertation, a systematic literature review was undertaken, exploring the
application of gauge theory, an important formalism in physics literature, to finance. A
set of keywords pertaining both gauge theory and finance were established and used as
a search string in the database Web of Science. After exclusion and inclusion principles
were applied to the set of articles generated, 14 papers were obtained.

By systematically reviewing them, three major approaches to a financial gauge theory
were found: Beliefs-Preferences Gauge Symmetry, Local Numéraire Gauge Symmetry,
and Deflator-Term Structure Gauge Symmetry. These can be essentially differentiated by
the kind of gauge symmetry explored. Changing pairs of beliefs and preferences, local
numéraires and pairs of deflator and term structure is argued to be of no consequence
to the dynamics of the financial market under consideration. A differential geometric
treatment of financial markets as fibre bundles was shown to be necessary for an
understanding of the gauge theory application, and proved itself to be successful in
rethinking certain concepts, such as gains from arbitrage opportunities, being equivalent
to the curvature of the said fibre bundle, an invariant under gauge transformations.

The local numéraire gauge symmetry turned out to be the most investigated one, leading
to the execution of various numerical simulations, each with different added variations.
Amongst them, the idea of using path integrals, a formalism from quantum mechanics,
as a way of simulating the log price probability distributions of a market is used. This
works by assuming that the market is characterized by the minimization of arbitrage
opportunities. It was found good agreement with historical data, which substantiates the
existence of gauge symmetry in financial markets, at least to some extent.

Keywords: Gauge Theory; Finance; Systematic Literature Review; Differential
Geometry
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RESUMO

Nesta dissertação de mestrado foi realizada uma revisão sistemática da literatura, visando
investigar a aplicação de teorias de gauge no contexto financeiro. Para este fim, foi
construı́do um conjunto de palavras-chave, pertinentes tanto em finanças como em teorias
de gauge, subsequentemente introduzidas na base de dados Web of Science, com o intuito
de encontrar todos os artigos que de alguma maneira as abordem. Princı́pios de exclusão
e inclusão foram aplicados ao conjunto de artigos previamente obtido, traduzindo-se em
14 artigos considerados pertinentes. Revendo-os de modo sistemático, conclui-se que
três abordagens para uma teoria de gauge financeira podem ser destiladas: Simetria de
Gauge Crenças-Preferências, Simetria de Gauge Numéraire local, e Simetria de Gauge

Deflator-Termo de Estrutura. Estas diferem no género de simetria de gauge explorada.
Alterações que afectem pares de crenças e preferências, numéraire locais e pares de
deflatores e termos de estrutura, assumem-se de nenhuma consequência no que diz
respeito às dinâmicas do mercado financeiro em consideração. Para um entendimento
de teorias de gauge, provou-se necessário um tratamento geométrico de mercados
financeiros, inspirado pelo formalismo de geometria diferencial, interpretando-os como
um feixe de fibras. Tal tratamento matemático permite a reconceptualização de ganhos
ocorridos por usufruir de oportunidades de arbitragem como elementos do tensor de
curvatura do feixe de fibras. Esta quantidade é dita invariante perante transformações
de gauge.

A simetria de gauge associada a escolhas locais de numéraire revelou-se a abordagem
mais investigada, levando à execução de diversas simulações numéricas, cada uma com
adições únicas ao modelo base. A ideia de usar integrais de caminho, um formalismo
comum em mecânica quântica, de maneira a simular as distribuições de probabilidades
do logaritmo de preços caracterı́sticos de um mercado financeiro serviu de modelo base.
Tal modelo baseia-se na assunção de que um mercado financeiro é caracterizado por
minimizar os possı́veis ganhos associados a oportunidades de arbitragem. Demonstrou-se
uma boa concordância entre dados históricos, relativo aos preços de diversos activos,
substanciando a ideia fundamental de que simetria de gauge existe em mercados
financeiros.

Keywords: Teoria de Gauge; Finanças; Revisão Sistemática da Literatura; Geometria
Diferencial
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1 INTRODUCTION

Financial markets constitute complex systems whose dynamics have been best described
and modelled with the aid of tools borrowed from mathematics, and, to some extent,
physics (Ilinski, 2000; Smolin, 2009). Such an influence from the deemed “exact
sciences” onto financial and economic theory could be potentially attributed to the
nature of problem-solving found in these disciplines. A major difference between
“exact sciences” and financial economics is the human element at play, introducing
an additional difficulty, due to its unpredictable nature (Smolin, 2009). However, as
with any model describing reality, whether it’s physical, mathematical or human reality,
assumptions regarding their nature must always be established. Any naive hopes of
total and unequivocal description of nature must be abandoned, regardless of the field.
For this reason, mathematics applied to human nature should not be considered an
impairing oversimplification, but a development of models which attempt to describe an
unpredictable nature, given some set of axioms, hopefully, sufficiently realistic. One may
criticize the assumptions, deeming them as potentially reductive, but one cannot criticize
(assuming that a correct procedure was undertaken during the research) the conclusions
derived.

Many examples of the applicability of mathematics and physics can be found throughout
financial literature: the seemingly random motion of small gas particles (but large enough
to be observed under a microscope) and Bachelier’s model of stock market prices are
both described as Brownian motions (Ilinski, 2001); Mantegna & Stanley (2000) with
their ideas of scale invariance, and other topics pervasive in physics literature, leading to
interdisciplinary subjects such as econophysics and mathematical finance; applications of
quantum mechanics to option pricing, by employing path integrals (to be briefly discussed
in subsection 5.2.1) and other formalisms (Baaquie, 2004) and also the realization that the
famous Black-Scholes equation of option pricing theory bears undeniable resemblance
with the Fokker-Planck equation in statistical physics (Young, 1999).

In the realm of economic theory, one finds the development of game theory and
general equilibrium theory, whose highly mathematical mechanisms allowed for the
establishment of a sufficiently strong bedrock on which many aspects of economic theory
rest (Smolin, 2009).

Following this “tradition”, we here manifest an interest of assessing in what ways has
gauge theory been adapted to financial economics and what kind of perks are attained
from adopting such a formalism. Gauge theory can be briefly defined as any theory
which describes the dynamics of a system, under the constraint that its dynamics must be
invariant under some transformations, considered to be resultant from arbitrary observer’s

1



choice (Trautman, 1981; Smolin, 2009). It can also be thought of as a system whose
dynamics are endowed with extra degrees of freedom. Gauge theoretical concepts have
proven themselves of paramount importance in a great variety of sub-fields in physics,
appearing in a great number of fundamental theories e.g. Quantum Electrodynamics,
General Relativity, among others (François et al., 2014). In that context, a suggestive
reason to such symmetry being so important is the fundamental idea that the laws that
describe physical nature should be independent of arbitrary conventions.

In this dissertation, a systematic literature review is performed, in order to understand
to what extent gauge theory found application to finance. To assure the replicability of
the review, the methodology found in Tranfield et al. (2003) was followed. We aim to
assess the usefulness of a gauge theoretical approach to finance by critically reviewing
the selected articles and exposing existing gaps in the literature.

In a financial scenario, it’s expected that dynamics remain invariant under certain changes
regarding arbitrary conventions. For this situation, the entities whose dynamics we
are interested are prices of assets, whether these are shares, bonds, currencies, indices,
financial derivatives or others. For the exposition of the application of gauge theory
to finance, it became necessary to acquire a basic grasp of the formalism of gauge
theory. With that in mind, an understanding of the underlying mathematics proves itself
indispensable, which belong to the quite dense subfield of differential geometry. For
this reason, a chapter of the dissertation is dedicated to a heuristic exposition of the
mathematical formalism.

The dissertation is organized as follows: in Chapter 2, an exposition of the mathematical
formalism with which gauge theories are best understood is given; Chapter 3 describes the
methodology used to perform the systematic literature review, while Chapter 4 shows the
obtained results, such as the papers encountered and brief descriptive accounts; Chapter
5 provides an extensive discussion of the obtained results, by synthesizing all papers, and
pointing out the links between them; we end this dissertation with Chapter 6, presenting
concluding remarks, such as positive and negative aspects of the found applications of
gauge theory to finance, possibilities for future research in this topic, and a critic look
onto the utilized methodology.
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2 ELEMENTS OF DIFFERENTIAL GEOMETRY

The language on which gauge theory is built relies heavily on a mathematical formalism
known as differential geometry (François et al., 2014). Thus, it becomes imperative
to possess a basic understanding of differential geometry in order to proceed. Due to
the high complexity and vastness of this field of mathematics, we’ll present only a few
elements of the formalism, just enough so that the language is somewhat understood and
the advantages are identified, in order to commence our discussion on gauge theory. We
won’t aim for a deeply formal account of the theory. Instead, the intuition behind every
notion is seen as paramount. Any theorem or proposition exhibited in this summary will
not have an associated proof. For these, we point out literature on which we’ve based
every statement.

An important caveat regarding the nature of the discussion to come needs to be addressed.
Differential geometry requires elements of point-set topology as bedrock for a proper
exposition. However, we won’t dedicate any section for this. It is our hope that the
intuition behind differential geometry be present, even without this pre-requisite. Any
topological notion in need of introduction, will be defined and exemplified immediately,
allowing for the preservation of intuitiveness.

2.1 Motivation1

We’ll begin by considering the standard Euclidean space:

Rn = {(x1,x2, ...,xn)
∣∣xi ∈ R,∀i} (2.1)

As per usual of Euclidean spaces, they possess global coordinates. That is, regardless of
where we are in the space, we can always describe it with the same coordinate system.
The standard coordinates would be the Cartesian ones, but it could be many others, such as
polar or spherical ones. However, the choice of coordinates is largely arbitrary, depending
ultimately on preferences or practicality, and therefore, any concepts which depend on
coordinates can’t bear the same level of fundamentality. Another way of approaching
this idea of coordinate-free importance is by taking a more practical stance. All these
coordinates mentioned are nothing more than a way to perform algebraic operations.
Nothing more than “human conventions”. Any “real” concepts must not depend on
conventions. This notion will be important to understand the applicability to finance.

Lastly, when one deals with more complicated geometries, which will be discussed later,
global coordinates might not exist, which means that concepts which depend on these

1 Subsection 2.1 and 2.2 follow references such as Lee (2000), Tu (2011) and Tu (2017).
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render themselves useless. A coordinate-free description is necessary.

2.2 Differentiable Manifolds

A n-dimensional, connected, Hausdorff topological space 2 M is a manifold if (Ilinski,
2001; Isham, 1999):

• There exists a family of open subsets {Uα |Uα ⊂M,∀ α} that covers M, that is:

M =
⋃
α

Uα (2.2)

• There exists homeomorphic maps φα (that is, continuous maps that “take” each
point in the domain to a single point in the image, whose inverse is also continuous),
such that:

φα : Uα −→ φα(Uα)⊂ Rn

p 7−→ φα(p) = (x1,x2, ...,xn)
(2.3)

where (x1,x2, ...,xn) is a point in Rn in some coordinates. For any two overlapping
Uα and Uβ , that is, Uα ∩Uβ 6= /0, the following maps are also homeomorphisms:

φα ◦φ
−1
β

: φβ (Uα ∩Uβ )−→ φα(Uα ∩Uβ )

φβ ◦φ−1
α : φα(Uα ∩Uβ )−→ φβ (Uα ∩Uβ )

(2.4)

where φα(Uα ∩Uβ ), φβ (Uα ∩Uβ ) ⊂ Rn. These maps are known as overlap
functions.

The pair (Uα ,φα) is known as a local chart, and the collection {(Uα ,φα)|Uα ⊂M,∀α}
is an atlas on M. When the overlap functions in (2.4) are infinitely differentiable (said to
be smooth, or of class C∞), we say that the manifold is a smooth manifold.

2 See Munkres (2000) for definitions and explanations of these topological terms.
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Figure 2.1: Representation of smooth charts on manifold M.

Source: Adapted from Tu (2011).

Intuitively speaking (see Figure 2.1)3, a n-dimensional smooth manifold is a complicated
geometric structure when globally considered, which can be seen as a series of patches in
Euclidean space (locally homeomorphic to n-dimensional Euclidean space via a smooth
map φα ) all glued together to create the whole object (the union of all subsets Uα covers
the manifold, and they’re consistent in overlapping regions, see equation (2.4)).

It is this construction that allows to actually work with manifolds from an analytical
standpoint. We’ve generalized to a point where global coordinates no longer exist, since
the considered object doesn’t “live” in the Euclidean ambient space, losing the ability to
effectively analyse it with the mathematical tools from calculus, but then recuperate these
by saying that the whole structure can be locally approximated to the Euclidean space in
a smooth fashion.

This notion is at the heart of differential geometry: the back and forth between the
manifold structure, which is quite general but too abstract, rendering it unworkable with,
and the Euclidean space, which is far too specific, but allows standard calculus. All

3 From now on, any pictorial representation of the Euclidean space in n dimensions will be represented by
R2.
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manifolds considered from now on will be assumed to be smooth, unless otherwise stated.
Standard tools of calculus can be dealt with in the manifold by recurring back to the
Euclidean space, as previously mentioned, but now in a coordinate-free manner. Three
notions will be highlighted due to their importance: smooth curves, functions and maps
between manifolds.

Let [a,b]⊂ R be a closed interval. A curve γ on a manifold M is defined as the injective
map γ : [a,b]→ M (see illustration in Figure 2.2). At each point γ(t) ∈ M, ∀t ∈ [a,b],
there exists a chart (Ut ,φt). Therefore, at some t, we have the function:

φt ◦ γ : [a,b]−→ φt(Ut)⊂ Rn

t 7−→ φt(γ(t))
(2.5)

which is a standard function from R to R2 that can be evaluated via calculus.

Figure 2.2: Smooth curve on a manifold.

Source: Adapted from Tu (2011).

A function f on M is denoted as f : M→ Rk, where k is not necessarily equal to n. This
function is smooth if, for all points p ∈M there’s a chart (U,φ), where p ∈U ⊂M, such
that f ◦φ−1 : φ(U)⊂ Rn→ Rk.

And finally, the notion of a map between manifolds. Let Mn and Nk be n and k

dimensional manifolds, respectively. Let there be a bijective map F : M → N between

6



them. The map is said to be smooth if for all points p ∈ M there is a chart (U,φ),
where p ∈ U ⊂ M, and a chart (V,ψ), where F(p) ∈ V ⊂ N, such that F(U) ⊂ V and
F̂ ≡ ψ ◦F ◦φ−1 : φ(U)⊂ Rn→ Rk ⊃ ψ(V ) is smooth.

In summary, despite the fact that the previous functions have a domain or an image which
is a general manifold, in practice, we consider them locally, where they are identical with
Euclidean space, where, once again, calculus is readily applicable.

2.2.1 Tangent Space

We’ve seen that a manifold structure can be approximated by the union of an arbitrary
number of subsets which are essentially “equal” to the Euclidean space. Here we
introduce the idea of tangent space, which can be understood intuitively as a linear
approximation at some point of a given surface or a more abstract geometric object. For
the case of Euclidean space, we denote the space whose elements are tangent vectors at
a some point p ∈ Rn as the tangent space TpRn. Every manifold is locally Euclidean,
therefore U ⊂M also has an associated tangent space TpU . Since the tangent space of a
manifold is interpreted as a linear approximation at some point, TpU and TpM must be
identical. From now on we’ll denote the tangent space at a point p ∈M as TpM. A vector
Xp ∈ TpM can be written in local coordinates (x1,x2, ...,xn) as a linear combination of
basis vectors, which can be proven to be the differential operators ∂/∂xi ≡ ∂i, ∀i (see, for
example, Tu (2011), for such a proof).

An important map between the tangent spaces of two manifolds is now discussed. Again,
let M and N be smooth manifolds, whose dimensions aren’t necessarily equal. For each
p ∈M, we define the push-forward of F as:

F∗ : TpM −→ TF(p)N

Xp 7−→ YF(p) = F∗Xp
(2.6)

where Xp and YF(p) are tangent vectors of M and N, respectively. Thus, the push-forward
provides a rule for mapping tangent vectors between manifolds.

As seen in Figure 2.3, a smooth map F between these two manifolds provides a map
between their tangent spaces at each point, the push-forward F∗. This way, vectors
between manifolds can be “compared” with one another.

7



Figure 2.3: Smooth map F and induced push-forward F∗.

Source: Adapted from Tu (2010).

2.2.2 Lie Group

We end this section by introducing an important kind of manifold, which will bear great
importance in later sections – the Lie group (any mathematical reference pertinent to
differential geometry, usually presents a section dealing with this subject; we point out,
for example, Isham (1999), Lee (2000) or Tu (2011)). A Lie group G is a special kind of
smooth manifold, endowed with the additional structure of a group, where the following
smooth maps are obeyed:

• µ : G×G→ G by (g1,g2) 7→ µ(g1,g2) = g1 ·g2 (multiplication)

• i : G→ G by g 7→ i(g) = g−1 (inversion)

An important element of a Lie group is known as the identity e. For any g ∈ G, we have
µ(e,g) = e ·g = g and i(e) = e.

Like with any other manifold, we can conceptualize a tangent space at some point. The
point of interest will be the identity, because, due to the group structure, we can achieve
any other point in the manifold by multiplying the identity with some group element. The
tangent space of the Lie group at the identity TeG bears the name of Lie algebra, G , and
it comes with a canonical map known as Lie brackets:

[·, ·] : G ×G −→ G

(Xe,Ye) 7−→ [Xe,Ye] = XeYe−YeXe
(2.7)

where Xe and Ye are two tangent vectors of the Lie group at the identity.
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Finally, we point out that from now on, unless stated otherwise, only Abelian groups
will be considered. Abelian groups are commutative, that is, a · b = b · a, for a, b ∈ G.
Consequently, the Lie brackets above will always be zero. However, we’ll still respect
order of application of operators as if they didn’t commute, just to keep in accordance
with the literature.

2.3 Fibre Bundles

Now we introduce the geometric structure of a fibre bundle, which will play a fundamental
role in gauge theoretical language. For this subsection, we follow mostly Ilinski (2001)
and Way (2010). A fibre bundle (see Figure 2.4) is a geometric construction with the
following constituents:

1. Manifold E called Total Space;

2. Manifold M called Base Space;

3. Manifold F called Fibre Space;

4. Projection map π : E →M (assumed to be surjective) and local trivialization of E

(assumed to be a smooth one-to-one map) given by:

ϕα : E ⊃ π
−1(Uα)−→ (ϕα ◦π

−1)(Uα) =Uα ×F

π
−1(p) 7−→ (ϕα ◦π

−1)(p) = {p}×Fp ' Fp
(2.8)

where Fp = { fp ∈ F given p ∈ Uα} is a set of fibre elements belonging to F ,
parametrized by p ∈ Uα ⊂ M. The total space is given by the union of all fibre
elements:

E =
⋃

p∈M

π
−1(p) =

⋃
p∈M

Fp (2.9)

An element of the manifold E will be denoted as the pair p̃= (p, fp), which belongs
to Fp↔ π−1(p) and, if projected to the base space, is equal to p;

5. Structural group G (not necessarily a Lie group) acting on the right on the total
space E, via smooth transformations:

E×G−→ E

(p̃,g) 7−→ p̃ ·g
(2.10)
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which induces a right action on E:

Rg : E −→ E

p̃ 7−→ Rg(p̃) = p̃ ·g
(2.11)

Figure 2.4: Representation of a fibre bundle geometry.

Figure 2.4 is interpreted as follows: to each subset U in the base space M, there’s a
“correspondent” subset in the total space E, which is locally homeomorphic to the product
F×U , where F is the fibre, here represented as lines 4.

What is paramount here is the notion of a manifold M (our “real” space, that is, the space
where we actually work on) being the projection of this “complicated” manifold E, which
locally can be approximated to a simple Cartesian product between an open subset Uα of
M and the fibre F .

2.3.1 Transition Functions

Returning to our previous discussion, now we consider overlapping regions in the base
space (see Figure 2.5). For p ∈Uα ∩Uβ , the local trivialization can be given by both ϕα

and ϕβ :

4 Notice, however, that the fibre is also a general manifold, not necessarily a set of straight lines. This
simply allows for a less confusing picture.

10



(Uα ∩Uβ )×F
ϕα←−− π

−1(Uα ∩Uβ )
ϕβ−−→ (Uα ∩Uβ )×F (2.12)

Even though the image is the same for both these maps, the considered trivializations
may not map exactly to the same values. In order to relate these, we defined transition
functions from (Uα ∩Uβ )×F to (Uα ∩Uβ )×F as follows:

λαβ : (Uα ∩Uβ )×F −→ (Uα ∩Uβ )×F

(p, fp) 7−→ λαβ (p, fp) = (p, fp ·g(p))
(2.13)

where λαβ ≡ ϕβ ◦ϕ−1
α = ϕα ◦ϕ

−1
β

are the transition functions, and g(p)∈G is an element
of the strucutral group. Equation (2.13) can be interpreted as follows: the coordinates in
the base space are the same, since it’s the same point, but the fibre element associated to
it might be different under two different local trivializations. These can be compared with
one another under the action of transition functions, which are elements of the structural
group. If we let fp,α and fp,β denote the fibre elements associated with the restrictions
(ϕα ◦π−1)(Uα ∩Uβ ) and (ϕα ◦π−1)(Uα ∩Uβ ), respectively, then we have:

fp,β = fp,α ·g(p) (2.14)

representing transitions functions via an element of the structure group, thus effectively
“gluing” together different subsets on the overlap region (see Figure 2.5).

This construction is quite abstract, but it can be tackled by thinking of it as a way of
formalizing the notion of extra degrees of freedom regarding some element in M. Finally,
we define a local section of the total space as being a smooth map:

σ : M −→ E

p 7−→ σ(p) = (p, fp)
(2.15)

where fp ∈ Fp, associating with a point in the base space, a certain element of the
fibre parametrized by that point (Marsh, 2019). Notice that the section, also called
cross-section, “chooses” from the fibre associated to that point, a single element.

A special kind of fibre bundle is one where the fibre F is itself the structure group G,
(consequently, a Lie group). This is called a G-principal fibre bundle, and it will be the
focus of our discussion. Also, if the total space can be globally considered as a product
F×G, then we say that the fibre bundle is trivial.
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Figure 2.5: Local representation of the total space E in an overlapping region and
associated transition functions acting on fibre elements.

Source: Adapted from Marsh (2019).

2.4 Connections on the Fibre Bundle5

Consider the total space E. As was stated before, it can be locally approximated to the
product of two manifolds: a subset of the base space M and the fibre F , which is also, for
our purposes, a Lie group. Then, the projection is locally given by the following map:

π|U : U×FU −→U (2.16)

where U is a coordinate neighbourhood of M around the point p = π(p̃), where p̃ ∈ E,

5 This subsection content is due mostly to Isham (1999), Way (2010) and Marsh (2019). Also, here we
make use of vectors to describe the need for a connection and covariant derivation, but these concepts can
be constructed much more generally. However, ease of understanding is lost for the sake of abstraction,
which is not our intention. For this reason, we present a vector description, even though we won’t use it,
fully, later on.
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and π|U is the restriction of the projection map to that subset. If we take the push-forward
introduced in subsection 2.2.2 and apply it to this projection map, we obtain:

π∗ : Tp̃E ' TpM×Tp̃F −→ TpM (2.17)

taking tangent vectors of the total space and mapping them on the tangent space of the
base space at some point. Here, we can define the vertical subspace of the total space as
the kernel of π∗:

Vp̃E = ker(π∗) = {v ∈ Tp̃E
∣∣π∗v = 0} (2.18)

that is, the space of tangent vectors to the total space which have no projection onto the
tangent space of the base manifold. It is denoted as the vertical subspace, because it is
the tangent space of the fibre, which is visualized as vertical, since its projection onto the
base space is a single point. To be noticed that, even though the vertical and horizontal
subspaces are complementary of one another, they are not orthogonal (in this abstract
geometric object, there’s no notion of angles to begin with).

Hence, we can decompose the tangent space Tp̃E at a point p̃ as the direct sum ⊕ of the
vertical subspace Vp̃E and a complementary space, of dimension dim(Tp̃E)−dim(Vp̃E),
called horizontal subspace Hp̃E (see Figure 2.6). Notice that the horizontal subspace can
also be defined as π∗(Hp̃E) = Tπ(p̃)M. Therefore, we have:

Tp̃E ' Hp̃E⊕Vp̃E (2.19)

The vector subspace at a point in the fibre is unique, but there are plenty of possible
horizontal subspaces to be chosen. It is this attribution of a horizontal subspace for every
point in the fibre that constitutes a connection, the necessary tool for comparing vectors
between fibres. More formally, a connection in a principal bundle is a smooth assignment
p̃→ Hp̃E such that:

• Tp̃E ' Hp̃E⊕Vp̃E , it is the vertical subspace complementary;

• Rg∗(Hp̃E) = HRg(p̃)E = Hp̃·gE , “translations” of the horizontal subspace via the
push-forward of the right action is equal to the horizontal subspace at the new point.
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Figure 2.6: Decomposition of the tangent space of E at a point p̃

Source: Adapted from Way (2010).

From this definition, it can be proven that a connection 1-form 6 with values in the Lie
algebra can be defined, here denoted as ω : Tp̃E → G 7. Essentially, it maps the vertical
component of a vector tangent in Tp̃E to the tangent space of the fibre, which is a Lie
algebra (see subsection 2.2.2). In order for this map to be a connection 1-form, two
conditions must be met, which are similar to the ones above, but reformulated in terms of
differential forms instead of vector subspaces.

6 1-forms are fundamental concepts in differential geometry, which, due to their complexity, are not present
in our account of the formalism. However, a small explanation can still be provided: a 1- form is an
(smooth) assignment of a cotangent vector ωp to each point p ∈ M; in turn, a cotangent vector is any
linear map TpM → R, that is, which maps vectors into scalars; the set of all possible linear maps of
this sort create the cotangent space at p ∈ M, T ∗p M, which is the dual space to TpM. In practice, a
1-form in local coordinates can be written as a linear combination of basis cotangent vectors, denoted
as dxi, which act on the basis vectors ∂i as follows: dxi(∂ j) = δ i

j, where δ i
j is the Kronecker delta. The

generalized version of a 1-form is called a k-form, or differential form, which is a multi-linear map
TpM×·· ·×TpM→ R. A 0-form is simply a function.

7 There exists in fact an isomorphism between the Lie algebra and the vertical subspace, even though it
is not shown here. However, it can be understood intuitively, since the vector subspace is defined as the
space of vectors with no projection onto the base manifold, exactly because they belong to the tangent
space of the fibre, a Lie algebra.
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2.5 Parallel Transport and Covariant Derivative8

The construction of a connection is quite abstract, especially for our future purposes, but
it allows for the following intuitive explanation of how two elements of different fibres
may transform from one to the other. Consider an infinitesimal path γ̃ in the total space
E, parametrized by t ∈ [0,T ], connecting two points p̃ ≡ γ̃(0) and q̃ ≡ γ̃(T ). We can
visualize point p̃ “following” a tangent vector to the curve ˙̃γ , for all t, until it reaches
point q̃.

Projecting each point of the curve to the base space, we obtain π(γ̃(t)) = γ(t). Now,
there are two possible paths in the total space: a section of E along the curve γ such
that σ(γ(t)) = γ̃(t); and a horizontal lift of γ , which is a curve γ‖(t) in the total space E

such that π(γ‖(t)) = γ(t) and γ̇‖ lies entirely in the horizontal subspace determined by the
connection Hγ̃(t)E (see Figure 2.7). There’s no a priori reason to assume they’ll be equal.

So, the fibre element p̃ can be “guided” by tangent vectors to two versions of the same
curve. Clearly, the endpoint will be different for both instances (see Figure 2.7). For the
purpose of further highlighting the notion that the path γ̃(t) is equal to some section of the
path γ(t) in the total space, defined for all points belonging to such a curve, we’ll make
use of σ(p) to denote the fibre element p̃. Along the curve γ‖(t), we know that its tangent
vectors lie entirely in the horizontal subspace, determined by the chosen connection. Here
we begin to notice the path-dependency of the connection, since a different path would
result in different tangent vectors, which in turn would lie entirely in different horizontal
subspaces. So, σ(p) “follows” γ‖ until it reaches the endpoint γ‖(T ), always fulfilling
the condition of γ̇‖(t) lying completely in the horizontal subspace. On the other hand,
along the curve γ‖(t), the element σ(p) is “taken” to σ(q). The horizontal subspace at
this point is determined by the translation along the fibre, as previously stated. Thus, the
tangent vector ˙̃γ(t) will have a decomposition onto a vertical and horizontal subspace. We
can visualize the vertical component as responsible for the upward “push”, resulting in
the displacement of the curve, and subsequent fibre element. The vertical component of
˙̃γ is mapped onto the Lie algebra via the connection 1-form ω , already introduced. It can
be proven that there exists a map which relates the Lie algebra with the Lie group itself
(Isham, 1999).

Furthermore, it can also be proved (Isham, 1999) that there exists an element g of the Lie
group for each value of the parameter t, relating both paths γ̃(t) and γ‖(t):

γ‖(t) = γ̃(t)g(t) (2.20)

8 Both this and next sections were inspired mostly by Isham (1999), Way (2019) and Marsh (2019).
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which allows for comparison between γ̃(T )≡σ(q) and γ‖(T ), given that they both belong
to the same fibre π−1(q). It is this operator which defines the parallel transport of a fibre
element across a path in the total space.

Figure 2.7: Two “versions” of the same path considered in the total space.

Source: Adapted from Marsh (2019).

By differentiating (2.20), and evaluating it in local coordinates, after some mathematical
manipulations, an expression for g(t) can be found (Isham, 1999):

g(t) = Pexp

{
−
∫ t

0

(
∑
µ

Aµ(γ(s))γ̇ µ(s)

)
ds

}
g(0) (2.21)

The operator Pexp denotes a path-ordered exponential and Aµ(γ(s)) is the µ component
of the connection 1-form ω evaluated in local coordinates in the base space, parametrized
by s ∈ [0, t]. If we assume that γ‖(0) = γ̃(0) = σ(p), then g(0) = e.

A path-ordered exponential is one where the order of operator’s application matters:

Aµ(γ(s))Aν(γ(s)) 6= Aν(γ(s))Aµ(γ(s)) (2.22)

Since we are only interested in Abelian groups, the above expression simplifies
considerably to the usual exponential of an integral:

g(γ) = exp
{
−
∫

γ

A(γ)γ̇ µ(s)
}

(2.23)

16



where A(γ) = ∑µ Aµ(γ(t))dγ µ(t). This motivates the introduction of the following
parallel transport map:

Uγ : π
−1(p)−→ π

−1(q)

σ(p) 7−→Uγ(σ(p)) = σ(q) ·g(γ)
(2.24)

It essentially states that moving from fibre to fibre is achieved by “moving” along the path
γ̃(t) and applying g(γ) at each t, to get to the path γ̃(t). Or, formulated differently, moving
along the path γ(t) in the base space induces additional variations, only “visible” when
one considers the total space, which are encoded in the changes along the fibre via g(t).
It’s this operator that we’ll effectively use in later sections. It abides by two conditions
(Ilinski, 2001):

1. g(γ1γ2) = g(γ1)g(γ2) , applying the connection associated to the path γ1γ2 is the
same as applying each connection individually, by order;

2. g(γ−1) = g(γ)−1 , inverting the path is the same as applying the inverse.

Finally, the way the vectors themselves change along the curve can be captured by the
notion of covariant differentiation. Essentially, it consists of differentiating them as usual,
but with the addition of an adjustment, due to the changes in the associated fibres. It can
be proven that the covariant derivative is as follows:

∇γ = d +A(γ) (2.25)

where d is the usual exterior derivative in local coordinates. The subscript γ emphasizes
the observed path dependency.

2.6 Curvature

Curvature is an important concept in differential geometry for many reasons, one being
the fact that it is a completely intrinsic quality of any given object, and as such, it must be
independent of the coordinates used, as already stated in the beginning of this chapter. It is
however, a complicated concept to be introduced formally, especially in the mathematical
framework of differential geometry. For a completely heuristic approach, we begin by
providing a classical example, which exposes quite nicely the notion of curvature, with
the usage of parallel transport.
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Figure 2.8: Parallel transport of a vector along (Left) the sides of an equilateral triangle
in Euclidean space. (Right) and on the surface of a sphere.

Source: Adapted from Ilinski (2001).

Consider a sphere, embedded in R3. On its surface, we construct a path connecting three
points, one on a pole and the other two in the “equator”, all equidistant from one another,
as pictured in Figure 2.8. If we take a tangent vector to the curve at some point (denoted in
Figure 2.8 as a black dot), and parallel transport it along this closed path, always making
sure that the vector belongs in its entirety to the horizontal subspace already defined via
the chosen connection 9, we conclude that the final vector is not the same as that with
which we’ve started. If we compare this with an equivalent closed-path, but in a flat
surface (an equilateral triangle), we see that the same does not happen, and starting and
ending vectors are the same. This change along a closed curve implies curvature 10. It’s
with this notion of parallel transport along loops that we introduce curvature for the case
of a principal fibre bundle.

Consider Figure 2.9. Here, we have a closed path connecting three points p, h and q in
the base space, resultant from the projection of the associated paths in the total space. In
the total space, we also have their respective horizontal lifts. Using parallel transport, we
can relate the local sections σ(p), σ(h) and σ(q) along each individual path as follows:

Uγ1(σ(p)) = σ(h) ·g(γ1) = σ(h) · exp
{
−
∫

γ1
A(γ1)

}
Uγ2(σ(h)) = σ(q) ·g(γ2) = σ(q) · exp

{
−
∫

γ2
A(γ2)

}
Uγ3(σ(q)) = σ ′(p) ·g(γ3) = σ ′(p) · exp

{
−
∫

γ3
A(γ3)

} (2.26)

9 This connection is usually known as a Levi-Civita connection. For our purposes, we may think of it as a
connection which allows for a parallel transport that preserves angles (hence, the difference between the
initial and final vectors in Figure 2.8).

10 In fact, the Ambrose-Singer theorem provides a relation between curvature and holonomy, which is
basically the group of all parallel transport operators (to be introduced later) acting on all possible loops
(Kobayashi & Nomizu, 1963).
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where σ ′(p) is an element of π−1(p), obtained by “following” γ̃3. Notice that this is
not necessarily equal to σ(p). Also, we can parallel transport the fibre element σ(p)

along the loop γ , constituted by γ1, γ2 and γ3, using the parallel transport operator Uγ =

Uγ3 ◦Uγ2 ◦Uγ1 previously introduced:

Uγ(σ(p)) = σ
′(p) ·g(γ)

= σ
′(p) · exp

{
−
∮

γ

A(γ)
} (2.27)

where g(γ)= g(γ3)·g(γ2)·g(γ1) and
∮

γ
A(γ)=

∮
γ1

A(γ1)+
∮

γ2
A(γ2)+

∮
γ3

A(γ3). By parallel
transporting the fibre element σ(p) along the horizontal lifted loop, under the operator Uγ ,
always taking in consideration the necessary adjustments, the mapping σ(p) 7→ σ ′(p) ·
g(γ) shows that the elements in the beginning and end aren’t necessarily equal (see Figure
2.9), thus revealing the existence of curvature in the fibre bundle, similarly to the situation
depicted in Figure 2.8.

Two conditions for the existence of curvature can be derived from equation (2.27). If g(γ)

is different than one, then there exists curvature. Clearly this can be generalized for a
situation with more paths which, all together, give a closed loop. Hence, we can define
the curvature F(γ) with the following expression:

F(γ) =

(
n

∏
k=0

g(γn−k)

)
−1 = g(γ)−1 (2.28)

such that γ =
⋃n

k=0 γn−k is a loop. Also, if −
∮

γ
A(γ) is different than zero, there exists

curvature. Applying the Stokes theorem 11, we conclude that the latter condition is
equivalent to stating that if

∫
Ω

dA(γ) is different than zero, there exists curvature, where Ω

is the area delimited by the loop. Hence, we can also define curvature with the following
expression:

F(γ) = dA(γ) (2.29)

For both cases, when F(γ) 6= 0, the fibre bundle is curved. The concept of curvature is
mathematically expressed via the notion of a tensor, which can be briefly described as the
multilinear map TpM×·· ·×TpM×T ∗p M×·· ·×T ∗p M −→ R. In particular, the curvature
tensor is one whose “inputs” are zero vectors and two covectors. For this reason, it is also
denoted as the curvature 2-form (see footnote 6).

11 Notice that this does not work for the non-Abelian case.
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Figure 2.9: Loop in the base space M and in the total space E.

Source: Adapted from Way (2010) and Marsh (2019).

2.7 Gauge Theory

With the mathematical formalism presented in this chapter, the tools to understand gauge
theories have been acquired. What is presented below was based on the exposition
encountered in François et al. (2014) and Marsh (2019).

A gauge theory can be loosely defined as any theory describing a system which can be
transformed locally under some transformation (a gauge transformation), such that some
quantities remain invariant, that is, exhibit gauge-invariance. Thus, we say that there
exists gauge symmetry. It turns out that, considering physical systems, it’s exactly these
gauge-invariant quantities which are used to describe the system dynamics. An intuitive
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reason for this is the notion that real phenomena shouldn’t be dependent on such arbitrary
transformations.

Utilizing the mathematics exposed in the previous sections, gauge transformations are
mediated through elements of the gauge group, which is the structural group acting on the
fibres. Let x ∈M be an element of the manifold M. Let us define a gauge transformation
as the following map:

π
−1(x)−→ π

−1(x)

σ(x) 7−→ σ(x) ·q(x)
(2.30)

where q(x) ∈ G, acting on fibre elements. Its dependence on x highlights the locality
aspect. As we’ve seen, a connection on the fibre bundle can be understood as a way
of comparing elements of different fibres. One of this formalism’s great advantages is
the non-reliance on coordinates, not in the sense that we don’t express mathematical
ideas using them, but that changes in coordinates are accompanied with changes in the
mathematical ideas themselves. Hence, we want our connection to express the same
information as it did before a gauge transformation. For that reason, it must follow a
specific rule of transformation along with the transformation of the fibre elements.

Let the fibre elements σ(x) and σ(y) belong to fibres π−1(x) and π−1(y), respectively.
Let them be connected (under parallel transport) as Uγ(σ(x)) = σ(y) · g(γ). If σ(y) is
subjected to a gauge-transform as σ ′(y) = σ(y) ·q(y), both σ(x) and the connection must
change in such a way that, under parallel transport, the endpoint is σ ′(y). Since the
element σ(x) changes to σ ′(x) = σ(x) · q(x), the connection must change necessarily to
g′(γ) = q−1(y)g(γ)q(x). Regarding its equivalent construction in terms of 1-forms, one
can prove that each connection component must change as (Isham, 1999):

Aµ −→ A′µ = Aµ +q−1(x)
∂q(x)
∂xµ

(2.31)

We can immediately see that the connection elements do vary when one applies a
gauge-transformation – the connection is not gauge-invariant. In other words, it depends
on the coordinate system at use. Let us, however, consider a component of the curvature
tensor (2.29). After some mathematical manipulations, one arrives at the following
conclusion:

Fµν −→ F ′µν = q(x)Fµν q−1(x) = Fµν (2.32)

that is, the curvature is exactly a gauge-invariant quantity 12. Therefore, it is independent
of conventions, and it must be essential for the understanding of the dynamics underneath.

12 Here we point out that, for the more general case of a non-Abelian group, the connection 1-form
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Testimony for the usefulness of this formalism can be found all throughout physics’
literature. A great deal of important fundamental theories have arisen from the notion of
gauge symmetry. In fact, physics cements itself, at least partly, on the notion of symmetry.
Important examples of this are the theory of electromagnetism, quantum mechanics and
others (Ilinski, 2001).

components change in a different way, and the curvature is not gauge-invariant. However, quantities
known as Wilson loops, which is exactly the trace of the parallel transport of fibre elements along loops,
are gauge-invariant for any case (Ilinski, 2001).
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3 METHODOLOGY

An important component of any scientific research is the literature review, whose
objective is the synthesis of prior literature, to which the research pertains. In a typical
literature review, the researcher chooses the scientific literature in such a way that provides
a solid enough framework on which the new work is constructed. It is not required to
detail all pre-existing scientific knowledge regarding the specific research topic at hand:
all that is necessary is a setup for the actual work done by the researcher. This process
of literature selection depends on the choices of the authors and it is therefore markedly
subjective. However, when the research goal is exactly an account of all pre-existing
knowledge and research done regarding some field, an objective literature review proves
itself more suitable.

The need for a systematized method of conducting literature reviews first appeared
in medical science, suggested by Cochrane (1999), providing a way of managing the
ever-increasing, and sometimes, even contradictory, body of work outputted (Tranfield
et al., 2003). As Tranfield et al. (2003, p.209) put it, “Systematic reviews differ
from traditional narrative reviews by adopting a replicable, scientific and transparent
process. . . ”, allowing for an objective account, minimizing the researcher’s biases
towards specific articles, of all prior knowledge regarding the chosen subject, in such
a way as to be reproducible by any other researcher.

It would seem at first sight that one could simply apply the methodology put forward
in the medical sciences to financial economics. However, we would not be taking into
consideration the ontological and epistemological assumptions that differ between both
disciplines (Durach et al., 2017). For this reason, we will follow instead the Tranfield
et al. (2003) approach, where a “mapping” of this method from medical sciences to
the management discipline was stipulated, much more closely aligned with finance and
economics than the former.

The following three stages were undertaken when conducting the systematic literature
review (Tranfield et al., 2003; Denyer & Tranfield, 2009): planning the review, where the
research question was identified, discussed with a panel of specialists and a strategy to
acquire the necessary data, delineated; conducting the review, where the strategy was
employed, and the relevant data was filtered; finally, reporting and dissemination of
findings, essentially discussion and conclusions arrived.

23



3.1 Planning the Review

The interest for the application of gauge theory to finance first appeared by the reading
of the PhD thesis The Index Number Problem: A Differential Geometric Approach, by
Malaney (1996), where differential geometry and gauge theory aspects are shown to be
an appropriate language to describe economic reality.

This topic, and subsequent “search strategies” to be used, explained in the following
sections, were submitted to extensive inspection and refinements by the review panel.
The review panel was integrated by Dr. Luı́s Coelho, PhD in Management, Dr. Rúben
Peixinho, PhD in Management, Dr. Nenad Manojlović, PhD in Theoretical Physics, and
by Dr. Pedro Pintassilgo, PhD in Natural Resource Economics, and Dr. Cristina Viegas,
PhD in Management, the two supervisors of this master’s dissertation.

3.2 Conducting the Review

Given that we have no a priori notion of what might be interesting inside the formalism
of gauge theory to apply to financial economics, we’ll aim for complete generality, and
since we are essentially applying concepts from one field to another, the search strings
to be used will be only two, connected via the Boolean operator “AND”: one based on
gauge theoretical terms and another on financial terms.

3.2.1 Electronic Databases

Even though the followed protocol recommends the use of, not only articles and
conference proceedings, but also working papers, we chose not to use the latter. The
justification for this procedure lies in our aim to concentrate in peer-reviewed documents.
This ensures the findings credibility. The same cannot be said about working papers,
regardless of their potential validity and depth.

As a search engine, we utilized the Web of Science, which includes a large database of
articles published in peer-review journals and conference proceedings.

3.2.2 Gauge Theoretical Keywords

Establishing keywords that best characterize the applications of gauge theory turns into
a difficult endeavour, as it’s associated to a great number of physical theories, and we
are not interested in their application per se. Therefore, we only considered as keywords
combinations of the word “Gauge” with “Theory”, “Field”, “Group”, “Transformation”,
“Symmetry”, “Invariant”, “Fixing”, “Independence”, “Boson” and “Fermion”.
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3.2.3 Financial Keywords

Regarding the financial keywords, they were all extracted from the JEL Classification
Codes Guide. Some modifications of these were, however, necessary in some cases. For
example, the expressions “Financial Institution” or “Financial Service”, given that they
share the word “Financial”, were shortened to a single one: “Finance”. This reasoning
was applied every time that was possible to do so. Furthermore, any keyword which is
ubiquitous in the English language was not considered for the search string. The explicit
keywords used are presented in Appendix II.

3.2.4 Search String

A single search string was created. If we denote by “A” the combination of all gauge
theoretical terms connected via the Boolean operator “OR”, and by “B” the same but for
financial terms, then the final search string is simply “A AND B”.

The search was conducted by introducing the search string into the field “Topic” of
the database, since it is the most general, comprising the title, abstract and the article
keywords.

3.2.5 Paper Selection

After the search was completed, the next step was to determine which articles were
relevant for our purposes. This must be done in such a way that preserves the systematic
literature review’s objectiveness. The first stage was the application of exclusion
principles to extract from our sample of papers, all which are in no way important. The
second stage amounted to the application of inclusion principles to the already filtered
sample, with the intention of constructing a final one where each element is of complete
relevance. We now present the used principles.

3.2.6 Exclusion Principles

For exclusion criteria, the title and abstract of each paper were analysed. If keywords
from both gauge theory and finance were present in the desired context, the paper would
be included. Otherwise, excluded. Furthermore, only papers in the English language,
and, as already mentioned, only articles and conference proceedings – papers submitted
to peer-review – were considered.

3.2.7 Inclusion Principles

After the first filtering, we proceeded to the full-text reading of each paper, in order to
assess its actual relevance. This final stage could be described as the most subjective. To
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minimize this tendency, we have directed our focus to the gauge theoretical formalism
being applied, and did not include any application deemed as too superficial.
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4 RESULTS

The search string previously mentioned was introduced in the database, by the 26th

of February, 2019. For the initial sample, 408 results were obtained. Based on our
prior knowledge, fewer results were expected, given the relative novelty of the subject.
An explanation for such a number is that some of the financial keywords, and the
way that they were introduced in the database, appear quite pervasively in physics
and mathematical literature, the fields where gauge theory first came to prominence.
Alterations to these “problematic” keywords were attempted, but the fear of losing
potentially relevant papers was a decisive factor to keep the string of keywords as it is.

We’ve proceeded to the exclusion criteria application. Despite the fact that the pool of
results was vast, the great majority of the paper’s titles and abstracts were quite transparent
regarding their relevance to our study. By applying the exclusion principles, we filtered
the initial sample to 17 papers.

A quick look reveals an accumulation of papers around a specific subfield of finance:
financial markets. In JEL’s notation, this subfield is characterized by the codes G1: G10,
G11, G12, G13 and G17. Due to this reason, we’ve performed a more specific search,
complemented with extra terms which were not present in JEL’s codes, but are related to
them:

• Share Price, Share Pricing, Share Valuation

• Bond Price, Bond Pricing, Bond Valuation

• Option Valuation

• Put Option, Call Option

• Future Price, Future Pricing

• Forwards

• Swaps

• Spot Price

• Arbitrage

• Econophysics

This complementary search returned 12 results, all of them already in our previous list,
with one exception, a conference paper. This exception was, however, relevant for our
literature review. Hence, we’ve obtained 18 results.
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Lastly, we applied the discussed inclusion principles, by carefully reading each paper.
From our sample, four papers were not included, because of the fact that, even though
gauge theoretical terms were present in the abstract, in many cases they seldom appeared
anywhere else, and in the situations where they appeared, it was not in a context of interest
to this literature review.

Table 4.1: Final sample of articles to be systematically reviewed.

Author(s) (Year) Title

Sornette (1998) Gauge Theory of Finance?

Young (1999) Foreign Exchange Market as a Lattice Gauge Theory

Ilinski (2000) Gauge Geometry of Financial Markets

Kholodnyi (2002a)
Valuation and Dynamic Replication of Contingent
Claims in a General Market Environment based on the
Beliefs-Preferences Gauge Symmetry

Kholodnyi (2002b)
Valuation and Dynamic Replication of Contingent
Claims in the Framework of the Beliefs-Preferences
Gauge Symmetry

Kholodnyi (2003)
Beliefs-Preferences Gauge Symmetry and Dynamic
Replication of Contingent Claims in a General Market
Environment

Morisawa (2009)
Toward a Geometric Formulation of Triangular
Arbitrage – An Introduction to Gauge Theory of
Arbitrage

Dupoyet, Fiebig & Musgrove
(2010)

Gauge Invariant Lattice Quantum Field Theory:
Implications for Statistical Properties of High
Frequency Financial Markets

Sokolov, Kieu & Melatos
(2010)

A Note on the Theory of Fast Money Flow Dynamics

Zhou & Xiao (2010)
An Application of Symmetry Approach to Finance:
Gauge Symmetry in Finance

Dupoyet, Fiebig & Musgrove
(2012)

Arbitrage-Free Self-Organizing Markets with GARCH
Properties: Generating them in the Lab with a Lattice
Model

Farinelli (2015) Geometric Arbitrage Theory and Market Dynamics

Paolinelli & Arioli (2018)
A Path Integral based Model for Stocks and Order
Dynamics

Paolinelli & Arioli (2019)
A Model for Stocks Dynamics based on a
Non-Gaussian Path Integral
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With this last criterion, we arrived to the final sample of results, 14 papers (see Table 4.1),
to be discussed in the next section. A small synthesis of each paper is presented in the
Appendix I, containing its objective, the nature of the gauge application and conclusions
arrived.

Interestingly enough, all papers in the sample were published in physics related journals,
begging the question of why hasn’t this particular topic or application found a firm place
in financial literature. We hypothesize that such an observation stems from the fact that a
solid bridge between this particular physical mechanism and financial literature is lacking,
despite the proven applicability and usefulness of various other physical theories and
mathematical formalisms (Mantegna & Stanley, 2000), as stated in Chapter 1.

The sample spans across twenty-two years, with the largest number of papers concentrated
in 2010. Furthermore, one can qualitatively describe these papers focuses as being aimed
towards establishing solid theoretical grounds of financial markets dynamical behaviour.

From reading the papers, three different approaches were found, regarding the gauge
theory application. One proposed by Kholodnyi in a working paper of 1995, here present
in the 2002 article 13, where we have a beliefs-preferences gauge symmetry. The other
approach suggested by Ilinski (1997) in the form of a working paper, subsequently
criticized by Sornette (1998), and expanded by Young (1999) and Ilinski (2000), where
we have a local numéraire gauge symmetry. The latter approach became the target of
further investigation, by Ilinski (2001) himself, and also by other authors interested either
in expanding these ideas, in theoretical terms – Morisawa (2009) and Zhou & Xiao (2010)
– or by performing numerical simulations in order to understand to what extent is gauge
invariance observed in financial markets – Dupoyet et al. (2010, 2012) and Paolinelli &
Arioli (2018, 2019) –, or by providing important criticism – Sokolov et al. (2010).

The basis of the previous approach lead Farinelli (2015) to propose a completely
geometric re-framing of stochastic finance, where gauge theory plays an important role, in
a slightly different fashion. Here, a gauge symmetry regarding pairs of deflator and term
structure (to be explained in Chapter 5, section 5.3) is explored, influenced by Smith &
Speed (1998). Thus, Farinelli (2015) deviates from Ilinski’s pioneer work, and therefore,
it reserves a spot as a unique gauge theoretical approach to finance, different from the
ones previously mentioned.

Last paragraph motivates the following differentiation, based on the type of gauge
symmetry used: Kholodnyi (2002b) and Farinelli (2015) “approaches”, denoted as

13 In the list there are three papers by Kholodnyi, but all of them contain basically the same information,
except the 2003 one, which is simply a shortened version. For this reason, a single article was considered:
Kholodnyi (2002b).
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“Beliefs-Preferences Gauge Symmetry” and “Deflator-Term Structure Gauge Symmetry”
approach, respectively; all other articles pertain to a single approach, denoted from now
on as “Local Numéraire Gauge Symmetry”, introduced by Ilinski (1997).

These observations are systematized in Figure 4.1, exposing as well the
interconnectedness of the obtained articles: not only are the connections between
articles pertaining to the “Local Numéraire Gauge Symmetry” approach illustrated,
but also the notion that both “Local Numéraire Gauge Symmetry” and “Deflator-Term
Structure Gauge Symmetry” approaches share a similar base framework; also, the
“Beliefs-Preferences Gauge Symmetry” approach is represented as having little to
nothing in common with the other two approaches, while maintaining a similarity with
an article from the “Local Numéraire Gauge Symmetry” approach – Zhou & Xiao (2010)
–, since these are the only ones applied to option pricing.
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Figure 4.1: Diagram illustrating the set of pertinent papers and their applications of gauge
theory to finance.
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5 DISCUSSION

5.1 Beliefs-Preferences Gauge Symmetry

In this approach, Kholodnyi (2002b) focuses on European option pricing for general
markets, whose price dynamics are not necessarily described by Markov processes. A
market with a single underlying asset, whose price at time t is St , where transactions costs
are non-existent and trading is always allowed, is considered.

The author begins by considering a European contingent claim starting at t and expiring
at T whose payoff is vT (ST ) = v(T,ST )

14.

Let the value of the contingent claim at time t be obtained via an evolution operator V (t,T )

as follows:

vt =V (t,T )vT (5.1)

This operator completely characterizes the market environment. Let the utility of holding
a unit of the European contingent claim be:

u′(t)vt = F(t,T )(u′(T )vT ) (5.2)

where u′(t) = ∂u(t,St)/∂v > 0 is the marginal utility of consumption of one unit of
European contingent claim and F(t,T )(·) =

∫
∞

0 (·)F(t,T,St ,dST ) is an operator denoting
the transition probability of prices of the underlying asset. The expression above is
interpreted as follows: the utility associated with a unit of the European claim at t is
given by the utility of its expected payoff at T :

u′(t)vt = E[u′(T )vT ] =

=
∫

∞

0
(u′(T )vT )F(t,T,St ,dST ) = F(t,T )(u′(T )vT )

(5.3)

These operators describe each market participant, where F(t,T ) and u′(t) represent their
beliefs and preferences, respectively. An expression relating the market environment with
its participants is easily derived, following from (5.1):

V (t,T ) = (u′(t))−1F(t,T )u′(T ) (5.4)

14 A European contingent claim is a portfolio constituted of a long position on a European option with
payoff v+T (ST ) = max{vT (ST ),0} and a short position on a European option with payoff v−T (ST ) =
−min{vT (ST ),0}. The total payoff is vT (ST ) = (v+T − v−T )(ST ).
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By the no-arbitrage argument, it is clear that vt must be perceived equally amongst all
market participants, and consequently, so is the evolution operator V (t,T ) equal for
all participants. If this were not the case, and V (t,T ) depended on each participant’s
beliefs and preferences, the value of the contingent claim would be different among the
participants, and these differences between values would lead to arbitrage opportunities,
which would eventually return expression (5.4). In other words, in an equilibrium
scenario, (5.4) must hold, regardless of participant’s beliefs and preferences.

Hence, (u′(t))−1F(t,T )u′(T ) must be the same for all participants, which implies a
symmetry regarding changes in the beliefs and preferences of market participants. For
a strictly positive function g(t) = g(t,St), if beliefs and preferences transform as:

F(t,T )
g−−→ g−1(t)F(t,T )g(T )

u′(t)
g−−→ g−1(t)u′(t)

(5.5)

then V (t,T ) remains invariant. Therefore, the market has a beliefs-preferences gauge
symmetry. Let’s assume that V (t,T ) and F(t,T ) are, when applied to vt , solutions of the
following differential equations:

d
dt v(t)+L(t)v(t) = 0

, t < T,v(T ) = vT

d
dt v(t)+ `(t)v(t) = 0

(5.6)

where L(t) and `(t) are one-parameter operators which generate V (t,T ) and F(t,T ),
respectively (essentially, infinitesimal counterparts). Equation (5.6) denotes general
diffusion processes, where the operators aren’t necessarily Markov operators (Kholodnyi,
2002b). Then the relation between market environment and its participants gains a new
form:

L(t) = (u′(t))−1`(t)u′(T )+
∂tu′(t)
u′(t)

(5.7)

and so does the differential equation that models the European contingent claim’s value
evolution:

(
d
dt

+ `(t)
)

u′(t)v(t) = 0, t < T

v(T ) = vT

(5.8)
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Under the gauge transformation15:

`(t)
g−−→ g−1(t)`(t)g(T )+

∂tg(t)
g(t)

u′(t)
g−−→ g−1(t)u′(t)

(5.9)

L(t) and equation (5.8) remain invariant. However, if the gauge transformations acting on
the beliefs and preferences of a participant are different from each other, L(t) and equation
(5.8) are not, in general, invariant. In fact, let the gauge-transformation acting on the pair
belief-preference (`(t),u′(t)) be (g(t),h(t)). Then we have:

(
d
dt

+ `(t)
)

u′(t)v(t) = 0
(g,h)−−−→

(g,h)−−−→
(

d
dt

+q−1(t)`(t)q(t)+
∂tq(t)
q(t)

)
u′(t)v(t) = 0

(5.10)

where q(t) = g(t)h−1(t), which is also an element of the gauge group (see Chapter 2,
subsection 2.2.2). Evidently, the equation loses invariance under independent gauge
transformations. The goal becomes to model the value of a European contingent claim,
independent of beliefs and preferences, individually.

With that in mind, Kholodnyi (2002b) first proposed approximating the belief operator
through a series of differential operators with respect to the price of the underlying asset
16:

`(t)≈ `

(
t,S,

∂

∂S

)
=

M

∑
m=1

`m(t,S)
∂ m

∂Sm (5.11)

where `m(t,S) are the operator coefficients, obtained through the non-commutation
relationship between `(t,S) and S, which represents randomness.

Secondly, in order for equation (5.10) to be gauge-invariant, the derivatives themselves
must be changed into their covariant counterparts. To achieve this, the geometry of the
market fibre bundle, whose mathematics were introduced in Chapter 2, must be brought
to the surface: the set of pairs “price” and “time” denote the base space, while the fibre
is the set of all possible option’ values obtained via the generator in (5.8), and as such,

15 There’s an important restriction on the kind of functions suitable to be gauge transforms. This restriction
stems from the fact that the operator F(t,T ), being a transition probability meant to represent the
participant’s beliefs, acts on the identity I as F(t,T )I= I, which in turn implies that l(t)I= 0 To ensure
this, it is necessary that the elements of the gauge group are solutions of equation (5.6).

16 This is known as the method of quasi-differential operators (Kholodnyi, 2002b).
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can be identified with the generator itself, thus being the “target” of the structure group
already introduced. Then, if the derivatives transform as follows:

∂t
q−−→ ∇t = ∂t +

∂tq(t)
q(t)

∂S
q−−→ ∇S = ∂S +

∂Sq(t)
q(t)

(5.12)

the evolution equation (5.10) acquires a covariant form:

(∇t + `(t,S,∇S))u′(t)v(t) = 0 (5.13)

meaning that it remains invariant under gauge-transformations. These “corrections”
to the derivatives are endowed with a very suggestive interpretation. One can easily
understand that the gauge transformation is meant to represent possible changes to the
beliefs and preferences which characterize a market participant. As we’ve seen, these
changes shouldn’t affect the value of the contingent claim, and this is accomplished by
balancing the way the contingent claim changes throughout time and due to changes of
the underlying asset’s price. The way price changes is balanced by the relative change
of beliefs and preferences with respect to price, and the way the value of the contingent
claim varies through time is balanced by how the beliefs and preferences of the market
participants change with time, thus reflecting the notion of participants influencing the
price and value of market securities due to their behaviour.

Kholodnyi (2002b) proceeds to the calculation of this equation by utilizing a portfolio
of other European contingent claims that replicates its evolution. Consider a portfolio of
N + 1 other European contingent claims on the same underlying asset, whose vaues at t

are vω(t), for an index ω = 0,1, ...,N. Let the utility provided by the European contingent
claim vt evolve as follows:[

d
dt

+ `(t)
]

u′(t)v(t) =
N

∑
ω=0

πv(t,ω)

[
d
dt

+ `(t)
]

u′(t)vω(t) (5.14)

where πv(t,ω) are the associated portfolio weights. In other words, the utility provided by
the contingent claim evolves similarly to the utility of each of the constituent contingent
claims, multiplied by some weight. If also:

v(t) =
N

∑
ω=0

πv(t,ω)vω(t) (5.15)

then the portfolio dynamically replicates the European contingent claim. Let the pure
discount bond, indexed by ω = 0, be in the set of replicating contingent claims. It can
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be shown that the above equation can be written in such a way that preferences do not
appear:

[
d
dt

+ `(t)
]

v(t) =
N

∑
ω=0

πv(t,ω)

[
d
dt

+ `(t)
]

vω(t)

+

(
v−

N

∑
ω=1

πv(t,ω)vω(t)

)
r(S, t)

(5.16)

where r(S, t) is the bond’s interest rate. For the above equation to be valid, the following
condition must be met:

[
[`(t),v] ,u′(t)

]
I=

N

∑
ω=1

πv(t,ω)
[
[`(t),vω ] ,u′(t)

]
I (5.17)

which permits the derivation of the portfolio weights. If each contingent claim i, for
where i = 0,1, ...,N, is itself a portfolio of j contingent claims, where j = 0,1, ..., i, with
associated portfolio weights

( i
j

)
(−1)i− jSi− j

t , then its value at t is:

Pi(t) =
i

∑
j=0

(
i
j

)
(−1)i− jSi− j

t exp
{
−
∫ t

t
Ω j(S,τ)dτ

}
S j

t (5.18)

where Ω j(S,τ) can be interpreted as the term structure. Its relationship with V (t,T ) and
L(t), respectively, is as follows:

Ω j(S, t)S
j
t =

d
dt

V (t,T )
∣∣∣∣
t=T

S j
T =

= L(t)S j
T

(5.19)

In other words, if the contingent claim i is:

• i = 0, j = 0: nothing but a portfolio of a single bond;

• i = 1, j = 0, 1: a portfolio of a bond and the underlying asset;

• i = 2, j = 0, 1, 2: a portfolio of a bond, the underlying asset and some ”second
order” combination of the two;

• ...

and so on. Using the method of quasi-differential operators, one obtains the following
expression:
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[
∂

∂ t
−

∞

∑
i=1

(
Si

i!

(
i

∑
j=0

(
i
j

)
(−1)i− j

Ω j(S, t)

))
∂ i

∂Si − r(S,T )

]
v = 0 (5.20)

which denotes the evolution of the value of a European contingent claim, provided that
it is dynamically replicable by the portfolio considered above. It becomes elucidative to
consider a couple of its first terms:

• For i = 1, j = 0, 1:[
∂

∂ t
+S(Ω0(S, t)−Ω1(S, t))

∂

∂S
− r(S,T )

]
v = 0 (5.21)

where Ω0(S, t) and Ω1(S, t) are interpreted as the return on the bond r(S, t)≡ r and
the dividends accrued by the asset d(S, t) ≡ d, respectively. This expression can
be interpreted as a very crude approximation of how a European contingent claim
evolves - it is equal to the dynamics of its underlying assets, a bond and a share;

• For i = 2, j = 0, 1, 2:[
∂

∂ t
+(r−d)S

∂

∂S
+

1
2
(2d− r−Ω2(S, t))S2 ∂ 2

∂S2 − r
]

v = 0 (5.22)

which is the classical Black-Scholes equation, as long as the term (2d−r−Ω2(S, t))

is interpreted as volatility σ2(S,T ).

Therefore, the evolution equation above can be seen as a generalization of the kind of
diffusion processes which are pervasive throughout financial literature. Notice that this
diffusion process is non-Markovian, due to the terms for which the index i is greater than
two. Furthermore, changes to the participants beliefs and preferences of the kinds here
exposed are potentially negated if one considers the covariant derivatives instead, which
take into account the relative change of the gauge transformation element, with respect to
changes in the price and time. If this gauge symmetry is broken, the author suggests that
a specific kind of arbitrage opportunity might be present.

5.2 Local Numéraire Gauge Symmetry

We begin by providing an account of the basic framework of the local numéraire gauge
symmetry approach. It follows from Young (1999) and (mostly) Ilinski (2000) 17, which
are quite alike.

17 Also from Ilinski (1997) and Ilinski (2001).
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5.2.1 Basic Framework

A general exchange market can be defined as a set of N+1 assets I = {i | i= 0, 1, 2, ..., N},
where the 0th asset is interpreted as money in a bank account – cash. Time is introduced in
a discrete fashion by assigning to each asset the set T = {t | t = ...,−2,−1, 0, 1, 2, ..., N}.
A space M = I×T = {(i, t) | i∈ I, t ∈ T} of assets at each point in time is obtained, which
can be visualized as a grid.

Assets that can be exchanged for one another must be “connected” in some way. To
accomplish this, links between points in the grid must be introduced. These links must:

• Connect the same asset across time – an asset at present time can always be traded
with the same asset in the future, which is equivalent to holding the asset across
time;

• Connect all assets with the 0th asset at all times – this is to say that every asset can
be converted in money, which implicitly assumes well-functioning markets;

• Connect assets at some time that can be exchanged directly, e.g. currencies or
derivatives at the spot time.

What was constructed here has the geometry of a “ladder”, denoted in physics literature
as lattice (see Figure 5.1).

Figure 5.1: (Left) Connected market of only four assets. (Right) Time evolution of two
connected assets.

Source: Adapted from Ilinski (2001).

What is proven by Ilinski (2000) and serves as building block for the rest of this
discussion, is the geometric nature of a general exchange market. This geometry is called
a fibre bundle, as previously exposed in section 2.3.
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Each element of M, an asset at some time, has to it associated a non-negative scalar,
which reflects the amount of that asset owned by some economic agent. This scalar is an
element of the fibre F , which, in our situation, is the infinite set R+. Together with M,
a trivial fibre bundle E = M×F is constructed. Following the formalism introduced in
Chapter 2, we have the projection map π : E −→M by (x, fx) 7−→ x, and cross-sections
x 7−→ σ(x) = (x, fx), which accounts for how much of asset i at time t, denoted as the pair
x = (i, t), does the investor hold, where fx ∈ Fx denotes that asset’s amount.

Finally, the structural group G that acts on each element of the fibre via:

E×G−→ E

(p,g) 7−→ p ·g = (x, fx ·g(x))
(5.23)

where p is an element of the total space E, and G is, once again, R+, the group of dilations.
This is meant to reflect the changes that occur on the fibre elements, that is, the amount
of each asset owned. Notice that, because the structure group is nothing but the set of
scalars, the distinction between left and right action is meaningless here. Since G = F ,
our trivial fibre bundle is also called a principal fibre bundle (see section 2.3). Given a path
between two points x0 and xn in the base space M, denoted as γ = {x0, x1, ..., xn}, which is
undertaken by some investor through trading (as long as there exists links connecting each
asset-time point), it is also necessary to take into account the changes in the fibre elements.
As was shown before in section 2.4, the choice of a connection is necessary to compare
elements of different fibres. The comparison itself is realized by parallel transporting an
element of the fibre along the curve until it reaches the endpoint. As we’ve seen, this is
equivalent to saying that changes in the fibre element are solely attributed to the action of
the group on it. Thus, we define the following parallel transport map Uγ , similar to that
introduced in section 2.5, equation 2.24. However, because our fibre bundle is, in this
case, discrete and Euclidean (a subset of RN), we will simplify future considerations by
stating that to parallel transport an element of a fibre to another, one simply multiplies it
by an element of the structural group pertaining to that specific path 18. Therefore, we
have:

Uγ : π
−1 (x0)−→ π

−1 (xN)

σ(x0) 7−→ σ(x0) ·g(γ) = σ(xN)
(5.24)

18 In subsection 2.5, the meaning of parallel transport is slightly different: it is an operator that takes an
element σ(x0) ∈ π−1(x0) to π−1(xN), and states that this new value is equal to a corrected σ(xN), that
is, Uγ(σ(x0)) = σ(xN) · g(γ). Here, we mean to redefine this notion as follows: the parallel transport
operator simply maps σ(x0) ∈ π−1(x0) directly to σ(xN) ∈ π−1(xN), by multiplying the former with an
element of the structural group, dependent on the path, that is, Uγ(σ(x0)) = σ(xN) = σ(x0) ·g(γ). We do
this to keep this section’s notation similar to the one used in the references.
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such that Uγ = ∏
N−1
i=0 U{xN−i−1, xN−i} and g(γ) = ∏

N−1
i=0 g({xi, xi+1}) ∈ G, where

{xN−i−1, xN−i} and {xi, xi+1} denote elementary portions of the path γ , connecting
xN−i−1 to xN−i and xi to xi+1, respectively, for all i = 0, 1, ..., N−1.

A financial interpretation is given (see Figure 5.2): connections in the financial fibre
bundle are meant to represent prices and rates of return. Consider, for example, two
elements of the base space M, (i, t) and (0, t), that is, some share i and cash in some
currency (we’ll assume it’s euros for simplicity) at time t, respectively. As it was shown,
to each of these elements, there exists a fibre attached, equal to the non-negative portion of
the set of real numbers (horizontal lines in Figure 5.2). Then, as elements of E = M×F ,
we have σ(i, t) =

(
i, t, f(i,t)

)
and σ(0, t) =

(
0, t, f(0,t)

)
, where f(i,t) and f(0,t) are the

amounts of share and euros, respectively, that an economic agent may hold at time t.
It is clear that the price in euros of this particular share is exactly the amount of euros
that one gets for a single share. In differential geometric terms, it is the factor g0,t

i,t ∈ R
that permits the equality σ(0, t) = σ(i, t) · g0,t

i,t to hold, for the path γ = {(i, t),(0, t)} 19.
Hence, we notice that prices are exactly connections, and selling or buying 20 the asset is
seen as a parallel transport.

Also, exchange rates between currencies can be formalized in the same fashion: if we
consider, instead of the base space element (i, t), the element (0′, t), where 0′ denotes
cash in a different currency, let’s say dollars, then the factor g0,t

0′,t is equal to the exchange
rate between dollars and euros.

Another example can be given, now with respect to the evolution of assets across time.
Let us consider the same asset, a generic share. If the investor decides to hold on to this
share from the present time t to an immediate after period t+∆t, we know that the value of
the share will change, formalized by the notion of rate of return. In differential geometric
terms, we say that we are parallel transporting the element σ(i, t) to σ(i, t +∆t), under
the connection gi,t+∆t

i,t , by performing the operation σ(i, t +∆t) = σ(i, t) · gi,t+∆t
i,t , which

is equivalent to continuous compounding the present value of the share. The opposite

operation would be σ(i, t) = σ(i, t +∆t) ·
(

gi,t+∆t
i,t

)−1
, which is the share’s future value

discounted to the present – the Net Present Value.

19 For ease of exposition, we set g((i, t),( j, t))≡ g j,t
i,t and g((i, t),(i, t +∆t))≡ gi,t+∆t

i,t .
20 Equivalent to the path γ−1 = {(0, t),(i, t)}, which, in an ideal scenario with no transaction costs or bid-ask

spreads, is gi,t
0,t =

(
g0,t

i,t

)−1
.
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Figure 5.2: Fibre bundle geometry of a portion of the lattice - plaquette.

Returning to our framework, prices and/or exchange rates between assets (i, t) and (k, t)

will be denoted as Uk,t
i,t , while interest rates for a particular asset (i, t), by U i,t+∆t

i,t , for all
assets in the considered market. Furthermore, from now on we are interested on the fibre
element f(i,t), instead of σ(i, t).

Figure 5.3: Elementary plaquette, with elements of the fibre in blue.

Source: Adapted from Ilinski (2001).
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Consider two possible trading strategies in the same elementary loop on the lattice
construction, to be denoted from now on as a plaquette (see Figure 5.3). For ease
of exposition, let’s say that one of the assets is cash in a bank account, denoted as
(0, t) for each time period t. Notice, however, that the more general case is equivalent.
Furthermore, notice that the operators act on the right, even though this distinction is, as
already stated, unimportant. We maintain it, however, in order to keep consistent with the
mathematical literature.

As an investor with an amount f(0,t) of cash at time t, the two strategies are as follows:

I. Deposit cash in a bank account at some interest, formalized by the connection

U0,t+∆t
0,t , and buy asset i at t +∆t, at price

(
U0,t+∆t

i,t+∆t

)−1
. Then, at t +∆t we have

the following amount of asset i:

f I
(i,t+∆t) = f(0,t)U

0,t+∆t
0,t

(
U0,t+∆t

i,t+∆t

)−1
(5.25)

Figure 5.4: One possible arbitrage strategy, denoted as strategy I.

II. Buy asset i at price
(

U0,t
i,t

)−1
, and receive the return accrued by the asset at some

rate, obtained via the connection U i,t+∆t
i,t . Then, at t +∆t, we have the following

amount of asset i:
f II
(i,t+∆t) = f(0,t)

(
U0,t

i,t

)−1
U i,t+∆t

i,t (5.26)
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Figure 5.5: One possible arbitrage strategy, denoted as strategy II.

If f I
(i,t+∆t) and f II

(i,t+∆t) are different, it means that one of the strategies is clearly superior.
Therefore, and assuming ideal markets, where borrowing is always possible, with no
transaction costs, arbitrage opportunities can occur.

If f I
(i,t+∆t) > f II

(i,t+∆t), a possible arbitrage strategy would be to borrow an amount f(i,t) of

asset i and sell it for f(i,t)U
0,t
i,t (that is, to short sell asset i). Applying the first trading route,

at t +∆t one would gain f(i,t)U
0,t
i,t U0,t+∆t

0,t

(
U0,t+∆t

i,t+∆t

)−1
amount of asset i, but because f(i,t)

was borrowed at t, one owes f(i,t)U
i,t+∆t
i,t at t +∆t.

Therefore, this trading strategy profits:

Π
(I)(t +∆t) = f(i,t)

[
U0,t

i,t U0,t+∆t
i,t

(
U0,t+∆t

i,t+∆t

)−1
−U i,t+∆t

i,t

]
(5.27)

which, discounted to time t, is equal to:

Π
(I)(t) = f(i,t)

[
U0,t

i,t U0,t+∆t
0,t

(
U0,t+∆t

i,t+∆t

)−1(
U i,t+∆t

i,t

)−1
−1
]

(5.28)

If f I
(i,t+∆t) < f II

(i,t+∆t), an arbitrage strategy would be to borrow f(0,t) amounts of
cash and apply the second trading route. Then, at t + ∆t, one would gain

f(0,t)
(

U0,t
i,t

)−1
U i,t+∆t

i,t U0,t+∆t
i,t+∆t amounts of cash and owe f(0,t)U

0,t+∆t
0,t , that is, the amount

of cash with accrued interest. Then, one profits:

Π
(II)(t +∆t) = f(0,t)

[(
U0,t

i,t

)−1
U i,t+∆t

i,t U0,t+∆t
i,t+∆t −U0,t+∆t

0,t

]
(5.29)
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Since we’re evaluating in terms of asset i, we have:

Π
(II)(t +∆t) = f(i,t)

[
U i,t+∆t

i,t U0,t+∆t
i,t+∆t −U0,t

i,t U0,t+∆t
0,t

]
(5.30)

which, discounted to time t, is equal to:

Π
(II)(t) = f(i,t)

[
U i,t+∆t

i,t U0,t+∆t
i,t+∆t

(
U0,t+∆t

0,t

)−1(
U0,t

i,t

)−1
−1
]

(5.31)

Because we don’t know, a priori, which route will be used to exploit an arbitrage
opportunity, the sum of both Π(I)(t) and Π(II)(t) is considered:

Π(t) = f(i,t)
[
R(γ)+(R(γ))−1−2

]
(5.32)

where R(γ) = U0,t
i,t U0,t+∆t

0,t

(
U0,t+∆t

i,t+∆t

)−1(
U i,t+∆t

i,t

)−1
. If the quantity in rectangular

brackets is zero, it means that there is no arbitrage opportunity. Here, we expose the
risk-free profit quantity above as having a geometric interpretation: it is the curvature R(γ)

of the fibre bundle, introduced in Section 2.6 21. This quantity functions as a measure
of curvature, which ties quite nicely with the idea of existent arbitrage, since the latter
reflects market anomalies, associated with non-equilibrium.

Now we introduce a key observation, put forth by Ilinski (2000): there are superfluous
degrees of freedom for each asset, regarding their units. That is, arbitrary changes in
the units used to measure the asset’s value should affect in no way the real, underlying
dynamics: gauge symmetries are present in financial markets. Examples would be the
insignificance of changing every one euro to one-hundred cents, splitting shares or trading
in different currencies. None of this matters as long as there exists an understanding of
the necessary scaling (Ilinski, 2000) 22.

In fact, consider an amount fx of the asset x. Let us apply a local transformation to the
fibre element and G-connection:

fx
q−−→ f ′x = fx ·q(x)

Uy
x

q−−→U
′y
x = q(x)U(x,y)q−1(y)

(5.33)

21 The change of notation relative to the one used in Chapter 2 is, once again, justified by the desire to keep
consistent with the reference’s notation.

22 In a real-world scenario, this may have impacts, since, for example, if a company decides to split its
shares, investors may extract some implicit information, affecting their behavior. This is what is called
in physics a gauge symmetry breaking. It can be dealt with by adding perturbations to the ideal case, in
order to approximate it to reality. Still, the latter is of utmost importance in market modelling (Ilinski,
2000).
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where q(x), q(y) ∈ G = R+. The curvature, in the mathematical theory of differential
geometry, should be invariant under these transformations. The local coordinates on
which we operate should have no influence on the geometric, intrinsic characteristics
of the underlying structure. The same occurs in the financial setting. Under our
transformations – gauge transformation – let us analyse what happens to the curvature
tensor, one of the constituents of the risk-free profit quantity previously discussed:

R(γ)
q−−→ R′(γ) = q(x)R(γ)q−1(x) =

= R(γ)
(5.34)

the same happens to the curvature tensor of opposite orientation. Hence, the gain or loss
associated with the arbitrage opportunity is invariant under the gauge transformation.

With this in mind, the following is postulated: real world economic and financial
phenomena are invariant under gauge transformations – local numéraire changes. Given
that arbitrage gains around a closed trading path exhibit such invariance, they must be
able to describe the market’s dynamics, especially in non-equilibrium scenarios, given
that arbitrage is associated with some market “malfunction”, and, geometrically speaking,
the implied existence of curvature paints a suggestive picture of deformation, perturbing
the market. As we’ve stated before, the existent gauge-symmetry has to do with the
indifference investors’ show with regards to a reestablishment of measurement units.

5.2.2 Theoretical Extensions

Morisawa (2009) proposed a slight variation on the framework just described. He
considers a space of N exchangeable assets – portfolio space, RN– and a trading strategy
that involves exchanging in a closed loop. The existence of arbitrage opportunities is
assumed (in the case of three currencies, it would be triangular arbitrage).

By trading in such a way to exploit this opportunity, beginning and ending the trade at the
same portfolio, a gain or loss will occur. In other words, the trade won’t be a closed path,
even though we begin and end with the same kind of assets, and in the same proportions.
To work in a closed path, he considered instead the portfolio ratio space. By picking any
point in the portfolio space, one holds, in this case, some amount of the N assets. These
amounts are exactly the coordinates of the chosen point in the portfolio space. However, if
one multiplies each coordinate by the same scalar, one obtains exactly the same portfolio
as before, only in a greater or smaller quantity. The nature of the portfolio is the same
for every point in the line defined by this multiplication. We now introduce the notion of
equivalence relation. An equivalence relation ∼ on RN is a subset of RN×RN , such that,
for any element a, b, c ∈ RN , three conditions are respected:
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1. a∼ a (Reflexivity)

2. If a∼ b, then b∼ a (Symmetry)

3. If a∼ b and b∼ c, then a∼ c (Transitivity)

We let the equivalence relation be: for any a, b ∈ RN , a∼ b if a = λb, ∀λ ∈ R+.

This defines the set [a] =
{

b|b∼ a, ∀b ∈ RN}, called an equivalence class – the set of all
elements equivalent with a. In turn, the set of all equivalence classes with this equivalence
relation determines the space to be chosen – the real projective space:

RPN−1 =
{
[a]|∀a ∈ RN} (5.35)

which has as elements every possible unique portfolio, regardless of quantities. Only the
proportions matter. Hence the name portfolio ratio space. This way, starting with some
portfolio [x], and performing a trade around a closed path, effectively ending at the same
portfolio, it doesn’t matter if there was an arbitrage opportunity, since [x] = α [x], for all
α ∈ R – the trade is along a closed path when one works in the real projective space.

A fibre bundle structure is subsequently constructed by letting the base space be the real
projective space RPN−1 and the freedom associated with the scalar α ∈R define the fibre.
What is obtained is the trivial fibre bundle RPN−1×R.

As before, the structural group G acting on the fibre is the fibre itself, so we have a
principal fibre bundle. The rest of the construction is exactly the same: the G-connections
are prices and/or exchange rates, trading an amount of some portfolio for another is the
parallel transport mediated by the connection, and the curvature of the connection is the
variation of α ∈ R under parallel transport along a closed path – the gain or loss of an
arbitrage opportunity. The gauge symmetry is, again, the redenomination of asset’s units.

The usage of the real projective space to explain market reality stops here, even though
it has been suggested to provide the proper setting for financial modelling (Piotrowski
& Sladkowski, 2006), given that most of economic and financial reality depends on
proportions instead of nominal factors. That is to say, any indicator, whether it is prices or
anything else, functions in relation to some other. There is a relativity present in financial
economic reality.

Also, modifications were provided by Zhou & Xiao (2010), extending some of the ideas
to option pricing. Their insight lies on the observation that option prices should have
no dependency on numéraire changes – gauge transformations in the framework to be
explained.
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A financial market of N risky assets and a riskless one, such as a bond, serves as
background. The vector X =

(
x1,x2, ...,xN) denotes the price of all assets, including

the bond x0, and P = RN+1
+ is the set of all possible asset prices. Let the trivial manifold

M = P×R be the price-time space, where R is the time axis.

The price dynamics are assumed to be driven by Brownian motions, which reflect the
market’s uncertainty, modelled by Itô processes:

dx0 = x0

(
r (X , t)dt +

N

∑
k=1

b0
k (X , t)dW k

)
(5.36)

dxi = xi (µ (X , t)dt +σ i (X , t)dW i)
dW idW j = ρ i j (X , t)

(5.37)

where r (X , t) and µ (X , t) are drift terms, σ (X , t) is the volatility and ρ i j (X , t) is the
covariance matrix.

Then, a European option is considered, whose underlying assets are all of those belonging
to the market. Let V (X , t) be the value of the option at t. By value, it’s meant the payoff
that it would provide at that specific time.

To determine the dynamics, the Itô rule is followed:

dV =

(
∂tV +

1
2

N

∑
i, j=0

ρ
i j

σ
i
σ

jxix j
∂i∂ jV

)
dt +

N

∑
i=0

∂iV dxi (5.38)

It is standard to assume that a portfolio of the underlying assets with certain weights
replicates the price dynamics of the option. This portfolio must be, however,
self-financing, meaning that changes in portfolio’s value depends solely on price changes.
Let F = ∑

N
i=0 ∂iV xi be the mentioned portfolio, such that dF = ∑

N
i=0 ∂iV dxi. Since it

mimics the option’s value, it’s expected that dV = dF , and therefore:

∂tV +
1
2

N

∑
i, j=0

ρ
i j

σ
i
σ

jxix j
∂i∂ jV = 0 (5.39)

Let Ω = 1
2 ∑

N
i, j=0 ρ i jσ iσ jxix j∂i∂ j. Then (∂t +Ω)V = 0 completely describes the price

evolution of the European option.

The problem with this equation is the lack of covariance under local numéraire changes
of the underlying assets. If the price of some arbitrary asset is decided to be used as
reference value for all other assets, it would be expected that the equation dictating the
option’s price dynamics remains invariant, given that the underlying asset prices are still
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the same and evolve in the same way as before. Notice that it’s expected the price of the
option to be different, but not the way that it evolves. Let z(X , t) be the price of the asset
to be used as numéraire. Under the transformation V → V ′ = z ·V , the “new” pricing
expression is different from (∂t +Ω)V = 0 23. To deal with this, the authors made use of
the fibre bundle structure and gauge theory.

The option price can be thought of as a function Vi : M → R, where i ∈ N is an index
denoting all possible option prices for the same underlying assets, a set denominated
EX = {Vi| i∈N}. This can also be seen as a price field, since it associates to each element
of the space a single price. Employing the differential geometric formalism presented in
Chapter 2, let the price-time space M be the base space and the set of all possible prices
for the option, EX , be the fibre. Then we have a fibre bundle geometry describing the
model, where the fibre bundle is the disjoint union of all fibres E =

⊔
X∈M EX . The set of

possible numéraire changes is the structure group acting on the fibre, and a section of the
fibre bundle is interpreted as the pricing of a specific option.

Returning to equation (5.39), let gi j = 1
2ρ i jσ iσ jxix j∂i∂ j. These are elements of a positive

definite matrix, which defines a metric for the space, turning M into a Riemannian
manifold (essentially, a manifold endowed with a map – the metric – that allows for the
notion of distance between points).

Firstly, the diffusion process presented in equation (5.39) has to be altered to a more
general case, where this geometry is respected. This is achieved via the Laplace-Beltrami
operator:

∆g = |g|−
1
2

N

∑
i, j=0

∂i

(
|g|

1
2 gi j

∂ j

)
(5.40)

where |g| is the determinant of the metric. This is a generalized version of the Laplacian
operator for Riemannian manifolds. Hence, we obtain (∂t +∆g)V = 0, the general version
of equation (5.39).

Secondly, the derivative used has to be changed to a covariant one, where the fibre bundle
structure of the market is also respected. This is achieved via the transformation:

∂i −→ ∇i = ∂i +Ai

∂t −→ ∇t = ∂t +B
(5.41)

23 Once again, order of application of group elements is meaningless here: all quantities commute. Hence,
from now on, it is ignored, unless otherwise stated.
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where Ai and B are the connection coefficients, ∀i = 0, ..., N. This leads to the covariant
Laplace-Beltrami operator:

∆̃g = |g|−
1
2

N

∑
i, j=0

∇i

(
|g|

1
2 gi j

∇ j

)
(5.42)

and the generalization of equation (5.39):

(
∇t + ∆̃g

)
V = 0 (5.43)

For equation (5.43) to be covariant, it’s necessary that under the gauge transformation
V → V ′ = z ·V , the option’s value evolution remains invariant. Due to equation (5.41),
the gauge transformation of the coefficients presented in (5.42) are known, and it can be
proven that the evolution equation (5.43) is invariant:

(
∇t + ∆̃g

)
V = 0−→ z ·

(
∇t + ∆̃g

)
V = 0 =⇒

=⇒
(
∇t + ∆̃g

)
V =

(
∇
′
t + ∆̃′g

)
V

(5.44)

Thus we obtain a covariant pricing equation. Finally, a condition to ensure that the fibre
bundle is flat was calculated. Recalling expression (2.29), if dA = 0, then the fibre bundle
is flat. This flatness is interpreted as the non-existence of arbitrage opportunities. The
following expression is obtained:

∂lAi =−
1
2

∂l

{
|g|−

1
2

N

∑
j=0

[
gi j

N

∑
k=0

∂k

(
|g|

1
2 |g|k j

)]}
(5.45)

where gi j expresses the correlations in the market. If the above quantity is non-zero, there
may be perturbations in the market allowing for arbitrage opportunities.

5.2.3 Modelling Dynamics

This idea of gauge symmetry existent in financial markets introduced in subsection 5.2
is a solely theoretical consideration. Regarding the formalism presented in 5.2, some
numerical simulations were performed, initially by Ilinski (2001), in order to compare
with real historical data, and with other pre-existent models. Further simulations were
performed by authors such as Dupoyet et al. (2010, 2012) and Paolinelli & Arioli
(2018, 2019), with the additional incorporation of some original ideas and variations,
to be explained in subsection 5.2.3.2. We begin by providing a basic report of the base
formalism used in the application of gauge theory to the modelling of market dynamics,
expanded in Ilinski (2001).
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5.2.3.1 Preliminaries

Let us return to Figure 5.4. Each node denotes a pair of asset and time, connected via links
which represent the ability to trade. These trades are mediated via connections, acting on
sections of the financial fibre bundle structure, which are simply nominal quantities that
an investor may hold of that asset. We’ve observed that gains associated with arbitrage
strategies around plaquettes, are invariant under local numéraire changes, that is, gauge
invariant.

To build a model that describes the dynamics of prices and discount factors, that is, the
gauge field in this framework, Ilinski (2001) proposed the following assumptions, here
briefly described:

1. Properties of financial markets that govern dynamics must be gauge-invariant;

2. Financial markets are intrinsically uncertain;

3. Existence of arbitrage opportunities is allowed, but minimized;

4. For a complete financial market, dynamics are local;

5. Results from portfolio theory and derivative pricing must be reproduced in the
“classical” limit.

In order to achieve this, a gauge-invariant functional, denoted as sGauge
24, known as the

action, is stipulated to be responsible for any gauge-invariant dynamics of the system. It
is constructed, for a general case, by considering the risk-free profit of arbitrage strategies
associated with all possible elementary closed trading path – plaquettes. As we’ve seen,
this amounts to the product of connection operators for plaquettes, which can be thought
of in terms of curvature tensor elements. Hence, we have:

s1
(
{Uγ}

)
= ∑
{γ1,γ2,...,γn}

αγ1,γ2,...,γnR(γ1)R(γ2)...R(γn) (5.46)

where {γ1,γ2, ...,γn} is a collection of all possible sets of elementary plaquettes,
αγ1,γ2,...,γn ∈ R are arbitrary coefficients meant to represent volatility and R(γ) =

∏γ∈{γ1,γ2,...,γn}Uγ −1. 25 Here, it is generalized to any plaquette of any size.

24 From now on, we’ll denoted this action as s1. By doing this, we foreshadow the construction of other
actions.

25 This product is interpreted as the product of all connection operators associated with each portion of the
loop γ .
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This is only possible, of course, with the assumption that these “rectangular” arbitrage
trading paths function as the building blocks for more complicated strategies. The
probability of observing a certain system configuration, that is, a certain price and rate
of return, is proportional to the exponential of that action:

P
(
{Uγ}

)
∝ e−s1({Uγ}) =⇒ ln(P

(
{Uγ}

)
) =−s1

(
{Uγ}

)
(5.47)

where the equality is verified up to an additive constant. Let us consider the simple case
of only two assets – cash and a generic share – and a linear action 26, that is:

s1
(
{Uγ}

)
= ∑

γ∈{γ1,γ2,...,γn}
αγR(γ) (5.48)

which can be further simplified by noticing that, per plaquette, we have two possible
paths, different only in orientation. Therefore, we obtain:

s1 ({Up}) = ∑
p∈{plaquettes}

αp
[
R(p)+R−1(p)

]
=

= ∑
p∈{plaquettes}

αp

[
∏

p
Up +∏

p
U−1

p −2

] (5.49)

where p ∈ {plaquettes} is a possible plaquette. Since we are considering a two asset
system, it is clear that the amount of plaquettes is related to the time horizon in this ladder
geometry. For this reason, we’ll substitute the index p with the time variable t, after being
discretized as t j = j∆t, for j = 0, 1, ..., l, where ∆t is the smallest time frame possible
and T = l∆t is the time horizon.

Instead of working with the parallel transport operators Up, let S j be the price of a share
in units of cash at time t j, and let er0(t)∆t and er1(t)∆t be the rates of return of cash
(the 0th asset) and share (the 1st asset), respectively. These are the connections which
constitute the curvature tensor, which in turn make up the action. Recalling that the action
is gauge-invariant, we can simply fix connection values, which change in no way the
dynamics, but simplify the calculations (this is known as gauge fixing). The connections
linking nodes in the time direction will be fixed to er0∆t and er1∆t , and the one in the asset
direction will be fixed at time t0 = t to S0. Therefore, by replacing the parallel transport
operators in equation (5.49) with the new values, we obtain:

s1
(
{S j}

)
=

l−1

∑
j=0

α j

(
S−1

j er1∆tS j+1e−r0∆t +S jer0∆tS−1
j+1e−r1∆t−2

)
(5.50)

26 Correlation between assets could be introduced by considering actions other than linear (Ilinski, 2001).
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which in the continuous limit ∆→ 0 converges to:

s1 (St) =
1

2σ2

∫ T

0
(∂t lnSt− r)2 dt (5.51)

with αt ≡ α = 1/
(
2σ2), where σ2 is the volatility27, and r ≡ r0 − r1, which is the

average rate of share return. Returning to equation (5.47) we see that the probability
of a configuration being characterized by the price St (in a continuous time case) and
average rate of share return r is:

P(St)∝ exp
{
− 1

2σ2

∫ T

0
(∂t lnSt− r)2 dt

}
(5.52)

To understand how prices vary from, let’s say, time 0 to time T , we must consider the
transition probabilities associated to the price at each time. This can be done with the
notion of path-integrals. Very succinctly, infinitesimal changes in prices can be seen as
infinitesimal trajectories in price space, dSt . The total change of this quantity would be
evaluated by an integral such as:

∫ +∞

0

dSt

St
=
∫ +∞

0
d lnSt (5.53)

If price were to be interpreted as a stochastic process, this would return the classical
value, which is the Itô integral of a stochastic process28. Instead of this approach, let
us associate to price trajectory at each time, a probability weight obtained via the action
previously considered, calculated for each plaquette, which, as stated before, is associated
to time. Therefore, we get the following transition probability:

P(ST |S0)∝
∫

e−s1D lnS (5.54)

where and D lnS denotes integration over all possible price paths, that is:

∫
D lnS =

l−1

∏
j=1

∫ +∞

0
d lnS j (5.55)

where lnS j denotes the log-price at the jth time step29.

27 The time dependence of the volatility term was dropped for simplicity, at the cost of generality and
realism. However, for high-frequency trading, this simplification doesn’t present any major drawbacks
(Dupoyet et al. 2012).

28 In financial literature, the price dynamics are described by stochastic process dSt = St (r1,tdt +σtdWt),
where Wt are Brownian motions, respectively. Furthermore, the measure of integration is dSt/St instead
of dSt , because the former is gauge-invariant, while the latter is not, as long as the gauge group associated
is the group of dilations (the derivative of a constant is zero).

29 Sometimes the logarithm is used instead of the natural logarithm, but since the difference between both
is just a multiplicative constant, these differences aren’t of fundamental importance.
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This notion of an “action” is completely borrowed from physics, and it actually provides
a surprisingly intuitive idea for its need in finance. In physics, this quantity is minimized
in order to derive the equations of motion. Classically, particles follow paths of least
resistance in their movement, represented by the minimization of the action. However,
when one considers instead a quantum system, probabilities associated to each dynamical
variable must be considered. To introduce randomness, one considers, instead of a single
path, an infinite number of them, where the most probable one is the “classical” path. This
is captured by an equation similar in form to (5.55). This idea was introduced in physics
by Feynman (1948), and bears the name of path-integrals. Here, it is suggested a similar
approach. Essentially, for each trajectory in price space, a probability is associated. For
example, if for a particular price trajectory the possible gains of an arbitrage strategy
associated to that plaquette are very high (low), the exponential will be very low (high),
and therefore, that price trajectory will be very unlikely. As such, the most probable price
path is that where arbitrage is zero, thus satisfying one of the initial axioms – arbitrage
is allowed but minimized. Integral (5.54) can be evaluated, which gives the familiar
result of prices following a log-normal distribution. We’ve obtained the “classical” result,
satisfying the 5th assumption.

These considerations provide the dynamics of the gauge field, that is, of prices at each
point in the lattice. Without economic agents interacting with the field, a financial market
would be composed of assets whose prices followed such a distribution. However, the
way investor holdings interact with each other via the gauge field – the effect of the gauge
field on the trading agents – must be taken into account. In order to do this, the following
assumption (among others) is key: An investor starting at some point x0 in the lattice of
only two assets, wants to maximize wealth, with the available information, by following
some trading path γ , until xn:

s2(γ) = ln

(
f−1
xn

(
n

∏
i=1

Uxi

)
fx0

)
(5.56)

where Uxi may be prices or interest rates associated with the path which starts at xi−1 and
ends at xi. It depends on what the investor perceives to be the best strategy30. Notice that
the indices in x denote some time step, at which the investor holds some amount of the
asset, whether it is cash or share. In other words, x0 and xn represent some asset (cash or
share) at the beginning and end of the trading strategy, respectively.

30 fx0 and f−1
xn are elements of the fibre. By applying them to the product of several connection terms, we are

essentially turning it into a gauge-invariant quantity (notice that before, the product of many connections
was said to be gauge-invariant, but in that case we were considering loops, not arbitrary paths), allowing
for the comparison with other paths. Financially speaking, the investor starts with an amount fx0 of asset
x0 and by following this trading path, ends up with a certain amount of asset xn, that can be expressed
unit-free by applying f−1

xn (this quantity is not necessarily equal to the inverse of the gains accrued by
following the investment path).
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We can interpret this action as describing the gains an investor accrues by following a
trading path which is perceived to be optimal. The logarithm is necessary to make sure
that maximizing in each step of the transaction maximizes the whole trajectory.

Therefore, we may assume that an investor follows some path γ with probability:

P(γ)∝ exp
{

β̃ · s(γ)
}
= f−β̃

xn

(
n

∏
i=1

U β̃
xi

)
f β̃
x0

(5.57)

where β̃−1 represents the average bounded rationality of investors per unit time (Ilinski,
2001). To model the investor’s behaviour, we assume that at some time t j, there are
probabilities of the investor holding cash or shares, p0, j and p1, j, respectively. For an
infinitesimal time step ∆t, the expression above functions as a transition probability from
the current state to the future one. The quantity in parenthesis functions as an evolution
operator. In matrix form, the transition probability is31:

P
(
t j+1 : t j

)
=

 f−β̃

0, j+1 0

0 f−β̃

1, j+1

 eβ̃ r0∆t Sβ̃

j+1

S−β̃

j+1 eβ̃ r1∆t

 f β̃

0, j 0

0 f β̃

1, j

 (5.58)

By fixing the gauge as f0, j = S1/2
j and f1, j = S−1/2

j we have:
p0, j+1 = eβ̃ r0∆t−

β̃ ln(S j+1/S j)
2 p0, j + e

β̃ ln(S j+1/S j)
2 p1, j

p1, j+1 = e−
β̃ ln(S j+1/S j)

2 p0, j + eβ̃ r1∆t+
β̃ ln(S j+1/S j)

2 p1, j

(5.59)

An interpretation is provided: if interests associated to a cash account are high and the
relative price of a share is also high, the probability of the investor being in a cash account
increases, since the gains are favourable, and buying shares is not worthwhile; the same
rationale can be applied to the probability of holding a share.

Now, in order to generalize to many investors, considerations will shift from each investor
itself to the amount of cash and share units available in the market at some time t j. Let
them be denoted by n j and m j, respectively. Changes to these amounts will be modelled
with the use of operators ψ̂

+
0, j and ψ̂

+
1, j, responsible for the creation, and operators ψ̂

−
0, j and

ψ̂
−
1, j, responsible for the annihilation, of a unit of cash or share, respectively. At each time

t j, we can attribute to the market a two dimensional vector denoting the amount of cash

31 The author also takes into account transaction costs, which we ignore for ease of exposition. Later
applications ignore it as well. However, transaction costs play an important role in the dynamics of the
system, as a stabilizer, effectively stopping small mispricing to have a significant effect on money flows
(Ilinski, 2001).
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and shares, which in turn manifest how many investors are in each asset. These operators
act exactly on those state vectors, and produce a quantity which effectively labels the state
of the market in terms of the portfolio (this quantity is known as eigenvalue, and the vector
is known as eigenvector). This way, the behaviour of many investors is considered not by
their singular actions, but by the effect they have on the amounts of cash and share inside
the market32.

After some mathematical considerations, and also the employment of some machinery
from quantum mechanics and quantum field theory (for a derivation and discussions see
Ilinski (1997), Ilinski (2001), Sokolov et al. (2010) and Paolinelli & Arioli (2018)), the
following action is obtained:

s2 =
1
β̃

l

∑
j=0

[((
ψ̄0, j+1− ψ̄0, j

)
ψ0, j

)
+
((

ψ̄1, j+1− ψ̄1, j
)

ψ1, j

)
+
(

ψ̄0, j+1e−β̃ rt je−β̃ r0∆tSβ̃

j ψ1, j

)
+
(

ψ̄1, j+1eβ̃ rt je−β̃ r1∆tS−β̃

j ψ0, j

)]
(5.60)

We present interpretations for each bracket, in order:

1.
(
ψ̄0, j+1− ψ̄0, j

)
ψ0, j denotes relative changes in the amount of cash during a time

step;

2.
(
ψ̄1, j+1− ψ̄1, j

)
ψ1, j denotes relative changes in the amount of shares during a time

step;

3. ψ̄0, j+1e−β̃ rt je−β̃ r0∆tSβ̃

j ψ1, j compares the amount of cash at time t j+1 with the

amount of cash at time t j resultant from investors selling shares at price Sβ̃

j ;

4. ψ̄1, j+1eβ̃ rt je−β̃ r1∆tS−β̃

j ψ0, j compares the amount of shares at time t j+1 with the

amount of shares at time t j resultant from investors selling cash at price S−β̃

j (that

is, buying shares at price Sβ̃

j ).

Therefore, we may think of the action (5.60) as the “flow” between shares and cash
characterizing a particular lattice-like financial market, associated with the gains and

32 Two important details: First, we still refer to investors, even though cash and share amounts are being
considered, and second, a closed market is assumed, that is, n j +m j = M, for all t j, where M denotes the
total number of traded lots, both cash and shares (Ilinski, 2001). Because the notion of investors is tied
together with their trading behavior, M can also be interpreted as the total number of investors (Paolinelli
& Arioli, 2018).
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losses of the investors operating in the market. Then, an expression for an evolution
operator connecting two portfolio states at two different times is obtained:

I [ψ, ψ̄] =
∫

eβ̃ s2Dψ0Dψ̄0Dψ1Dψ̄1 (5.61)

which can then be used to construct a transition probability of the portfolio allocation(
n j,m j

)
at time t j changing to

(
n j+1,m j+1

)
at time t j+1, effectively generalizing the

transition probability (5.58) to a many-investors scenario. The integration in I [ψ, ψ̄]

is performed over all possible trajectories in portfolio space, some more probable than
others, “decided” by the exponential of the action.

To introduce the first action, built with arbitrage gains around elementary plaquettes, we
need only to use instead the following functional integral in the transition probability:

I [lnS,ψ, ψ̄] =
∫

e−s1+β̃ s2D lnSDψ0Dψ̄0Dψ1Dψ̄1 (5.62)

Then, the transition probability denotes the probability of some transition in prices and
portfolio allocations to occur.

Ilinski (2001) also provides a perturbation 33 to the action s1. It represents how the
investors themselves influence the gauge field. It is achieved by adding to the first action,
inside the quadratic term, what is denoted as the Farmer’s term:

F =
α

M
(ψ̄0ψ0− ψ̄1ψ1) (5.63)

where α is some constant representing share liquidity (Paolinelli & Arioli, 2018). The
Farmer’s term allows for prices to rise (drop) when somebody buys (sells) the share.

The final action can be presented in discrete form as:

s =−s1F + s2 =

=− 1
2σ2

l

∑
j=0

(
lnS j+1− lnS j− r+

α

M
(ψ̄0ψ0− ψ̄1ψ1)

)2
+

+
1
β̃

l

∑
j=0

[((
ψ̄0, j+1− ψ̄0, j

)
ψ0, j

)
+
((

ψ̄1, j+1− ψ̄1, j
)

ψ1, j

)
+

+
(

ψ̄0, j+1e−β̃ rt je−β̃ r0∆tSβ̃

j ψ1, j

)
+
(

ψ̄1, j+1eβ̃ rt je−β̃ r1∆tS−β̃

j ψ0, j

)]
(5.64)

33 Also, a second perturbation is introduced meant to mimic the tendency for investors to exhibit “herd”
behavior (Ilinski, 2001).
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The dynamics here presented inspired variations and applications (Dupoyet et al., 2010;
Dupoyet et al., 2012; Paolinelli & Arioli, 2018; Paolinelli & Arioli, 2019). To be noticed
that better agreement with historical data is verified with the subsequent applications,
compared with this model. The latter fitted quite nicely with empirical data in the middle
region, but failed to accurately reproduce the characteristic fat tails (Paolinelli & Arioli,
2018).

5.2.3.2 Numerical Simulations

Following the model proposed by Ilinski (2001), Dupoyet et al. (2010) explored the
gauge-invariant lattice model for a financial market. The geometry they explore shares
similarities with the previous one, in the sense that a generic asset and cash are connected,
throughout time, in a ladder-like fashion, with the addition of more assets, all of them
connected solely with cash.

Here, assets can be traded with one another by firstly exchanging with cash. A change in
notation was also introduced by Dupoyet et al. (2010, 2012):

• To each node in the lattice, the pair (i, j) is attributed, where i denotes the asset and
j the time;

• Each node in the lattice is populated by a field Φ(i, j), for all (i, j), representing the
amounts of asset i held at time j (elements of the fibre associated to each pair (i, j));

• Each link between nodes is populated by a field Θk(i, j), for all (i, j) and k = 0, 1.
If k = 0, then Θ0(i, j) is interpreted as the conversion factor between (i, j) and
(i, j+1), that is, the interest rate of asset i. If k = 1, then Θ1(i, j) is interpreted as
the conversion factor between (i, j) and (i+1, j), that is, the exchange rate between
assets i and i + 1. These fields are nothing but gauge fields, constituted by the
parallel transport operators defined by the choice of connection.

Opposing the formalism by Ilinski (2000), here the parallel transport operators act on the
fibre elements in the following way:Φ(i, j) = Θ1(i, j)Φ(i+1, j)

Φ(i, j) = Θ0(i, j)Φ(i, j+1)
(5.65)

that is, inverted versions of the connections previously considered in 5.2.1.

Because each asset can only be traded with cash, via the connection “price”, we can
consider each asset’s elementary plaquette that it creates, at some time, with cash,
individually (see Figure 5.6).

57



Once again, an action dependent of the gauge field is constructed with the arbitrage gains
possible in the plaquette. Hence, we have:

s1 [Θ] =
1
2

l−1

∑
j=0

N

∑
i=1

[Ri,0 +R0,i−2] (5.66)

where Ri,0 = Θi(0, j)Θ0(i, j)Θ−1
i (0, j)Θ−1

0 (0, j) and R0,i = R−1
i,0 . There are two

summations: one over all times, thus extending the arbitrage gains to all plaquettes, and
one over all assets. If we substitute each gauge field element for its equivalent in the base
formalism, that is, for prices and interest rates, we quickly observe that it is in fact the
inverse of the previous formalism. Therefore, there is no difference in the gauge field
dynamics between each.

Figure 5.6: Similar elementary plaquette to that shown in 5.2.1, with different notation
and opposite direction.

Source: Dupoyet et al. (2010).

A second action is also introduced, which makes use of the covariant derivatives of the
fibre elements. For each point (i, j), we can define two covariant derivatives acting
on Φ(i, j): one calculating the “forward derivative”, ∇+Φ, and another calculating the
“backward derivative”, ∇−Φ. The same can be done to Φ̄(i, j) = Φ−1(i, j), thus returning
the covariant derivatives ∇̄+Φ̄ and ∇̄−Φ̄. Finally, we must take in account the direction
on which these covariant derivatives are being performed. Since in this model we are only
considering rectangular plaquettes, there are only three possible directions (four sides of
the rectangle minus one which is only “available” in the next time period). Therefore,
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this action is composed, for each point (i, j), of twelve quantities, which are covariant
derivatives for all possible directions.

A financial interpretation of the covariant derivative is none other than the gains obtained
in some transaction, measured in a common unit. To transform this into a gauge-invariant
quantity, in order to be effectively used as a second action, instead of the covariant
derivatives, the quantities Φ̄(∇±Φ) and

(
∇̄±Φ̄

)
Φ are used. They can be interpreted as

relative gains (with associated risk) obtained via transactions. To provide an expression
for the action, let k be one of the three possible directions – cash between two time periods,
asset between two time periods and cash to asset (or vice-versa) – which are denoted as
axis, time and space directions, respectively. Therefore, k ∈ {axis, time, space}. Then,
the second action is as follows34:

s2
[
Θ, Φ, Φ̄

]
= ∑

x
∑
k

[
d+

k Φ̄(x)
(
∇
+
k Φ(x)

)
+d−k Φ̄(x)

(
∇
−
k Φ(x)

)
+ d̄+

k

(
∇̄
+
k Φ̄(x)

)
Φ(x)+ d̄−k

(
∇̄
−
k Φ̄(x)

)
Φ(x)

] (5.67)

where d±k , d̄±k ∈R are constants which determine the interactions between the gauge field
and the fields Φ and Φ̄. Also, with this notation, we can explicitly show the covariant
derivatives:

∇
−
k Φ(x) = Θ(x)Φ(x+ ek)−Φ(x) (5.68)

∇
−
k Φ(x) = Θ

−1 (x− ek)Φ(x− ek)−Φ(x) (5.69)

∇̄
+
k Φ̄(x) = Φ̄(x+ ek)Θ

−1 (x)− Φ̄(x) (5.70)

∇̄
−
k Φ̄(x) = Φ̄(x− ek)Θ(x− ek)− Φ̄(x) (5.71)

whereby ek we mean to say that the unitary vector must be added to, in this case, point x,
pertaining to the direction k. Finally, a partition function is built with the action s= s1+s2.
Then:

Z (β ) =
∫

e−β ·s[Θ, Φ, Φ̄]DΦDΘ (5.72)

34 Even though x≡ (i, j) is an unnecessarily generalized way of denoting coordinates in the lattice, it permits
us to write the action in a more compact form.
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where β is a parameter with a similar interpretation as before. Once again, for all possible
trajectories of the gauge field Θ and traded lots Φ, a path integral is calculated, with a
probabilistic weight associated to it. Its financial interpretation is the following: arbitrage
gains are allowed but minimized, as before, but also the possible gains and losses. With
this, expected values of gauge-invariant quantities (observables of the financial market)
can be estimated:

〈O〉= Z−1 (β )
∫

O
[
Θ, Φ, Φ̄

]
e−β ·s[Θ, Φ, Φ̄]DΦDΘ (5.73)

where O
[
Θ, Φ, Φ̄

]
is some financial observable. It’s nothing more than the weighted

average. In practice, to realize the numerical simulation, the Dupoyet et al. (2010)
decomposed the action into two components, a dependent and an independent of the
field, for both fields, and expressed their value in exponential form. The following are
probability density functions for θµ(x) and φ(x):

pΘ

(
θµ(x)

)
∝ exp

[
−β

(
L̄Θ eθµ (x)+ e−θµ (x)LΘ

)]
(5.74)

pΦ (φ(x))∝ exp
[
−β

(
L̄Φ eφ(x)+ e−φ(x)LΦ

)]
(5.75)

where Θµ(x) = exp
(
θµ(x)

)
and Φ(x) = exp(φ(x)). LΘ, L̄Θ > 0 and LΦ, L̄Φ > 0 are

dependent on the local environment, and independent of the fields at that point x.

To generate the ensemble of fields [Θ, Φ], they begin by choosing them at random, and
then, through an heat bath algorithm, the fields are locally updated with recourse to the
probability densities exposed above. With this ensemble, expected values of financial
variables can be calculated. The chosen observable was:

Λ`(i, j) = logW`(i, j) = log

[
Φ̄(i, j− `)

(
`

∏
k=1

Θ0(i, j− k)

)
Φ(i, j)

]
(5.76)

which denotes the logarithm of the relative profit made with asset i at time j, after holding
it for a time interval of size `. Notice the similarities with the second action (5.56)
proposed by Ilinski (2001), presented in 5.2.3.1.

Calculating the expected value 〈Λ`(i, j)〉 in this model takes into account any trading
activity, even possible arbitrage opportunities. There are N(l − `+ 1) measurements
available of this expected value, forming the set Λ = {〈Λ`(i, j)〉} 35. In order to compare

35 To prevent any confusion, l denotes the market time horizon, while ` denotes the investment time horizon,
that is, the amount of time the investor holds on to the asset.
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with historical data, which is available in the form of historical prices, some changes
were introduced. First, instead of prices, log(S(t ′)/S(t)) is used, where t ′ > t. This
way the comparison with 〈Λ`(i, j)〉 is possible. Second, historical prices are cumulative
measures, and as such, reflect the various time lengths that each investor holds the asset,
determined by the laws of supply and demand. In the lattice construction this effect is
not present, and to remedy this, Dupoyet et al. (2010) proposed for each element of Λ to
be selected with probability `−ν , where ν is a parameter, which, if positive, reflects the
situation where fewer investors hold assets for longer periods of time. This way, relative
gains associated to holding some asset for long periods of time are less probable to occur
in the market. This probabilistic weight follows what is known as a power law, which
is devoided of scale, and thus, compatible with a gauge-invariant formalism. This new
stochastic variable will be referred to as XL.

Regarding the numerical simulation, it was performed on a lattice of size l = 260, which
is interpreted as time steps, and N = 30 assets. All parameters were fixed in an ad hoc

fashion. Then the simulation will provide a distribution of the number of relative gains
chosen from Λ, per small variation of XL. Results were compared with historical data
extracted from the NASDAQ index, with a sampling time interval of one minute, from
a sample of close to two years. An agreement until four orders of magnitude of the
lattice simulation (complemented with the holding time adjustment) with historical data
is observed, although it underestimates slightly the probability of large market corrections
in the fat tail region (Paolinelli & Arioli, 2018). However, it still implies that the gauge
principle is verified to a certain extent.

Building upon the latter model, Dupoyet et al. (2012) introduced a different strategy
for updating the lattice constituents. To explore its effects, a single asset (and cash) was
considered in the simulations. Firstly, they did a gauge fixing for all fields pertaining to the
“cash” axis, obtaining Φ(0, j) = Φ̄(0, j) = 1, for all j, and Φ̄(0, j)Θ0(0, j)Φ(0, j+ 1) =
W1(0, j), that is, the return associated to the cash account is fixed (similar to what was
done by Ilinski (2001)). However, the authors manifest a clear interest in modelling
high-frequency trading, where they argue that the account interest rate is insignificant.
For this reason, let W1(0, j) = 1. These gauge fixings are performed at every step
of the simulation. Secondly, they ran the previous algorithm in order to achieve an
equilibrium situation 36. This way, a financial market which allows the existence of
arbitrage opportunities for brief moments, due to the uncertain nature of markets, is
achieved. It is with this equilibrium configuration that the authors introduce the new

36 By this, it is meant that the ensemble of fields started with random values, and through a Monte Carlo
method, were replaced successively until it stabilized near an ensemble closely resembling what was to
be expected from the probability densities shown before.
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updating strategy. It permits the local perturbation of the fields, post-equilibrium. This
local perturbation begins by considering the following quantity:

v j = r j(r j+1− r j−1) (5.77)

where r j = logW1(1, j) = log
(
Φ̄(1, j)Θ0(1, j)Φ(1, j+1)

)
, which is gauge-invariant by

construction. Even though this quantity was introduced on empirical terms, it has also a
theoretical justification. It is the discretized version of the derivative of the Wiener process
which drives the dynamics of the returns (Dupoyet et al., 2011).

In the equilibrium configuration, v j is calculated for each j, and when the maximum value,
in absolute terms, is found, the field components associated to that site are updated.

At each site j, the fields Θ0(1, j− 2), Θ0(1, j− 1), Θ0(1, j), Φ(1, j− 1) and Φ(1, j)

are the only ones updated. The update works by first selecting random values from the
probability density functions:

pΘ

(
θµ(x)

)
∝ exp

[
−2β

√
LΘL̄Θ cosh

(
θµ(x)

)]
(5.78)

pΦ (φ(x))∝ exp
[
−2β

√
LΦL̄Φ cosh(φ(x))

]
(5.79)

which are the same probability density functions in (5.74) and (5.75), after specific gauge
fixings (see Dupoyet et al. (2012)). Then, the following averages are calculated:

aθ =
1
3

j

∑
j= j−2

θ0(1,k)

aφ =
1
2

j

∑
j= j−1

φ(1,k)

(5.80)

and each field is updated accordingly:

θ0(1,k)−→ θ0(1,k)−χaθ

φ(1,k)−→ φ(1,k)−aφ

(5.81)

where χ is a parameter. Finally, because these updates perturb the minimal-arbitrage
environment initially achieved, then the heat bath algorithm is subsequently applied to the
fields connecting asset with share, for each time j, that is, Θ1(0, j), for j ∈ [ j−1, j+1].
The simulation was performed on a lattice of size l = 782, and a single asset. Once again,
all parameters were fixed in an ad hoc fashion (here, they were fixed differently than
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before). Firstly, the parameter χ introduced proves itself fundamental in showing that
two distinct regions regarding the average of gains and losses exist. High (low) values for
this parameter are directly associated with low (high) volatility markets. Therefore, the
introduction of such a parameter allows for the simulation of several different types of
markets.

Also, due to the novel updating mechanism, it is found that the lattice evolves towards
a self-organizing critical state (Bak, 1996). Self-organized criticality can be essentially
defined as the tendency that certain systems have to organize themselves, purely due to the
interactions amongst the constituents of the system (no external factors), towards a critical
state. This critical state represents the system in some sort of unstable equilibrium, where
minor perturbations may lead the system out of equilibrium. This event is known as an
avalanche, and the distribution of the log frequency of avalanches per log step (by step
we mean the smallest interval to go from one state of the system to another – it could be
time, distance or other) follows a power law, exhibiting scale invariance. Another way of
thinking about this phenomenon is by understanding that the laws which dictate dynamics
are simple in the sense that they can be (most of the time) formulated analytically, and
solutions can be computed, as long as these systems don’t have many constituents. If the
opposite is true, then the system becomes quite complex. Self-organized criticality is a
mechanism which generates complexity and introduces catastrophism in the system, and
it is suggested by Bak (1996) to be fundamental in understanding how nature works, even
economic and financial nature (Bak et al., 1992).

In Dupoyet et al. (2012), the updating mechanism revolving around equation (5.77) drives
the financial lattice into this critical state, by replacing its absolute maximum value with
a random one extracted from (5.78) and (5.79). This could be interpreted as the market
“correcting” itself every time financial returns, either positive or negative, are too high.
Finally, the distribution of the log frequency of avalanches per log simulation time step
follows a power law, thus substantiating the claim of observed self-organized criticality.
In this situation, avalanches are interpreted as the set of updates during a single simulation
time step.

By constructing gains distributions, it is observed the expected behaviour: higher-than
Gaussian mean value and fat tails. Also, after simulating 100 lattice configurations and
constructing their respective returns time series, it is assessed with the aid of a GARCH
(1, 1) model, that these time series are, when compared with the NASDAQ historical data,
indistinguishable, in terms of the parameters in both GARCH (1, 1) models.

Paolinelli & Arioli (2018) begins by considering the expression for the action (5.64)
suggested by Ilinski (2001). Employing the change of variables, for the case of only
two assets, cash and some hypothetical share, we have:
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ψi,t =
√

Mρi,t e−iφi,t

ψ̄i,t =
√

Mρi,t eiφi,t
(5.82)

for i = 0,1, where ρi,t ∈ [0,1] represents the density of money flows between assets, at
time t, and φi,t ∈ [0,2π], where φ0,t − φ1,t represents the “velocity” with which money
flows. It is clear that, because of the assumption of a closed environment, we have ρ0,t +

ρ1,t = 1 =⇒ ρt ≡ ρ0,t = 1−ρ1,t . Therefore, the perturbation (5.63) becomes:

F = 2α (ρt+1−ρt) (5.83)

and also the action itself must be changed to these variables. It allows for the execution
of the numerical simulation.

Paolinelli & Arioli (2018) realize that a poor agreement with historical data is verified
with these perturbations in the tail region. The relationship between the logarithms of
the probability distribution of prices and the logarithm of the prices itself in this region
motivates the following perturbation, suggested by the authors:

J

∑
k=1

2αk (ρt+1−ρt) |ρt+1−ρt |Γk−1 (5.84)

where J ≥ 1, Γk ≥ 1 and αk are integers. This allows for the possibility of sudden
price changes, usually resultant of external factors of macroeconomic nature. When
this happens, over- or under-estimations concerning the prices occur. These events are
known as jumps. In fact, an interpretation for αk and Γk is provided, which centres
itself exactly on such notions. The term αk, which is proportional to the volatility, has
to do with probability of jumps occurring, while Γk influences the size of said jumps.
The numerical simulations performed were all based on a Metropolis-Hastings algorithm,
which is a Monte Carlo method. When comparing with historical data obtained from
the S&P500 index and APPLE stocks37, spanning three months, with a sampling rate
around one minute, a good fit is observed when J = 2, even in the fat tails region, thus
improving on Ilinski (2001) and Dupoyet et al. (2012) model. Also, the parameters
responsible for the jumps are varied, one at a time, and the above interpretations are
reinforced: increasing (decreasing) αk, increases (decreases) the log distribution variance,
thus increasing (decreasing) the probability of jumps, while increasing (decreasing) Γk,
increases (decreases) the similarity with a lognormal distribution of the prices, thus
decreasing (increasing) the size of the price jumps (for k ∈ {1,2}).

37 Here, similar considerations regarding historical data to Dupoyet et al. (2010) and to Dupoyet et al.
(2012) were employed, specifically, the usage of the log change in prices, per smallest time frame (one
minute in this particular situation), as values from a stochastic variable.
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To allow for different time scales, Paolinelli & Arioli (2019) introduced a different action.
They began by noticing that the gauge-invariant quantities previously used, which are, in
the continuous limit, essentially the following:

sArbitrage ≡ s2 = β2

∫ T

0
(∂t logSt− rt)

2 dt

sGains ≡ s1 = β1

∫ T

0
|∂t logSt− rt |dt

(5.85)

are most appropriate for different time horizons. The first action is constituted by the
risk-free gains possible by adopting an arbitrage trading strategy, while the second action
is composed of the risky gains possible for some time horizon. Generally speaking, it’s
true that s1 > s2 for any time horizon. However, for a short time horizon, the value of the
action associated with arbitrage is negligible when compared to the action of risky gains.
For this reason, the following action is proposed:

sp = βp

∫ T

0
|∂t logSt− rt |p dt (5.86)

where p ∈ [1, 2], thus mixing both actions, depending on the chosen time horizon: p

must be closer to one for short time horizons and it must be closer to two for longer time
horizons. Now, regarding the probability density function, it must reflect the fact that
experienced traders have greater chances of accruing profit over unexperienced ones, for
the same levels of allowed arbitrage. This is accomplished by introducing a parameter
λ ∈ ]0, 1[, thus obtaining the probability density function:

Pλ (sp)∝ exp{−βp · sλ
p} (5.87)

The closer the parameter is to zero, less likely are small values for the action of happening,
or conversely, greater amounts of returns are more probable in the short term, for the
same amounts of arbitrage. Notice that for p = 2 and λ = 1, the “classical” distribution
is obtained, in accordance with the geometric Brownian motion case (log-normality).

Similarly with the previous cases, the transition probability from S0 to ST is given by a
path integral:

P(ST | S0)∝
∫

e−
1

2σ p sλ
p D logSt (5.88)

where βp = 1/(2σ p), which is related with volatility.

Given that the action is not quadratic nor linear, there is no known analytical way of
addressing this path integral. Therefore, the following approximation was suggested:
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P(ST | S0)≈

≈ lim
N→∞

N−1

∏
j=1

∫
∞

0
exp

− 1
2σ p∆t

(
N−1

∑
j=0

∣∣logS j+1− logS j− r
∣∣p ∆t p− pλ

2λ λ

)λ
 dS j

S j

(5.89)

which converges and has negligible relative errors. To carry on with the numerical
simulation, the Quasi Monte Carlo method was employed for a ten dimensional integral,
shown to be an adequate approximation.

To analyse in the short-term, the three month historical prices from three assets,
AMAZON, GENERAL ELECTRIC and APPLE, were chosen, and three time frames
were fixed: 1, 5 and 30 minutes. For each of this time frames, the parameters p, λ and
σ were varied accordingly. The longer the time frame, the greater is the value for the
first two parameters, ranging from 1.15 to 1.23 and from 0.15 to 0.23, respectively. For
the long-term analysis, the thirty year historical prices from the Dow Jones and S&P500
indices were used38. The time frames were fixed to one day and one week, respectively.
The parameters p and λ varied from 1.35 to 1.42 and from 0.35 to 0.42, respectively, and
σ changed from 0.062 to 0.023.

It was found good agreement with historical data, for all time frames, specifically the one
minute time frame, which, compared with the previously results, presents much better
agreement. Also, p and λ were the same across all assets, which seems to suggest that
they share similar dynamics. Furthermore, the variations experienced by the parameter σ

are in agreement with its interpretation: share liquidity.

Finally, praise for this model is given not only for its agreement with empirical data, but
also for the fact that it depends only on three parameters. Furthermore, it’s non-Markovian
by nature, separating it from the rest of the literature surrounding this subfield of finance.

5.2.4 Basic Framework Criticism

Some scepticism to the possibility of a gauge theory of finance was put forth early on,
offering important criticism to the fundamental assumptions present in the theory.

Sornette (1998) targeted the beginnings of this theory, which were introduced in
subsection 5.2. The author presents, essentially, three important observations:

38 The choice for indices instead of assets was justified by noticing that across so many years, asset prices
may be affected by other external factors, which would introduce further complications.
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1. There is no explanation for the use of probability weights that follow a Boltzmann
distribution, P

({
Ui j
})

∝ e−β ·s, seen as an ad hoc choice meant to resemble with
the physical theories which served as inspiration;

2. It is suggested that the existence of uncertainty, formalized as noise, is responsible
for the introduction of “virtual” arbitrage opportunities, but in the case of a complete
market, random variables have the Markov property, implying the nonexistence of
arbitrage opportunities39, despite the fact that noise is obviously present;

3. There’s no reason to believe that elementary arbitrage strategies serve as building
blocks for other, more complex, strategies, even though this is tacitly implied in the
theory.

With respect to the first observation, a possible justification might rest on the fact that,
in principle, any trader in the market can follow an arbitrage strategy, allowing for the
possibility of generating risk-free profit in a consistent fashion. Therefore, big arbitrage
opportunities must be less probable than smaller ones, thus motivating the choice for such
probability (Paolinelli & Arioli, 2019)

The other two points remain unaddressed. Regarding the third one, there’s even an
example of a different arbitrage strategy which doesn’t follow the elementary plaquette

construction. This example was suggested by Young (1999), where an arbitrage strategy
involving a single asset at three different times can be exploited by making use of the
different interest rates.

A fourth one is also presented, which concerns the log-normality derived using this
formalism, seen as a verification of the theory’s validity, since it reproduces the “classical”
result. Sornette (1998) comments on this by stating that correspondence between any new
theory and its old equivalent in some “classical” setting does not constitute substantial
proof.

Further criticism was presented by Sokolov et al. (2010), regarding, in particular, how the
transition probability (5.58) was derived. When constructing the action in the continuous
time limit, that is, when ∆t→ 0, it is assumed that a j∆t→ 1/

(
2σ2), with no justification.

However, when deriving an important component of the transition probability (known
in physics as the Hamiltonian, which can be thought of as an operator responsible
for dictating how some quantity changes throughout time), Ilinski (2001) arrives to a
quotient where in the denominator is ∆t, meaning one of two things: either ∆t → 0

39 This follows from the fundamental theorem of finance, where it is proven that if there exists a probability
measure such that the random variable is a martingale, then the market is arbitrage-free.
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and the Hamiltonian tends to infinity or there exists some inconsistency in the theory.
Furthermore, the transition probability (5.58) has a determinant equal to zero, implying
that it can’t correctly identify an evolution operator.

Also, regarding the quantity being integrated in the action (5.64), analogous to what is
known in physics as the Lagrangian, Sokolov et al. (2010) noticed an algebraic mistake in
the derivation of the “equations of motion” for financial markets, obtained by minimizing
the Lagrangian. After correcting for such a mistake, solutions for these differential
equations are unstable and present impossible values for interest and exchange rates.
Since these are derived from the Lagrangian, it means that some incorrect detail is present
in it.

These criticisms were not, in any way, addressed by the authors of the numerical
simulations, or theoretical extensions. The fact that there exists this inconsistency when
one goes from the discrete to the continuous case was not addressed in the previous
section, but since the numerical simulations are all performed in a discrete environment,
this doesn’t really constitute a problem. However, the fact that the transition probability is
wrongly constructed is a problem which also affects the applications previously exposed.

Nevertheless, good agreement with historical data is observed, implying, at least
partly, that the descriptive power of the formalism is still present, despite its many
inconsistencies. Still, in order for the model to become competent in describing market
reality it must be built in solid theoretical grounds, otherwise, the times where it “gets”
reality right, are of no use, since there is no self-consistent framework, derived from
first-principles.

5.3 Deflator-Term Structure Gauge Symmetry 40

In the attempt to provide a geometrical framework to stochastic finance, Farinelli (2015)
introduced a number of geometrical reinterpretations of financial phenomena, stochastic
in nature. To accomplish this, the author utilized most of the ideas shown in 5.2, but
in a stochastic way, with some important distinctions, such as a different total space
“hovering” above the base space and a different gauge. The latter was greatly inspired
by Smith & Speed (1998), where notions of gauge theory are implicitly present (Farinelli,
2015).

As stated above, most of the formalism to be presented follows from 5.2, but in stochastic
terms. For this reason, let there be a probability space (Ω, F , P), where Ω is the

40 Later in section 5.3, it will be shown that other symmetries were explored, besides gauge symmetries.
Also, the model developed by Farinelli (2015) encapsulates the one shown in 5.2, and therefore, the
notion of numéraire invariance is also present.
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space of all possible events, the filtration F is the set of all possible subsets of Ω (a
σ−algebra), essentially denoting the available market information at each time t, and P
is the probability of each event happening (see, for example, Hunt & Kennedy (2004) or
Shreve (2004) for an exposition of stochastic finance). Randomness is therefore modelled
via this formalism (as is standard in financial literature). All quantities (e.g. prices,
interest rates) to be considered below are assumed to be stochastic processes: for each
t ∈ T and possible event ω ∈ Ft , the considered quantity assumes some value. Also,
these stochastic processes are assumed to be semimartingales (any stochastic process that
can be decomposed into a local martingale – a term whose expected value is independent
of past events – and a “drift” term), where its dynamics are given by Brownian motions
coupled with a drift term, similar to equation (5.37) in section 5.2, unless otherwise stated.
In what follows, transaction costs are non-existent, short sales are allowed and economic
agents have access to the same information (represented by the filtration).

Let a financial market be characterized by a finite amount of assets I =

{i| i = 0, 1, 2, ..., N} traded in continuous time T = {t| t ∈ [0,+∞[}. Each asset i is
nominally priced as Si

t , where for the 0th asset, interpreted as before as cash in a bank
account, it is given by the strictly positive S0

t = exp
{∫ t

0 r0
τ dτ
}

, where r0
t represents

the continuous interest rate41. From an investor perspective, an investing strategy is
characterized simply by the amount of each asset that the investor holds at some time
t ∈ T , denoted by xi

t . A portfolio is then a vector xt =
(
x0

t , x1
t , ..., xN

t
)

in RN+1, whose
value is then:

V x
t =

N

∑
i=0

xi
tS

i
t = xt ·St (5.90)

Opposing the formalism presented in 5.2, the rationale of Smith & Speed (1998) was
followed. It stems from the realization that each asset can be fully identified by its value
at time t, measured in terms of some numéraire, and by its expected forecasted values at
that time, in terms of the asset’s value. For this reason, each asset i will be mapped to the
pair

(
Di

t , Pi
t,s
)
, where Di

t is denoted as the deflator and Pi
t,s is denoted as term structure.

It’s with pairs of deflators and term structures, denoted in Farinelli (2015) and Smith &
Speed (1998) as gauges42, that financial instruments can be modelled.

Deflators are the values of each asset relative to some numéraire. Notice that it doesn’t
have to be the cash account. In fact, the only prerequisite for the choice of a numéraire is
that it must be an asset whose price is a strictly positive stochastic process. Some portfolio

41 This particular semimartingale is said to be predictable since its value is known in advance at each t, even
though it changes throughout time.

42 Calling it gauges cements the idea that each asset is measured in this way.
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of assets could be a numéraire, if this condition is met43. Therefore, given a price vector
St =

(
S0

t , S1
t , ..., SN

t
)

and portfolio weight bt =
(
b0

t , b1
t , ..., bN

t
)

whose value is strictly
positive, we have:

Dt =

(
S0

t
bt ·St

,
S1

t
bt ·St

, ...,
SN

t
bt ·St

)
(5.91)

If bt = (1, 0, ..., 0), then the portfolio used as numéraire is nothing but the cash asset,
and thus we obtain:

Dt =
(

1, Ŝt
1
, ..., Ŝt

N
)

(5.92)

where Ŝt
i represents the price of asset i in terms of current cash units. In other words,

it compares the value of the asset with the value of money. Notice that ratios between
deflators give relative prices (traded amounts in a barter economy), and if the asset in
consideration is a currency, deflators represent the time evolution of inflation, and ratios
denote exchange rates.

Term structures are values at time t of a synthetic zero-coupon bond which delivers at time
s a unit of asset i (similar to a forward contract, which delivers the asset at some future
time, at a price established presently). Essentially, it represents the possible forecasts
of each asset’s deflator value, with respect to the chosen numéraire: how much would
an investor be willing to pay right now to receive asset i at some future time s, for all
s ≥ t. It’s assumed that Pi

t,t = 1, that is, the price of a bond delivering asset i right now
is the price of the asset itself, Pi

t,s > 0 and lims→∞ Pi
t,s = 0 exponentially fast. If f i

t,s is the
instantaneous forward rate, representing the forecasted future discount rate, then:

Pi
t,s = exp

{
−
∫ s

t
f i
t,τdτ

}
(5.93)

where ri
t = lim∆t→0 f i

t,t+∆t is the short rate44. With this in mind, the product Di
tP

i
t,s is

interpreted as the amount one would pay at time t to receive Di
t at some future time s

(Smith & Speed, 1998). Notice that as s tends to infinity, the amount one is willing to pay
to receive Di

s is practically zero, reflecting the fact that greater uncertainty is present for
long time horizons.

This way, a more general version of the market is presented, where each of the existent
assets is modelled by a gauge: a pair of deflator and term structure. Once again, it’s

43 This idea of indifference towards how prices are measured served as the gauge symmetry in section 5.2.
44 If f i

t,s > 0 for all t,s ∈ T , then it’s said that the term structure satisfies the positive interest condition.
This is appropriate if the assets one considers are more valuable in the present than in the future (storable
financial instruments e.g. non-perishable goods). If the instantaneous forward rate doesn’t follow such a
condition, the pair of deflator and term structure (the gauge) is said to be a principal gauge.
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important to understand that the choice of the gauge is not unique, since the set of deflators
can always be multiplied by some positive semimartingale, thus returning a new set of
deflators which still characterize the market, as long as the term structure is changed
appropriately. This was the invariance exploited in 5.2.

However, because each gauge describes assets via a zero-coupon bond, any kind of future
cashflows are not being considered e.g. coupons or dividends for the case of a coupon
bond or some generic share, respectively, which clearly affects the asset’s value and
potential forecasts. Therefore, a gauge transform (D, P) 7→ g((D, P) = ((Dg, Pg) is
defined as follows:

Di,g
t = Di

t

∫ +∞

0
gi

τPi
t,t+τdτ (5.94)

Pi,g
t,s =

∫+∞

0 gi
τPi

t,s+τdτ∫+∞

0 gi
τPi

t,t+τdτ
(5.95)

where gi
t denotes a stochastic cashflow, associated with asset i at time t, determined as:

gi
t =−E

t

[
d
dt

Di
t

]
+ r0

t Di
t (5.96)

where r0
t denotes the continuous interest rate of the numéraire 45. These cashflows46 are

measured in terms of the deflators. One can interpret equation (5.94) as the value of an
asset i that yields additional cashflows, in terms of some previously defined numéraire.
In fact, the integral in (5.94) is nothing but the discounted cashflows, summed throughout
all future times. The new term structure (5.95) is defined posterior to the deflator.
Multiplying both equations (5.94) and (5.95), a suggestive expression appears:

Di
tP

i
t,s

g−−→ Di,g
t Pi,g

t,s =
∫ +∞

0
gi

τ

(
Di

tP
i
t,t+τ

)
dτ (5.97)

It represents the amount one is willing to pay at time t to receive Di,g
t at time s, taking into

account all future cashflows that the investor will receive for holding the asset.

With the above in mind, the market is modelled as a fibre bundle, similarly to the previous
sections. For such purpose, from the N +1 assets, one is fixed as the numéraire. As base
space, the manifold considered was the set of all possible portfolio holdings at each time:

45 The expected time derivative in (5.96) is the stochastic derivative, from now on denoted as ∂̃t . Technically
speaking, it stands for the derivative associated with the Stratonovich integral, instead of Itô’s, thus
satisfying the chain rule, and permitting a differential geometric treatment (Farinelli, 2015).

46 For the gauge transform to be well defined, it is necessary that:

lim
t→+∞

supexp

(
log
∣∣gi

t
∣∣

t

)
≤ 1
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M = {(x, t)| x ∈ RN+1, t ∈ T
}

(5.98)

The gauges for each possible portfolio are as follows:

Dx
t =

N

∑
i=1

xiDi
t (5.99)

Px
t,s = exp

{
− 1

Dx
t

N

∑
i=1

xiDi
t

∫ s

t
f i
t,τdτ

}
(5.100)

Clearly, (5.99) follows immediately from (5.90) and (5.100) can be thought of as a
weighted average of the instantaneous forwards rate associated with the portfolio. The
total space E, denoted as the market fibre bundle, is thus defined as:

M =
{(

Dx,g
t ,Px,g

t,s
)∣∣ (x, t) ∈ E, s ∈ T, g ∈ G} (5.101)

Employing the machinery introduced in Chapter 2, section 2.3, there exists a projection
map between the total and base space:

π : E −→M(
Dx,g

t ,Px,g
t,s
)
7−→ (x, t)

(5.102)

which represents the idea that each portfolio has to it an associated gauge, corresponding
to that portfolio’s value, with a specific cashflow structure g. The set of all possible
cashflow profiles denotes the fibre, which coincides with the structural group 47.
Therefore, the fibre bundle is a principal one. This group acts on the total space similarly
to (2.7):

E×G−→ E(
Dx

t ,P
x
t,s, g

)
7−→

(
Dx,g

t ,Px,g
t,s
) (5.103)

Finally, we recall that there exists local trivializations for the total space, shown in (2.6).
However, because the total space at hand is in fact globally trivial, we have E = M×G,
given by:

47 Notice that the group action is the convolution operation:

(g∗h)t =
∫ t

0
gτ ht−τ dτ

For any g,h ∈ G. Also, not every cashflow is part of group G. The prerequisite is that for every element
of g ∈ G there exists q ∈ G such that (g∗q)t is equal to the Dirac function (zero everywhere and infinite
at the origin).
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(
Dx,g

t ,Px,g
t,s
)
= (x, t,g) (5.104)

In other words, a portfolio x at time t with a cashflow structure g is identified by its
deflator Dx,g

t and term structure Px,g
t,s , representing the portfolio’s value. This fibre bundle

construction is a more generalized version of the one exposed in 5.2.

Now, consider a path in the base space, connecting the points (x0, t0) and (x1, t1), where
the indices denote the initial and final times of the investment (in other words, the index
0 denotes the time when the investor acquired the portfolio x, while the market has been
“operational” for t time). A section of the fibre bundle corresponding to the point (x0, t0)

is an associated cashflow structure g0, which is an element of the fibre. Applying the
parallel transport operator, one gets the cashflow structure g1 associated with the fibre of
(x1, t1). The connection 1-form chosen by the author was:

A(x, t,g) =
1

Dx
t

N

∑
i=1

Di
tdxi− rx

t dt (5.105)

where rx
t = lims→t

∂

∂ s logPt,s. From now on, the term structure will be identified with
the continuous interest rate of the portfolio. Recalling the covariant derivative equation
(2.25), then:

(
∂̃t−A(x, t,g)

)
g = 0

=⇒ g1 =


g0

Dx1
t

D
x0
t
, if the path is in the portfolio direction

g0 exp
{
−
∫ 1

0 rxτ
τ dτ

}
, if the path is in the time direction

(5.106)

thus encapsulating the notion of a connection as prices, exchange rates (the quotient of
deflators) and interest rates (the integral of the term structure), as in 5.2.

Curvature is also calculated, using equation (2.29):

R(x, t,g) =
N

∑
i=1

∂

∂xi

(
∂̃t logDx

t + rx
t

)
dt ∧dxi (5.107)

where ∧ denotes the wedge product, which is essentially a cross product, but generalized
for any dimension. Therefore, one can see that the fibre bundle is flat if:

∂̃t logDx
t + rx

t = Constt (5.108)
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where Constt is a constant with respect to portfolio nominals. If we let this constant be a
strictly positive semimartingale βt , then we have:

∂̃t log(βtDx
t )+ rx

t = 0 (5.109)

this constant is called in the financial literature as the state price deflator or pricing
kernel, and its existence is a consequence of a market which doesn’t allow for arbitrage
opportunities48. Therefore, there exists a link between no-arbitrage and no curvature,
consistent with what was previously shown in 5.2. A financial interpretation of (5.109) is
that a market possesses no risk-free opportunities if and only if changes to the log value
of any submarket (any set of portfolios) is solely caused by the flow of short rate through
the boundary of the submarket (some portfolio which bounds the rest). This constitutes a
continuity equation, which holds only if the market environment is arbitrage free.

Farinelli (2015) then proceeds to establish similar axioms to those presented in 5.2.3.1,
but in a stochastic context, and with a different fibre bundle, as shown before. An arbitrage
action is built, which must be minimized. For that end, the following action is considered:

sβ (γ; D,r) =
∫

γ

{
∂̃t logDx

t + rx
t

}
ds (5.110)

where βt is any positive semimartingale and ds = |∂̃tx|dt is an infinitesimal step in the
portfolio-time space. Let the trading path γ be self-financing49 and be the stochastic
discount factor. Then (5.109) can be rewritten, and the following inequality holds if there
exists arbitrage opportunities in the market:

sβ (γ; D,r) 6= 0 =⇒
β1Dx1

1

dγ

0,1
6= β0Dx0

0 (5.111)

Furthermore, the author explores the relationship between self-financing closed strategies
in the base space and the existence and effects of associated arbitrage opportunities.
It is found that if this kind of closed strategies can be smoothly deformed to a single
point, then arbitrage is non-existent. The intuition behind this is that, in a market
where it is impossible to gain profit without risk, trading some portfolio in such a

48 This is known as the Fundamental Theorem of Asset Pricing, which basically states that the market
allows no risk-free opportunities if an only if there exists an equivalent probability measure such that the
price processes are martingales, which in turn means that there must exist pricing kernel such that the
discounted price process in terms of the pricing kernel is a martingale (Hunt & Kennedy, 2004).

49 That is, any changes in value of the portfolio are solely due to changes in the price of the price deflators,
not on the nominal weights. However, since we are using the Stratonovich’s derivative, we have:(

Dx
t · ∂̃tx

)
=−〈x,D〉t/2

where 〈·, ·〉t denotes the quadratic covariation between two stochastic processes, for all x ∈ γ .
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way that the beginning and ending of the trade are the same portfolio, or holding that
portfolio throughout the investment time horizon, amounts to exactly the same gains –
no arbitrage gains are acquired. Therefore, it’s this kind of “obstruction” in the portfolio
nominal space that allows arbitrage opportunities. Also, Farinelli (2015) points out that
instead of considering every possible trading path, one can consider the set of all closed,
self-financing trading paths which can be smoothly transformed to one another, by simply
varying the portfolio nominals. It is found that the arbitrage action sβ (γ; D,r) and
associated stochastic discount rate dγ

0,1 are the same for each possible set.

Finally, the market dynamics are considered. These are a result of the feedback
between market portfolio strategies and the deflators and short rates dynamics, happening
simultaneously. In order to achieve this, the arbitrage action must be minimized. With this
in mind, it must be written as the integral of the Lagrangian which is minimized (see 2.2.2)
by stating that infinitesimal variations to its expected value, resultant from infinitesimal
variations of points in the total space (that is, changes in the path of portfolio nominals ,
and associated deflators and short rates), must be zero. If the Lagrangian is:

L(qt , q̇t) = |∂̃t x̃|
xt ·
(

∂̃tDt + rtDt

)
xt ·Dt

(5.112)

where qt ≡ (xt ,Dt ,rt) ∈ E and q̇t ≡
(

∂̃txt , ∂̃tDt , ∂̃trt

)
, which follows immediately from

(5.110), then the arbitrage action is minimized if the following holds:

∂̃t
∂L(qt , q̇t)

∂ q̇
− ∂L(qt , q̇t)

∂q
= 0 (5.113)

under the self-financing portfolio constraint (see footnote 49). This equation is known as
the Euler-Lagrange equation, but in a stochastic context. The author calculates equation
(5.113) by assuming that qt is equal to a deterministic component E0 [qt ] and by a
perturbation δqt of zero mean, and that various stochastic conditions must be satisfied
(see Farinelli (2015) for a description of such conditions). It is concluded that the tuple
(xt ,Dt ,rt) which minimizes arbitrage (that is, which are solutions to (5.113)) must be of
a certain form. The market portfolio must be:

xt = x0 +δxt (5.114)

denoting that the portfolio at time t is given by the initial market portfolio added a
perturbation that varies with time. The deflator must be:

Dt = e−tg(x0,D0)+δDt (5.115)
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where g(x0,D0) is an operator essentially representing the value of all possible
combinations of assets in the market which can’t be represented in the initial market
portfolio, in terms of its value, and the expected future value of the initial market portfolio.
This way, the deflator which characterizes the value of the market portfolio (in terms
of some numéraire) changes throughout time either by changes of its value or by the
exclusion or inclusion of assets in the market portfolio. Finally, the short rate is given by
a complicated expression of exponential integrals with terms similar to the right hand side
of (5.115), excepting δDt .

Farinelli (2015) points out that equation (5.113) is invariant under gauge transformations
similar in form with (5.103). Also, the Lagrangian in (5.112) exhibits symmetry
with respect to translations of the portfolio nominals and deflators (expressed by the
multiplication with any possible e ∈ RN). By Noether’s theorem (in a stochastic version,
see Farinelli (2015)), symmetries imply conservation laws, which lead to the following
system of equations that the dynamics of market portfolios and deflators must satisfy, for
a self-financing strategy: 

d
dt E0

[
e·xt

xt ·Dt

]
= 0

d
dt E0

[
xt ·(∂̃tDt+rtDt)

xt ·Dt

e·∂̃t x̃t

|∂̃t x̃t|

]
= 0

(5.116)

Farinelli (2015) concludes by noting that for the case of no-arbitrage, the system of
equations above returns the classical result from stochastic finance, stating that the deflator
stochastic process, which, in terms of cash numéraire, denotes prices, is a martingale
under a possible change of probability measure to a risk neutral one – the Fundamental
Theorem of Asset Pricing (see footnote 48).
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6 CONCLUSIONS

In this dissertation, applications of gauge theory to finance were explored with the
recourse of a systematic literature review. After an initial search, it was found that
current applications occupy the subfield of financial markets, regarding topics such as
asset pricing, option pricing and general market dynamics. The pool of pertinent articles
was composed by 14 papers, all published in physics’ journals. The usage of the gauge
theoretical formalism can be differentiated into three approaches, under the criteria of the
different gauge symmetries exploited:

• 1st approach: changes in the beliefs and preferences of investors leave the
differential equation dictating the option’s value through time invariant, after some
modifications transforming it into a covariant equation.

• 2nd approach: changes in the price units (a change of numéraire - that with which
prices are measured, usually cash in some currency), and prices itself, don’t affect
some quantities, which are postulated to be the ones with which market dynamics
can be estimated;

• 3rd approach: portfolios of assets can be solely described by its prices throughout
time, by its expected forecasts and its cashflows. Changes to the latter represent
changes to the financial instrument’s characteristics, but preserve its nature (for
example, the difference between a portfolio of a single bond and a portfolio of a
single coupon bond is the cashflows that one accrues, but the financial instrument
itself is the same). Similarly to the 2nd approach, it’s assumed that the dynamics are
invariant under these kind of changes.

The 2nd approach motivated further development and criticism. A generalization for any
size portfolios, instead of a single asset (Morisawa, 2009), and an application to option
pricing, employing a similar rationale as in the 1st approach, where a covariant equation
is established (Zhou & Xiao, 2010), were proposed. We note that the latter could be
combined with the gauge-symmetry encountered in the 1st approach, in order to achieve a
covariant option pricing equation which takes into account two kinds of gauge-symmetry.
However, there exists some differences between the fibre bundle constructions from both,
and modifications are due. Furthermore, numerical simulations of the 2nd approach were
performed, mostly concerning small time horizons (high frequency trading), and good
agreement was obtained when compared with historical data (Dupoyet et al., 2010, 2012;
Paolinelli & Arioli, 2018, 2019).
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These simulations correctly derive the characteristic shape of the prices probability
distribution, exhibiting the expected fat tails and higher-than-Gaussian probability around
the mean value. These stemmed from the notion of optimizing a functional known in
physics’ literature as the action, constituted by the gains from arbitrage opportunities and
from wealth-maximizing investment strategies, denoted as money flows (Ilinski, 2000;
Paolinelli & Arioli, 2018). Afterwards, inspired by quantum field theory formalism, each
action functional was used as an exponential probabilistic weight, representing the most
probable price and portfolio (of a single asset and cash in the case of Dupoyet et al. (2012)
and Paolinelli & Arioli (2018)) trajectories in the market: high arbitrage is less probable
and investment strategies with high expected gains are more probable (thus reflecting the
wealth-maximizing behaviour of the investors participating in the market, when aware of
some level of information).

Building upon this, other aspects were introduced, such as probabilistic weights
dependent of the investment time horizon, which are scale invariant, thus reproducing the
effect of various assets’ holding times (Dupoyet et al., 2010), an updating strategy which
drives the whole system into a state of self-organized criticality (Dupoyet et al., 2012),
perturbations replicating price jumps (Paolinelli & Arioli, 2018) and a different action
whole together, appropriate for different time horizons (Paolinelli & Arioli, 2019). For
further research, it is suggested the investigation of how could certain perturbations be
introduced in the model (e.g. inflation rates or dividend growth) that break the gauge
symmetry, thus becoming closer to a real-life scenario, the self-organized criticality
that can be achieved, the modelling of sudden price jumps, and the exploration of the
parameters who mediate different time horizons, especially longer time periods. Overall,
the notion of gauge invariance (at least regarding the local numéraire gauge symmetry)
seemed to be realized, and hopes were expressed for the capability of modelling the
probability distribution which dictates future prices.

Still, the criticism put forth by Sornette (1998) and Sokolov et al. (2010) wasn’t
completely, or not at all, addressed. One could argue that the probabilistic weight for
the action being of exponential nature mirrors the fact that the most probable market
state is for it to not allow arbitrage opportunities, hence the strictly decaying function,
but a more profound reason is lacking, as pointed out by Sornette (1998). What was
criticized by Sokolov et al. (2010) remains valid, and unaddressed, despite the fact that
the models built by Dupoyet et al. (2010; 2012) deviate slightly from the problems here
suggested, and still produce good results. In fact, as already mentioned, good results
were achieved, despite the hovering mistakes. This implies the need for further research.
Regarding the borderline arbitrarily chosen arbitrage strategies, the 3rd approach, which
can be understood, to some extent, as a more generalized version of the 2nd approach’s
work, touches briefly on this, and attempts to generalize the kind of trading paths which
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deliver arbitrage opportunities. This could motivate further work exploring which trading
paths can actually be called elementary, spanning others, more complicated ones. Also,
different symmetries are explored, and benefits to risk management, pricing of assets and
detection of statistical arbitrage are mentioned.

Unfortunately, no further published papers tackled what was introduced in the 3rd

approach, from a simulation standpoint, thus lacking any possibility to substantiate these
claims. Also, we would like to comment on one of the main advantages, which is
the capacity to describe reality, aided by models, derived from first principles, with
little to no ad hoc assumptions. For example, when one compares with other known
models in finance, many possess the descriptive power, but are tailored to a particular
phenomenon (Dupoyet et al., 2010). The theoretical details here exposed don’t suffer
from the same problem. However, we note that the models all required some sort of
additional perturbation, which could be argued to be an ad hoc addition, on hopes of
accounting for some phenomena. More work regarding the perturbations to be used, and
how to anchor them with solid theory, should be done.

In the process of understanding how gauge theories have been applied to finance, a
reconceptualization of financial markets as geometrical objects was necessary, and it
proved itself quite successful in providing known financial entities a clear geometrical
interpretation. Probably the most interesting one was the relationship between arbitrage
and curvature, which, as it was shown, relates to gauge-invariant quantities with which
the dynamics can be described. The notion of arbitrage is fundamental in financial
literature, allowing for the unambiguously pricing of any financial instrument (at least
in theory) by assuming that any investment has always associated to it some risk.
Examples of this no-arbitrage argument appear and reappear constantly throughout the
literature. Assuming the existence of arbitrage opportunities, at least temporarily and
sporadically, one could be closer to be able to describe non-equilibrium phenomena
(Smolin, 2009), which in reality exist, and can affect markets in very consequential ways.
Instead of equilibrium, one would observe steady-state equilibrium, and non-equilibrium
phenomena would deviate the markets outside of equilibrium in a fluctuating manner, and
then the corrective market forces would bring it back to an equilibrium scenario (efficient
market hypothesis).

Another interesting aspect of the 2nd approach’s gauge symmetry, that can be further
investigated, is its importance in non-equilibrium asset pricing. As we’ve seen, the idea
that prices can be transformed via a global gauge transformation, the change of measuring
units – numéraire – which affects all investors, has important implications in modelling
market dynamics. However, in an out-of-equilibrium market, this symmetry has the
potential of being more powerful. In this scenario, some assets may not have a clearly
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defined price, but since they’re being traded, some price must be attached to them. These
prices are essentially arbitrary, and the gauge-symmetry above mentioned can now be
understood locally instead of globally: each investor is free to rescale the price of any
asset or portfolio owned. Under this gauge transformation, the exchange rates between
any other asset change appropriately. What is speculated is that even if the share’s value
changes due to the sheer convictions of the investor holding it, the gains associated with
arbitrage strategies (and other possible gauge invariant quantities) remain the same. From
this observation, the notion of prices as purely relative quantities is manifested, and the
dynamics of the market can be considered outside of equilibrium (Smolin, 2009). In fact,
an out-of-equilibrium case was also considered by Farinelli (2015), utilizing an operator
which resembles an idea introduced by Malaney (1996) in her PhD thesis: the notion that
changes to the assets’ price in an out-of-equilibrium situation, due to the arbitrary nature
of prices in this case, must be mediated by barter. This becomes quite intuitive if one
considers the case of new assets being introduced in the market. Exactly because of their
novelty, there is no way of comparing them, value-wise, with pre-existent assets, and for
that reason, the price attached to this new asset is inevitably a mismatch. Thus, we return
to the idea of local price changes as gauge transformations, as long as we are dealing with
a non-equilibrium situation.

Finally, we comment on the chosen methodology. This systematic literature review
allowed us to, in a consistent and replicable manner, investigate the contributions onto
a new topic, filled with potential. Instead of choosing articles for review in an arbitrary,
or at best, subjective way, as one usually sees with traditional literature reviews, with a
systematic literature review one strives for objectivity, at least to some extent. By setting
a group of keywords assumed to be of enough descriptiveness regarding the field we were
interested with, and introducing them in a vast database, one should expect all articles
described by such keywords to show up. The next step, of exclusion and inclusion, is
inevitably riddled with subjectivity, which we tried to minimize by exposing the best
we could each step of the way, with constant advising from the experts who aided the
development of the chosen set of keywords.

Lastly, we would like to point out that, given the relative infancy of this subject, many
contributions are found not in the form of articles, but in working papers. For further
research on this subject, we would advise to complement with these documents. Also,
regarding the systematic literature review itself, a different choice of keywords could lead
to other results. However, due to its nature, we are confident about the acquired pool of
articles, thus reflecting the strength of the methodology.
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