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Practical application  

 

The oleaginous yeast Rhodosporidium toruloides represents a promising candidate for the 

successful production of microbial lipids. This microorganism could be used to produce a 

variety of metabolites useful for industrial biotechnology. Microbial lipids have potential 

applications in energy and food industry, since most of those lipids are triacylglycerol with 

long-chain fatty-acids. 

This paper describes the conditions for the production and the factors that could improve the 

production of microbial lipids, focusing in aeration factors correlated with oxygen mass 

transfer in broth culture. The combined approach, high aeration combined with an oxygen-

vector, improved the lipid accumulation and reduced the cultivation time. These two factors 

are key factors for the success of scale-up and profitability of a bioprocess. 
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Abstract 

Microbial lipids have potential applications in energy, and food industry, because most of 

those lipids are triacylglycerol with long-chain fatty-acids that are comparable to conventional 

vegetable oils and can be obtained without arable land requirement. Rhodosporidium 

toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance 

and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is 

one of the major factors affecting yeast physiological and biochemical characteristics. In this 

context, different approaches have been developed to increase available oxygen by the 

increasing the aeration and the addition of an oxygen-vector. The grown of R. toruloides in 2-L 

mechanical stirred tank reactor equipped with 1 or 2 porous sparger and a 70 C/N ratio, 

revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L.day, 

respectively. The oxygen-vector addition, increased the lipidic productivity for 0.20 g/L.day and 

a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high 

aeration (AA) and 1% of n-dodecane addition (DA), produced a significant improvement in the 

lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, 

w/w) approaches. The increasing of lipids accumulation and smaller culture time are key 

factors for the success of scale-up and profitability of a bioprocess. 
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1. Introduction 

Single cell oil, namely microbial oil, is the lipid accumulated by oleaginous microorganisms in 

their cell body. Because of its important function in energy, and food industry, it has been the 

focus of many researches. Biodiesel production has been the subject of considerable attention 

from the scientific community due to the intense discussion on renewable energy, particularly 

with respect to the limited supply and increasing cost of conventional fossil fuels [1]. Biodiesel 

is a proven biofuel that can be added directly in the established infrastructure and blended 

legally in any percentages with petroleum diesel [2]. Currently, the majority of biodiesel 

produced worldwide is considered 1
st
 generation, since its production is based on plant oils, 

animal fats and algal oils [3, 4]. However, microbial oils can be a considerable alternative, 

resulting in the production of 2
nd

 generation biodiesel, which doesn´t compete with the food 

industry nor gives rise to ethical or social issues. Microbial lipids have potential applications in 

biodiesel production because the majority of those lipids are triacylglycerol with long-chain 

fatty acids that are comparable to conventional vegetable oils and can be obtained without an 

extensive arable land requirement [5–7]. 

Oleaginous microorganisms can accumulate lipids more than 20% of their dry biomass [8], for 

lipid accumulation, oleaginous species should be cultivated with at least one limited nutrients 

such nitrogen, phosphorus, sulphur, zinc, iron or magnesium and with excess carbon [9–11]. 

Among these cases, nitrogen deprivation is the most easy-controlling and low-cost cultivation 

regime [12]. Thus, when the limiting nutrient becomes exhausted the cell growth is inhibited 

and remaining carbon source is channelled to lipid accumulation. The accumulation capability 

is extremely conditioned by the carbon-to-nitrogen (C/N) ratio and other factors in particular, 

aeration, pH, inorganic salt, etc. [9–11, 13]. 

In particularly, yeast are potentially useful for lipid production compared to other 

microorganisms because of their rapid growth, high cell biomass, high content of lipid, no 

endotoxin and easily large scale growth [14]. Among them, the yeast Rhodosporidium 

toruloides has been found to be an exceptional storage lipid producer due to high cellular lipid 

content of over 70% and high cell density of 100 g/L [15, 16]. 

The major limiting factor for aerobic microorganism’s growth is the oxygen supply into the 

broths, due to the poor solubility of oxygen in aqueous media. Oxygen limitation can be 

surpassed by increasing the stirrer speed and aeration rate, or by changing the reactor 

geometry/dimension. However, this may causes uncontrolled foam formation in the reactor, 

excessive power consumption and stress to the microorganism, which is neither an economical 

process nor effective [17–20]. An effective and effortless approach may be the addition of 

oxygen-vectors, which are capable of enhancing the oxygen transfer into microorganisms. 

Oxygen-vectors are organic solvents with high oxygen solubility, wherein its solubility is 15 to 

20 times higher than in water [21–23]. The most common oxygen vectors utilized in 

biotechnology are perfluorocarbons [21, 24, 25] and hydrocarbons [18, 21, 26, 27]. 

The presence of oxygen-vectors originates another phase, the liquid organic phase, leading to 

the formation of new interfacial areas between the gas and liquid phases. This new phase can 

enhance an extensive amount of oxygen from the air bubbles. In literature, several oxygen 

transfer mechanisms were reported, however the most plausible mechanism assumes that the 
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hydrocarbons are adsorbed into the bubble surface, followed by the formation of a continuous 

film, and subsequent oxygen diffusion from the air bubble to microorganisms in the aqueous 

phase through oxygen-vector [20, 28, 29]. 

The Rhodosporidium toruloides is a strictly aerobic strain, oxygen plays a crucial role in growth, 

maintenance and metabolite production, such as lipids and carotenoids. Due to the high 

oxygen requirement, it is crucial that sufficient amounts of oxygen be present in the liquid 

phase. The oxygen transfer rate (OTR) is dependent upon the volumetric mass transfer 

coefficient, KLa, and the driving force between gas-liquid phase, CL*-CL, where CL is the 

dissolved oxygen concentration and CL* is the oxygen saturation concentration in the liquid 

phase at the gas-liquid interface [30, 31].  

Dissolved oxygen concentration is one of the major factors affecting yeast physiological and 

biochemical characteristics, in this context, different approaches have been developed to 

increase available oxygen in the yeast culture of R. toruloides CECT 1499 by the increasing the 

aeration and the addition of an oxygen-vector. The R. toruloides yeast culture were grown in a 

batch mechanical stirred-tank reactor (STR) in a limited nitrogen medium, with a molar C/N 

ratio of 70.  

The fatty acid compositional profile was also analysed and compared with the existing 

standards (European Standard EN 14214) for biodiesel production. The properties of biodiesel 

produced have been estimated using equations from simulations models of the properties 

estimated based on the fatty acid composition of vegetable oils. 

2. Materials and methods 

2.1 Microorganism and maintenance medium 

This study used the yeast R. toruloides CECT 1499, from Spain Culture Collection Centre 

(University of Valencia). Stock cultures were maintained on solid PDA (HIMEDIA, India) agar 

plates at 30 °C, during 2 days and afterwards, maintained at 4 °C and subcultured twice a 

month. 

2.2 Pre-culture conditions and culture media 

R. toruloides CECT 1499 yeast cells were grown in 250 mL shake flasks containing medium YPD 

(20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) on an orbital shaker (NeifoPentlab, 

Portugal), at 150 rpm and 30 °C for 48h. Then, cultures were initiated with 10 % (v/v) of pre-

culture to a 250 mL shake flask with fresh lipid production medium (pH 5-6) contained: glucose 

13 g/L, yeast extract 0.75 g/L, (NH4)2SO4 0.1 g/L, MgSO4·7H2O 1.5 g/L and KH2PO4 0.4 g/L. These 

cultures were incubated in an orbital shaker at 150 rpm and 30 °C, and used as inoculum to get 

an initial cell concentration of 1 x 10
7 

cell/mL. 

2.2 Culture conditions in aerated STR 

All cultures were performed in a 2-L (1.6-L working volume) stirred tank reactor, STR (Bio 

Controller ADI 1030, Thermo Circulator ADI 1018, Apllikon, Holland), a jacketed vessel, 

equipped with a Rushton turbine (radial flow) and operated at 30 °C, 200 rpm and aerated at 

0.5 and 0.75 vvm. STR was equipped with one or two microporous spargers, depending on the 
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assay. The STR experiments were performed with lipid production medium supplemented with 

antifoam B (Sigma A-5757) at 0.1 mL/L. The medium pH was adjusted to 5.0 before 

inoculation. The culture monitoring was followed through the BioXpert program, version 2.1. 

The measurement of temperature, pH and dissolved oxygen was made with specific probes, 

polarographic DO2 sensor, Pt-100 sensor in thermowell in topplate and classic pH sensor 

respectively, and the values were constantly registered. Samples were taken for 144 h at 

regular intervals to determine the biomass dry weight, sugar consumption, neutral lipid 

accumulation and fatty acid composition, as described in ‘‘Analytical methods’’. 

In the assays with oxygen-vector, n-dodecane (BDH Prolabo, France; oxygen solubility 54.9 x 

10
- 3

 g/L at 35 °C and atmospheric air pressure) was added to the culture medium at different 

volumetric fractions of 1 and 2 % (v/v). 

2.3 Analytical methods 

Dry cell weight (DCW) was determined by centrifuging (Hettrich Zentrifugen Universal 320, 

Germany) 5 mL of culture, in a pre-weighed dried tube, at 2 370 g for 20 min and dried at 60 °C 

to a constant weight, and weighed on a precision balance (Precisa XB 120A, Switzerland). 

The glucose concentration was determined using 3,5-dinitrosalycylic acid (DNS) method [32].  

Inorganic nitrogen (NH4
+
 form) was quantified using the Phenol-hypochlorite method [33]. 

2.4 KLa measurements 

Volumetric mass transfer coefficient (KLa) was measured using the dynamic gassing-out 

method [30]. For the KLa determination, was utilized the polarography oxygen probe of the 

bioreactor. Oxygen probe calibration was realized at atmospheric pressure by setting zero and 

100 % saturation under nitrogen and air sparging, respectively. The KLa determinations were 

performed in the medium culture before inoculation, in the middle of the cell growth, and at 

the final growth stage. The inlet of air flow to the culture broth was interrupted and the 

decrease of the dissolved oxygen concentration due to cellular respiration was observed and 

recorded by a polarographic oxygen probe. The KLa  value was calculated by the integrated 

form of the equation proposed by Stanbury et al. [30], where the slope of the resulting straight 

line representing the ln (C
*
– CL) versus time is equal to the value of –KLa. 

KLa determination was performed without and with 1 and 2 % (v/v) of oxygen-vector, n-

dodecane, added to the culture medium. 

2.5 Lipid analysis and fatty acid composition  

Lipid concentration was estimated by fluorescence spectrometry. R. toruloides CECT 1499 cells 

were stained with Nile Red according to the protocol describe by Kimura et al. [34], which 

allows monitoring neutral lipids content during the accumulation process.  A calibration curve 

between fluorescence intensity and Triolein concentration was developed. This standard curve 

was performed according to Bertozzini et al. [35]. 

Fatty acid analyses were performed by high performance liquid chromatography (HPLC) using 

samples previously extracted from yeast cells following the modified method proposed by 
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Folsh et al. [36] and then hydrolyzed according to Hein et al. [37]. Fatty acid composition was 

analyzed in a high-performance liquid chromatography system (Hitachi LaChrom Elite HPLC, 

Japan) equipped with a refractive index detector (Hitachi L-2490, Japan) and an Alltima Alltech 

Hi-Load C18 column (Grace, USA) was used with an isocratic elution of acetonitrile: water 

(99:1) at 30 °C. 

2.6 Determination of culture yields and kinetics parameters  

The specific growth rates (h
-1

) were calculated using the DMFIT modelling tool 

(http://modelling.combase.cc). 

The lipid content (YL/X) was calculated according to the following formula: 

�� �⁄ =
�� − �	


� − 
	
 

where, 
�and ��  are the dry cell weight and lipid concentration on day ��, respectively and 


		and �	 are the dry cell weight and lipid concentration on the first day (�	), respectively. 

The lipid yield (YL/S) was calculated according to the following formula: 

�� �⁄ =
�� − �	

�	 − ��
 

where, ��and �	 are the glucose concentration on day �� and on the first day (�	), respectively. 

�� and �	 are the lipid concentration on day �� and on the first day (�	), respectively. 

The lipid productivity (Plipid) was calculated by the equation:  

������(�	�
��	�����) =

�����

��
	

where, �����  is the maximum lipid concentration on day ��. 

The Biomass productivity (PBiom) was calculated by the equation:  

�����(�	�
��	�����) =

(
� −
	)

��
	

where,	
	 and 	
�  is the biomass concentration on day �	 and ��, respectively. 

 

2.7 Determination of biodiesel properties  

Different physicochemical fuel properties namely Cetane Number (CN), Long Chain saturated 

factor B (LCSF(B)), Cold Filter Plugging Point (CFPP), Saponification Number (SN), Iodine Value 

(IV), Higher Heating Value (HHV) and Flash Point (FP) were determined using predictive models 

and mathematical equations [38-41]. 

Cetane Number was obtained using the multiple linear regression equation: 

						 ! = 1.068∑( !� ×)�) − 6.747 
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where,  !�  represent reported CN of pure fatty acid methyl ester available in reference [38], 

collected from the literature and )� is the mass fraction of each fatty acid methyl ester 

detected and quantified by HPLC [38]. 

Long Chain Saturated Factor (B) and Cold Filter Plugging Point were calculated by the following 

empirical equations [39]: 

			� �,	(-) = 0.1 ×  16(.�.%) + 0.5 ×  18(.�.%) + 1 ×  20(.�.%) + 1.5 ×  22(.�.%)

+ 2 ×  24(.�.%) 

    ,�� = 3.1417 × � �,(-) − 16.477 

where, C16, C18, C20, C22 and C24 are the composition of saturated fatty acids with a long 

chain. 

Iodine Value and Saponification Number were calculated by the following empirical equations: 

    45 = ∑(254 × 6 × 7� 8)�⁄ ) 

				�! = ∑(560 × 7� 8)�⁄ ) 

where, 7�  is the percentage, 6 is the number of double bonds and 8)� is the molecular mass 

of each fatty acid methyl ester[40]. 

The Higher Heating Value is related with IV and SN, for calculation of HHV has been used the 

following equation[40]: 

    995 = 49.43 − ((0.015 × 45) + (0.041 × �!)) 

Flash Point was calculated according to the following formula [41]: 

    ,� = (47.62 × 995) − 1802.7 

 

3. Results and Discussion 

 

3.1 Effect of oxygen availability in lipid accumulation (High Aeration Approach) 

Previous studies in our laboratory, indicates that C/N ratio of 70 enhanced lipid accumulation 

by the yeast culture R. toruloides CECT 1499  [42, 43]. These assays was performed in 

erlenmeyer, where the maximum lipid content was 0.22 g/g (Table 1), a low value for 

oleaginous microorganisms [10, 44–48] . This low lipid content might had been associated with 

low oxygen availability in the shake flask, where the KLa is approximately 5 h
-1 

[49], since the 

accumulation of lipids is an aerobic process in which oxygen dissolved in the culture should be 

a crucial factor [50]. To better understand the effect of oxygen on growth kinetics and lipid 

accumulation of R. toruloides CECT 1499 yeast cultures, different experiments were conducted 

in a STR bioreactor where the KLa was suitably changed. 

To improve the oxygen mass transfer in the liquid phase and to improve access to oxygen by 

cells, the culture aeration system was changed, through the addition of one more air sparger in 

the vessel. Volumetric oxygen mass transfer coefficient was determined at different 

operational conditions, with one and two sparger’s and different aeration rates (0.5, 0.75 and 
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1 vvm). Figure 1 shows the highest KLa was obtained with two porous sparger’s and 1 vvm 

(61.41 h
-1

), wherever this KLa is not statistically different to that obtained with two porous 

sparger’s and 0.75 vvm (60.59 h
-1

). In energetic and economic perspective, is more 

advantageous operate at 0.75 vvm than at 1 vvm, energy input is smaller and less costly. 

Therefore, the KLa of 60.59 h
- 1

 was selected and designed as high oxygen availability and the 

KLa of 33.93 h
-1

 was selected as control conditions in STR-2L. The KLa of 5 h
-1

, characteristic of 

250 mL Erlenmeyer, was designed as low oxygen availability [42]. 

Despite of the different KLa, all three cultures, with identical molar ratio C/N of 70, became 

nitrogen limited within 24 hours (data not shown). Thus, we believed that, the performance 

among the three cultures on biomass concentration and lipid content were different not due 

to nitrogen exhaustion but presumably to the oxygen availability. Table 1 shows the kinetic 

and efficiency parameters of the cultures grown with low, high and control oxygenation. When 

scaled-up from 250 mL Erlenmeyer (low oxygen availability) to 2L-STR (control) the lipid 

content increased from 22 to 47% (w/w) and the KLa increased 6.8 times. This improvement in 

lipid content appears to be related with oxygen availability in the growth medium. Similar 

results were obtained with the yeast R. toruloides Y4, when operating in fed-batch mode, 

which accumulated 68% (w/w) of lipids with a dissolved oxygen of 40-50 % saturation. While, 

the shake flask fed-batch culture only reached 48% (w/w), with the same yeast strain [13]. In 

an aerobic culture, particularly for R. toruloides CECT 1499 yeast cultures, several biochemical 

reactions including carbon consumption, lipid production, and cell proliferation required large 

amounts of oxygen. So, oxygen has a great importance in the R. toruloides CECT 1499 yeast 

cultures and high oxygen promotes lipogenesis and consequently lipid accumulation, as a 

result of the up-regulation of enzymes involved in lipid biosynthesis such as malic enzyme and 

ATP-citrate lyase [51–53]. 

In systems with forced aeration such as STR, in addition to better dispersion and accessibility 

of dissolved oxygen, this importance is heightened due to the possibility of controlling 

aeration, agitation and vessel design, relatively to the shake flask.  

It was also observed that KLa almost doubled with the increase of the number of spargers, 

from one to two porous spargers. The porous sparger promotes the formation of microbubbles 

with a high retention time in the liquid phase, thus enabling a greater mass transfer of oxygen 

and consequently a greater accessibility of this gas to the cells. Studies by Raposo et al. [54] 

showed that this type of sparger is more efficient with high KLa values than those obtained 

with the L-shaped sparger. High oxygen availability culture had improvements in all 

parameters, particular in lipid content increase to 52% (w/w) and achieved a biomass of 2.49 

g/L (Table 1).  

The yeast R. toruloides CECT 1499 shown an increase of lipid yield (YL/S) and glucose 

consumption with the increase of KLa, high oxygenation of culture medium almost certainly 

leads to a metabolically more active culture, not being so limited by oxygen availability. 

Although, the YL/S obtained are consistent with the values referenced by other authors, with a 

similar initial glucose concentration, these values are low relative to the theoretical maximum. 

Andrade et al. [55] obtained a low lipid yield of 0.13 g/g when used the yeast R. toruloides 

NCYC 921 in a batch bioreactor, for lipid production with an initial glucose concentration of 10 
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g/L. The theoretical maximum lipid yield is 0.31 g/g [8, 56], i.e., the production of 1 mole of 

trioleoylglycerol requires 16 mole of glucose. For R. toruloides, the YL/S frequently documented 

for oleaginous microorganisms is around 0.20 g/g [10, 44, 48, 57]. In this study, the culture 

with high oxygen availability, 60.59 h
-1

, has a lipid yield two times lower than the maximum 

theoretical lipid yield. We believed that the cell culture can still be nutritionally limited by the 

oxygen, not being enough for the growth and lipid metabolism. It is observed that, although, 

the consumption of carbon source increased with increasing the KLA, there is no depletion of 

the glucose, being limited by the other factor or nutrient, no by the substrate.  

These results suggested that oxygen supply was limiting, and that oxygen-transfer should be 

intensified to further improve lipid productivity. For this purpose, we tested the addition of an 

oxygen vector in culture, in order to increase the oxygen solubility in the culture and promote 

greater accessibility of this gas to the cells. 

 

3.2 Effect of n-dodecane in lipid accumulation (n-Dodecane Approach) 

As showed before, oxygen availability promotes a higher lipid accumulation. The KLa was 

increased through aeration increment, high aeration lead to high power consumptions, foam 

formation and could adversely affect the microbial growth. Has been reported that the KLa 

value can decrease, remain unaffected or increase upon addition of oxygen-vector [58]. n-

dodecane was added as oxygen-vector with the intent of increase KLa and reduce power 

consumption. Unexpectedly, KLa slightly decreased in presence of 1 and 2% (v/v) of n-

dodecane from 33.93 to 28.47 and 28.02 h
-1

, respectively (Table 2). This decline implies longer 

aeration times to saturate. But, on the other hand, n-dodecane has a large affinity for oxygen, 

allowing to increase the amounts of oxygen transferred from the gas phase to the cell. 

Therefore, the OTR maximum may increase due to the enhancement of saturation 

concentration in the liquid phase [30, 31]. Oxygen vector can also act as surface-active agent 

to lower the surface tension of water and increase the gaseous specific interfacial area and 

thus increase the OTR [58]. 

The glucose consumption increased when n-dodecane was added (Table 2). At the same initial 

glucose concentration, the additions of 1 and 2% (v/v) of n-dodecane, resulted in glucose 

consumption of 81.63 and 99.46 %, respectively, while a glucose consumption of 70.33 % was 

achieved by the control. Glucokinase is one of the first enzyme involved in the conversion of 

glucose into other metabolites, this enzyme increases in the presence of n-dodecane, by the 

work reported by Xu et al. [53]. Biomass production of culture control also differed from the 

cultures with the addition of n-dodecane. Relatively to the control, the addition of the oxygen-

vector, increase the biomass production in 15% and 32 % with 1% and 2% of n-dodecane, 

respectively. The presence of n-dodecane promotes better glucose consumption and higher 

biomass production even with a minor decrease in KLa. During aerobic bioprocess, the oxygen 

is transferred from a rising gas bubble into a liquid phase and ultimately to the site of oxidative 

phosphorylation inside the cell. The liquid film resistances around bubbles usually control the 

overall transfer rate [59], the presence of n-dodecane could lower the surface tension of the 

broth, reducing the liquid film resistances around air bubbles fostering the overall transfer rate 

and increase the OTR.  
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R. toruloides CECT 1499 achieved a lipid contend of 0.52 and 0.51 g/g under 2 and 1% (v/v) of 

n-dodecane, respectively. With no n-dodecane addition lipid content was 0.47 g/g. n-

Dodecane clearly affect lipid biosynthesis and accumulation. However, how n-dodecane affect 

lipid accumulation remains unknown. Possibly, the yeast is metabolically more active in 

presence of oxygen-vector, due to a greater availability and accessibility of oxygen, not being 

the culture limited nutritionally. As previously shown, the addition of one more air sparger in 

the vessel and an aeration of 0.75 vvm has promoted a KLa of 60.59 h
-1

 and achieved a lipid 

content of 0.52 g/g, the same lipid content was obtained with the addition of n-dodecane. 

However, the KLa is around half in presence of 1 and 2% of n-dodecane. These are two 

different approaches, which result in the increase of lipid content.  

n-Dodecane stimulated the aerobic metabolism of R. toruloides CECT 1499, resulting in a faster 

synthesis of lipids and cell growth, lipid productivity relates the quantity of lipid synthesized 

per time. In presence of n-dodecane lipid productivity was stimulated and reached 0.20 and 

0.21 g/L.day, with 1 and 2% of n-dodecane, respectively, while in culture without addiction of 

n-dodecane, lipid productivity dropped to 0.16 g/L.day. Overall, there are two hypothetical 

possibilities for the enhancement triggered by the addition of n-dodecane. Firstly, n-dodecane 

increment OTR as already mentioned. The secondary possibility lays on the fact that previous 

studies demonstrate that n-dodecane addition increases the transcription level of several 

genes involved in mechanisms that supply metabolites to fatty acid biosynthesis. That genes 

encoded enzymes like glucokinase, citrate synthase, malate dehydrogenase and glucose-6-

phosphate dehydrogenase [52, 53]. According to C. Ratledge [60] the ability of an oleaginous 

microorganism to accumulate large quantities of lipid lays on two key factors, the ability to 

produce a continuous supply of acetyl-CoA directly in the cytosol of the cell as an 

indispensable precursor for fatty acid biosynthesis, and, the ability to produce a sufficient 

supply of NADPH as the essential reductant used in fatty acid biosynthesis. Citrate synthase 

and malate dehydrogenase are involved in the citrate/malate cycle and in the cytosolic 

“transhydrogenase” cycle that provide precursors of acetyl-CoA and NADPH [60]. Glucose-6-

phosphate dehydrogenase overexpression also contributes for NADPH generation, through the 

pentose phosphate pathway. It is worth to point out that when the fatty acid accumulation 

process is active, down-shift of the TCA cycle would be a rational requirement. As mentioned 

before, nitrogen starvation significantly inhibits isocitrate dehydrogenase [8, 61]. However, 

how n-dodecane affects growth kinetic and lipid production remains unclarified. 

 

3.3 Combination of high aeration and 1% of n-dodecane in lipid accumulation  

The availability of oxygen to the R. toruloides CECT 1499 yeast cells is extremely important, 

especially for lipid accumulation, which is strictly an aerobic process. Two approaches were 

studied, one by increasing the KLa using two air dispersers and the other by adding an oxygen 

vector, the n-dodecane. High values of KLa (60.59 h
-1

), were obtained by the utilization of two 

porous sparger´s and 0.75 vvm (high aeration approach, AA), and the addition of n-dodecane 

(n-dodecane approach, DA), improved growth kinetics and lipid production of R. toruloides 

CECT 1499. We expect that the combination of these two approaches could result in a 

significant improvement in lipid production and growth of R. toruloides yeast. Thus, the effect 
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of combined approaches (CA) will be studied. From an economical perspective, was selected 

1% of n-dodecane to perform this study, the cost of adding 1 or 2 % of n-dodecane have a 

marginally impact on laboratory scale, however in comparison with industrial scale the impact 

would be tremendous. Another important parameter was the time at which it reached the 

maximum lipid concentration, being achieved at 108 hours of culture with 1% of n-dodecane. 

For the culture with 2% (v/v) n-dodecane, were needed more 38 hours to achieve maximum 

lipid concentration. (data not shown). 

The increase of biomass productivity occurs during the exponential phase and decreased at 30 

h of culture with the drastic reduction of the nitrogen concentration in the medium. Up to 30 h 

the decrease of the substrate concentration is noticeable, reflected in the increase of biomass 

productivity (Figure 2). After the exhaustion of the nitrogen source, it was observed the 

increase in lipid content indicates that nutrient stress occurred. Nitrogen exhaustion leads to 

an increase of AMP deaminase that releases ammonium ions for compensating for nitrogen 

exhaustion in the cells. This compensation, leads to a decrease of AMP concentration. NAD
+
-

isocitrate hydrogenase (NAD-ICDH) is dependent on AMP, low levels of NAD-ICDH results in 

the accumulation of isocitrate and thence citrate in the mitochondrion [60]. At the end of the 

exponential phase the pH dropped from 5.5 to 3.27 (data not shown), probably, this parameter 

is related with citrate secretion to the extracellular medium due to nitrogen exhaustion. Higher 

lipid content is attained during the stationary phase, as it observed after the 30 h of culture 

and remains constant throughout the cultivation, which trigged by a down-shift of TCA cycle 

due to low levels of NAD-ICDH.  

The combined approach had a positively effect on lipid accumulation (62%, w/w), with a 

clearly increase when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. 

Nambou et al. [62] found the same competence in lipid accumulation with Y. lipolytica 

DSM3286 STR culture, with a lipid content of 65% (w/w) and a glucose consumption of 15 

g/L.The lipid content achieved by CA is among the highest [10, 13, 44, 45, 48, 63, 64]. 

Figure 2 shown that after 30 h, glucose continues to be consumed, with a decrease in biomass 

productivity, however it was observed an increase of the lipid accumulation. The lipid yield, 

glucose consumption and lipid content showed that in CA approach, the consumed glucose 

was actively channelled for lipid biosynthesis. In terms of lipid productivity, the CA increase 

from 0.17 (AA) and 0.20 g/L.day (DA) to 0.30 g/L.day (Figure 3), being these values within the 

range referenced by other authors [46].  

The CA approach, which resulted by the combination of high aeration with the addition of 1% 

of n-dodecane, produced a significant improvement in the culture of R. toruloides CECT 1499, 

reflected in the increasing of lipids accumulation and in decreasing of the culture time. Key 

factors for the success of scale-up and profitability of a bioprocess. 

 

3.4 Fatty acid compositional profile and estimated properties of biodiesel from the lipid 

products 

Lipid samples from the cells of R. toruloides CECT 1499 grown in the CA approach were 

transmethylated and the resulting fatty acid methyl esters (FAMEs) were analysed by HPLC, to 
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verify whether it complies the existing standards (European Standard EN 14214). The fatty acid 

profile of R. toruloides CECT 1499 yeast is shown in Table 3 also is displayed profile of other 

authors work and the different raw materials. The predominant fatty acids in lipid extracted 

from R. toruloides yeasts, this work, were palmitic (C16:0), oleic (C18:1) and linoleic (C18:2), 

with over 90% of detected fatty acids. The fatty acid composition of yeast species are very 

similar [13, 65–67], except for R. toruloides NCYC 921 [68], that present a high value of stearic 

acid, 71.3 % (w/w). In our case, the composition of fatty acids seems to be promising for 

biodiesel production, since the most suitable fatty acids for biodiesel production are palmitic 

(C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3). In particular oleic 

acid because of their properties as chain length, cetane number, oxidative stability and meting 

point [67, 69]. Other relevant specification is the percentages of polyunsaturated methyl esters 

with more than three double bonds and linolenic methyl ester (C18:3), must be lower than 1% 

and 12% (w/w), respectively.  

The potential quality of biodiesel was tested according to the European Standard EN 14214. 

Table 3 shows physicochemical biodiesel properties determined through prediction models 

and mathematical equations [38–40, 70]. Cetane number is extensively used as diesel fuel 

quality parameter related to a measurement of how well it combusts, however should be 

taken into consideration that high CN is an advantage in terms of engine performance and 

emissions, on the other hand, will make the fuel ignite in a short distance to the injector and 

the cooked fuel particles inside the injector may plug the injector nozzle [71]. Most diesels for 

standard vehicles have a CN between 45 and 60, the minimum CN for biodiesel is 51 (European 

Standard EN 14214). It is possible to assume that values ranging from 51 to 60 are suitable for 

most diesel engines. All the FAMEs of oils produced by microorganisms (Table 3), including R. 

toruloides CECT 1499, had CN values of 51 – 61, which were higher than minimum requirement 

and close to the maximum for standard diesel vehicles. 

The Iodine value (IV) measure the degree of unsaturation of an oil and must be lower than 120 

g I2/100g due to the fact that heating fuels with high IV tend to polymerise and form deposits 

on engine nozzles, piston rings and piston ring grooves [72]. The predicted IV of R. toruloides 

CECT 1499 oils meet the specification of the European Standard EN 14214. 

The higher heating value (HHV) is one of the most important properties of a fuel [73]. This 

value represents the amount of heat released during the combustion of a specified amount of 

it and is a characteristic for each oil/fuel. The HHV of biodiesels produced from rape and corn 

had values near 40 Mj/kg, being this parameter quite similar among all the cultures present in 

table 3. It would be expected that there no discrepancy, considering that carbon number and 

carbon/hydrogen ratio in fatty acid molecules are similar. The flash point (FP) must have a 

minimum value of 101 °C. The FP doesn´t affect the combustion directly, but it is used in 

shipping and safety regulations that define flammable and combustible materials. Essentially 

FP is the temperature at which the fuel will start to burn when it comes to contact with fire 

[71]. The FP predicted in this study from R. toruloides cells, had a value of 132°C, which is 

above the required minimum, thus ensuring that presents no problem when stored in the fuel 

tank. 
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Another important norm for choosing FAMEs is the cold filter plugging point (CFPP). Biodiesel 

fuels typically have operability problems such as plugging of filters and fuel lines when 

temperatures approach -10 °C [39]. The Portuguese legislation (NP EN 14214) establishes 

maximum limits for CFPP, depend on the season. The CFPP maximum limit in summer, winter 

and spring is 0, -10 and -5 °C, respectively. R. toruloides CECT 1499 biodiesel (prediction) have 

one of the lowest CFPP (-6 °C), despite this cannot be used in winter. This parameter is the 

most difficult to fulfil (in winter). R. toruloides NCYC 921 [68] have the worst CFPP (174 °C) due 

to high content of stearic and lignoceric acid. However, it is possible to lower the CFPP through 

additions of different sources of oils and/or through the addition of cold flow improvers. 

The exploration of these properties showed that fatty acid compositional profile of R. 

toruloides CECT 1499 respect the conditions of Portuguese legislation (NP EN 14214) and has 

great potential as raw material for biodiesel production. 

 

4.Concluding remarks 

In order to improve the lipid production on oleaginous yeast, such as R. toruloides, several 

culture factors are important. In present work are proposed combinate approach, combining 

an already optimized C/N ratio with high aeration in an optimized design STR bioreactor and 

oxygen vector addiction.  The optimized conditions were, C/N ratio 70, two porous spargers at 

0,75 vvm and 1% n-dodecane. 

Lipid samples from CA approach were transmethylated and the resulting fatty acid methyl 

esters was verifying whether it complies the existing standards (European Standard EN 14214) 

and has great potential as raw material for biodiesel production. 
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Table 1: Kinetics parameters on lipid production from different values of KLa by R. toruloides CECT 

1499, grown with a molar ratio C/N of 70. Batch experiments were carried out in a 2L STR at 

30 °C, 0.75 vvm and 200 rpm, equipped with a porous sparger, for 146 h. Shake flask culture 

was carried out on an orbital shaker at 150 rpm and 30 °C for 146 h. 

Culture 

mode/Spargers 

KLa 

(h
-1

) 

Lipid content 

(g/g) 

YL/S 

(g/g) 

Gluccons 

(%) 

ProdLip  

(g/L.day) 

Shake Flask
 

5
c 

0.22±0.02
b 

0.03±0.01
c 

63.93
 

0.07±0.01
b 

Batch/one
 

33.93±0.71
b 

0.47±0.04
a 

0.11±0.01
b 

70.33
 

0.16±0.04
a 

Batch/two
 

60.59±0.31
a 

0.52±0.03
a 

0.14±0.01
a 

72.33
 

0.17±0.00
a 

KLa – Volumetric mass transfer coefficient; YL/S – Lipid yield ; Gluccons - Glucose Consumption; ProdLip – Lipid 

Productivity. Values are expressed as means ± standard deviation, n=3. Different letters indicate statistically 

significant differences according to Student-Newman-Keuls (p < 0.05). 
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Table 2: Kinetics parameters on lipid production from different additions of n-dodecane by R. 

toruloides CECT 1499 in a 2-L stirred tank reactor at 30 °C, 200 rpm and aerated 0.50 vvm with 

one porous sparger’s for 146 h. 

n-Dodecane 

% (v/v) 

KLa 

(h
-1

) 

Lipid content 

(g/g) 

YL/S 

 (g/g) 

Gluccons 

(%) 

ProdLip   

(g/L.day) 

0  33.93±0.71
a 

0.47±0.02
a 

0.11±0.01
a 

70.33
 

0.16±0.04
a 

1  28.47±0.49
b 

0.51±0.03
a 

0.09±0.00
a 

81.63
 

0.20±0.01
a 

2 28.02±1.25
b 

0.52±0.06
a 

0.09±0.01
a 

99.46
 

0.21±0.02
a 

KLa – Volumetric mass transfer coefficient; YL/S – Lipid yield; Gluccons - Glucose Consumption; ProdLip – Lipid 

Productivity. Values are expressed as means ± standard deviation, n=3. Different letters indicate statistically 

significant differences according to Student-Newman-Keuls (p < 0.05). 

 

 

  

Page 22 of 27

Wiley-VCH

Engineering in Life Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

23 

 

 

Table 3: Fatty acid compositions (wt. %) and properties of biodiesel from lipid 

extracts. R. toruloides CECT 1499 (this study), R. toruloides Y4 [13], R. toruloides NCYC 

921 [68], R. glutinis/S. obliquus [65], A. pullulans [66] and M. circinelloides URM 4182 

[46]. 

Property This 

Study 

[13] [68] [65] [66] [46] Rape 

[39] 

Corn 

[39] 

Fatty acid (wt.%)         

       C14:0 1.1 1.3 0.1 0.4 0.0 2.1 0.0 0.0 

       C16:0 21.1 20 6.8 12.9 26.7 22.2 4.9 6.5 

       C16:1 0.0 0.6 0.0 0.5 1.7 1.0 0.0 0.6 

       C18:0 2.7 14.6 71.1 2.8 6.1 7.7 1.6 1.4 

       C18:1 45.5 46.9 6.6 71.3 44.5 39.6 33.0 65.6 

       C18:2 25.0 13.1 2.7 10.8 21.0 9.7 20.4 25.2 

       C18:3 0.6 3.5 0.5 1.3 0.0 10.8 7.9 0.1 

       C20:0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 

       C20:1 0.0 0.0 0.0 0.0 0.0 0.7 9.3 0.1 

       C22:0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 

       C22:1 0.0 0.0 0.0 0.0 0.0 0.0 23.0 0.1 

       C24:0 0.0 0.0 12.2 0.0 0.0 1.7 0.0 0.1 

       C24:1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

       Other’s 4.6 0.0 0.0 0.0 0.0 3.6 0.0 0.0 

Saturated 24.9 35.9 90.2 16.1 32.8 38.0 6.5 8.0 

Monounsaturated 45.5 47.5 6.6 71.8 46.2 41,5 65.3 66.4 

Polyunsaturated (2,3) 25.0 16.6 3.2 12.1 21.0 20.5 28.3 25.3 

SN (mg KOH/g) 184.7 193.1 184.1 191.6 193.9 196.1 182.0 189.9 

IV (g I2/100g) 82.1 72.4 11.4 83.5 75.8 80.5 109.0 101.0 

HHV (Mj/kg) 40.6 40.4 41.7 40.3 40.3 40.2 40.3 40.1 

FP (°C) 132 122 184 117 118 111 170 170 

 CN 51 57 61 54 56 52 55 53 

CFPP (°C) -6 13 174 -8 1 17 10 -12 

SN – Saponification Number; IV – Iodine value; HHV – higher heating value; FP – flash point; CN – 

Cetane number; CFPP - filter plugging point 
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Figure legends 

Figure 1: Variation of KLa for different aeration rates determined in a STR-2L at 200 rpm and 30 

°C, equipped with one (grey) and two porous sparger’s (black). Values are expressed as 

means ± standard deviation, n=3. Different letters indicate statistically significant 

differences according to Student-Newman-Keuls (p < 0.05). 

Figure 2: Substrate and nitrogen sources consumption, biomass productivity and lipid 

accumulation profile for R. toruloides CECT 1499 in a 2-L stirred tank reactor at 30 °C, 

200 rpm, 1% of n-dodecane and aerated 0.75 vvm with two porous sparger´s. Biomass 

productivity (filled circles), glucose concentration (filled triangles), lipid content (filled 

squares) and 100 x NH4
+
 concentration (crosses). Values are expressed as means ± 

standard deviation, n=3. Different letters indicate statistically significant differences 

according to Student-Newman-Keuls (p < 0.05). 

Figure 3: The comparison of lipid/DCW yield, lipid productivity, lipid/substrate yield in n-

dodecane approach, DA (black bars), high aeration approach, AA (grey bars) and 

combined approaches, CA (black stripes bars). Values are expressed as means ± 

standard deviation, n=3. Different letters indicate statistically significant differences 

according to Student-Newman-Keuls (p < 0.05). 
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Variation of KLa for different aeration rates determined in a STR-2L at 200 rpm and 30 °C, equipped with 
one (grey) and two porous sparger’s (black). Values are expressed as means ± standard deviation, n=3. 

Different letters indicate statistically significant differences according to Student-Newman-Keuls (p < 0.05). 
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Substrate and nitrogen sources consumption, biomass productivity and lipid accumulation profile for R. 
toruloides CECT 1499 in a 2-L stirred tank reactor at 30 °C, 200 rpm, 1% of n-dodecane and aerated 0.75 
vvm with two porous sparger´s. Biomass productivity (filled circles), glucose concentration (filled triangles), 

lipid content (filled squares) and 100 x NH4+ concentration (crosses). Values are expressed as means ± 
standard deviation, n=3. Different letters indicate statistically significant differences according to Student-

Newman-Keuls (p < 0.05).  
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The comparison of lipid/DCW yield, lipid productivity, lipid/substrate yield in n-dodecane approach, DA 
(black bars), high aeration approach, AA (grey bars) and combined approaches, CA (black stripes bars). 

Values are expressed as means ± standard deviation, n=3. Different letters indicate statistically significant 

differences according to Student-Newman-Keuls (p < 0.05).  
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