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9 Abstract Ecosystems are under the pressure of

10 complex mixtures of contaminants whose effects

11 are not always simple to assess. Biomarkers,

12 acting as early warning signals of the presence

13 of potentially toxic xenobiotics, are useful tools

14 for assessing either exposure to, or the effects of

15 these compounds providing information about

16 the toxicant bioavailability. In fact, it has been

17 argued that a full understanding of ecotoxicolog-

18 ical processes must consider an integrated multi-

19 level approach, in which molecular impact is

20 related with higher-order biological consequences

21at the individual, population and community

22levels. Monitoring programs should make use of

23this tool to link contaminants and ecological

24responses fulfilling strategies like those launched

25by OSPAR (Commissions of Oslo and Paris)

26Convention on the protection of the marine

27environment of the North-East Atlantic and the

28International Council for the Exploration of

29the Sea (ICES). An overview of the work done

30in the past few years using biomarkers as in situ

31tools for pollution assessment in Portuguese

32coastal waters is presented as a contribution to

33the set up of a biomonitoring program for the

34Portuguese coastal zone. Considering the data set

35available the biomonitoring proposal should

36include the analysis of biomarkers and effects at

37individual levels. The aim of the program will

38include a spatial and temporal characterization of

39the biomarkers acetyl-cholinesterase, metallothi-

40oneins, DNA damage, adenylate energy charge

41and scope-for-growth levels. The investigation of

42the spatial variation of biomarkers is crucial to

43define sites for long term monitoring, which will

44be integrated with a chemical monitoring pro-

45gram. This framework will be a major contribution

46to the implementation of a national database for

47the use of biomarkers along the Portuguese coast.

48Keywords Biomarkers of exposure �
49Biomarkers of defence � Coastal waters �
50Monitoring � Environment quality

A1 Guest editors: M. J. Costa, H. Cabral & J. L. Costa
A2 Towards an integrated knowledge and management of
A3 estuarine systems

A4 A. Picado (&)
A5 INETI, Estrada Paço Lumiar, 1649-038 Lisbon,
A6 Portugal
A7 e-mail: ana.picado@ineti.pt

A8 M. J. Bebianno
A9 CIMA, FCMA, University of Algarve, Campus de

A10 Gambelas, 8000 Faro, Portugal

A11 M. H. Costa
A12 IMAR, DCEA, New University of Lisbon, Quinta da
A13 Torre, 2829-516 Caparica, Portugal

A14 A. Ferreira � C. Vale
A15 INIAP-IPIMAR, Av. Brasilia, 1449-006 Lisbon,

Portugal

123
Journal : HYDR Dispatch : 23-2-2007 Pages : 9

Article No.: 0695
h LE h TYPESET

MS Code : SP3525 h CP h DISK4 4

Hydrobiologia

DOI 10.1007/s10750-007-0695-5

A
U

T
H

O
R

’S
P

R
O

O
F

!
PDF-OUTPUT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/322918791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

51 Introduction

52 An assessment of the environmental quality of

53 coastal waters in terms of chemical analysis on

54 specific compounds fails in its objectives knowing

55 that ecosystems are under the pressure of complex

56 mixtures of contaminants not always simple to

57 analyse. With the general spread of organic con-

58 taminants (such as herbicides, insecticides and

59 antifouling agents) whose analytical measure-

60 ments were difficult in water and likely to cause

61 adverse effects in the marine environment atten-

62 tion turned to effects on biota (Lam&Gray, 2003).

63 Marine organisms have the ability to accumu-

64 late contaminants from the environment where

65 they live at much higher concentrations and, at the

66 same time, showing much less spatial and tempo-

67 ral variability. Therefore, Mussel Watch programs

68 have been used worldwide to assess pollution

69 levels of coastal zones (Goldberg et al., 1978).

70 However, levels of contaminants did not provide

71 accurate information about the effects on the

72 organisms. Therefore biological indicators have

73 been used to provide accurate information about

74 the health of marine ecosystems. An indicator

75 may reflect biological, chemical or physical attri-

76 butes of ecological condition. The primary uses of

77 an indicator are to characterize current status and

78 to track or predict significant changes that relay a

79 complex message, potentially from numerous

80 sources, in a simplified and useful manner. An

81 ecological indicator is defined here as a measure,

82 an index of measures, or a model that character-

83 izes an ecosystem or one of its critical compo-

84 nents. With a foundation of diagnostic research,

85 an ecological indicator may also be used to

86 identify major ecosystem stress. Other indicators

87 called biomarkers are defined as quantitative

88 measures of changes in the biological system that

89 respond to either (or both) exposure to, and/or

90 doses of substances that lead to biological effects

91 and are potential tools for detecting either expo-

92 sure to, or effects of, contaminants and give

93 responses at different levels of biological organi-

94 zation: biochemical, physiological, organism and

95 population (Lam & Gray, 2003).

96 The assessment of biological effects reveals

97 itself to be of great value in terms of manage-

98 ment aiming to assess the quality of coastal

99waters. Over the years, many biomarkers have

100been developed that are efficient at providing

101an early warning of deleterious effects on

102biological systems and by the mid 1980s a wide

103range of biomarkers were developed and ap-

104plied in monitoring programs. The monitoring

105of biological effects has recently become an

106integral component of environmental monitor-

107ing programs as a supplement to the commonly

108used contaminant monitoring (Lam & Gray,

1092003).

110Goldberg & Bertine (2000) underlined that the

111analysis of the detoxifying enzymes, cytochrome

112P-450, metallothioneins and estrogenic substances

113can provide useful information on the potential

114effects of several contaminants in the aquatic

115environment.

116Therefore, future monitoring programs should

117make use of this tool to link contaminants and

118ecological responses fulfilling the strategies

119launched by the OSPAR convention (2004) and

120the International Council for the Exploration of

121the Sea (ICES). The OSPAR Convention that

122aims to protect the marine environment of the

123Northeast Atlantic requires taking all possible

124action to prevent and eliminate pollution. Under

125the Joint Assessment and Monitoring Programme

126and concerning the quality of the marine envi-

127ronment, monitoring for contaminants in water,

128sediment and biota are required. Also the ICES

129Strategy, stating ‘‘human activities on land and

130sea have an impact on marine ecosystems,’’ aims

131to understand the physical and biological func-

132tioning of marine ecosystems as well as to

133evaluate the ecosystem effects of human activi-

134ties. ICES also established a working group to

135study the application of biomarkers (ICES, 1997,

1362001). The adoption of such a strategy will

137contribute to the challenge launched by the EU

138Water Framework Directive (WFD) concerning

139the objective of assessing the ecological effects of

140pollution.

141Lagadic et al. (1997) underlined the impor-

142tance of measuring several biomarkers at the

143same time in the same organisms, which allows

144a pertinent approach to evaluate the effects of

145pollutants on individuals. This multiparametric

146approach using different and/or complimentary

147biomarkers will enable an assessment of the
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148 effects of the different contaminants present in

149 the aquatic environment. Although there is the

150 need to develop research and validate results in

151 the field and to improve the knowledge of the

152 real physiological meaning of some of these

153 indices, different biomarkers are being used in

154 different countries as part of different marine

155 monitoring programs. In 1995 OSPARCOM/

156 ICES agreed on a joint biological monitoring

157 program for the North Sea (JAMP, 1998a, b).

158 This is an example of an international program

159 that has integrated the use of several biomar-

160 kers into a routine monitoring of coastal waters.

161 At the national level, several countries have

162 launched similar programs. The UK National

163 Marine Monitoring Programme (NMMP UK,

164 2004) includes levels of contaminants in biota,

165 water and sediments but also biological effect

166 monitoring. In this monitoring program, bio-

167 markers and/or bioassays are included, besides

168 the chemical analysis of metals or organic

169 compounds, such as PCBs and PAHs, namely.

170 In the Basque Country (Northern Spain) water

171 quality and contaminants in molluscs have been

172 monitored, since 1990, in five areas licensed

173 previously for shellfish production (Franco et al.,

174 2002). Those results were used to define the main

175 patterns and temporal trends of pollutants in

176 molluscs. Furthermore, since 1995, a monitoring

177 program was established (Borja et al., 2004).

178 The aim of this paper is to outline a biological

179 effect based monitoring program. These tools can

180 be used for screening and for diagnosis, in trend

181 analysis or for predictive purposes, including risk

182 assessment (Den Besten, 1998).

183 Biomarkers in the Portuguese coastal zone

184 In the past few years several biomarkers have

185 been used as in situ tools for the evaluation of

186 pollution effects in different biological species

187 sampled in different sites along the Portuguese

188 coast or in sediment bioassays, by assessing

189 multiple biological effects at several levels of

190 biological organization. The results outlined here

191 were not integrated under any kind of a national

192 monitoring program. Examples of biomarker

193 application are described below.

194Adenylate energy charge (AEC)

195AEC is the energy balance for an organism at a

196given instant and is calculated by the equation

197(Atkinson & Walton, 1967):

AEC ¼ [(ATP) þ 1=2 (ADP)] / [(ATP)

þ (ADP) + (AMP)�

199199AEC theoretical values are situated between 0

200and 1. This biochemical index reaches high values

201(0.9) under optimal conditions but drops rapidly

202in the presence of stressing agents. In vertebrates,

203AEC is strongly regulated and maintained within

204narrow limits. In contrast, in invertebrates, AEC

205displays a wide range of values according to

206the importance of the internal stress or to the

207variations in the external environment of the

208organisms (natural or anthropogenic). Global

209indices, specifically an index based on the mea-

210surement of the metabolic energy pool, do have

211their place in any approach of long-term effects of

212low level contaminants present in marine envi-

213ronment (Howells et al., 1990).

214Different studies were carried out in different

215species sampled in different sites, namely: the

216oyster Crassostrea angulata (Lamarck, 1819) col-

217lected at two sites along the Portuguese coast, the

218polychaete Lanice conchilega (Pallas, 1766) sam-

219pled in three sites of the Sado estuary and the

220clam Ruditapes decussatus (Linaeus, 1758) in the

221Aveiro and Ria Formosa lagoons. The appear-

222ance of a signal linked to the intensity of the

223stressor can indicate the limits of an active

224response of an organism. The use of AEC in field

225studies allowed a classification of different sites

226according to environmental conditions (Picado,

2271997; Thébault et al., 2000).

228Genotoxicity

229Given the very important role that the DNA

230molecule plays in life and reproduction of each

231organism, a number of studies have concentrated

232on biomarkers of DNA damage to detect

233genotoxic effects of complex chemical mixtures

234in natural environments (Husby & McBee, 1999;

235Theodorakis et al., 2000; Neuparth, 2004;
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236 Neuparth et al., 2005). Additionally, the detection

237 of structural/functional disturbances to DNA

238 enables the assessment of organismal health and

239 can assist in the prevention of the proliferation of

240 DNA damage in the food chain, including hu-

241 mans (Handy et al., 2002).

242 Several methods have been used for assessing

243 DNA strand breaks in eukaryotic cells, being the

244 comet assay, or single-cell gel electrophoresis

245 (SCGE), one of the most common over the last

246 decade. Nevertheless, compared to other tech-

247 niques used to assess DNA damage, detection of

248 DNA strand breakage by agarose gel electropho-

249 resis has the advantage of determining insult to

250 DNA integrity both qualitatively (single strand-

251 breaks versus double strand-breaks) and quanti-

252 tatively (number of strand breaks) (Neuparth

253 et al., 2005). In addition it can also be applied to

254 DNA extracted from whole organisms, thus not

255 requiring manipulation of small specimens to

256 collect specific tissues (Costa et al., 2002). Other

257 genotoxicity biomarkers, such as nuclear abnor-

258 malities or nuclear DNA content variation, have

259 also been used in several ecotoxicological studies

260 to evaluate a different category of genotoxicity

261 response—chromosomal damage (Gravato &

262 Santos, 2003; Maria et al., 2003 as examples of

263 nuclear abnormalities studies, or: Bickham, 1990;

264 Husby & McBee, 1999; Neuparth, 2004, for

265 nuclear DNA content variation studies). The

266 use of multiple genotoxic biomarkers (DNA and

267 chromosomal damage biomarkers) in the same

268 organism showed to be very helpful in establish-

269 ing cause-effect relationships more rigorously.

270 In Portugal these genotoxicity biomarkers have

271 been applied mainly to fishes and crustaceans in

272 estuarine environments and effluents receiving

273 water bodies (Gravato & Santos, 2003; Maria

274 et al., 2003; Neuparth, 2004; Neuparth et al., 2005;

275 Costa et al., 2005).

276 Histopatology

277 Studies addressing impacts at histological and

278 cellular levels of organization are particularly

279 important to establish the cause and effect rela-

280 tionships between exposure to contaminants and

281 adverse health of organisms. Besides histopatol-

282ogies, like neoplastic lesions or functional disrup-

283tion, detection of heavy metals can be a useful

284biomarker of exposure, particularly to demon-

285strate its bioavailability in the environment.

286These kinds of effects address different target

287organs and tissues and distinct environmental

288disturbances.

289Some examples can be mentioned: structural

290changes in the midgut gland of crustaceans

291(digestive diverticules histology and changes in

292the ultra structure of the epithelial cells) (Correia

293et al., 2002a, b), structural damage in the liver,

294gonads and gills of fishes and in the digestive

295gland and gonads of bivalves (Del Valls et al.,

2962004).

297Imposex/Intersex

298Organotin compounds are one of the more toxic

299compounds that man deliberately introduced in

300the aquatic environment and they have adverse

301effects on several species of marine organisms,

302which are not target of antifouling paints.

303Effects of organotin compounds in the aquatic

304environment include shell malformation in oys-

305ters, the imposition of male sex organs on female

306neogastropods (imposex) reduced scope for

307growth and a consequent population decline in a

308variety of molluscs. Therefore, molluscs are the

309most sensitive taxa to chronic, low level exposure

310to organotin compounds, particularly to tributyl-

311tin (TBT).

312Imposex is a well known biomarker of effect of

313organotin compounds in neogastro Prosobranch

314gastropods exhibit all types of sexuality and sexes

315are separated and unchanged throughout the life

316history of the individual. The impact of organotin

317compounds in these species revealed that imposex

318is irreversible and occurred in populations who

319live near the proximity of boat centres, harbours

320and marinas and is correlated with the concen-

321tration of TBT compounds accumulated in gas-

322tropod tissues. The masculinisation effect of TBT

323(initiated at a TBT concentration of around

3240.5 ng l–1 Sn, or less, in the water) on female

325gastropods is well documented (Gibbs & Bryan,

3261986). During the past three decades, females of

327an increasing number of gonochoristic gastropods
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328 have been found to exhibit imposex and abnormal

329 penis-bearing females have been recorded in over

330 200 gastropod species (Bettin et al., 1996; Schulte-

331 Oehlmann et al., 2000) in coastal waters world-

332 wide.

333 In European coastal waters, imposex in Nucel-

334 la lapillus (Linnaeus, 1758) has been extensively

335 used as a biomarker of TBT pollution because the

336 masculinisation process occurs in a predictable

337 manner (Bryan et al., 1986; Gibbs & Bryan, 1986).

338 However in areas where this species is unavail-

339 able imposex in the nassariids such as Nassarius

340 (=Hinia) reticulatus (Linnaeus, 1758) has been

341 used instead although in these species imposex

342 does not seem to interfere with the female

343 breeding activity. Along the coast of Portugal

344 imposex levels in both species N. lapillus and N.

345 reticulatus revealed that imposex was a spread

346 phenomenon in estuarine and coastal waters.

347 Female sterilization even occurred in the main

348 harbours of the Portuguese Coast (Langston

349 et al., 1998; Barroso et al., 2002, Santos et al.,

350 2000, 2002).

351 Metallothioneins (MTs)

352 MTs are a family of peculiar proteins whose

353 characteristics enable to differentiate them from

354 all the other proteins. MTs are low molecular

355 weight (6–7 kDa) heat stable cytosolic proteins of

356 non-enzymatic nature, ubiquitous in the animal

357 kingdom. These proteins have an unusual amino

358 acid composition: 1/3 is cysteines in fixed positions

359 of the molecule and with no aromatic amino acids.

360 They are able to bind class B metal ions

361 (Ag > Hg > Cu> Cd> Zn, 6–7 or 12 atoms per

362 molecule) in two metal thiolate clusters linked by

363 two lysines andmetal ions are bound to the sulphur

364 atoms of the cysteines (Dabrio et al., 2002).

365 Although the function of these proteins re-

366 mained controversial, they are probably impor-

367 tant in detoxification of non-essential and excess

368 of essential metal ions (Cu and Zn) as well as in

369 homeostasis of these essential metals. They are

370 also induced by stress hormones and glucocortic-

371 oids and protect the cells against oxidative stress

372 and function as radical scavengers and in gene

373 regulation (Nordberg, 1998; Chan et al., 2002).

374The use of MTs as a biomarker of metal exposure

375was proposed and included in the monitoring

376programs established by ICES and OSPAR

377referred to above.

378Along the Portuguese coast MT have been

379measured in several bioindicator species namely

380mussels Mytilus galloprovincialis Lamarck, 1819,

381limpets Patella aspera (Röding, 1798) and clam

382Ruditapes decussatus. MT levels in mussels and

383limpets from different sites along the Southern

384Coast of Portugal revealed that MT concentra-

385tions are directly related with the increase of

386metal levels particularly of Cd and Cu and that all

387the soft tissues and the gills, particularly of the

388mussels, could be appropriate to monitor changes

389of metal levels in the Portuguese coastal environ-

390ment (Bebianno & Machado, 1997; Bebianno

391et al., 2003). In areas were mussels were less

392common, MT levels of an important economic

393shellfish species, the clam R. decussatus revealed

394that MT levels in different tissues were directly

395related with changes in Cd levels in the Ria

396Formosa lagoon and in this species the gills

397seemed to be the most appropriate tissue to

398monitor for MT concentrations (Bebianno et al.,

3992003; Bebianno & Serafim, 2003).

400Scope for growth

401Scope for growth (SFG), or the energy available

402for growth and reproduction, is a stress index

403integrating physiological responses due to envi-

404ronmental changes, either natural or derived from

405human activity. It measures the balance between

406energy acquisition (assimilation) and energy loss

407processes (respiration and excretion) and has

408been widely used in environmental monitoring

409assessment, as well as to measure bivalve re-

410sponses to several stress factors (Widdows &

411Donkin, 1992), especially in the mussel Mytilus

412edulis Linnaeus, 1758.

413Scope for growth is calculated using the

414expression SFG = A – (R + U). All rates, assim-

415ilation rates (A), respiration rates (R) and

416excretion rates (U) are weight standardized to a

417body mass close to that of the animals measured

418and converted to Joules (Widdows & Donkin,

4191992).
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420 In Portugal, as elsewhere, it has been applied

421 mainly to bivalves (Sobral & Widdows, 1997,

422 2000) but also to other invertebrates (Fernandes

423 et al., 2002).

424 Biomarkers and scales of classification

425 Whether it is assumed that biomarkers are of

426 great potential for environmental monitoring

427 assessment it has also been stressed that caution

428 should be given to their application. These tools

429 can be used for screening, for diagnosis, in trend

430 analysis or for predictive purposes (den Besten,

431 1998). It has been recognised that the evaluation

432 of risk assessment should also take into account

433 the effects on the biota (Cajaraville et al., 2000).

434 Narbonne et al. (1999) proposed a scale of

435 classification based on selected biomarkers,

436 including enzymes indicators of oxidative stress

437 and cholinesterase activity, among early molecu-

438 lar events related to toxicological mechanisms of

439 some contaminants in mussels. This global bio-

440 marker index (BI) is calculated as the sum of the

441 individual biomarkers measured and is based on

442 discriminatory factors calculation. High values of

443 the Biomarker Index stand for sites exposed to

444 industrial or domestic water release whereas

445 lower BI values were found in the open sea or

446 in sites without industrial or agricultural activities.

447 Anyhow, there is the need to go further with this

448 issue in order to establish reliable environmental

449 indices for the quality assessment of the coastal

450 environment and for management purposes.

451 Proposal for monitoring program based

452 on biomarkers

453 Besides the chemical analysis of several contami-

454 nants in the biotic and abiotic compartments of

455 coastal ecosystems, which vary geographically

456 (Caetano & Vale, 2003; Quental et al., 2003),

457 biomarkers should be incorporated in national or

458 regional monitoring programs, to assess the

459 biological effects of contaminants present in the

460 coastal environment. Each program should be

461 defined according to local specificities, namely

462 the existing data for hydrodynamics, chemical

463characterization and enough data for a set of

464biomarkers concerning ecological relevant species.

465The aims of the Portuguese program proposal

466should include a spatial and temporal character-

467ization of the following biomarkers: adenylate

468energy charge and scope-for-growth, acetyl-cho-

469linesterase, metallothioneins and genetics bio-

470markers and also imposex in the hot spots of the

471Portuguese coastal zones already identified by the

472chemical analysis. In specific sites, the presence of

473histopatologies should be assessed, as comple-

474mentary information. The Portuguese coast

475should be divided into three areas; Area 1- From

476Caminha to Figueira da Foz; Area 2- from

477Figueira da Foz to Sines; Area 3- from Sines to

478Vila Real de Santo António (Fig. 1).

479Several sites among traffic separation schemes

480should also be included between Berlengas and

481Cabo da Roca. The strategy should be based on

482coastal ecosystems that have been identified as

Fig. 1 Monitoring areas. Area1: from Caminha to Figue-
ria da Foz; Area 2: from Figueira da Foz to Sines
(encircled the area between Berlengas and Cabo da
Rocha); Area 3: from Sines to Vila Real de Santo António
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483 having high contamination levels, that are directly

484 affected by pollution point sources and others not

485 directly affected by these sources (control sites).

486 Biomarker levels should be compared among

487 sites. The first step should be to investigate the

488 spatial variation of biomarkers in order to define

489 sites for long term monitoring. This framework

490 would be a major contribution to the implemen-

491 tation of a national database for the use of

492 biomarkers along the Portuguese coast. Apart

493 from biomarkers, contaminants should be analy-

494 sed in water and sediments to try to establish a

495 cause and effect relationship between contami-

496 nant levels and biological effects. Organisms to be

497 analysed for the several biomarkers should

498 include molluscs (Mytilus galloprovincialis, Rudi-

499 tapes decussates, Nassarius reticulatus and Nucella

500 lapillus); Polychaetes [Nereis diversicolor (Müller,

501 1776)]; Crustaceans [Carcinus maenas (Linnaeus,

502 1758) and Gammarus locusta Linneus, 1758] and

503 Fishes [Platichthys flesus (Linneus, 1758) and

504 Mugil cephalus Linneus, 1758]. Several methods

505 should be used for each of the biomarkers: AchE,

506 AEC, EROD, MT, Genotoxicity, Scope for

507 Growth, imposex. For organotin compounds

508 sampling should be every three to five years

509 while for the others sampling will be yearly.

510 Based on the results a database and data

511 management should be implemented in accor-

512 dance with Fig. 2 with the aim to use the data of

513 biomarkers as important tools in environmental

514 risk assessment.
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684Garrigues, 1999. Scale of classification based on
685biochemical markers in mussels: application to pollu-
686tion monitoring in European coast. Biomarkers 4:
687415–424.
688Neuparth, T., 2004. Development of methodologies to
689assess genotoxicity in crustaceans and fish. PhD thesis,
690Universidade Nova de Lisboa, Lisbon.
691Neuparth, T., A. D. Correia, F. O. Costa, G. Lima, & M.
692H. Costa, 2005. Multi-level assessment of chronic
693toxicity of estuarine sediments with the amphipod

Hydrobiologia

123
Journal : HYDR Dispatch : 23-2-2007 Pages : 9

Article No.: 0695
h LE h TYPESET

MS Code : SP3525 h CP h DISK4 4



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

694 Gammarus locusta: I. Biochemical endpoints. Marine
695 Environmental Research 60: 69–91.
696 NMMP UK, 2004. The Centre for Environment Fisheries
697 and Aquaculture Science. http://www.cefas.co.uk/
698 monitoring.
699 Nordberg, M., 1998. Metallothioneins: historical review
700 and state of knowledge. Talanta 46: 243-254.
701 OSPAR, 2004. OSPAR Commission. http://www.ospar.-
702 org..
703 Picado, A. M., 1997. La charge énergétique adénylique:
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