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Abstract: Raceways ponds are the microalgal production systems most commonly used at industrial
scale. In this work, two different raceway configurations were tested under the same processing
conditions to compare their performance on the production of Nannochloropsis oceanica. Biomass
productivity, biochemical composition of the produced biomass, and power requirements to operate
those reactors were evaluated. Water depths of 0.20 and 0.13 m, and culture circulation velocities
of 0.30 and 0.15 m s−1 were tested. A standard configuration, which had a full channel width
paddlewheel, proved to be the most energy efficient, consuming less than half of the energy required
by a modified configuration (had a half channel width paddlewheel). The later showed to have
slightly higher productivity, not enough to offset the large difference in energetic consumption. Higher
flow velocity (0.30 m s−1) led to a 1.7 g m−2 d−1 improvement of biomass productivity of the system,
but it increased the energy consumption twice as compared to the 0.15 m s−1 flow velocity. The latter
velocity showed to be the most productive in lipids. A water depth of 0.20 m was the most suitable
option tested to cultivate microalgae, since it allowed a 54% energy saving. Therefore, a standard
raceway pond using a flow velocity of 0.3 m s−1 with a 0.20 m water depth was the most efficient
system for microalgal cultivation. Conversely, a flow velocity of 0.15 m s−1 was the most suitable to
produce lipids.

Keywords: raceway pond configuration; biomass productivity; energy costs; Nannochloropsis oceanica

1. Introduction

Microalgae are a diverse group of microorganisms that combine properties of higher plants with
those of some prokaryotes [1,2]. They are ubiquitous, living either in aquatic (fresh and seawater) and
terrestrial environments [3]. Microalgae occur as unicellular or simple colonial organisms, usually
displaying rapid growth rates [4] and photosynthetic efficiencies between 9–10%, in general significantly
higher than those of terrestrial plants [5–7]. They are key members of the biosphere, as they play an
important role in the global carbon and nitrogen cycles. By using light energy to produce organic
matter, algal photosynthesis contributes to around 50% of the total planetary primary production [8,9].
Cyanobacteria, previously called “blue-green algae”, are even able to fix atmospheric nitrogen (N2)
into organic nitrogen and are the major contributors to global biological nitrogen fixation [10,11].

Being a biodiverse resource, microalgae can produce a wide range of value-added molecules
such as proteins, lipids, carbohydrates, pigments and other compounds for various product
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applications [12,13]. Of these, carotenoids, phycobiliproteins, and polyunsaturated fatty acids (PUFA)
such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most widely explored.
Microalgae can be applied to food, feed, biofertilizer, and cosmetic industries [14]. They can also play
a major role in the pharmaceutical industry as sources of novel biochemicals for the development
of new drug leads to overcome the growing problem of antibiotic resistance in many bacterial
pathogens [15], since some microalgae produce bioactive compounds with antibacterial activity [16].
Besides antimicrobial compounds, microalgae produce also antiprotozoal agents and anti-inflammatory,
antioxidant and anticancer compounds [17]. The biomass of oleaginous microalgae is a sustainable,
renewable and eco-friendly feedstock which can be a source for the production of biofuels and
bioenergy [14,18]. Microalgae can even be used in wastewater treatment and its photosynthetic
cultivation is one of the most promising carbon dioxide (CO2) mitigation technologies [19].

The focus on research into the genus Nannochloropsis has increased over the years [20].
These microalgae are considered to be oleaginous models because of their high lipid productivity and
photosynthetic efficiency, having also a well-established genetic toolbox [21–23]. Several species of
the genus Nannochloropsis have been successfully cultivated autotrophically at large scale due to the
relatively mature technology for outdoor large-scale cultivation of these eustigmatophytes [22].

Despite their biodiversity, microalgae are still an underexploited biological resource. There are
only a few long-standing companies that have been able to scale up their production of microalgal
biomass in industrial facilities [12,23,24]. The economics of large scale facilities are often not favorable
to short-term investment, because operational and capital costs are high and the payback is usually
longer than expected [25].

Microalgae can be cultivated either in open or closed systems. Despite having several drawbacks,
open systems are the most widely applied bioreactors in industrial microalgal processes, since they
require lower capital and operational costs than closed systems [26]. Microalgal open production
systems include circular and raceways ponds as well as cascade systems [27]. Among them, raceway
ponds are the most commonly used open photobioreactor for commercial microalgal production [28].
These are shallow, hairpin-shaped, closed-loop flow channels, usually 0.15–0.30 m deep, internally
lined with cement, polyvinyl chloride (PVC) or clay, with mixing and aeration provided through
circulation by a rotating paddlewheel [29–32]. A straight channel velocity of at least 0.2 m s−1 is needed
to ensure a velocity of 0.1 m s−1, the minimum required to prevent sedimentation of microalgal biomass
in the whole raceway [33]. A 0.3 m s−1 flow velocity is the most commonly used flow velocity for
biomass production [33]. The surface-to-volume ratio in raceways is always 1/pond depth. A lower
depth increases the surface-to-volume ratio, improving light penetration [34]. Thus, for autotrophic
growth, shallower ponds are more productive than deeper ponds [34]. However, at water depths
lower than 0.15 m, a severe decrease in flow and turbulence occurs in large-scale raceways [35]. This
long light path results in large areal volumes (150 L m−2) and cell concentrations of less than 0.6 g L−1,
which promote the occurrence of contaminants (i.e., grazers and competing microalgae) [35]. Another
problem of open systems is the low productivities obtained, due to temperature fluctuations, inefficient
mixing and CO2 dispersion, light limitations and evaporation losses [29]. Typically, well-managed
raceway ponds may achieve 20–25 g m−2 d−1 for short periods, while long-term productivity in
large commercial raceways rarely exceeds 12-13 g m−2 d−1 [35]. López et al. [36] point out that 20 g
m−2 d−1 is the threshold for the average annual productivity, which is rarely exceeded in large-scale
outdoor production.

Several studies have been carried out in order to study the design of the raceway pond, with
the aim of reducing the energy costs and increasing the growing efficiency of microalgae. Most of
the energy losses occur at the hairpin bends. Liffman et al. [37] used computational fluid dynamics
(CFD) to model different bend configurations. These authors showed that, when compared with the
traditional constant-width/constant-depth bend configuration, some of the new bend configurations
not only minimize the energy consumption, but also improve the mixing of the raceway ponds by
depletion of low speed and stagnant regions [37]. Another CFD-based approach demonstrated that a



Appl. Sci. 2020, 10, 1725 3 of 14

raceway configuration with a minimum of three semicircular deflector baffles and an “island” at the
end of the central divider, apart from being more energy-efficient than the standard configuration, can
completely prevent the development of dead zones [32].

New design studies rely mostly on modeling and very few in actual experiments. Despite
the evolution of the models and the associated technology, errors are always encountered when
compared to experimental data [38,39]. In this context, this work aimed to compare the performance
of two raceway ponds with different configurations based on three criteria: areal productivity, energy
consumption, and the biochemical composition of biomass produced using Nannochloropsis oceanica as
model microalga.

2. Materials and Methods

All experiments were performed between February 4th and July 28th of 2019 at Allmicroalgae’s
facilities at Pataias, Portugal. The microalga strain, N. oceanica CCAP 849/10, was obtained ‘from
Culture Collection of Algae and Protozoa and is kept at Allmicroalgae’s culture collection.

2.1. Raceways Design, Commissioning and Construction

Based on the literature review and Allmicroalgae industrial experience in the growth of microalgae,
two raceway pond prototypes were designed, as shown in Figure 1: one standard and one with a
modified configuration. The standard raceway included the most common dimensions, configuration
and construction materials reported, while the modified version considered several aspects previously
reviewed from the literature and indicated as having a positive influence in the production of
microalgal biomass.
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Figure 1. 3D prototype models of the two built raceways. (a) Standard raceway model with three baffles,
an eight-bladed paddlewheel and 87 cm width; (b) Modified raceway model, with three deflectors, an
eight blades paddlewheel and 47 cm width.

The starting point was a typical raceway with two bends, as ponds with more than two bends
have higher energy consumption [32]. To avoid the formation of dead zones as much as possible, three
baffles were included in the circular endings of the ponds. Raceway ponds with around 28 m2 were
developed. They were 15 m long, 2 m wide and 1 m channel width. The depth was fixed at 0.375 m
and other structural dimensions are listed in Table 1. The mixer consisted of a single eight-flat-bladed
paddlewheel installed right after one of the semicircular ends at the beginning of one of the channels.
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Table 1. General characteristics of the two built raceways: dimensions, operational specifications, and
raw materials.

Standard Raceway Modified Raceway

Dimensions

Total area 28.88 m2 27.62 m2

R (Width: Length) 1:7.5 1:7.5
Total Width 2 m 2 m
Total Length 15 m 15 m

Chanel length 1 m 1 m
Channel width

surrounding
paddlewheel

0.950 m 0.545 m

Paddlewheel width 0.870 m 0.475 m
Depth 0.375 m 0.375 m

Volume [2.89–8.66] m3 [2.76–8.28] m3

Operational
specifications

Water depth [0.1–0.3] m [0.1–0.3] m
Speed [5–60] rpm [0.1–0.3] m/s [5–60] rpm [0.1–0.3] m/s

Paddlewheel 8 blades, no slope 8 blades, no slope
Carbonation Box after paddlewheel Box after paddlewheel

Number of baffles Six Three

Raw materials
Base of the raceway

Polyethylene film, stone
powder, PVC waterproofing

geomembrane.

Polyethylene film, stone
powder, PVC waterproofing

geomembrane.
External walls Treated wood Treated wood

Structure Stainless steel Stainless steel

The modified raceway model included a loop-shaped end of the central divider opposite to the
paddlewheel. The ‘loop’ was intended to prevent the development of dead zones in the vicinity of this
end of the divider. Besides, the paddlewheel hypothesized for the modified model had a width of
0.475 m, as compared to the standard model paddlewheel which measured 0.870 m. A picture of the
raceways can be seen in Figure 2. Figure 3 shows a detailed view of the modified raceway.
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Figure 3. Structural details of the pilot raceways installed in Allmicroalgae facilities. (a) Three baffles
in the circular endings of the ponds were installed in both standard and modified raceways. Single
eight-flat-bladed paddlewheel was installed right after one of the semicircular ends of one of the
channels; (b) standard raceway paddlewheel with 0.870 m width and (c) modified raceway with
0.475 m.

The raw materials used for the construction of both raceways were the same. Polyethylene film
and PVC waterproofing geomembrane were used in the base of the raceways to waterproof them.
The structure was supported by stone powder and stainless steel and external walls were made of
treated wood.

2.2. Trials

Each trial lasted 13 days and was performed simultaneously in both raceways. N. oceanica
was inoculated at a 0.3 g L−1 concentration in Allmicroalgae’s base medium, based on Guillard’s
F/2 medium [40], with 30 g L−1 NaCl and 0.31 g L−1 NO3

−. In all experiments, a fresh inoculum
sequentially scaled up, was used. Initially, the cultures were grown in 5 L flasks during 7 to 15 days.
When the culture reached 1.2 g L-1, 20 × 5 L flasks of culture (100 L) were used to inoculate a single flat
panel (FP), which was later divided into the other three FPs. These were used to inoculate the two
raceway ponds. Throughout the assay, the culture was closely monitored. The pH was kept between
8.0–8.2, through the injection of pure CO2 to the culture. The NO3

− concentration was always kept
above 0.12 g L−1 and water refilled whenever it was necessary. Regular microscopic observations
were performed to monitor contaminations. At the end of the assay the culture was harvested and
centrifuged at 4000× g for 30 min, and the resulting biomass and supernatant were biochemically
analyzed. All the assays were made in duplicate.

2.2.1. Water Depth

Two different water depths were tested, 0.20 and 0.13 m, with a flow velocity of 0.30 m s−1.

2.2.2. Flow Velocity

The flow velocity optimization trial was performed using the standard raceway. A velocity of 0.15
m s−1 was used with a 0.13 m water column.

2.3. Growth Assessment

Samples (50 mL) were taken on a daily basis and microscopic observation was performed in order
to monitor contaminations, which were never above 2% of cell counts.

Optical density (OD) and dry weight (DW) were measured to follow microalgal growth. OD was
performed at 540 nm using a spectrophotometer (4251/50, Zuzi, Spain). DW was determined using
a 0.7 µm glass fiber filter (VWR, Portugal) in a moisture analyzer (MA 50.R, RADWAG, Poland). In
order to neutralize the salt weight, the culture was washed with an equivalent volume of ammonium
formate solution at 35 g L−1.
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Areal biomass productivity, P (g L−1 d−1), was determined by Equation (1):

P
(
gm2d−1

)
=

(X2 −X1)V
(t2 − t1)A

(1)

where X2 (g L−1) and X1 (g L−1) represented the DW times t1 (s) and t2 (s), respectively, V (m3) was the
raceway volume and A (m2) the ground area occupied by the bioreactor.

Specific growth rate, µ (d−1), was expressed as a ratio between the difference final and initial
logarithmic biomass concentrations (X2 and X1, respectively) and the associated time range (t2 and t1,
respectively), as seen in Equation (2).

u =
ln(X2) − ln(X1)

t2 − t1
(2)

Global productivity and growth rate refer to the whole assay (13 days). Maximum productivity
and growth rate were calculated based on the highest values obtained daily.

The lipid production/energy consumption ratio (L/kW) was calculated through the following
equation:

L/kW =
P × L × A × 13

p
(3)

where L (%) was the lipid content, 13 days the total extension of the assay, and p the power consumption.
The photosynthetic efficiency (PE) was determined by equation 4, as previously described by

Quelhas et al. (2019) [41].

PE =
(X2 −X1) ×V ×HHV∑t2

t1 rad×A× t
(4)

where rad (kW m−2) was the radiation that reaches the reactor, t (s) was the time between solar radiation
measurement and HHV was the higher heating value, calculated based on elemental (CHN) analysis
by Equation (5), as described by Callejón-Ferre et al. [42]:

HHV
(
kJg−1

)
= −3.393 + 0.507C− 0.341H + 0.067N (5)

A spectrophotometric analysis (Genesys 10S UV-VIS spectrophotometer (Thermo Scientific,
Massachusetts, USA)) was used to measure the nitrate concentration of the medium. Samples were
centrifuged for 10 min at 2000 g (MiniStar Silverline, VWR, Portugal). The OD of the sample was
calculated from the difference at 220 nm and twice the value at 275 nm and compared with a calibration
curve with sodium nitrate [43]. The blank solution was made with 0.1 mol L−1 of HCl.

2.4. Proximate Composition

The ash content was determined in a furnace (J. P. Selecta, Sel horn R9-L) at 550 ◦C for 8 h.
Total lipids were determined through a gravimetric analysis, using a previously modified method

of Bligh and Dyer (1959) [44], and reported by Pereira et al. [45]. A biomass weight ranging 5–10 mg
was solubilized in 0.8 mL of distilled water. A mixture of methanol (2 mL), chloroform (2 mL) and
distilled water (1 mL) was used to extract the lipid fraction from the biomass [44]. After centrifugation
for 10 min at 2500 g, 0.7 mL of the chloroform fraction was transferred to a pre-weighed tube. A heat
treatment at 60 ◦C (QBD2, Grant Instruments, UK) to evaporate all the chloroform was performed and
after 3 h in the desiccator, the final weight of the tube was measured in the precision balance (M5P,
Sartorius, Germany).

CHN analysis was performed using a Vario el III (Vario EL, Elementar Analyser system, Germany),
according to Quelhas et al. [41]. Total proteins were calculated by multiplying the nitrogen content
by the standard conversion factor 6.25 [46] after CHN analysis. Carbohydrates were considered the
remaining mass.
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2.5. Fatty Acid Profile

Fatty acids were determined by means of its conversion to fatty acid methyl esters (FAME),
according to a modified method of Lepage and Roy [47] described by Pereira et al. [48]. FAME were
analyzed in a gas chromatography-mass spectrometer (GC-MS) (Bruker SCION 456/GC, SCION TQ
MS). The gas chromatograph was equipped with a 30 m length column with an internal diameter of 0.25
mm and a film thickness of 0.25 µm (ZB-5MS, Phenomenex, Torrance, California, US). Helium was the
carrier gas. The temperature program was 60 ◦C (1 min), 30 ◦C min−1 to 120 ◦C, 5 ◦C min−1 to 250 ◦C,
and 20 ◦C min−1 to 300 ◦C (2 min). The total running time was 31.5 min. Injection temperature was 300
◦C. Supelco® 37 Component FAME Mix (Sigma-Aldrich, Sintra, Portugal) were used as standards.
After identified and quantified, the FAME profile was expressed as a relative percentage of the total
fatty acids content present in the biomass.

3. Results and Discussion

3.1. Comparison of Two Different Raceway Configurations

N. oceanica growth experiments were performed under three different sets of process conditions
(Table 2) in order to determine which of the two raceway configurations were the most promising
in terms of productivity, product quality, and energy consumption. Growth kinetics were evaluated
separately for each set of process conditions (growth curves are plotted in Supplementary information,
Figures 2 and 3).

Table 2. Set of process conditions used. Each set of conditions was run in duplicate.

Process Condition Water Depth (m) Flow Velocity (m s−1)

1 0.20 0.30
2 0.13 0.30
3 0.13 0.15

The global areal productivities obtained (Table 3) were higher in the modified raceway for process
conditions 1 and 2. Global specific growth rates (Table 3) were similar in both raceways for both the
process conditions tested. The range of productivities achieved was half of the value achieved in a
demo-scale 530 m2 raceway ponds using N. oceanica F&M-M24 strain (14 g m−2 d−1) [49]. de Vree et al.
reported average areal productivity of 9.7 g m−2 d−1 for Nannochloropsis sp. CCAP 211/78 growth in
a raceway pond similar to the one used during the present experiments (25.4 m2 surface area) with
0.20 m culture depth [50]. In the same study, productivity ranged from 6.2 to 14 g m−2 d−1. However,
López et al. [36] reported a productivity of 6.0 ± 2.5 g m−2 d−1 for irradiation levels identical to the ones
occurred during the present trials, for Nannochloropsis gaditana cultivated in raceways of 23.5 m long
and 1.5 m wide channels, with a culture depth of 0.08 to 0.12 m (depending on the season) and 0.30 m
s−1 circulation velocity. The same author reported considerably higher productivity (24.71 g m−2 d−1)
for trials performed under higher average irradiation. In a similar experiment operating in continuous
mode, 22.4 g m−2 d−1 were obtained for Nannochloropsis gaditana when grown in 7.2 m2 raceway ponds
(5.0 m long and 0.6 m wide channels) with a culture depth of 0.11 m and a circulation velocity of
0.30 m s−1 [51]. Besides, 20.37 g m−2 d−1 was the average areal productivity achieved in a culture
of Nannochloropsis sp. cultivated in 25,000 L (dimension of 35 m by 3.5 m) outdoor raceway ponds
situated in the Qatari desert [52]. The global productivities achieved are comparable with the average
annual productivity of 20 g m−2 d−1 rarely exceeded in large-scale production in outdoor raceways,
since the systems are affected by factors that cannot be controlled, e.g., weather conditions [36].
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Table 3. Biomass productivities and specific growth rates obtained in the two raceways used.
Productivity values are presented considering the dry weight. Values represent an average of two
biological replicates.

Raceway
Configuration/Process

Condition
Productivity (g m−2 d−1) Specific Growth Rate (d−1)

Global Maximum Global Maximum

Modified/1 6.610 15.282 0.048 0.141
Modified/2 7.691 16.364 0.069 0.175
Standard/1 6.277 19.007 0.047 0.172
Standard/2 7.089 18.102 0.065 0.166
Standard/3 5.375 11.131 0.057 0.130

The specific growth rates obtained are lower than the range of previously reported data (0.11–0.21
d−1) [53]. Nevertheless, the values reported by Baohua et al. [54] for three different N. oceanica strains
grown in 8000 L raceway ponds are identical to the ones obtained in this work (0.047 ± 0.001 d−1, 0.066
± 0.005 d−1, and 0.051 ± 0.003 d−1).

Photosynthetic efficiency (PE) (Table 4) was higher in the modified raceway for process conditions
1 and 2. The higher rotation frequency needed in the modified raceway to attain a given average
flow velocity caused a higher turbulence level, enhancing the vertical mixing and the PE of the whole
culture. This represents a possible cause for the higher productivities reached in the modified raceway.
PE values obtained are comprised in the 0.5–1.5% range of PE reported by de Vree et al. [50] for a
Nannochloropsis sp. CCAP 211/78 grown in a 4730 L raceway pond (25.4 m2 ground area) with a culture
depth of 0.20 m and a circulation velocity of 0.25 m s−1.

Table 4. Photosynthetic efficiency of N. oceanica cultures obtained when growing in the two raceways
tested. Values represent an average of two biological replicates.

Photosynthetic Efficiency (%)

Process Condition/Raceway
Configuration 1 2 3

Modified 0.569 0.747 -
Standard 0.532 0.674 0.618

There were minor differences in the proximate composition (Table 5) and fatty acid profile (Table 6)
of the biomass produced in both raceways. The lipid content was lower than the values reported by Das
et al. [52] (26.0% ± 1.1%) and Baohua et al. [54] (21.40% ± 1.53%–28.00% ± 1.00%), for Nannochloropsis
sp. cultivated in outdoor raceway ponds and three different N. oceanica strains cultivated in indoor
raceway ponds, respectively. On the other hand, the values reported by López et al. [36] (12.80% ±
3.54%–15.15% ± 4.16%) are in the range of the ones achieved in these trials. However, despite the
lipid accumulation in Nannochloropsis sp. being strain and species-dependent, it is also conditioned by
the culture conditions, varying both with nutritional and environmental factors such as irradiance,
nitrogen concentration and salinity [20].
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Table 5. Biomass proximate composition. Values are presented relative to dry weight. Values represent
an average of two biological replicates.

Raceway
Configuration/Process

Condition
Proteins (%) Lipids (%) Carbohydrates (%) Ashes (%)

Modified/1 38.9 13.2 30.5 17.4
Modified/2 44.2 17.4 28.7 9.7
Standard/1 40.4 14.5 27.1 18.0
Standard/2 41.7 19.0 25.1 14.2
Standard/3 39.1 12.7 36.2 12.0

Table 6. Fatty acid profile of the biomass produced (n.d., not detected). Values represent an average of
two biological replicates.

Raceway Configuration Modified Standard

Process Condition 1 2 1 2 3

C14:0 1.28 1.97 2.13 2.71 3.19
C16:0 20.53 24.02 19.93 21.62 23.46
C16:1 40.14 36.06 42.06 34.04 35.60

C18:2n-6 n.d. 0.44 1.96 3.37 1.45
C20:4n-6 8.61 9.61 8.20 8.98 10.13
C20:5n-3 29.45 27.90 27.85 29.29 26.17

SFA 21.90 25.99 19.93 24.33 26.65
MFA 40.06 36.06 42.06 34.04 35.60
PUFA 38.04 37.95 38.01 41.63 37.75
ω-3 29.42 27.90 27.85 29.29 26.17
ω-6 8.63 10.05 10.16 12.35 11.58

PUFA/SFA 1.74 1.48 1.91 1.77 1.47
ω-6/ω-3 0.29 0.36 0.36 0.42 0.44

Regarding the fatty acid profile, C16 and C20 FAME were the most prevalent. Ma et al. [20]
reported that C16, C18, and C20 FAME were the major fatty acids found in Nannochloropsis strains,
contrary to the present study on which C18 were detected in very small amounts. EPA content ranged
from 26.17% ± 3.32% to 29.45% ± 0.41% of total FAME, which was lower than the values reported by
Baohua et al. [54] for three different N. oceanica strains cultivated in indoor raceways (35.58% ± 0.63%,
38.78% ± 2.49%, 40.13% ± 0.28%). The higher relative content of PUFA and omega-3 PUFA (ω-3) in
comparison with saturated fatty acids (SFA) and omega-6 PUFA (ω-6), respectively, are interesting
indicators of the quality of biomass produced by the N. oceanica strain used.

Concerning energy consumption, the modified raceway consumed, at least, twice the energy
consumed by standard configuration (Table 7). The non-uniform velocity pattern generated with a
half channel width paddlewheel mixing was responsible for the discrepancy. The typical plug flow of
raceways [34] was altered in the modified and zones wherein an inversion of flow direction occurred.
Thus, a higher rotation frequency was needed to attain a given circulation velocity.

Table 7. Paddlewheel rotation speed and associated energy consumption.

Energy Consumption (W m−3) Mixing Speed (Rad s−1)

Process
Condition/Raceway

Configuration
1 2 3 1 2 3

Modified 10.9 20.9 - 1.29 1.68 -
Standard 5.2 8.0 4.0 0.67 0.67 0.31
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Despite having much higher operational costs, the modified configuration presented slightly
higher biomass productivity. Given the negligible difference in the productivity obtained, the standard
configuration was found to be the best alternative of design.

3.2. Water Depth Optimization

Optimization of culture depth was based on the comparison of trials performed under process
conditions 1 and 2. An increase of 0.8 g m−2 d−1 in the global biomass productivity with the 0.13 m
water depth compared with the 0.20 m water depth was observed. These results are in agreement with
those obtained by San Pedro et al. [51] and de Vree et al. [50], who reported that large pond depths lead
to light-limited cells and the creation of large dark zones wherein microalgae do not photosynthesize,
reducing the net productivity of the culture. Dark respiration can comprise as much as 30% of the
strain’s maximum specific growth rate [55] and can explain the small decrease obtained in the global
specific growth rate with the increase of the water depth.

The quality of biomass produced in both process conditions remained the same in terms of quantity
of lipids and EPA. PUFA/SFA andω-6/ω-3 ratios were also identical for both process conditions. On the
other hand, we verified a 54% increase in energy consumption with process condition 2, as a result of
higher paddlewheel rotation speed. A power consumption increase between 0.20 m and 0.10 m water
depth trials was reported by Mendoza et al. [56]. These authors showed that a 0.20 m water column is
the optimum value for minimizing power consumption. Chiaramonti et al. described an increase in
total head losses caused by a reduction in culture depths [57].

Thus, a decrease in water depth induced a small improvement of global biomass productivity,
however, the power consumption was the differentiator factor. The lower energy required with a pond
depth of 0.20 m made it the best option for microalgal cultivation.

3.3. Flow Velocity Optimization

Optimization of flow velocity was based on the comparison of trials performed under process
conditions 2 and 3. An increase in global biomass productivity and specific growth rate was associated
with an increase in the flow velocity. Accordingly, Moazami et al. reported that an increase in the
paddlewheel rotation speed from 1.4 to 2.1 rad s−1 resulted in a biomass productivity increase [58].
However, Weissman et al. reported that different mixing velocities had no apparent effect on biomass
productivity [59].

Despite the EPA content and, ω-6/ω-3 and PUFA/SFA ratios being similar, the same was not
seen for the lipid content. This parameter was about 33% higher for a culture velocity of 0.30 m s−1.
According to Ma et al. (2016), lipid accumulation is favored under stressed conditions. Thus, 0.30 m
s−1 may induce mechanical stress on the cells. Nevertheless, as previously mentioned, this is the most
commonly used flow velocity for biomass production [20].

Specific power consumption was two-fold higher with a 0.30 m s−1 circulation velocity. This was
due to the two-fold higher paddlewheel rotation speed needed to double the flow velocity. Mendoza
et al. [56] and Weissman et al. [59] also reported an increase in the specific power consumption with
liquid velocity. The former authors refer to an exponential relationship between these two parameters
due to the exponential relationship between the liquid velocity and its kinetic energy [59].

In order to determine which was the most suitable flow velocity to cultivate N. oceanica microalgae,
the ratio of lipid production/energy consumption was calculated. The lower velocity (0.15 m s−1)
displayed a higher ratio, 17.1 kg kW−1, when compared to 0.30 m s−1 flow velocity, 16.9 kg kW−1.
Therefore, 0.15 m s−1 was considered to be the best option tested to induce lipid production.

4. Conclusions

A comparison of two different pilot-scale raceway pond configurations and an optimization of the
water depth and flow velocity were performed. These were evaluated in terms of the growth dynamics,
biochemical composition of the used microalga, and power consumption requirements. The results
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obtained suggest that the improvement in the biomass productivity achieved in the modified when
compared to the standard raceway was not significant to compensate for the much higher energy
consumption needed. For the same reason, it was concluded that a 0.20 m was the best water depth
tested for N. oceanica cultivation. The highest lipid production/energy consumption was obtained
when using 0.15 m s−1, being this velocity the most suitable for lipid production.
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replicates, Figure S3: Growth curves of N. oceanica cultivated under process conditions 2. Values represent an
average of two biological replicates, Figure S4: Growth curve of N. oceanica cultivated under process conditions 3.
Values represent an average of two biological replicates, Figure S5: Temperature and instant radiation registered
on site during first growth trial under process conditions 1, Figure S6: Temperature and instant radiation registered
on site during second growth trial under process conditions 1, Figure S7: Temperature and instant radiation
registered on site during first growth trial under process conditions 2, Figure S8: Temperature and instant radiation
registered on site during second growth trial under process conditions 2, Figure S9: Temperature and instant
radiation registered on site during first growth trial under process conditions 3, Figure S10: Temperature and
instant radiation registered on site during second growth trial under process conditions 3, Figure S11: Microscopic
picture (40×) of N. oceanica grown in Allmicroalgae’s pilot-scale raceway ponds.
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