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Abstract 

Aromatic halophyte plants are an outstanding source of bioactive compounds and natural 

products with potential use in the food industry. This work reports the in vitro antioxidant 

activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from 

stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime 

halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as 

a reference. Sea fennel’s tisanes, particularly from leaves, were rich in phenolic compounds 

and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-

hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic 

acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes 

followed by Ca and Mg in leaves’ tisanes and K in flowers. Sea fennel’s samples had a 

similar antioxidant activity than those from A. linearis, and had no significant toxicity 

towards four different mammalian cell lines. Altogether, our results suggest that sea fennel 

can be a source of products and / or molecules for the food industry with antioxidant 

properties and minerals in the form, for example, of innovative health-promoting herbal 

beverages.  
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1. Introduction  

Crithmum maritimum L., commonly known as sea fennel or rock samphire, is an aromatic, 

edible and medicinal halophyte common in marine coastal ecosystems along the European 

and North-African Atlantic, Mediterranean and Black Sea (Atia et al. 2011; Castroviejo et al. 

2003;). Sea fennel belongs to the same family (Apiaceae) as parsley and celery and has 

interesting sensory attributes: a slight salty taste with notes of celery, common fennel and peel 

of green citrus, followed by a strong aftertaste (Renna and Gonnella 2012). In fact, it is 

traditionally used in countries such as Italy or Greece as an ingredient in salads, soups, 

sauces, as pickle or spice and is acknowledged as a rich source of minerals and vitamin C 

(Castroviejo et al. 2003; Franke 1982; Renna and Gonnella 2012). Sea fennel has also folk 

therapeutic uses as an appetizer, tonic, purgative, carminative, anthelmintic or to prevent 

scurvy. Moreover, infusions and decoctions of the plant’s aerial parts are used as diuretic, to 

treat renal and urinary complaints, digestive disorders, colic and inflammation of the urinary 

tract and prostate (Atia et al. 2011; Cornara et al. 2009; Franke 1982).  

Sea fennel is an important local resource in many coastal populations of the 

Mediterranean since ancient times; the first European farmers made it part of their diet and 

nowadays it is still consumed in many areas across Europe (Atia et al. 2011; Franke 1982). 

Considering a growing world population coupled to global climate change, it is imperative to 

find alternative food resources that can overcome the threat of soil salinization for agriculture. 

In this sense, edible halophytes like sea fennel that can be cultivated in marine-influenced 

environments may be potential alternative crops. And, so far, few salt-tolerant plants have had 

their potential explored although halophyte products have recently draw some attention in 

food markets throughout the world (Atia et al. 2011; Buhmann and Papenbrock 2013; 

Ventura and Sagi 2013). For example, Salicornia species are currently trending in the 

gourmet food market and sea buckhorn (Hippophae rhamnoides L.) is sold in specialty stores 
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as constituent in functional beverages or as herbal tea (Barreira et al. 2017; Gruenwald 2009; 

Ventura and Sagi 2013). 

Herbal teas (tisanes made from plants other than Camellia sinensis L.) are worldwide 

popular beverages with a multitude of attributed health benefits (Patel 2013; Pohl et al. 2016). 

Such is the case of rooibos tea (Aspalathus linearis) promoted for its high antioxidant 

potential (Joubert and de Beer 2011). The health benefits of herbal beverages are mostly 

related to their high polyphenolic content and they are reported as a great source of these 

bioactive phytochemicals in our diet, as well as a potential mineral source (Gruenwald 2009; 

Pohl et al. 2016). Phenolic compounds have recognized antioxidant properties and, given that 

oxidative stress is an underlying cause for several degenerative diseases, they can have 

beneficial outcomes in some health challenges like diabetes or neurodegenerative disorders 

(Lu and Yen 2015; Sindhi et al. 2013). Medicinal and aromatic halophyte plants, such as sea 

fennel, combine a pleasant taste to potential health benefits and can be explored as sources of 

innovative bioactive compounds and / or products for the food industry as, for example, 

herbal beverages (Gruenwald 2009). Such an approach on medicinal plants to unveil their 

functional properties and constituents, and explore their application as food products has been 

made with different plant species, as for example Lycium barbarum L., Schisandra chinensis 

(Turcz.) Baill and Euphorbia denticulata Lam. (Zengin et al. 2017; Mocan et al. 2016, 2017). 

Research regarding sea fennel involves mainly organic extracts and in vitro studies 

report antioxidant and antimicrobial activities along with different groups of bioactive 

molecules, like phenolic acids and flavonoids (Atia et al. 2011; Buhmann and Papenbrock 

2013). Nonetheless, infusions made with flower tops and stalks of sea fennel collected in 

Croatia exhibited a high in vitro antioxidant activity and were rich in phenolic compounds 

(Siracusa et al., 2011). In this context this work reports, for the first time, a comparative 

evaluation of the in vitro antioxidant potential (using eight complementary assays) and the 
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polyphenolic profile and mineral content of infusions and decoctions made with stems, leaves 

and flowers of sea fennel collected in the Alentejo coast of Portugal. We also report a 

preliminary in vitro toxicological evaluation using mammalian cells. The rooibos herbal tea 

was used as a comparison since it is one of the most consumed tea beverages worldwide. 

 

2. Materials and methods 

2.1 Plant collection  

Crithmum maritimum L. plants were collected in Alentejo coast in Aljezur beach, 

(37°20'30.7"N 8°51'06.0"W) in August of 2013. The botanist Dr. Manuel J. Pinto (National 

Museum of Natural History, University of Lisbon, Botanical Garden, Portugal) performed the 

taxonomical classification. The Marbiotech laboratory keeps an herbarium with a voucher 

specimen (voucher code MBH33). Plants were divided in organs, namely stems, leaves and 

flowers, which were oven dried at 50°C until complete dryness, milled and stored until use at 

-20°C. Dried leaves of rooibos tea (Aspalathus linearis (Burm.f.) Dahlg., produced in Cape 

Town, South Africa) were bought in a regional supermarket, milled and stored at -20ºC.  

 

2.2 Extracts preparation: “cup-of-tea” infusions and decoctions 

Water extracts were prepared to equal a cup-of-tea: 1 g of dried plant material for 200 mL of 

ultrapure water. To prepare infusions, the biomass was immersed in boiling water for 5 min; 

for decoctions, the biomass was boiled in water for 5 min. Extracts were filtered (Whatman nº 

4) and aliquots stored at -20ºC until use; some were freeze-dried for yield determination, high 

performance liquid chromatography (HPLC) and mineral analysis. 

 

2.3 Phytochemical composition of the extracts 

Total polyphenols (TPC), flavonoids (TFC) and condensed tannin (CTC) content  
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TPC was estimated by the Folin-Ciocalteau method, measuring the absorbance at 725 nm and 

using gallic acid as a standard. Results were presented as milligrams of gallic acid equivalents 

per cup-of-tea (mg GAE/200mL). TFC was assessed by the aluminium chloride colorimetric 

assay with the absorbance measured at 510 nm and rutin used as standard. Results were 

calculated as rutin equivalents per cup-of-tea (mg RE/200mL). CTC was determined by the 

assay 4-dimethylaminocinnamaldehyde (DMACA); the absorbance was measured at 640 nm 

using catechin as standard. Results were presented as catechin equivalents per cup-of-tea (mg 

CE/200mL). All methods are described in Rodrigues et al. (2015). 

 

2.4 Hydroxycinnamic acid derivatives (HAD) and flavonols content 

HAD and flavonols were determined by the method reported in Rodrigues et al. (2015). 

Absorbances were measured at 320 nm and 360 nm, using caffeic acid and quercetin as 

standards, to estimate HAD and flavonols, respectively. Results were calculated as standard 

equivalents per cup-of-tea (CAE and QE, respectively; mg/200mL). 

 

2.5 Phenolic composition by high performance liquid chromatography – diode array 

detection (HPLC–DAD) 

Freeze-dried extracts were dissolved at a concentration of 10 mg/mL in ultrapure water and 

analysed by HPLC–DAD according to the method and equipment already described by 

Rodrigues et al. (2015). Concentration of the several compounds were calculated using 

calibration curves prepared individually for each commercial standard dissolved in methanol 

(4-hydroxybenzaldehyde, apigenin, catechin hydrate, epicatechin, epigallocatechin, 

epigallocatechin gallate, pyrocatechol, quercetin, and caffeic, caffeoyquinic, chlorogenic, 

coumaric, ferulic, gallic, gentisic, p-hydroxybenzoic, neochlorogenic, rosmarinic, salicylic, 
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syringic and vanillic acids) and diluted to the required concentrations in ultrapure water. 

Results were calculated as mg per cup-of-tea (mg/200mL) based on the extracts’ yield. 

 

2.6 Mineral composition 

Freeze-dried extracts were analysed for mineral content by Microwave Plasma-Atomic 

Emission Spectrometer (MP-AES; Agilent 4200 MP-AES, Agilent Victoria, Australia), after 

dry ashing the samples for 8h, ash dissolution in hot nitric acid (HNO3) and in hydrogen 

peroxide followed by sample dilution in 5% HNO3. Working standards of different 

concentrations were prepared from certified standard solutions; for analytical quality 

assurance results were corrected by subtracting a blank from the analysed metal 

concentrations and samples were analysed in triplicate. Quantification wavelengths and 

calibration curves were selected to obtain the highest signal ratio and the lowest interference 

for the target elements. Spiking-and-recovery readings were carried out to assess validity of 

the results. Instrumental detection limits were: Ca, 0.04 µg/L; Cd, 1.4 µg/L; Cr, 0.3 µg/L; Cu, 

0.5 µg/L; Fe, 1.7 µg/L; K, 0.6 µg/L; Mg, 0.031 mg/L; Mn, 0.1 µg/L; Na, 0.1 µg/L; Ni, 1.1 

µg/L; Pb, 2.5 µg/L and Zn, 3.1 µg/L. Results were expressed as mg/cup-of-tea (mg/200mL) 

based on the extracts’ yield. 

 

2.7 Toxicological evaluation of the samples 

Murine microglia (N9) cell line was provided by the Faculty of Pharmacy and Centre for 

Neurosciences and Cell Biology (University of Coimbra, Portugal); murine bone marrow 

stromal (S17) and human hepatocellular carcinoma (HepG2) cell lines were obtained from the 

Centre for Biomedical Research (CBMR, University of Algarve, Portugal); human 

neuroblastoma (SH-SY5Y) cell line was obtained from Barcelona Science Park, Spain. 

RPMI-1640 culture medium was used to maintain N9 cells, while DMEM medium was used 
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for HepG2, S17 and SH-SY5Y cells; both mediums were supplemented with 10% foetal 

bovine serum (FBS), 1% L-glutamine (2 mM) and 1% penicillin (50 U/mL) / streptomycin 

(50 µg/mL). Cells were grown in an incubator in humidified atmosphere at 37ºC and 5% CO2. 

Extracts’ toxicity was assessed following Rodrigues et al. (2016). Briefly, S17 and HepG2 

cells were plated at an initial density of 5 x 103 cells/well while N9 and SH-SY5Y cells where 

seeded at 1x04 cells/well, in 96-well plates. Freeze-dried extracts at 100 µg/mL were directly 

dissolved in culture medium and applied for 72 h; cells incubated with only culture medium 

were used as negative control and hydrogen peroxide (H2O2) was used as positive control for 

cell toxicity. Cell viability was determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay (absorbance at 590 nm) and results were expressed in 

terms of % cell viability.  

 

2.8 Antioxidant activity  

2.8.1 Determination of antioxidant activity by five radical-based assays  

The scavenging capacity of the aqueous extracts against the radicals DPPH (1,1-diphenyl-

2picrylhydrazyl), NO (nitric oxide), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic 

acid), O2
l¾ (superoxide) and OHl (hydroxyl) was assessed according to Rodrigues et al. 

(2015, 2016) using butylated hydroxytoluene (BHT), catechin or ascorbic acid as positive 

controls. Results were calculated relative to a control containing ultrapure water, as 

percentage of antioxidant activity in a cup-of-tea.  

2.8.2 Determination of antioxidant activity by three metal-related methods   

The extracts’ copper and iron chelating activities (CCA and ICA, respectively) and their 

ability to reduce Fe3+ (ferric reducing antioxidant power - FRAP) were evaluated as described 

previously (Rodrigues et al. 2015) using BHT and ethylenediamine tetraacetic acid (EDTA) 

as positive controls. Results were presented as percentage of antioxidant activity in a cup-of-
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tea, relative to a positive control for FRAP and to a negative control (ultrapure water) for 

CCA and ICA. 

 

2.9 Statistical analysis 

Results were expressed as mean ± standard deviation (SD) and experiments were conducted 

at least in triplicate. Significant differences (p < 0.05) were assessed by one-way analysis of 

variance (ANOVA) or Kruskal Wallis one-way analysis of variance on ranks when 

parametricity of data did not prevail. If significant, the pairwise multiple comparison tests 

Tukey or Dunn's were applied. Statistical analyses were performed using XLStat2014®.  

 

3. Results and Discussion  

3.1 Phytochemical analysis  

Herbal teas are important sources of polyphenolics in human diet as these compounds are 

among the most widely occurring secondary metabolites in plants (Balasundram et al. 2006). 

However, characterization of phenolic groups is difficult due to the different polyphenolic 

mixtures in each plant. In this sense, fast-screening spectrophotometric methods are the 

widespread approach when assessing total phenolic or phenolic-groups content in plant 

extracts (Dai and Mumper 2010). Tisanes from C. maritimum were assessed 

spectrophotometrically for their total contents in different phenolic groups and results are 

summarized on Table 1. Aspalathus linearis (rooibos) herbal tea was used as comparison 

because it is also a tisane and is a greatly consumed tea beverage. Rooibos tisanes had higher 

TPC than sea fennel’s samples, which could be expected since the former is reported as rich 

in polyphenolic compounds (McKay and Blumberg 2007). The CTC of rooibos samples was 

also higher than in those of sea fennel, but since rooibos is known as a low tannin tea 

compared to green or black teas (from C. sinensis; Joubert and de Beer 2011), sea fennel’s 
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infusions and decoctions can be considered of comparatively low tannin content. 

Nevertheless, TFC, HAD and flavonols contents in rooibos tisanes was similar or even lower 

than those from sea fennel’s leaves extracts. Amongst the sea fennel’s organs, leaves’ 

infusions and decoctions had the highest levels of all phenolic groups analysed except CTC, 

followed by flowers tisanes and, lastly, the stems’ extracts with the lowest content. CTC was 

equally low in all of sea fennel tisanes (0.0 - 0.96 mg/cup-of-tea), which can be deemed 

positive in terms of flavouring since these compounds are associated with an astringent and 

unpleasant taste. Working with the same species Houta et al. (2011) also assessed the 

phenolic contents between different organs but reported higher TPC, TFC and CTC in stems 

rather than in leaves or flowers; however, those authors used methanolic extracts and studies 

have already showed that solvent and extraction method can greatly influence results 

(Buhmann and Papenbrock 2013). Houta et al. (2011) reported TPC in stems, leaves and 

flowers between 9 – 14 mg GAE/g dry extract and Meot-Duros and Magné (2009) reported it 

in bulk aerial organs’ methanolic extracts between 10 – 33 mg GAE/g dry extract; they 

considered that sea fennel had relatively high phenolic content when compared to other crop 

species as for example spinach and broccoli. These values are lower than those measured in 

the present study when considering the extraction yields obtained and the TPC per cup-of-tea 

of sea fennel’s organs (see Table 1). Nevertheless, it should be mentioned that phytochemical 

content can vary according to species provenance, as confirmed by Jallali et al. (2014), since 

intra-species variables affect biosynthesis of secondary metabolites in plants. Hence, C. 

maritimum’s herbal teas can be considered of comparatively good polyphenolic content, 

particularly leaves’ tisanes, and a potentially good source of these bioactive phytochemicals.  

 The phenolic profile of infusions and decoctions from the organs of sea fennel was 

further investigated by HPLC–DAD aiming to identify the individual phenolic compounds. 

Results (mg/200mL, i.e., mg/cup-of-tea, calculated based on the extraction yields) are 
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presented in Table 2 and Figure 1. Ten polyphenolic compounds were identified and 

quantified in the sea fennel beverages from which p-hydroxybenzoic acid, ferulic acid, 

epicatechin, pyrocatechol and 4-hydroxybenzaldehyde are, to the best of our knowledge, here 

firstly described in C. maritimum. Amid the sea fennel’s organs, leaves’ herbal teas had 

consistently higher levels of all the phenolics detected, which is in agreement with the leaves’ 

highest values of phenolic groups (TPC, TFC, HAD, flavonols, Table 1). Chlorogenic acid 

(CGA) was the dominant phenolic compound in all extracts, reaching more than 8 mg/cup-of-

tea in leaves’ tisanes and around 3.5 and 2.5 mg/cup-of-tea in flowers and stems samples, 

respectively. Other reports also found CGA as the major phenolic in sea fennel extracts 

(Meot-Duros and Magné 2009; Nabet et al. 2016; Siracusa et al. 2011), and associate its high 

levels to an antioxidant protection against the oxidative stress endured by plants exposed to 

such stressful environments (Meot-Duros and Magné 2009). Those values correspond to 8 – 

17 mg CGA/g extract dw (dry weight) considering the extraction yields (Table 1) and are 

within the range determined by Meot-Duros and Magné (2009). According to these authors, 

the sea fennel is among the highest CGA-containing species within the Apiaceae family; 

accordingly, decoctions from common fennel Foeniculum vulgare had lower CGA content 

(4.54 mg/g; Caleja et al. 2015) than that presently determined in sea fennel’s herbal teas. 

Hence, sea fennel’s water extracts, especially from leaves, can be a valuable alternative 

source of CGA for the food industry. According to Santana-Gálvez et al. (2017) this 

phytochemical is a promising nutraceutical and food additive attending to its multifunctional 

properties. In fact, CGA has several reported biological activities including antioxidant, 

antimicrobial and anti-carcinogenic along with hypoglycaemic, hypolipidaemic and 

hypotensive properties (Meng et al. 2013; Onakpoya et al. 2015; Santana-Gálvez et al. 2017).  

Other main compounds determined in sea fennel’s beverages (>1 mg/cup-of-tea; Table 

2) were neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA) in leaves’ tisanes; 
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they were also preferentially detected in stems and flowers’ extracts (0.3 – 0.6 mg/cup-of-tea). 

NCGA and various other caffeoylquinic acids have already been identified in sea fennel 

extracts at analogous concentrations (Nabet et al. 2016; Siracusa et al. 2011). They are 

associated with the strong antioxidant activity of several vegetables (Shahidi and 

Ambigaipalan 2015) and with some health promoting effects, as for example the modulation 

of glucose and lipid metabolism and reduction of blood pressure (Onakpoya et al. 2015). 

Epicatechin was also a main compound in leaves’ tisanes (0.8 – 1.2 mg/cup-of-tea) and 

determined in the other samples at lower concentrations (0.2 – 0.3 mg/cup-of-tea, not detected 

in stems’ infusion). This flavanol was not found reported in literature for sea fennel but 

common fennel’s decoction showed lower values (0.43 mg/g; Caleja et al. 2015). Epicatechin 

has various beneficial properties described such as antioxidant, anti-inflammatory, anti-

carcinogenic, anti-diabetic and cardio-protective, among others (Shay et al. 2015). Also 

preferentially detected in sea fennel’s herbal teas was ferulic acid (FA) in leaves’ tisanes (0.6 

– 0.8 mg/cup-of-tea), determined in lower amounts in roots and flowers’ extracts (0.2 – 0.3 

mg/cup-of-tea). This phenolic acid was also not found described in literature for sea fennel 

nor was it detected in common fennel’s decoction (Caleja et al. 2015); however, FA in F. 

vulgare methanolic extracts represented 3.5% of total phenolics (Roby et al. 2013), a lower 

ratio than that presently found (4.3 – 5.1%). Besides is potent antioxidant activity, FA has 

many recognized bioactivities among which anti-diabetic, anti-inflammatory, anti-

carcinogenic and cardio-protective (Kumar and Pruthi 2014). Other phenolics detected at 

noteworthy concentrations (0.3 – 0.4 mg/cup-of-tea) were coumaric acid (CA) in leaves and 

flowers’ samples and pyrocatechol in leaves’ herbal teas. CA has been detected in sea fennel 

but not quantified (Jallali et al. 2012) while pyrocatechol was not found described in literature 

for this species. The remaining phenolics were detected in minor amounts or below the 

quantitation limit (LOQ, Table 2). Overall, the phenolics identified in sea fennel’s extracts, 
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described in literature as interesting natural bioactive compounds, help explain some of the 

plant’s medicinal uses and highlight the potential use of sea fennel infusions and decoctions 

as a source of bioactive molecules / products, namely beverages with health promoting 

potential.  

Despite being important sources of polyphenolic compounds (Balasundram et al. 2006), 

herbal teas can also be an excellent source of other components such as minerals (Ajuwon et 

al. 2015; Pohl et al. 2016). In this sense, tisanes from sea fennel’s organs were analysed for 

mineral content and results are summarized on Table 3. Sodium was the most abundant 

element in sea fennel’s beverages (19.8 – 49.3 mg/cup-of-tea), particularly in those from 

leaves, being higher than the values detected in several herbal teas from commonly used 

plants used, such as Cymbopogon citratus (DC.) Stapf. (lemongrass), Matricaria chamomilla 

L. (chamomile) or Zingiber officinale Roscoe (ginger) (Pohl et al. 2016). Na is an essential 

nutrient, however its recommended daily intake should not exceed 2000 mg (WHO 2012a). 

Considering that a cup-of-tea from sea fennel’s organs contains no more than 49 mg of Na it 

is a reasonably safe beverage to include in a daily diet. The other macro-elements were also 

rather abundant in sea fennel’s tisanes with levels of Ca (2.93 – 19.9 mg/cup-of-tea) and Mg 

(1.69 – 5.55 mg/cup-of-tea) being higher in leaves’ extracts and K values (2.18 – 22.6 

mg/cup-of-tea) higher in flowers’ samples. Among microelements, the sea fennel’s beverages 

had similar values of Fe (11.0 – 27.3 µg/cup-of-tea), Mn (2.53 – 17.4 µg/cup-of-tea) and Zn 

(11.3 – 35.9 µg/cup-of-tea), higher in leaves’ decoction for Fe and Mn. According to a 

compilation of minerals in tisanes from numerous plants, herbal beverages can be deemed 

good sources of many elements like Na, Ca, K, Mg, Fe, Mn and Zn (Pohl et al. 2016). Of the 

adult-daily recommended intakes for Ca (1000 – 1300 mg/day), Mg (190 – 260 mg/day), K 

(3510 mg/day), Fe (9.1 – 58.5 mg/day), Zn (3 – 14 mg/day) (WHO/FAO 2004, WHO 2012b) 

and Mn (5 – 5.5 mg/day; NHMRC 2006) a cup-of-tea from sea fennel’s organs can supply 
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between 0.2% – 2% of Ca, 0.7% – 2.9% of Mg, 0.06% – 0.6% of K, 0.02% – 0.3% of Fe, 

0.08% – 1.2% of Zn and 0.05% – 0.3% of Mn. In this sense sea fennel infusions and 

decoctions may be considered a mineral supplementary source, just like most herbal teas 

usually are (Pohl et al. 2016). Moreover, the levels of potentially toxic minerals like Cu, Cr, 

Ni, Pb and Cd, when detected, were below legislated values for plants (Pb: 0.3 mg/kg wet 

weight; Cd: 0.2 mg/kg wet weight; maximum levels in finished herbal products are not 

regulated) pointing to the safe consumption of sea fennel’s tisanes (EC Regulation 

1881/2006).  

 

3.2 Toxicological evaluation  

The toxicity of plant extracts, herbal beverages in particular, must be determined if its safety 

for human consumption is to be established. Preliminary toxicity screenings are usually 

assessed through in vitro models using different mammalian cell lines to test for cytotoxicity, 

which delivers quick and reliable results and reduces in vivo testing (Rodrigues et al., 2016; 

Saad, et al. 2006). In this study, C. maritimum’s tisanes were subjected to a preliminary 

toxicological evaluation using four different mammalian cell lines, together with A. linearis 

extracts for comparison, and cellular viability is presented in Figure 2. Sea fennel’s extracts 

had low toxicity with cell viability values always higher than 90% for all cell lines. Rooibos 

samples had moderate toxicity towards non-tumoural cells (N9 and S17), with viability values 

(57% – 66%) lower than those obtained for the sea fennel beverages (> 90%). Samples from 

both species did not exhibited toxicity against tumoural cells SH-SY5Y and HepG2, since 

cellular viabilities after applying sea fennel’s and rooibos extracts were similar or higher than 

90%. As a preliminary toxicological assessment, these results suggest that sea fennel’s 

infusions and decoctions can be considered as non-toxic beverages especially when compared 

to those obtained for the commercial rooibos tisanes. To the best of our knowledge no 
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toxicological studies of sea fennel extracts are reported but this plant’s large use for 

nutritional and culinary purposes points to its safe consumption (Atia et al. 2011; Renna and 

Gonnella 2012).  

 

3.3 Biological activities: in vitro antioxidant properties  

Nowadays, natural antioxidants such as food products and /or herbal beverages are in high 

demand in the market (Sindhi et al 2013). In fact, consumers are aware of the potential 

benefits of natural products and are willing to spend more on nutrition and supplements. In 

this work, the antioxidant potential of “cups-of-tea” from sea fennel’s organs was assessed by 

eight methods targeting radical scavenging activity (RSA) and metal-related potential (Table 

4). Results were compared with those obtained with rooibos herbal tea which has well 

documented antioxidant properties (Ajuwon et al. 2015; Joubert and de Beer 2011). All 

extracts from sea fennel were more active against the hydroxyl radical (OHl; 44.1 – 54.4%) 

than rooibos herbal teas (18.8 – 25.6%) and all except roots infusions had the same RSA 

towards DPPH (83.5 – 88.0% activity) as the rooibos samples (84.6%). The NO scavenging 

capacity of the sea fennel’s decoctions from leaves and flowers (58.6% and 57.5%) also 

matched rooibos tisane’s activity (58.6 – 59.5%) and samples from sea fennel’s leaves (86.6 – 

88.0%) were as effective against the ABTS radical as rooibos extracts (92.7 – 92.9%). 

Flowers tisanes were slightly less active than those from leaves towards NO but still had 

around 80% activity. Moreover, herbal teas from sea fennel’s leaves and flowers matched the 

rooibos beverage capacity to reduce iron (FRAP; 96.1 – 100%) and matched or surpassed its 

copper chelating activity, although being moderate (30.7 – 38.2%). The capacity to chelate 

iron, while also moderate, was similar between sea fennel’s stems and flowers infusions (36.0 

– 36-5%) and rooibos decoction (41.8%), and between the remaining sea fennel’s extracts and 

rooibos infusion. Cups-of-tea from sea fennel’s organs had approximately 80% of capacity to 
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scavenge the superoxide radical (O2
l¾), although they were less effective than rooibos 

(aprox. 84%). Furthermore, although less active in metal-related potential, sea fennel and 

rooibos extracts were at least as efficient as the positive controls in radical-scavenging 

activity.  

As can be deduced from our results, the antioxidant capacity of the sea fennel’s herbal 

teas from leaves and flowers were overall as effective as those of rooibos tisanes. 

Additionally, among the sea fennel’s organs, leaves and flowers extracts had the highest 

scavenging capacity, FRAP and copper chelating activity. Similarly, Houta et al. (2011) 

reported a higher scavenging activity towards DPPH in sea fennel methanolic extracts from 

leaves, followed by flowers and stems with the lowest RSA. Nevertheless, high antioxidant 

activity has already been described in sea fennel undifferentiated aerial extracts (Houta et al. 

2011; Jallali et al. 2014; Meot-Duros and Magné 2009; Romojaro et al. 2013; Siracusa et al. 

2011). Our results confirm the sea fennel’s in vitro antioxidant potential, mostly of its leaves 

and flowers, and thus show that beverages made from this plant’s organs may be useful in 

preventing oxidative-stress related diseases much like the famous rooibos herbal tea is 

reported to be (Ajuwon et al. 2105).  

The antioxidant activity of plant extracts is closely associated to their phenolic content 

(Dai and Mumper 2010) and, in fact, infusions and decoctions from leaves were consistently 

the extracts with the higher amounts of all phenolic groups except CTC (Table 1), followed 

by flower’s tisanes. This suggests that polyphenols may be the major contributors to the 

antioxidant capacity of these sea fennel’s extracts, an association confirmed by numerous 

previous studies attesting to the phenolics role as antioxidants in plants, particularly in 

halophytes (Ksouri et al. 2012). In fact, the environmental stress factors that salt-tolerant 

species like sea fennel endure influences their phenolic content and related antioxidant 

activity (Buhmann and Papenbrock 2013). Moreover, the amount of individual phenolics 
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(Table 2) can also contribute to the stronger antioxidant activities in leaves and flowers 

tisanes since most of these phytochemicals were determined in higher amounts in these 

organ’s beverages. For example, the main component detected, chlorogenic acid, is an 

antioxidant compound (Meng et al. 2013) already linked to the sea fennel’s strong radical 

scavenging ability (Meot-Duros and Magné 2009). Some of the other phenolics determined in 

higher amounts in leaves and flowers tisanes may have also contributed through addictive and 

/ or synergistic effects, namely NCGA and CCGA, which are known antioxidants (Shahidi 

and Ambigaipalan 2015). Additionally, sea fennel’s leaves beverages had higher levels of all 

the phenolics detected, which can account for the slightly higher ABTS radical scavenging 

activity of these tisanes. 

Phenolics are recognized powerful antioxidants and plant-products like herbal teas are 

an important dietary source of these phytochemicals (Gruenwald, 2009; Ksouri et al., 2012). 

The intake of antioxidants is associated with the prevention or amelioration of oxidative 

stress-related diseases, as for example neurodegenerative disorders, cardiovascular 

dysfunction, diabetes and cancer, and their consumption has become a strategy to address 

such health challenges (Sindhi et al. 2013; Lu and Yen 2015). Thus, the estimated antioxidant 

capacity and phytochemical contents of the extracts from sea fennel’s organs suggest that sea 

fennel’s herbal teas, particularly from leaves and flowers, can be an alternative source for 

natural antioxidants with possible health benefits beyond its nutritional role in terms of 

minerals. Herbal teas are popular beverages consumed for their pleasant taste and therapeutic 

properties (Pohl et al. 2016) and the use of C. maritimum as an herbal beverage may have 

commercial potential. It could well follow the example of A. linearis: the rooibos plant had no 

commercial value until its potential was recognized and nowadays it is highly valued in the 

food industry and a worldwide consumed herbal tea (Joubert and de Beer 2011).  
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4. Conclusion 

From our results it is clear that infusions and decoctions made from C. maritimum leaves and 

flowers have a high polyphenolic content, a strong antioxidant potential, an interesting 

mineral profile and can be considered as non-toxic beverages in view of the preliminary 

toxicological assessment with in vitro models. Thus, sea fennel’s leaves and flowers herbal 

teas could be a potential source of bioactive molecules and / or products for the food industry, 

as for example antioxidants and minerals.  
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Table 1. Y
ields (g extract/200m

L) and phenolic contents (m
g/cup-of-tea) in infusions and decoctions from

 stem
s, leaves and flow

ers of C
. 

m
aritim

um
 and from

 A. linearis (rooibos)  

P
la

n
t 

O
r
g
a
n

 
E

x
tr

a
c
t 

Y
ie

ld
s 

T
P

C
1   

T
F

C
2 

C
T

C
3 

H
A

D
4 

F
la

v
o
n

o
ls 5 

C. m
aritim

um
 

Stem
s 

Infusion 
0.302 

12.4 ± 0.36
e 

22.9 ± 0.69
e 

0.0
c 

8.97 ± 0.58
f 

4.60 ± 0.40
e 

 
D

ecoction 
0.319 

12.8 ± 0.92
e 

27.1 ± 1.15
e 

0.63 ± 0.15
c 

11.2 ± 0.56
e 

5.96 ± 0.48
d 

L
eaves 

Infusion 
0.478 

33.7 ± 0.91
c 

54.4 ± 6.67
bc 

0.96 ± 0.25
c 

25.3 ± 0.67
a 

15.7 ± 0.44
a 

 
D

ecoction 
0.500 

35.3 ± 2.98
c 

57.2 ± 6.42
b 

0.63 ± 0.15
c 

25.2 ± 1.44
a 

16.2 ± 0.99
a 

Flow
ers 

Infusion 
0.404 

21.2 ± 0.17
d 

48.0 ± 2.07
cd 

0.26 ± 0.00
c 

21.1 ± 0.71
b 

10.2 ± 0.41
c 

 
D

ecoction 
0.389 

22.6 ± 0.99
d 

40.7 ± 3.55
d 

0.0
c 

18.6 ± 1.27
c 

9.46 ± 0.75
c 

A. linearis 
 

 
Infusion 

 
43.1 ± 3.39

b 
52.7 ± 5.41

bc 
11.8 ± 2.82

b 
12.0 ± 0.75

e 
12.7 ± 0.60

b 

 
D

ecoction 
 

51.3 ± 1.08
a 

66.7 ± 2.81
a 

13.2 ± 1.37
a 

14.3 ± 0.25
d 

15.5
 ± 0.45

a 

D
ata represent the m

ean ± SD
 (n ≥ 6). In each colum

n, different letters m
ean significant differences (p < 0.05). 

1TPC
: total polyphenol content, m

g G
A

E/200m
L, G

A
E: gallic acid equivalents 

2TFC
 total flavonoid content; m

g R
E/200m

L, R
E: rutin equivalents 

3C
TC

: condensed tannin content, m
g C

E/200m
L, C

E: catechin equivalents 
4H

A
D

 hydroxycinnam
ic acid derivatives, m

g C
A

E/200m
L, C

A
E: caffeic acid equivalent 

5m
g Q

E/200m
L, Q

E: quercetin equivalents  
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Table 2. H
PLC

–D
A

D
 analysis of the phenolic profile (m

g/cup-of-tea) of infusions and decoctions from
 stem

s, leaves and flow
ers of C

. 

m
aritim

um
. 

P
e
a
k

 n
º 

R
T

 (m
in

) 
C

o
m

p
o
u

n
d

 (P
e
a
k

) 

S
te

m
s 

L
e
a
v
e
s 

F
lo

w
e
r
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Infusion
 

D
ecoction

 
Infusion

 
D

ecoction
 

Infusion
 

D
ecoction

 

P
h

e
n

o
lic

 a
c
id

s 

H
ydroxybenzoic acids 

1 
1.5 

G
allic acid 

- 
<L

O
Q

 
<L

O
Q

 
<L

O
Q

 
<L

O
Q

 
<L

O
Q

 

2 
4.4 

p-H
ydroxybenzoic acid 

0.06 
0.06 

0.15 
0.17 

0.04 
0.05 

H
ydroxycinnam

ic acids 

3 
2.8 

N
eochlorogenic acid 

0.45 
0.53 

1.47 
1.73 

0.34 
0.43 

4 
7.4 

C
ryptochlorogenic acid 

0.53 
0.63 

1.59 
1.83 

0.50 
0.64 

5 
7.8 

C
hlorogenic acid 

2.43 
2.42 

8.24 
8.67 

3.33 
3.66 

6 
11.6 

C
oum

aric acid 
0.09 

0.12 
0.36 

0.38 
0.29 

0.31 

7 
13.0 

Ferulic acid 
0.15 

0.18 
0.57 

0.77 
0.23 

0.28 

F
la

v
o
n

o
id

s 

Flavanols 

8 
10.5 

E
picatechin 

- 
0.35 

0.84 
1.16 

0.26 
0.35 

O
th

e
r
 p

o
ly

p
h

e
n

o
ls 

9 
2.5 

Pyrocatechol 
0.10 

0.10 
0.31 

0.33 
0.08 

0.08 

10 
5.0 

4-H
ydroxybenzaldehyde 

0.01 
0.01 

0.05 
0.06 

<L
O

Q
 

<L
O

Q
 

 
 

T
O

T
A

L
 

3
.8

2
 

4
.4

1
 

1
3
.5

7
 

1
5
.1

2
 

5
.0

6
 

5
.8

0
 

R
T

 – retention tim
es; L

O
Q

 = 0.01 m
g com

pound/g extract dw
. 
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Table 3. M
ineral content of infusions and decoctions (m

g or µg /cup-of-tea) from
 stem

s, leaves and flow
ers of C

. m
aritim

um
.  

 
 

S
te

m
s 

 
L

e
a
v
e
s 

 
F

lo
w

e
r
s 

 

 
M

in
e
r
a
l 

Infusion
 

D
ecoction

 
Infusion

 
D

ecoction
 

Infusion
 

D
ecoction

 

 
 M

acro-elem
ents (m

g/cup-of-tea) 

E
sse

n
tia

l 

e
le

m
e
n

ts 

N
a
 

33.3 ± 0.32
b 

32.7 ± 2.80
b 

40.1 ± 5.44
ab 

49.3 ± 0.20
a 

21.9 ± 1.00
c 

19.8 ± 0.35
c 

C
a
 

2.93 ± 0.01
b 

3.10 ± 0.14
b 

17.8 ± 1.93
a 

19.9 ± 0.51
a 

4.13 ± 0.15
b 

4.11 ± 0.19
b 

K
 

3.40 ± 0.18
cd 

3.64 ± 0.02
c 

2.18 ± 0.25
d 

4.58 ± 0.46
c 

22.6 ± 0.26
a 

19.3 ± 0.60
b 

M
g
 

1.69 ± 0.03
c 

1.81 ± 0.00
bc 

5.03 ± 0.40
a 

5.55 ± 0.08
a 

2.40 ± 0.03
b 

2.41 ± 0.04
b 

 M
icro and trace-elem

ents (µ
g/cup-of-tea) 

F
e
 

18.6 ± 0.78
b 

15.6 ± 3.12
bc 

18.9 ± 2.30
b 

27.3 ± 0.41
a 

11.0 ± 0.49
c 

16.0 ± 2.25
bc 

M
n

 
2.62 ± 0.01

d 
2.53 ± 0.12

d 
12.7 ± 0.17

b 
17.4 ± 0.38

a 
4.00 ± 0.23

c 
4.28 ± 0.07

c 

Z
n

 
35.9 ± 1.46

a 
17.4 ± 9.57

a 
12.3 ± 0.20

a 
11.3 ± 0.27

a 
12.8 ± 0.74

a 
28.3 ± 17.0

a 

C
u

 
5.00 ± 0.15

ab 
3.81 ± 1.00

ab 
3.39 ± 0.24

b 
5.47 ± 0.11

a 
4.26 ± 0.13

ab 
4.02 ± 0.02

ab 

C
r
 

0.16 ± 0.07
a 

0.20 ± 0.00
a 

0.61 ± 0.49
a 

0.49 ± 0.12
a 

0.27 ± 0.16
a 

0.22 ± 0.02
a 

N
i 

< L
O

D
 

< L
O

D
 

< L
O

D
 

0.44 ± 0.00
 

< L
O

D
 

< L
O

D
 

N
o
n

-e
sse

n
tia

l 

e
le

m
e
n

ts 

P
b

 
< L

O
D

 
< L

O
D

 
< L

O
D

 
2.66 ± 0.00

 
< L

O
D

 
< L

O
D

 

C
d

 
0.52 ± 0.00

a 
< L

O
D

 
0.22 ± 0.00

a 
< L

O
D

 
< L

O
D

 
< L

O
D

 

D
ata represent the m

ean ± SD
 (n = 3). In each row

 different letters m
ean significant differences (p<0.05). 

LO
D

: C
d, 0.08 µg/cup-of-tea; N

i, 0.06 µg/cup-of-tea; Pb, 0.15 µg/cup-of-tea. 
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Table 4. R
adical scavenging on D

PPH
, A

B
TS, N

O
, O

2
l
¾

 and O
H

l radicals, ferric reducing antioxidant pow
er (FR

A
P) and m

etal-chelating 

activities on copper (C
C

A
) and iron (IC

A
) of infusions and decoctions from

 stem
s, leaves and flow

ers of C
. m

aritim
um

 and A. linearis (rooibos). 

R
esults are expressed as antioxidant activity (%

 activity in a cup-of-tea).  

P
la

n
t/ 

c
o
m

p
o
u

n
d

 

 
 

A
n

tio
x
id

a
n

t a
c
tiv

ity
 (%

) 

O
r
g
a
n

 
E

x
tr

a
c
t 

D
P

P
H

 
N

O
 

A
B

T
S

 
O
2 l
¾

 
O

H
l
 

F
R

A
P

 
C

C
A

 
IC

A
 

C. m
aritim

um
  

Stem
s 

Infusion 
79.4 ± 5.28

c 
45.1 ± 0.69

d 
62.1 ± 7.83

d 
52.1 ± 4.82

c 
46.1 ± 5.11

bc 
88.3 ± 0.67

c 
25.6 ± 2.46

de 
36.0 ± 4.79

bcd 

 
D

ecoction 
83.5 ± 1.43

abc 
54.5 ± 2.22

c 
71.3 ± 4.7

c 
55.7 ± 3.23

c 
54.4 ± 4.49

b 
85.4 ± 1.28

c 
22.0 ± 3.64

e 
17.7 ± 3.96

f 

L
eaves 

Infusion 
86.5 ± 0.95

a 
37.0 ± 1.44

e 
88.0 ± 2.97

ab 
76.9 ± 1.46

b 
44.1 ± 5.05

c 
98.6 ± 3.40

ab 
34.0 ± 2.25

bc 
31.1 ± 3.87

cde 

 
D

ecoction 
86.0 ± 4.34

ab 
58.6 ± 1.07

b 
86.6 ± 3.67

ab 
 76.6 ± 1.15

b 
48.9 ± 4.39

bc 
98.8 ± 2.99

ab 
38.2 ± 2.69

b 
26.0 ± 7.67

ef 

Flow
ers 

Infusion 
88.0 ± 0.16

a 
15.1 ± 1.12

f 
80.3 ± 6.23

b 
78.2 ± 1.51

b 
48.0 ± 4.69

bc 
96.1 ± 0.81

b 
37.8 ± 3.51

b 
36.5 ± 5.51

bc 

 
D

ecoction 
87.3 ± 0.98

a 
57.5 ± 0.77

b 
82.6 ± 6.03

b 
77.5 ± 0.87

b 
53.2 ± 3.39

b 
100 ± 0.00

a 
30.7 ± 2.86

cd 
30.1 ± 6.17

cde 

A. linearis 
 

 
Infusion 

84.6 ± 0.41
ab 

58.6 ± 0.69
b 

92.7 ± 0.85
a 

84.4 ± 0.24
a 

18.8 ± 2.40
d 

98.1 ± 2.00
ab 

26.6 ± 3.52
de 

26.2 ± 1.70
def 

 
D

ecoction 
84.6 ± 0.51

ab 
59.5 ± 1.29

b 
92.9 ± 0.63

a 
84.9 ± 0.15

a 
25.6 ± 1.40

d 
 100 ± 0.00

a 
28.6 ± 3.73

cd 
41.8 ± 4.29

b 

B
H

T
*  

 
 

81.7 ± 1.65
bc 

 
93.4 ± 0.26

a 
 

 
- 

 
 

A
scorbic acid* 

 
 

 
90.6 ± 1.35

a 
 

 
 

 
 

 

C
atechin* 

 
 

 
 

 
75.2 ± 2.83

b 
84.4 ± 9.31

a 
 

 
 

E
D

T
A

* 
 

 
 

 
 

 
 

 
94.6 ± 0.36

a 
99.7 ± 0.15

a 

V
alues represent the m

ean ± SD
 of at least three experim

ents perform
ed in triplicate (n = 9). In each colum

n different letters m
ean significant differences 

(p<0.05). 
*Positive controls tested at 1 m

g/m
L

 (B
H

T
, catechin and E

D
T

A
) or 10 m

g/m
L

 (ascorbic acid).  



 

Figure legends 

Figure 1. HPLC–DAD analysis (280 nm) of phenolic compounds in infusions and decoctions 

from C. maritimum organs. Peak numbers refer to the compounds in Table 2. 

Figure 2. Toxicity of infusions and decoctions, applied at the concentration of 100 µg/mL 

(extract dw) from C. maritimum organs and A. linearis (rooibos) on mammalian cell lines: A) 

N9, B) S17, C) SH-SY5Y and D) HepG2. Cells treated only with cell culture medium were 

used as controls; H2O2 was used as positive control for cell toxicity. Values represent the mean 

± SD of at least three experiments performed in triplicate (n = 9). In each graph different letters 

mean significant differences (p < 0.05). 







Highlights 

 

• C. maritimum’s tisanes, particularly from leaves, were rich in phenolic compounds 

• Chlorogenic acid was the dominant phenolic determined. 

• Na was the most abundant mineral followed by Ca and Mg in leaves and K in flowers 

• Sea fennel’s leaves and flowers tisanes were as antioxidant as rooibos herbal tea 

• C. maritimum can be a source of products and / or molecules for the food industry  

 


