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Abstract

The usual, factorial and central moments of Poisson cluster processes are studied at small
and large scales, leading to various scaling relations. At large scales, it is assumed that the
distribution of cluster sizes is heavy-tailed. The scaling relations are also examined from the
numerical standpoint, especially at small scales in connection to the so-called multifractal
analysis. Other issues addressed include the transition between small and large scales, the
special cases of Poisson cluster processes of interest, the advantages of using factorial moments
over the usual moments, among others. The obtained results are motivated and applied to a
real data trace from Internet traffic, where Poisson cluster processes have been used as physical
models of choice.

1 Introduction

A Poisson cluster process (PCP, for short) consists of points on the positive half-axis (0,∞) whose
positions are determined by the following construction. Clusters of a finite number of points are
assumed to arrive according to a Poisson arrival process with intensity λ > 0 at times Sj , j ≥ 0
(with 0 < S0 < S1 < . . .). The clusters are i.i.d. copies with a random but finite number of
points Wj . The focus throughout is on clusters having the following structure: the Wj points are
separated in time by i.i.d. sequence of positive interarrival times Aj,k, k ≥ 1, and the first point
of a cluster is located at the the arrival time of the cluster. Such PCPs are also known as the
Bartlett-Lewis processes after Bartlett (1963) and Lewis (1964) (see, for example, Cox and Isham
(1980), Daley and Vere-Jones (2003)).

In mathematical terms, if N(B) denotes the number of such PCP points in a set B ⊂ (0,∞),
then

N(B) =
∞∑
j=1

Wj−1∑
k=0

1B

(
Sj +

k∑
m=1

Aj,m

)
, (1.1)

where 1B(x) is the indicator function of the set B. The PCP N defined by (1.1) is called transient
(that is, nonstationary), since the distributions of N(B) and N(B + T ) are in general not equal
for T > 0 and B ⊂ (0,∞), where B + T = {x + T : x ∈ B}. The equilibrium PCP Ne(B) is
defined as N(B+T ) letting T →∞. For the equilibrium process, the distributions of Ne(B) and
Ne(B+h) are the same for any h > 0 and B ⊂ (0,∞). The equilibrium process Ne can be viewed
as stationary, and will be the focus throughout this work.
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PCPs form an interesting class of point processes which has been studied in theory (e.g.
in the general context of point process; see Cox and Isham (1980), Karr (1991), Daley and
Vere-Jones (2003)) and used successfully in applications (e.g. computer failure patterns in Lewis
(1964), software reliability in Zeephongsekul et al. (1994), neuronal spike trains in Grüneis et
al. (1989, 1990), physics in Saleh and Teich (1982), Lowen and Teich (2005), rainfall in Onof
et al. (2000)). The motivating application in this work is the computer traffic observed on a
network link, where points are data packets and clusters are packet flows (essentially document
files, website or other application contents). The use of PCPs in modeling the data packet traffic
was popularized by Hohn et al. (2003). See also Faÿ et al. (2006), Mikosch and Samorodnitsky
(2007), Fasen and Samorodnitsky (2009), González-Arévalo and Roy (2010), Antunes and Pipiras
(2015). The variants of PCPs for modeling Internet traffic are the ON/OFF model (e.g. Leland
et al. (1994)), the infinite source Poisson arrival process (e.g. Mikosch et al. (2002), Guerin et al.
(2003)), or the renewal point process (e.g. Kaj (2002), Gaigalas and Kaj (2003)).

In this work, we focus on the moments and cumulants of PCPs. On one hand, moments and
cumulants are most basic and fundamental to any random quantity and, in fact, have already
been studied for PCPs to some extent (see references in Section 2 below). We are particularly
interested here in their scaling behavior at large (course) and small (fine) scales, especially in
connection to the use of PCP models for Internet traffic.

More specifically, we will consider the following moments of PCPs: for integer r ≥ 1,

(usual) moments : mr(a) = ENe(0, a)r, (1.2)

factorial moments : m[r](a) = ENe(0, a)[r], (1.3)

central moments : m0
r(a) = E(Ne(0, a)− ENe(0, a))r, (1.4)

where n[r] = n(n − 1) . . . (n − r + 1) for a nonnegative integer n. Central moments are natural
to consider in view of some of the large scale limiting results available for centered PCPs (see
(7.3) and (7.4) below). Fractional moments are considered because, as will be shown, they may
be more informative about PCPs than the usual moments.

The quantities most convenient to work with in the context of point processes are not any of
the moments above but rather factorial cumulants. Moreover, the (usual) cumulants are often
considered in practice, in addition to the (usual) moments. We will thus also consider: for integer
r ≥ 1,

(usual) cumulants : κr(a) =
∂r logMa(t)

∂tr

∣∣∣
t=0

, (1.5)

factorial cumulants : κ[r](a) =
∂r logPa(z)

∂zr

∣∣∣
z=1

, (1.6)

where Pa(z) is the probability generating function of the equilibrium PCP on the interval (0, a)
(see Section 2 for definition) and Ma(t) is the moment generating function of the equilibrium PCP
on the interval (0, a). In fact, the results of interest will be derived first for factorial cumulants
κ[r](a) and then used to obtain analogous results for the remaining quantities (1.2)–(1.4) and
(1.5).

1.1 Description of the main results and other contributions

Small and large scale behaviors of the quantities (1.2)–(1.4) and (1.5)–(1.6) refer, respectively, to
a→ 0+ and a→∞. As we will show, any of the moments (1.2)–(1.4) satisfy the scaling relation

mgen,r(a) ∼ Cgen,raζgen(r), as a→ 0+ or a→∞, (1.7)

2



Exponents functions

moments large scales (a→∞) small scales (a→ 0+)

mr(a) ζ(r) = r ζ(r) = 1
m[r](a) ζ[ ](r) = r ζ[ ](r) = 1 + (r − 1)θ

m0
r(a) ζ0(r) = r − α+ 1 (r ≥ 2) ζ0(r) = 1

cumulants large scales (a→∞) small scales (a→ 0+)

κr(a) η(r) = r − α+ 1 η(r) = 1
κ[r](a) η[ ](r) = r − α+ 1 (r ≥ 2) η[ ](r) = 1 + (r − 1)θ

Table 1: The exponents functions ζgen(r) in (1.7) and ηgen(r) in (1.8) for the various moments
and cumulants, together with the notation for each case.

where mgen,r(a) stands for one of the moments (1.2)–(1.4), Cgen,r > 0 is a constant and ζgen(r)
is an exponents function (the abbreviation “gen” stands for “general”, “generic”). The form
of the constant Cgen,r and the function ζgen(r) depends on which of the moments (1.2)–(1.4) is
considered, and whether a→ 0+ or a→∞. Likewise, we will also show that

κgen,r(a) ∼ cgen,raηgen(r), as a→ 0+ or a→∞, (1.8)

where κgen,r(a) stands for one of the cumulants (1.5)–(1.6), cgen,r > 0 is a constant and ηgen(r)
is an exponents function. The form of the constant cgen,r and the function ηgen(r) depends on
which of the cumulants (1.5)–(1.6) is considered, and whether a→ 0+ or a→∞.

In showing (1.7) and (1.8), we shall make the following assumptions motivated by the applica-
tions to Internet traffic. At large scales (a→∞), we shall assume, in particular, that the cluster
size distribution is heavy-tailed with exponent α ∈ (1, 2) in the sense that

P(Wj > w) ∼ CWw−α, as w →∞, (1.9)

where ∼ denotes the asymptotic equivalence and CW > 0 is a constant. This is a common
assumption in the Internet traffic models, based on empirical findings (e.g. Abry et al. (2010)).
At small scales (t→ 0+), we shall assume that the cumulative distribution F1 of interarrival times
Aj,m has a density f1 satisfying: for θ > 0 and Cf > 0,

f1(t) ∼ Cf tθ−1, as t→ 0+. (1.10)

In the applications to Internet traffic, F1 is often taken as a gamma distribution, thus satisfying
(1.10).

Under the assumptions (1.9) and (1.10), our scaling results (1.7) and (1.8) are summarized
in Table 1, whose entries are the exponents functions ζgen(r) and ηgen(r) for the moments and
cumulants of interest, including the notation of the functions for each specific case. (The constants
in (1.7) and (1.8) will also be derived but are not reported in Table 1.) Several interesting
conclusions can be drawn from Table 1. For example, on the moments side, note that the exponent
α is captured by the central moments only, while at small scales, the exponent θ is captured by
the factorial moments only. The factorial cumulants, on the other hand, have these exponents at
both large and small scales. One obvious interest in the obtained scaling relations is that they
could be used to estimate the underlying model parameters, such as α and θ.

The theoretical results summarized in Table 1 aside, our paper considers several other aspects
of the problem and is related to other work found in the literature. We characterize the transition
between small and large scales, study several special cases of PCPs of interest, and also examine
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our results on a real data trace from Internet traffic. In the application, we find the various
empirical moments of the Internet traffic data set to be described quite well by the derived
formulae for the moments of PCP and their asymptotic relations.

We also note that the results of Table 1 hold for a fixed arrival rate λ. In the analysis of PCPs
and related models at large scales under the assumption (1.9) (and thus for Internet traffic), it is
common to consider the rate λ as a function of T , that is, λ = λ(T ), where T is the length of the
observation window (0, T ) of PCP. The connections of this work to the case λ = λ(T ) and some
scaling results when taking a = T will be discussed below (see Section 7).

Our results on the large scale asymptotic behavior of the various moments are closest in the
spirit to those of Dombry and Kaj (2013) who considered moments measures in the parallel context
of renewal point processes. But it should be noted that our approach and proofs are different,
and some of the issues considered here are not addressed in Dombry and Kaj (2013). Further
comparison with the work of Dombry and Kaj (2013) will be provided below (see Remark 7.2
below).

Our results at small scales are somewhat connected to the so-called multifractality, which refers
to the scaling behavior (1.7) of the usual moments mr(a) as a → 0+ with nonlinear function ζr.
According to Table 1, the exponents function ζ(r) = 1 for the PCP is linear, corresponding to
monofractal behavior. From a practical perspective, however, ζ(r) is estimated over a range of
small scales and we shall argue through numerical experiments that the scaling (1.7) with ζ(r) = 1
occurs for a range of too small a’s to be observable in practice. For observable ranges of small a’s,
nonlinear ζ(r) could be estimated, suggesting a multifractal behavior which is spurious. These
findings are consistent with the viewpoint expressed in Veitch et al. (2005). Multifractal-like
features of PCPs were also observed and discussed in Hohn et al. (2003), and even modeled
through multifractals in Ribeiro et al. (2005), Krishna et al. (2012).

Table 1 also suggests that the factorial moments, and not the usual moments, are more
informative about the PCP at small scales, since their exponents function ζ[ ](r) = 1 + θ(r − 1)
involves θ. We also find that this exponents function can be estimated more reliably, compared
to the exponents function ζ(r) = 1 of the usual moments as noted above. This suggests that the
factorial moments should be used instead of the usual moments in the analysis of PCPs at small
scales, though a more thorough study of these observations is left for future work. We should
also note that the use of factorial moments in the multifractal (intermittency) analysis of point
process data, instead of the usual moments, can be found in Carruthers et al. (1989), de Wolf et
al. (1996), in connection to high-energy multiparticle collisions.

In summary, the structure of the paper is as follows. In Section 2, we provide the known
formulae for the various cumulants and moments of PCPs. The behavior of the moments of PCP
at large scales and for fixed λ is studied in Section 3. Section 4 concerns the behavior of the
moments at small scales. The transition between small and large scales is discussed in Section 5.
The special case of PCPs when the interarrival times follow a normal distribution (shifted so that
the probability of it being negative is negligible) is treated in Section 6. The large scale behavior
in the case of λ = λ(T ) mentioned above is discussed in Section 7. The application to Internet
traffic can be found in Section 8. Finally, in Appendix A, we provide the formulae relating the
first 7 central moments and factorial cumulants, which are used in Section 7, and in Appendix
B, we derive the formula for the factorial cumulants of PCP, adapting the approach of Westcott
(1973).
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2 Moments and cumulants of Poisson cluster processes

We gather here several formulae for the moments and related quantities of some Poisson cluster
processes (PCPs). We also introduce some notation used throughout this work. The focus is on
the PCP N given by (1.1), and the corresponding equilibrium PCP Ne discussed following (1.1).

The interarrival times Aj,m in (1.1) between the points in a cluster are identically distributed
as A having distribution function

F1(t) = P(A ≤ t), t > 0, (2.1)

and its kth convolution will be denoted Fk = F1 ∗ . . . ∗ F1, k ≥ 1. The number of points Wj in a
cluster is identically distributed as W with probability mass function

pW (w) = P(W = w), w ≥ 1, (2.2)

and the tail probability will be denoted

Rw = P(W ≥ w), w ≥ 1. (2.3)

As in (1.1), the starting points Sj of the clusters are the arrival times of a Poisson process with
intensity λ > 0.

Let
Pt(z) = EzNe(0,t) (2.4)

be the probability generating function of the equilibrium PCP on the interval (0, t). Factorial
cumulants of Ne(0, t) are defined as

κ[r](t) =
∂r logPt(z)

∂zr

∣∣∣
z=1

, r ≥ 1, t > 0. (2.5)

Factorial cumulants of the equilibrium PCP Ne can also be obtained as

κ[1](t) = λEWt, κ[2](t) = 2λ
∞∑
k=1

∫ t

0
Fk(u)du

∞∑
j=1

Rj+k (2.6)

and, for r ≥ 2,

κ[r](t) = (r − 1)rλ
∞∑

k=r−1
(k − 1)(k − 2) . . . (k − r + 2)

∫ t

0
Fk(u)du

∞∑
j=1

Rj+k. (2.7)

The formulas (2.6)–(2.7) appear in Westcott (1973) when the first points of the clusters are
excluded. When the first points are included, the formulas are derived in Appendix B below.

The factorial cumulants are related to factorial moments

m[r](t) = ENe(0, t)
[r], (2.8)

where n[r] = n(n − 1) . . . (n − r + 1). The relationship is the same as that between the usual
cumulants and moments, that is,

m[1](t) = κ[1](t), m[2](t) = κ[2](t) + κ[1](t)
2, m[3](t) = κ[3](t) + 3κ[2](t)κ[1](t) + κ[1](t)

3 (2.9)
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and, in general,

m[r](t) =
r−1∑
k=0

(
r − 1

k

)
κ[r−k](t)m[k](t) (2.10)

and also

m[r](t) =
r∑

k=1

Br,k

(
κ[1](t), κ[2](t), . . . , κ[r−k+1](t)

)
, (2.11)

where Br,k are the Bell polynomials given by

Br,k(x1, x2, . . . , xr−k+1)

=
∑

(n1,n2,...,nr−k+1)∈Sr,k

r!

n1!n2! . . . nr−k+1!

(x1
1!

)n1
(x2

2!

)n2

. . .
( xr−k+1

(r − k + 1)!

)nr−k+1

(2.12)

with Sr,k consisting of all (n1, n2, . . . , nr−k+1) ∈ (N∪{0})r−k+1 such that n1+n2+. . .+nr−k+1 = k
and n1 + 2n2 + . . .+ (r − k + 1)nr−k+1 = r.

Factorial moments, on the other hand, can be related back to the usual moments

mr(t) = ENe(0, t)
r, r ≥ 1, (2.13)

through the relation

mr(t) =
r∑
j=1

∆j,rm[j](t), (2.14)

where ∆j,r are the Stirling numbers of the second kind (e.g. Daley and Vere-Jones (2003), pp.
114-115). In our analysis, we shall be working with factorial cumulants through the formulas
(2.6)–(2.7), and then relate them to factorial and usual moments by using the relations above.

We shall also present results for central moments

m0
r(t) = E(Ne(0, t)− ENe(0, t))

r, r ≥ 1, (2.15)

which are related to the usual moments through

m0
r(t) =

r∑
j=0

(
r

j

)
(−1)r−jmj(t)m1(t)

r−j . (2.16)

Finally, for convenience we use the following recursion formula relating cumulants and central
moments (e.g. Willink (2003))

κr(t) = m0
r(t)−

r−2∑
j=1

m0
j (t)κr−j(t), r ≥ 2, (2.17)

and κ1(t) = λEWt.

3 Moment behavior at large scales

In this section, we study the asymptotic behavior of the factorial cumulants κ[r](a) and the
various moments m[r](a), mr(a) and m0

r(a) at large scales, that is, as a → ∞. We assume that
the distribution of the number of points in a cluster is heavy-tailed in the following sense.
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Assumption W: The distribution of Wj is heavy-tailed, that is,

P (Wj > w) ∼ CWw−α, as w →∞, (3.1)

where 1 < α < 2 and CW > 0.

The assumption α ∈ (1, 2) can be relaxed to α > 1 but at the expense of more involved
formulae given below. The range α ∈ (1, 2) is motivated by typical estimated values of α in
applications to Internet traffic, and corresponds to W having finite mean but infinite variance.

Proposition 3.1 Suppose that the distribution of the number of points in a cluster of PCP sat-
isfies Assumption W above. The factorial cumulants κ[r](a), r ≥ 1, of PCP then satisfy:

κ[1](a) = λEWa, κ[r](a) ∼ Cκ,[r]λar−α+1, r ≥ 2, as a→∞, (3.2)

where

Cκ,[r] =
r(r − 1)CW

(α− 1)(r − α)(r + 1− α)(EA)r−α
. (3.3)

Proof: The first relation in (3.2) is just the first relation in (2.6). For r = 2, the second relation
in (2.6) and Assumption W yield

κ[2](a) = κ[2],1(a) + o(a ∨ κ[2],1(a)), (3.4)

where a ∨ b = max{a, b} and

κ[2],1(a) = 2λCW

∞∑
k=1

∫ a

0
Fk(u)du

∞∑
j=1

(j + k)−α

= 2λCW

∞∑
k=1

∫ a

0
Fk(u)du k1−α

∞∑
j=1

(
1 +

j

k

)−α 1

k
.

Similarly,
κ[2],1(a) = κ[2],2(a) + o(t ∨ κ[2],2(a)), (3.5)

where, by using
∫∞
0 (1 + u)−αdu = (α− 1)−1,

κ[2],2(a) =
2λCW
α− 1

∞∑
k=1

∫ a

0
Fk(u)du k1−α

=
2λCW
α− 1

∫ a

0

∞∑
k=1

P(Sk ≤ u)k1−αdu

=
2λCW
α− 1

∫ a

0

∞∑
k=1

P(N(u) ≥ k)k1−αdu

=
2λCW
α− 1

∫ a

0

∞∑
j=1

P(N(u) = j)

j∑
k=1

k1−αdu

and
κ[2],2(a) = κ[2],3(a) + o(t ∨ κ[2],3(a)), (3.6)
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where

κ[2],3(a) =
2λCW

(α− 1)(2− α)

∫ a

0

∞∑
j=1

P(N(u) = j)j2−αdu

=
2λCW

(α− 1)(2− α)

∫ a

0
E(N(u)2−α)du.

By Theorem 5.1, (ii), in Gut (2009), Chapter 2, E((N(u)/u)2−α)→ (1/EAj,m)2−α as u→∞ and
hence

κ[2],3(a) ∼ 2λCW
(α− 1)(2− α)(3− α)(EAj,m)2−α

a3−α. (3.7)

The relation (3.2) with r = 2 now follows from (3.4)–(3.7). The relation (3.2) with r > 2 can be
proved similarly by arguing that

κ[r](a) ∼ r(r − 1)λCW
(α− 1)(r − α)

∫ a

0
E(N(u)r−α)du

and again using the same result of Gut (2009). 2

The next two results describe the asymptotic behavior of the moments and cumulants at large
scales.

Corollary 3.1 Under the assumptions of Proposition 3.1, the factorial moments m[r](a), the
moments mr(a) and the central moments m0

r(a), r ≥ 2, of PCP satisfy:

m[r](a) ∼ Cm,[r]λrar, (3.8)

mr(a) ∼ Cm,rλrar, (3.9)

m0
r(a) ∼ C0

m,rλa
r−α+1, as a→∞, (3.10)

where
Cm,[r] = Cm,r = (EW )r, C0

m,r = Cκ,[r] (3.11)

with Cκ,[r] given in (3.3). (When r = 1, m[1](a) = m1(a) = κ[1](a) = λEW a and m0
1(a) = 0.)

Proof: The relation (3.8) can be shown recursively by using (3.2) and (2.9)–(2.10). Indeed,
when r = 2, it follows from the second relation in (2.9) and (3.2). Supposing it holds for 2, . . . , r−1,
it also holds for r since the term κ[r−k](a)m[k](a) in (2.10) is of the order a · ar−1 = ar (with the

constant Cm,[r]) when k = r − 1, and of the smaller order ar−k−α+1 · ak = ar−α+1 when k < r.
The relation (3.9) follows immediately from (2.14) and (3.8).

The relation (3.10) is slightly more difficult to deal with. We shall use the relation (2.16) to
express m0

r(a) in terms of the moments mj(a), j = 1, . . . , r, and the relations (2.14) and (2.11)
to express mj(a) in terms of the factorial cumulants κ[1](a), . . . , κ[j](a). Changing the indices to
avoid confusion, note that (2.14) and (2.11) yield

mj(a) =

j∑
p=1

∆j,pm[p](a) =

j∑
p=1

∆j,p

p∑
q=1

Bp,q(κ[1](a), κ[2](a), . . . , κ[p−q+1](a))

=

j∑
p=1

p∑
q=1

∑
(n1,...,np−q+1)∈Sp,q

∆j,p
p!

n1! . . . np−q+1!

(κ[1](a)

1!

)n1

. . .
( κ[p−q+1](a)

(p− q + 1)!

)np−q+1

=:

j∑
p=1

p∑
q=1

∑
(n1,...,np−q+1)∈Sp,q

Tp,q(n1, . . . , np−q+1), (3.12)
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where integers n1, n2, . . . , np−q+1 ≥ 0 are such that n1 + n2 + . . . + np−q+1 = q and n1 + 2n2 +
. . . + (p − q + 1)np−q+1 = p. By using these two relations for n1, n2, . . . , np−q+1 and (3.2), note
that the order of the term Tp,q(n1, . . . , np−q+1) in (3.12) is

an1an2(2−α+1) . . . anp−q+1(p−q+1−α+1) =

{
ap−(q−n1)(α−1), q ≤ p− 1,

aq, q = p = n1.
(3.13)

This order is largest when

p = j, q = j, n1 = j, n2 = . . . = np−q+1 = 0, (3.14)

which corresponds to
Tj,j(j, 0, . . . , 0) = κ[1](a)j .

But, when substituted into (2.16), this term yields

r∑
j=0

(
r

j

)
(−1)r−jTj,j(j, 0, . . . , 0)m1(a)r−j = κ[1](a)r

r∑
j=0

(
r

j

)
(−1)r−j = 0,

and hence the case (3.14) can be eliminated from the sum in (3.12). The next largest order in
(3.13) occurs when

q − n1 = 1 (n1 = q − 1), p = j. (3.15)

The rest of the integers n2, . . . , np−q+1 ≥ 0 then satisfy n2 + . . . + np−q+1 = 1 and 2n2 + . . . +
(p− q + 1)np−q+1 = p− q + 1 which is possible only when np−q+1 = 1, n2 = . . . = np−q = 0. The
corresponding terms in (3.12) are then

j−1∑
q=1

Tj,q(q − 1, 0, . . . , 0, 1) =

j−1∑
q=1

j!

(q − 1)!(j − q + 1)!
κ[1](t)

q−1κ[j−q+1](a).

When substituted into (2.16), this yields

r∑
j=2

(
r

j

)
(−1)r−j

j−1∑
q=1

Tj,q(q − 1, 0, . . . , 0, 1)κ[1](a)r−j

=
r∑
j=2

(
r

j

)
(−1)r−j

j−1∑
q=1

j!

(q − 1)!(j − q + 1)!
κ[1](a)q−1+r−jκ[j−q+1](a)

=
r∑
j=2

(
r

j

)
(−1)r−j

j∑
`=2

j!

(q − `)!`!
κ[1](t)

r−`κ[`](a)

=
r∑
`=2

κ[1](a)r−`κ[`](a)
r∑
j=`

(−1)r−j
(
r

j

)(
j

`

)
= κ[r](a),

since, for ` < r,
r∑
j=`

(−1)r−j
(
r

j

)(
j

`

)
=

(
r

`

) r−∑̀
k=0

(
r − `
k

)
(−1)r−`−k = 0.

This yields (3.10) in view of (3.2). 2
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Corollary 3.2 Under the assumptions of Proposition 3.1, the cumulants κr(a), r ≥ 2, of PCP
satisfy:

κr(a) ∼ Cκ,rλar−α+1, as a→∞, (3.16)

where
Cκ,r = Cκ,[r] (3.17)

with Cκ,[r] given in (3.3). (When r = 1, κ1(a) = λEWa.)

Proof: To show (3.16), we shall use first the relationship between cumulants and central mo-
ments (2.17) and then the asymptotic behavior of the central moments at large scales (3.10). The
relation is trivial for the first cumlants since κ2(a) = m0

2(a) and κ3(a) = m0
3(a). By induction, if

(3.16) holds for 2, . . . , r − 1, then it also holds for r since in (2.17) the term m0
j (a)κr−j(a) is of

the order aj−α+1 · ar−j−α+1 = ar−2α+2 and the term m0
r(a) has order ar−α+1. 2

4 Moment behavior at small scales

We are interested here in the asymptotic behavior of the cumulants κ[r](a), κr(a) and the various
moments m[r](a), mr(a) and m0

r(a) at small scales, that is, as a→ 0+. We focus on the following
class of distributions of the interarrival times between points in clusters.

Assumption A: Suppose that the cumulative distribution F1 of interarrival times has a density
f1 satisfying: for θ > 0 and Cf > 0,

f1(t) ∼ Cf tθ−1, as t→ 0+. (4.1)

An example is the gamma distribution with parameters θ > 0 and β > 0 having density

f1(t) =
β(βt)θ−1e−βt

Γ(θ)
, t > 0, (4.2)

where Γ(·) denotes the usual gamma function. The gamma distribution will be used in the
application to Internet traffic in Section 8 below. Note that for the gamma distribution, Cf =
βθ/Γ(θ) in (4.1).

The next result provides the small scale behavior of the factorial cumulants. The behavior of
the moments and cumulants will follow from this result, as stated in the subsequent corollaries.

Proposition 4.1 Suppose that the distribution of the interarrival times of PCP satisfies Assump-
tion A above. The factorial cumulants κ[r](a), r ≥ 1, of PCP then satisfy:

κ[r](a) ∼ cκ,[r]a1+(r−1)θ, as a→ 0+, (4.3)

where

cκ,[r] =
r!λCF,r−1Rr
(r − 1)θ + 1

(4.4)

with Rr =
∑∞

w=r Rw =
∑∞

w=r P(W ≥ r) and

CF,r−1 = CF,r−2CfB((r − 2)θ + 1, θ) =
Cr−1f Γ(θ)r−1

Γ((r − 1)θ + 1)
, CF,1 =

Cf
θ

(4.5)

for the beta function B(·, ·).
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Proof: We shall use the formulas (2.6)–(2.7) for the factorial cumulants κ[r](a), which involve

the integrals
∫ a
0 Fk(u)du, k ≥ 1. When k = 1, we have from (4.1) that Fk(u) ∼ Cfuθ/θ =: CF,1u

θ,
as u→ 0+. In fact, for any k ≥ 1,

Fk(u) ∼ CF,kukθ, as u→ 0+, (4.6)

where CF,k = CF,k−1CfB((k − 1)θ + 1, θ) with the beta function B(·, ·). Indeed, supposing by
induction that (4.8) hold for k, note that

Fk+1(u) =

∫ u

0
Fk(y)f1(u− y)dy ∼ CF,kCf

∫ u

0
ykθ(u− y)θ−1dy

= CF,kCf

∫ 1

0
zkθ(1− z)θ−1dz u(k+1)θ = CF,kCfB(kθ + 1, θ − 1)u(k+1)θ = CF,k+1u

(k+1)θ.

The relation (4.8) now implies that∫ a

0
Fk(u)du ∼

CF,k
kθ + 1

akθ+1, as a→ 0+. (4.7)

In view of (4.8), the leading term for κ[r](a) in (2.6)–(2.7) is of the desired order a(r−1)θ+1.
To show that the sum of the remaining terms in negligible, one can use the argument above to
conclude that, for any ε > 0, f1(a) ≤ Caθ−ε−1, a ∈ (0, a0), and hence∫ a

0
Fk(u)du ≤

C ′F,k
k(θ − ε) + 1

ak(θ−ε)+1, as a ∈ (0, a0), (4.8)

where C ′F,k has the same structure as CF,k but with θ replaced by θ − ε. The remaining terms

in (2.6)–(2.7) (that is, without the leading term a(r−1)θ+1) are thus bounded by a function of the
order ar(θ−ε)+1, which is negligible compared to a(r−1)θ+1 for small enough ε.

The last equality in the first relation of (4.5) follows from using the recursion relation CF,r−1 =
CF,r−2CfB((r−2)θ+1, θ) along with the definition of the beta function B(a, b) = Γ(a)Γ(b)/Γ(a+
b). 2

Corollary 4.1 Suppose the distribution of the interarrival times of PCP satisfies Assumption
A above with θ ∈ (0, 1]. The moments mr(a), factorial moments m[r](a) and central moments
m0
r(a), r ≥ 2, of PCP then satisfy:

m[r](a) ∼ cm,[r]a1+(r−1)θ, (4.9)

mr(a) ∼ cm,ra, (4.10)

m0
r(a) ∼ c0m,ra, as a→ 0+, (4.11)

where
cm,[r] = cκ,[r], cm,r = λEW, c0m,r = λEW (4.12)

with cκ,[r] appearing in (4.4). (When r = 1, m[1](a) = m1(a) = κ[1](a) = λEWa and m0
1(a) = 0.)
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Proof: To show (4.9), we argue by induction. The relation (4.9) with r = 2 holds in view of
(2.9) and (4.3). Supposing it holds for 1, . . . , r − 1, it also holds for r by using (2.10) and (4.3).
Indeed, the term κ[r−k](a)m[k](a) in the sum (2.10) is of the order a(r−1)θ+1 when k = 0, and is

of the smaller or equal order a(r−k−1)θ+1a(k−1)θ+1 = a(r−1)θ+2−θ when k ≥ 1.
The relation (4.10) follows from (4.9) and (2.14), since the term m[1](a) dominates in the latter

sum. Similarly, the relation (4.11) follows from (2.16) and (4.10) since the term mr(a) when j = r
is dominant in (2.16). 2

Corollary 4.2 Suppose the distribution of the interarrival times of PCP satisfies Assumption A
above with θ ∈ (0, 1]. The cumulants κr(t), r ≥ 2, of PCP then satisfy:

κr(a) ∼ cκ,ra, as a→ 0+, (4.13)

where
cκ,r = λEW. (4.14)

(When r = 1, κ1(a) = λEWa.)

Proof: The relation (4.13) can be shown by using (2.17) and (4.11). From (2.17) we have
κ2(a) = m0

2(a) and κ3(a) = m0
3(a) and the result follows immediately by (4.11). By induction, if

(4.13) holds for 2, 3, . . . , r − 1, then it also holds for r since in (2.17) the term m0
j (a)κr−j(a) in

the sum is of the order a · a = a2 and the term m0
j (a) has order a. 2

Example 4.1 Proposition 4.1 describes the asymptotic behavior of the factorial cumulants of
PCP under Assumption A. A more explicit, non-asymptotic expression of the factorial cumulants
can be obtained in the special case of the gamma distribution (4.2), yielding a result of independent
interest. Indeed, observe that in this case,

Fk(x) =
γ(kθ, βx)

Γ(kθ)
,

where γ(s, x) =
∫ x
0 a

s−1e−sds is the lower incomplete gamma function. By using integration by
parts, note that∫ a

0
γ(kθ, βu)du =

1

β

∫ βa

0
γ(kθ, u)du =

1

β

(
βaγ(kθ, βa)− γ(kθ + 1, βa)

)
and hence∫ a

0
Fk(u)du =

1

Γ(kθ)β

(
βaγ(kθ, βa)− γ(kθ + 1, βa)

)
=

1

Γ(kθ)β

(
βa(βa)kθΓ(kθ)e−βa

∞∑
j=0

(βa)j

Γ(kθ + j + 1)
− (βa)kθ+1Γ(kθ + 1)e−βa

∞∑
j=0

(βa)j

Γ(kθ + 1 + j + 1)

)
=
e−βa

β

∞∑
j=0

(βa)kθ+j+1
( 1

Γ(kθ + j + 1)
− kθ

Γ(kθ + 1 + j + 1)

)
=
e−βa

β

∞∑
j=0

(βa)kθ+j+1 j + 1

Γ(kθ + 1 + j + 1)
=
e−βa

β

∞∑
j=1

(βa)kθ+j
j

Γ(kθ + 1 + j)
(4.15)
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An expression for the factorial cumulants can now be obtained by substituting (4.15) into (2.6)–
(2.7). For example, for r ≥ 3 and as a → 0+, the leading term in thus obtained relation leads
to

κ[r](a) ∼ r!λ(βa)(r−1)θ+1Rr
βΓ((r − 1)θ + 2)

=
r!λβ(r−1)θRr

Γ((r − 1)θ + 2)
a1+(r−1)θ, (4.16)

which is consistent with (4.3)–(4.5).

The asymptotic results (4.9) and (4.10) show that using regular moments of PCP at small
scales does not reveal the underlying interarrival distribution, since the dominating behavior is
governed by t for all the moments. In contrast, the behavior of the factorial moments is much
more informative. This is further discussed in Section 8 in an application context.

Remark 4.1 An asymptotic behavior of the density f1 not captured by Assumption A is when
f1(t) decays faster than any power as t → 0+. This could be expressed, for example, by the
assumption that

f1(t) ∼ Ctαe−| log t|
β
, as t→ 0+, (4.17)

where α ∈ R, β > 1 and C > 0. Results analogous to (4.3) and (4.9)–(4.10) could be obtained,
we believe, under the assumption (4.17). However, we shall not pursue this direction here for the
following reason. A prototypical example of the density satisfying (4.17) is that of a lognormal
distribution. When working with the Internet traffic data for Section 8, we found the lognormal
distribution difficult to capture the left tail behavior. Indeed, it is known that the moments of log
normal distributions are “localized”, making the use of the distribution quite delicate in practice
(Mandelbrot (1997)).

5 Transition from small to large scales

The analysis carried out in Sections 3 and 4 (for fixed Poisson arrival rate λ) shows the existence
of biscaling, that is, the different scaling behaviors at large and small scales. Moreover, since the
scaling behaviors are different, one could expect them to be separate by a “knee”, the point (or
the range) where the behavior changes as one moves from small to large scales. The biscaling and
the “knee” are clearly seen in Figure 1 (to be discussed in more detail in Section 8) where the
factorial moments, moments and central moments are plotted.

The location of the “knee” (i.e., the time t) can be approximated by equating the scaling
relations at large and small scales for the several measures and solving with respect to a. For the
factorial cumulants, by using the relations (3.2) and (4.3), the approximate location of the “knee”
is given by

tκ,[r] =

(
(r − 2)!CF,r−1(EA)r−α(α− 1)(r − α)(r + 1− α)Rr

((r − 1)θ + 1)CW

)1/(r−(r−1)θ−α)

, r ≥ 2. (5.1)

From Corollaries 3.1 and 4.1, the location of the “knee” for the factorial moments, the moments
and central moments are approximated by, respectively,

tm,[r] =

(
r!CF,r−1Rr

λr−1((r − 1)θ + 1)(EW )r

)1/(r−(r−1)θ−1)

, θ 6= 1, (5.2)

tm,r =
1

λEWj
, (5.3)

t0m,r =

(
(α− 1)(r − α)(r + 1− α)EW (EA)r−α

r(r − 1)CW

)1/(r−α)
, r ≥ 2. (5.4)
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If A is exponential, then θ = 1 and equating (3.8) and (4.9) we obtain tm,[r] = 0 for r ≥ 2. This
means that in this case there is no helpful intersection for the different scaling behaviors. We
note that the location of the “knee” for the moments does not dependent on the order r and the
distribution of the interarrival times A.

Finally, for the cumulants the location of the “knee” tκ,[r], r ≥ 2, is the same as for the central
moments since they have the same asymptotic behaviour at small and large scales.

6 The special case of normal interarrival times

The formulae (2.6)–(2.7) for the factorial cumulants involve the integrals
∫ t
0 Fk(u)du, where Fk(u)

is the distribution function of the sum of k interarrival times. By the central limit theorem, for
large k, one can expect the sum to be approximated by a normal distribution and similarly Fk(u)
to be approximated well by the distribution function of the corresponding normal distribution.
This approximation could be useful when evaluating the factorial cumulants through (2.6)–(2.7)
numerically.

In a slightly different approach we could start by supposing that the intearrival times them-
selves are normal (shifted to the right so that they can be assumed positive for practical purposes).
The integrals

∫ t
0 Fk(u)du can then be evaluated in this special case as done in Proposition 6.2 be-

low, and the relevance of the normal approximations be assessed numerically for larger moments
(see Section 8).

We thus suppose that µ and σ are the mean and standard deviation of interarrival times Tj,m,
respectively. Consider the rescaled normal random variable

X = µ+ σZ, (6.1)

where Z has a standard normal distribution. LettingX1, . . . , Xk, be independent random variables
identically distributed as the random variable X, we have

X1 + . . .+Xk
d
= kµ+

√
kσZ (6.2)

and denote the respective distribution function by Fk with a slight abuse of notation. The next
result provides an expansion of the integral

∫ t
0 Fk(u)du in power series of t being computationally

more amenable to handle. It is used below to derive the behavior of the moment measures for
small scales.

Proposition 6.1 For k ≥ 1, let Fk be the distribution function of the sum (6.2). Then,

∫ t

0
Fk(u)du =

1

2
√

2πkσ
e−(t

2+k2µ2)/(2kσ2)
∞∑
i=0

bi/2c∑
j=0

t2+i
(µ/σ2)i−2j

(i− 2j)!(2jσ2)j

×
(

Γ(i/2− j + 1/2)

Γ(i/2 + 3/2)
− Γ(i/2− j + 1)

Γ(i/2 + 2)

)
, (6.3)

where b.c is the floor function.

Proof: Let fk(v) = 1/(
√

2πkσ)e−(v−kµ)
2/(2kσ2) be the p.d.f. of X1 + . . .+Xk in (6.2). Then,∫ t

0
Fk(u)du =

∫ t

0

∫ u

0
fk(v)dvdu = t

∫ t

0
fk(v)dv −

∫ t

0
kfk(v)dv. (6.4)
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Considering the two last terms in (6.4) separately, we have∫ t

0
fk(v)dv =

1√
2πkσ

e−kµ
2/(2σ2)

∫ t

0
evµ/σ

2
e−v

2/(2kσ2)dv

=
1√

2πkσ
e−kµ

2/(2σ2)
∞∑
j=0

( µ
σ2

)j ∫ t

0
vje−v

2/(2kσ2)dv. (6.5)

For the integrals in (6.5), by making the change of variables x = v2/(2kσ2), we obtain that∫ t

0
vje−v

2/(2kσ2)dv = 2(j−1)/2(kσ2)(j+1)/2γ

(
j + 1

2
,
t2

2kσ2

)
, (6.6)

where γ(., .) is the lower incomplete gamma function defined and considered in Example 4.1. Now,
by using the power series expansion of the lower incomplete gamma function in (6.6) and replacing
in (6.5), we find after some algebra that

t

∫ t

0
fk(u)du =

1

2
√

2πkσ
e−(t

2+k2µ2)/(2kσ2)
∞∑
i=0

t2+i
bi/2c∑
j=0

(µ/σ2)i−2jΓ(i/2− j + 1/2)

(i− 2j)!(2kσ2)jΓ(i/2 + 3/2)
.

Making the expansion of the last term in (6.4) through the same steps as above, the result (6.3)
follows. 2

As a result of independent interest, we state the asymptotic relations for the moments at small
scales when the distribution of the interarrival times is normal. We omit the proof which follows
similar lines as those of Proposition 4.1 and Corollary 4.1. Indeed, the result can be checked easily
for factorial cumulants by substituting (6.3) into (2.6)–(2.7), letting a become small and finally
using the relations between moments. We note that at large scales, the results of Section 3 are
still valid in this case.

Proposition 6.2 Suppose that Tj,m is normally distributed with mean µ and standard deviation
σ so that the integrals

∫ a
0 Fk(u)du are given by (6.3). The factorial cumulants κ[r](a), r ≥ 2, of

PCP then satisfy:

κ[r](a) ∼ λr!e−(r−1)
2µ2/(2(r−1)σ2)Rr

2
√

2π(r − 1)σ
a2, as t→ 0. (6.7)

The moments mr(a), the factorial moments m[r](a) and the central moments m0
r(a) satisfy:

m[2](a) ∼ λ

(
e−µ

2/(2σ2)R2√
2πσ

+ λ(EWj)
2

)
a2, m[r](a) ∼ λr!e−(r−1)

2µ2/(2(r−1)σ2)Rr

2
√

2π(r − 1)σ
a2, (6.8)

mr(a) ∼ λEWja, (6.9)

m0
r(a) ∼ λEWja, r ≥ 2, as a→ 0. (6.10)

(When r = 1, m[1](a) = m1(a) = κ[1](a) = λEWa and m0
1(a) = 0.)

The proposition above shows that at small time scale the asymptotic relations for the moments
and central moments are the same as in (4.10) and (4.11), respectively.
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7 Moment behavior at large scales in the slow and fast growth
regimes

As noted in Section 1, in the analysis of PCPs and related models at large scales under the
assumption (1.9), it is common to consider the rate λ as a function of T , that is, λ = λ(T ),
where T is the length of the observation window (0, T ) of PCP. Note that this does not mean
that λ varies in the observation window but rather that, once the observation window is fixed, λ
is viewed as a function of T . Two different regimes are distinguished: letting λ = λ(T ), the slow
growth regime is defined as

λ(T )

Tα−1
→ 0 (7.1)

and the fast growth regime as
λ(T )

Tα−1
→∞. (7.2)

One thinks of λ = λ(T ) as the connection rate in the context of Internet traffic (Mikosch et al.
(2002)).

In the slow growth regime, one then has{Ne(0, Tu)− ENe(0, Tu)

T 1/α

}
u∈[0,1]

fdd→ {Lα(u)}u∈[0,1], as T →∞, (7.3)

where the convergence is in the sense of finite-dimensional distributions and Lα is an α–stable
Lévy motion (Mikosch and Samorodnitsky (2007), Proposition 5.11). In the fast growth regime,
on the other hand,{Ne(0, Tu)− ENe(0, Tu)

λ(T )1/2T (3−α)/2

}
u∈[0,1]

fdd→ {BH(u)}u∈[0,1], as T →∞, (7.4)

where BH is fractional Brownian motion (FBM) with the self-similarity parameter H = (3−α)/2
(Mikosch and Samorodnitsky (2007), Proposition 4.7). So, for example, if the connection rate λ
is large compared to Tα−1, one expects the PCP to be approximated by FBM.

The digression to the slow and fast regimes might be confusing to a number of readers, and
this is for a good reason. There seem to be two conflicting implications of (7.3)–(7.4) in relation
to the results of Section 3. On one hand, suppose that over the observation window (0, T ), λ is
much bigger than Tα−1, suggesting the fast regime. Then, within this observation window and
with the normalization σT = λ(T )1/2T (3−α)/2 in (7.4),

Ne(0, a)− ENe(0, a) = Ne(0, T
a

T
)− ENe(0, T

a

T
)

d
≈ σTBH(

a

T
)
d
=

σT
TH

aHBH(1),

by using (7.4) and the H–self-similarity of FBM, where
d
≈ denotes the approximation in distri-

bution. Raising the left- and right-hand sides of the expression above to the power r and taking
expectations, this suggests that the central moments scale up to a constant as arH , and hence the
exponents function is

ζ̃0(r) = rH = r(3− α)/2.

On the other hand, over the observation window, the arrival rate is usually quite constant and
hence from Corollary 3.1, the central moments scale with the exponents

ζ0(r) = r − α+ 1.
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Note that the two exponents functions ζ̃0(r) and ζ0(r) are the same only for r = 2. The numerical
study carried out in Section 8 on a real Internet trace associated with the fast regime is, in fact,
in line with the exponents ζ0(r) and not ζ̃0(r). The real issues behind these observations and
findings are not understood well yet, and are left for future work.

In a direction of independent interest, we also note that the results obtained in Section 3 can
be used to study the moments and cumulants of PCPs under the slow and fast growth conditions
taking a = T , that is, the moments of the expressions in the numerators of (7.3)–(7.4). We first
note that the behavior of the factorial cumulants in (3.2), the factorial moments in (3.8) and the
usual moments in (3.9) holds for any λ → ∞, and in particular is the same in the slow and fast
growth regimes. It is the case of central moments which is more delicate, as perhaps suggested
by the different asymptotic behaviors in (7.3) and (7.4), which involve centering.

In fact, we do not have a general result for the asymptotics of centered moments of PCP
under the slow and fast growth conditions when a = T . The key difficulty is seemingly the lack
of a direct general formula relating central moments to factorial cumulants (see also Remark 7.1
below). Such formula for the first seven central moments is given in Appendix A, and can be
used to derive the asymptotics of central moments under the slow and fast growth. By using the
formula (A.1) and substituting the factorial cumulants κ[1](t) and κ[2](t) from (3.2), we can write

m0
2(T ) ∼ Cκ,[1]λT + Cκ,[2]λT

3−α, (7.5)

as T →∞. In view of (7.1) and (7.2),

m0
2(T ) ∼ Cκ,[2]λT 3−α, (7.6)

for the slow and fast growth regimes. From (A.2) and proceeding as above,

m0
3(T ) ∼ Cκ,[1]λT + 3Cκ,[2]λT

3−α + Cκ,[3]λT
4−α, (7.7)

as T →∞ and
m0

3(T ) ∼ Cκ,[3]λT 4−α, (7.8)

in both growth regimes. From the relationship between the fourth central moment and factorial
cumulants in (A.3), we can write the asymptotic relation

m0
4(T ) ∼ Cκ,[1]λT + 3C2

κ,[1]λ
2T 2 + 7Cκ,[2]λT

3−α + 6Cκ,[3]λT
4−α

+ Cκ,[4]λT
5−α + 6Cκ,[1]Cκ,[2]λ

2T 4−α + 3C2
κ,[2]λ

2T 6−2α, (7.9)

as T →∞, with the two growth regimes now being distinct,

m0
4(T ) ∼

{
Cκ,[4]λT

5−α, slow growth,

3C2
κ,[2]λ

2T 6−2α, fast growth.
(7.10)

Similarly, the relation (A.4) gives that

m0
5(T ) ∼ Cκ,[1]λT + 15Cκ,[2]λT

3−α + 25Cκ,[3]λT
4−α + 10Cκ,[4]λT

5−α +Cκ,[5]λT
6−α + 10C2

κ,[1]λ
2T 2

+ 40Cκ,[1]Cκ,[2]λ
2T 4−α + 10Cκ,[1]Cκ,[3]λ

2T 5−α + 30C2
κ,[2]λ

2T 6−2α + 10Cκ,[2]Cκ,[3]λ
2T 7−2α, (7.11)

as T →∞ and therefore,

m0
5(T ) ∼

{
Cκ,[5]λT

6−α, slow growth,

10Cκ,[2]Cκ,[3]λ
2T 7−2α, fast growth.

(7.12)
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We also get from (A.5) that

m0
6(T ) ∼ Cκ,[1]λT +31Cκ,[2]λT

3−α+90Cκ,[3]λT
4−α+65Cκ,[4]λT

5−α+15Cκ,[5]λT
6−α+Cκ,[6]λT

7−α

+ 25C2
κ,[1]λ

2T 2 + 180Cκ,[1]Cκ,[2]λ
2T 4−α + 110Cκ,[1]Cκ,[3]λ

2T 5−α + 15Cκ,[1]Cκ,[4]λ
2T 6−α

+ 195C2
κ,[2]λ

2T 6−2α + 150Cκ,[2]Cκ,[3]λ
2T 7−2α + 25C2

κ,[1]λ
2T 8−2α + 10Cκ,[2]Cκ,[4]λ

2T 8−2α

+ 15C3
κ,[1]λ

3T 3 + 45C2
κ,[1]Cκ,[2]λ

3T 5−α + 45Cκ,[1]C
2
κ,[2]λ

3T 7−2α + 15C2
κ,[2]λ

3T 9−3α, (7.13)

as T →∞, which yields

m0
6(T ) ∼

{
Cκ,[6]λT

7−α, slow growth,

15C3
κ,[2]λ

3T 9−3α, fast growth.
(7.14)

Similarly, from (A.6),

m0
7(T ) ∼

{
Cκ,[7]λT

8−α, slow growth,

105C2
κ,[2]Cκ,[3]λ

3T 10−3α, fast growth.
(7.15)

The relations above lead us to conjecture that, for r ≥ 2,

m0
r(T ) ∼


Cκ,[r]λ(T )T r−α+1, slow growth,

r!C
r/2
κ,[2]

(r/2)!2!r/2
λ(T )r/2T (3−α)r/2, fast growth and even r,

r!C
(r−1)/2−1
κ,[2]

Cκ,[3]

((r−1)/2−1)!2!(r−1)/2−13!
λ(T )(r−1)/2T (3−α)(r−1)/2+1, fast growth and odd r,

(7.16)

In fact, we checked the conjecture (7.16) not only up to the seventh central moment but up to
the tenth central moment. (The formulae relating the central moments and factorial moments
naturally get quite lengthy for larger r and are therefore not included in Appendix A.)

Several interesting observations can be made concerning (7.16). First, note that the conjec-
tured behavior in the slow growth regime is exactly the same as in (3.10) for fixed λ. Second, note
that the behavior (7.16) in the fast regime depends on whether r is even or odd. Moreover, the
behavior is seemingly consistent with the normalization used in (7.4) only when r is even. That
is, the odd (higher than 3) moments of the left-hand side of (7.4) may not converge to those of
the limiting process.

Remark 7.1 The difficulty in proving (7.16) in general was indicated above but it is instructive
to provide some further insight. First, we note that the proof of Corollary 3.1 cannot be used
directly to show (7.16). Indeed, the terms associated with (3.15) in the proof of the corollary
lead to κ[r](T ) ∼ cλT r−(α+1) but this term is no longer necessarily dominant in the fast regime.

For example, note the presence of λT r−(α−1) = λT 7−α in (7.13) when r = 6. But this term is
indeed dominated by λ3T 9−3α in the fast regime. Second, the actual difficulty is in tracking the
dominant term. For example, when r = 6, the dominant term arises from κ[2](T )3 ∼ cλ3T 6−3(α−1)

which enters into the moment m6(T ) through (3.12). But, for example, m6(T ) also contains the
term κ[1](T )3κ[3](T ) ∼ cλ4T 6−4(α−1). Though this term dominates κ[2](T )3, it does not appear in
(7.13) since it gets canceled once substituted into (2.16).

Remark 7.2 As mentioned in Section 1, our analysis of the moments of PCP at large scales is
closest in the spirit to that of the moments of renewal point processes carried out by Dombry and
Kaj (2013). In contrast to the approach taken here, Dombry and Kaj (2013) work with somewhat
more general moment measures. The different growth regimes in superimposing renewal point
processes are considered by Dombry and Kaj (2013) but not for the behavior of the moment
measures. We have not aimed specifically to be different from Dombry and Kaj (2013) but just
became aware of their work towards the end of this project.

18



8 Numerical study and application to Internet traffic

In this section, we illustrate the results of Sections 2–6 through a numerical study by using an
Internet traffic data set (which we find more interesting and illuminating than using synthetic
data). We consider the publicly available Internet trace, Auckland1, which is one hour long and
consists of 38,308,012 packets which make 1,371,756 flows. In Section 8.1, we examine the usual,
central and factorial moments. Section 8.2 concerns the scaling exponents functions, especially in
connection to multifractal analysis.

8.1 Moments, factorial moments and central moments

We illustrate here the scaling relations of the various moments of PCP in the parameters setting
suggested by the Auckland data trace. We shall first describe how the parameters are fitted to
the data trace. The flow (Poisson) arrival parameter λ is estimated directly from the sample
mean of flow interarrival times, yielding λ̂ = 396 (flows/sec). We choose the flow (cluster) size
W to be zeta distributed, which is taken to be heavy-tailed and may be thought of as a discrete
counterpart of the Pareto distribution, with p.m.f. pW (w) = 1/(wαζ(α)), w ≥ 1, α > 1, where
ζ(α) is the Riemann zeta function. Note that the mean of W is α/(α − 1). Calculating the
empirical value of the mean size of flows in the trace results in α̂ = 1.02. The distribution of
interarrival times between packets of a flow (between points of a cluster) is often modeled by a
gamma distribution (see (4.2)). However, determining the appropriate parameters is not trivial as
pointed out by Hohn et al. (2003) and a similar approach as in their work is considered here. One
of the quantities of interest is the packet arrival rate within a flow 1/ETj,m = β/θ. An estimate
for this in-flow packet arrival rate using the median or the mean of the empirical rate of each
flow performs poorly. Since PCP represents the overall packet arrival process, it is essential to
capture the impact of each value of the rate of a flow in terms of its packets. Therefore, the rate is
weighed by the number of interarrival times in each flow. This results in an estimate for β/θ that
is generally considerably above a simple mean. The parameter θ is tuned to fit the estimation
of the scaling exponent function of the factorial moments over small scales in (4.9). The fitting
procedure using the second empirical factorial moment yields θ̂ = 0.6 and the in-flow rate then
results in β̂ = 1/0.002.

Plots (a)–(c) in Figure 1 show the usual moments mr(t) against time t, for r = 2, 3, 5, using
the natural logarithmic scale for the two axis. (The first moment yields a straight line which is not
very informative.) We compute the theoretical values of the moments first using the formula (2.7)
and then the relations (2.11) and (2.14) based on the estimated parameters. The empirical values
of the moments have been computed through the number of packet arrivals on contiguous non-
overlapping intervals of size t over all trace duration, with the smallest value for t being 10−6 sec
(≈ −13.8 in the log scale; the packet arrivals were extracted with increments of 1 microsecond).
We also include the straight dashed lines corresponding to the scaling relations of the moments
at small scales and large scales using (3.9) and (4.10), respectively. Note that these relations hold
for a wide range of values. The vertical dotted line depicts with a good accuracy the transition
between the small and large scales computed through the log of (5.3). Plots (a)–(c) show that
the log-moments (theoretical line) of the PCP fit well the empirical values with a small deviation
around the transition between scales for the fifth (and higher) moments. (This is also observed for
the factorial moments and central moments below.) It is in this region of the transition between
time scales where potencial differences between PCP and the data are more pronounced. The
discrepancy might be due to the fact that in the trace considered here, large flows tend to have

1Auckland IX, file 20080327-080000-0, Available: http://wand.net.nz/wits/auck/9/
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Figure 1: Top: moments (log-log scale); Middle: factorial moments (log-log scale); Bottom:
central moments (log-log scale).

shorter interarrival times. In fact, the more general PCP considered by Westcott (1973), allows
the interarrival times Tj,k to be non-identically distributed and dependent on the cluster (flow)
size. We have started exploring this direction but also feel that it may go beyond the scope of
this article. A related concern is that the fits in the plots of Figure 1 are already quite acceptable
so that any payoff might be minimal at the expense of oversophistication of the model.

Plots (d)–(f) in Figure 1 show the analogous plots for the factorial moments m[r](t), for
r = 2, 3, 5. We compute the empirical factorial moments using the number of packet arrivals
over contiguous non-overlapping intervals of size t over all trace duration. The quality of the fit
is good with the exception around the transition between scales for the higher moment possibly
due to the shorter interarrival times of packets of large flows as mentioned above. We also note
that the empirical line does not extend as far for small values of t as for the usual moments. It
is especially difficult to estimate the factorial moments for small t because of the order of the
theoretical values. In this case, a trace with a longer duration is needed for more intervals of size
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Figure 2: Rescaled normal distribution. The dashed lines correspond to assuming normal inter-
arrival times.

t to be used in the estimation.
The central moments m0

r(t) for the same order r values are depicted in plots (g)–(i) of Figure
1. We point out that in computing the theoretical values for large t using the factorial cumulants
(2.7) and then the relations to central moments, the truncation parameter in the first sum of (2.7)
has to be much larger compared with the other moments. This is also reflected in the empirical
central moments, where the variation in these moments for larger t means that the number of
contiguous non-overlapping intervals of length t used in the calculation is insufficient.

In Remark ??, we raised some questions about the relevance of slow and fast growth regimes
in practice. Indeed, in the trace considered here, the arrival rate of flows is quite constant over
all trace duration (λ ≈ 396 flows/sec). In spite of the ratio λ(t)/tα−1 in (7.1) and (7.2) being
large for the trace length t = 3600 sec, the empirical central moments scale according to the slow
growth rate (7.16) or fixed arrival rate (3.10) as represented in Figure 1. We also note that these
asymptotic relations (7.16) and (3.10) compared with the exact values (theoretical line) for higher
order central moments (see r = 5) start to hold only for larger values of t.

Finally, we also comment here on the relevance of the rescaled normal distribution considered
in Section 6. Figure 2 shows the moments and factorial moments when the integral terms in
(2.7) are computed through (6.1)–(6.3). We also plot the respective values shown in Figure 1
where the interarrival times are gamma distributed. Though the results for the moments may
appear surprising, they are in fact consistent with and can be explained through the asymptotic
relations. At small time scales, the asymptotic relations for the moments do not depend on the
distribution of the interarrival times (cf. (4.10) and (6.9)). This is not the case for the factorial
moments which depend on the underlying distribution (see (4.9) and (6.8)). On the other hand,
at large scales, there is no significant diference between the gamma and the normal distributions
for both the usual and factorial moments (which agrees with the relations (3.8) and (3.9)). This
observation suggests that the normal approximation can indeed be used in computing the integrals∫ t
0 Fk(u)du.

8.2 Scaling exponents functions

The results (4.9) and (4.10) established in Corollary 4.1 can be written as

mr(t) ∼ cm,rtζ(r), m[r](t) ∼ cm,[r]tζ[ ](r), as t→ 0+, (8.1)
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where ζ(r) ≡ 1 and ζ[ ](r) = 1+(r−1)θ. The relations of the form (8.1) are of special interest in the
so-called multifractal analysis where ζ(r) and ζ[ ](r) are known as scaling exponents (functions).
In the multifractal analysis, the usual moments are typically considered for all r > 0, and other
multiresolution quantities instead of Ne(0, t) are often used, such as wavelet coefficients, wavelet
leaders, and others (see e.g. Jaffard et al. (2007)). When a scaling exponents function is nonlinear,
the underlying random process is referred to as being multifractal (and monofractal if the function
is linear). From a practical perspective, the relation (8.1) is approximated over a range of small
t’s as

m̂r(t) ≈ ĉm,rtζ̂(r), m̂[r](t) ≈ ĉm,[r]tζ̂[ ](r), for t1 < t < t2, (8.2)

where m̂r(t) are the sample moments and m̂[r](t) are the sample factorial moments. The estimated

scaling exponents functions ζ̂(r) and ζ̂[ ](r) are then obtained as the slopes in the linear regressions
of log m̂r(t) and log m̂[r](t) on log t over the range t1 < t < t2. Note that analogous scaling

exponents functions ζ(r) and ζ[ ](r) (ζ̂(r) and ζ̂[ ](r)) can be defined at large scales as well, based
on the relations (3.8) and (3.9).

Plots (a)–(b) in Figure 3 depict the estimated scaling exponents functions of the moments
ζ̂(r) over different ranges at large and small scales. In order to provide accurate results for the
higher order moments and to investigate the impact of different regression ranges, the estimates
are obtained as the slopes of the linear regressions of logmr(t) on log t (theoretical lines in Figure
1 and also computed for all r = 1, 2, . . . , 6). At small scales, over the range [−20,−15] of log t, the
scaling exponents function is approximately 1 (the true value) and would lead to the conclusion of
monofractal behaviour. On the other hand, over the ranges [−20, tm,r] and [−15, tm,r], the scaling
exponents function is nonlinear showing evidence of (spurious) multifractality of the random
process. At large scales, the estimate of ζ(r) is a linear function in r over both ranges considered,
[tm,r, 5] and [0, 5], being close to ζ(r) = r.

Plots (c)–(d) in Figure 3 show the estimated scaling exponents function of the factorial mo-
ments. In this case, the lines look quite linear at both scales for the different ranges. The true
functions ζ[](r) = 1+(r−1)θ and ζ[](r) = r at small and large scales, respectively, are close to the
empirical estimates. For example, the fit of the lines at small scales gives θ approximately equal
to 0.75, 0.76 and 0.81 for [−20,−15], [−20, log(tm,r)] and [−15, log(tm,r)], respectively (recall that
θ was estimated as 0.6 in Section 8.1). This shows that at small scales, the exponent function can
be estimated more reliably for the factorial moments than for the usual moments.

A Formulae relating central moments and factorial cumulants

For Section 7, the relations between the first seven central moments and factorial cumulants using
(2.16) along with (2.14) and (2.11) are listed below. We use the variable t instead of T in the
observation as in Section 7 to emphasize that these are general relations between central moments
and factorial cumulants.

m0
2(t) = κ[1](t) + κ[2](t), (A.1)

m0
3(t) = κ[1](t) + 3κ[1](t) + κ[3](t), (A.2)

m0
4(t) = κ[1](t) + 3κ2[1](t) + 7κ[2](t) + 6κ[1](t)κ[2](t) + 3κ2[2](t) + 6κ[3](t) + κ[4](t), (A.3)

m0
5(t) = κ[1](t) + 10κ2[1](t) + 15κ[2](t) + 40κ[1]κ[2](t) + 30κ2[2](t) + 25κ[3](t)

+ 10κ[1](t)κ[3](t) + 10κ[2](t)κ[3](t) + 10κ[4](t) + κ[5](t), (A.4)
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Figure 3: Estimated scaling exponent functions: moments (top) and factorial moments (bottom).

m0
6(t) = κ[1](t) + 25κ2[1](t) + 15κ3[1](t) + 31κ[2](t) + 180κ[1](t)κ[2](t) + 45κ2[1](t)κ[2](t)

+ 195κ2[2](t) + 45κ[1](t)κ
2
[2](t) + 15κ3[2](t) + 90κ[3](t) + 110κ[1](t)κ[3](t) + 150κ[2](t)κ[3](t)

+ 10κ2[3](t) + 65κ[4](t) + 15κ[1](t)κ[4](t) + 15κ[2](t)κ[4](t) + 15κ[5](t) + κ[6](t), (A.5)

m0
7(t) = κ[1](t)+56κ2[1](t)+105κ3[1](t)+63κ[2](t)+686κ[1](t)κ[2](t)+525κ2[1(t)κ[2](t)+1050κ2[2](t)

+ 735κ[1](t)κ
2
[2](t) + 315κ3[2](t) + 301κ[3](t) + 770κ[1](t)κ[3](t) + 105κ2[1](t)κ[3](t) + 1400κ[2](t)κ[3](t)

+210κ[1](t)κ[2](t)κ[3](t)+105κ2[2](t)κ[3](t)+210κ2[3](t)+350κ[4](t)+245κ[1](t)κ[4](t)+315κ[2](t)κ[4](t)

+ 35κ[3](t)κ[4](t) + 140κ[5](t) + 21κ[1](t)κ[5](t) + 21κ[2](t)κ[5](t) + 21(t)κ[6](t) + κ[7](t). (A.6)

B Factorial cumulants of PCP

We derive here the formulae (2.6)–(2.7) for the factorial cumulants of PCP. As noted following the
formulae, they appears in Westcott (1973) when the first points in the clusters are excluded. We
shall modify slightly the argument of Westcott (1973) to include the first points in the clusters,
leading to the exact same formulae (2.6)–(2.7).

The factorial cumulants are obtained through the formula (2.5) based on the probability
generating function Pt(z) in (2.4). For the equilibrium process, Pt(z) is defined as the limit

Pt(z) = lim
x→∞

EzN(x,x+t),
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where N is the transient PCP. We need first to introduce some notation. Let Sj , j ≥ 1, be the
Poisson arrivals of the first points of the clusters, and Xj,k, k ≥ 0, be the distances of the cluster
points from the first point in clust6er j, with Xj,0 = 0. Let Xk, k ≥ 0, be the generic distances
of cluster points, with X0 = 0 and the understanding that there is a finite but random number
of Xk’s in a cluster. The point process consisting of the points Xk is referred to as a subsidiary
point process in Westcott (1973). To make connection to Westcott (1973), we shall denote the
subsidiary process by N (s) when the first point X0 = 0 is excluded, and also let

P (z; a, b) = EzN
(s)(a,b), P (z; b) = P (z; 0, b) = EzN

(s)(0,b), P (z) = P (z;∞),

that is, the probability generating functions associated with the subsidiary process N (s) (excluding
X0 = 0).

With the introduced notation and letting hx(y) = z1(x,x+t)(y), we get that

logPt(z) = lim
x→∞

logE
∞∏
j=1

∞∏
k=0

hx(Sj +Xj,k) = lim
x→∞

(
− λ

∫ ∞
0

(
1− E

∞∏
k=0

hx(u+Xk)
)
du
)
,

where we used the fact that the probability generating functional of a Poisson process is given
by E

∏∞
j=1 g(Sj) = exp{−λ

∫∞
0 (1− g(u))du} for suitable deterministic functions g. Splitting the

integral
∫∞
0 into

∫ x+t
x and

∫ x
0 , it follows that

logPt(z) = lim
x→∞

(
− λ

∫ x+t

x

(
1− E

∞∏
k=0

z1(x,x+t)(u+Xk)
)
du− λ

∫ x

0

(
1− E

∞∏
k=0

z1(x,x+t)(u+Xk)
)
du
)

= −λ
∫ t

0

(
1− E

∞∏
k=0

z1(0,t)(v+Xk)
)
dv − λ

∫ ∞
0

(
1− E

∞∏
k=0

z1(v,v+t)(Xk)
)
dv,

after the change of variables v = u− x for the first integral, and v = x− u for the second integral
and letting x → ∞. Since v + X0 = v ∈ (0, t) for v ∈ (0, t) (for the first integral above) and
X0 = 0 /∈ (v, v + t) for v > 0, we get further that

logPt(z) = −λ
∫ t

0

(
1− zE

∞∏
k=1

z1(0,t)(v+Xk)
)
dv − λ

∫ ∞
0

(
1− E

∞∏
k=1

z1(v,v+t)(Xk)
)
dv

= −λ
(∫ t

0
(1− zP (z; t− v))dv +

∫ ∞
0

(1− P (z; v, v + t))dv
)

= −λ
(∫ t

0
(1− zP (z; v))dv +

∫ ∞
0

(1− P (z; v, v + t))dv
)
, (B.1)

by using the notation above and another change of variables (t− v to v in the first integral). We
shall next evaluate the two integrals in (B.1).

Let now W (0) = W − 1 be the number of points in a cluster excluding the first point, and

R
(0)
w = P(W (0) ≥ w) = P(W − 1 ≥ w) = P(W ≥ w + 1) = Rw+1. As shown in Westcott (1973),

Eq. (4),

P (z;u) = P (z) + (1− z)
∞∑
j=0

zjR
(0)
j+1(1− Fj+1(u)).
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Note that

P (z) = EzN
(s)(0,∞) = EzW

(0)
=
∞∑
j=0

zjP(W (0) = j) =
∞∑
j=0

zj
(
R

(0)
j −R

(0)
j+1

)
(with R

(0)
0 = 1). After simple algebraic manipulations, this leads to

P (z;u) = 1 + (z − 1)
∞∑
j=0

zjR
(0)
j+1Fj+1(u).

Then, for the first integral in (B.1),∫ t

0
(1− zP (z; v))dv = −(z − 1)t− (z − 1)

∞∑
j=0

zj+1R
(0)
j+1

∫ t

0
Fj+1(u)du. (B.2)

As shown in Westcott (1973) (see the arguments following Eq. (19) and terminating with Theorem
4), the second integral in (B.1) can be written as∫ ∞

0
(1− P (z; v, v + t))dv = −(z − 1)

∞∑
k=1

zk−1Jk

∞∑
j=0

R
(0)
j+k,

where

Jk =

∫ t

0
(Fk−1(x)− Fk(x))dx.

Basic algebraic manipulations lead to∫ ∞
0

(1− P (z; v, v + t))dv = −(z − 1)tEW (0)

−(z − 1)2
∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

R
(0)
j+k − (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dxR

(0)
k . (B.3)

By using (B.2) and (B.3), we can express (B.1) as

logPt(z) = (z − 1)λt+ (z − 1)2λ
∞∑
j=0

zjR
(0)
j+1

∫ t

0
Fj+1(x)dx

+(z − 1)λtEW (0) + (z − 1)2λ

∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

R
(0)
j+k

= λ(z − 1)
(
t+ tEW (0) + (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=0

R
(0)
j+k

)
.

By noting that 1 + EW (0) = EW and that

∞∑
j=0

R
(0)
j+k =

∞∑
j=0

P(W (0) ≥ j + k) =

∞∑
j=0

P(W ≥ j + k + 1) =

∞∑
j=1

Rj+k,

we get further that

logPt(z) = λ(z − 1)
(
tEW + (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

Rj+k

)
.

By using (2.5), this yields the formulae (2.6)–(2.7).
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