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Preface 

The research· described in this dissertation was carried out in the Department of Geography, 

University of Natal, Pietermaritzburg _ and in Giant's Castle Game Reserve, KwaZulu/Natal. 

Drakensberg, from January 1993 to December 1994, under the supervision of Mr H. Beckedahl. 

These studies represent original work by the author and have not otherwise been submitted in any 

form for any degree or diploma to any other Univ�rsity. Where use has been made of the work of 

other authors it has been duly acknowledged in the text. 



lll 

"As a young man, my fondest dream was to become a geographer. However while working in the 

customs office I thought deeply about the matter and concluded it was far too difficult a subject. 

With some reluctance I turned to physics as a substitute." 

(Albert Einstein, Unpublished Letters) 
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Abstract 

The Drakensberg is an important ecological and recreational resource area within southern Africa, 

yet little knowledge exists concerning the factors controlling soil erosion in the region. The two 

most important anthropogenic modifiers of natural erosion processes in the areas beyond the: 

Drakensberg Park main camps and access roads are vegetation burning and the erosion associated 

with footpaths. This dissertation investigates the rates and controls of footpath erosion in Giant's 

Castle Game Reserve in the KwaZulu/Natal Drakensberg. 

Two measurement techniques are employed. Sediment yield and runoff were monitored from six 

runoff plots installed on different gradients on a high user-intensity footpath. Runoff is found to 

increase linearly with increasing footpath gradient. Sediment yield increases gradually with 

increasing footpath gradient to a threshold path gradient of 13.36°, after which sediment yield 

increases rapidly. Soil eroded from the runoff plots has a finer particle size distribution than the 

footpath tread surfaces within the plots. Rates of sediment generated from the runoff plots is 

dependant on the rainfall intensity index (I
60

), as opposed to rainfall kinetic energy or total rainfall 

related indices, while runoff is dependant on the El60 index. 

A 100m point-based survey of footpath attributes, totalling a distance of21km along four paths in 

the Reserve was undertaken. Where footpath gradients are low and user-intensity is high, path 

morphometry is dependant on orientation to the slope. Morphology of footpaths with both higher 

gradients and user-intensities show a dependence on path gradient. The degree of compaction of 

the footpath tread decreases away from the main camp and is positively related to user-intensity. 

Multiple path development is. associated with the path width to maximum depth ratios and a 

threshold ratio range of 4. 0 I to 4. 50 is established for the initiation of secondary path routes. A 

comparison of the survey data with a survey conducted in 1989 indicate erosion rates between 3.24 

and 13. 0 tons/km/a over a four year period. 

Erosion rates for the runoff plots and for the surveys indicate that the values obtained for the two 

techniques of measurement utilised in the study approximate each other. Path erosion rates, while 

still presenting a prnblem, are not uncharacteristically high in Giant's Castle. Game Reserve in 

comparison to the scarce data available on rates of path erosion within and beyond southern Africa. 
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1. Introduction

1.1 Geomorphology as a science 

1 

Geomorphology is not a unique science. It is concerned with the Earth and its form and must by 

its very nature draw on the disciplines of Geology, Agronomy, Chemistry, Physics, Hydrology, 

Botany and Mathematics amongst others (Vitek and Giardino, 1993 ). This interdisciplinary 

relationship enables geomorphologists to actively engage in numerous fields beyond that of 

geomorphology, particularly in the applied components of the discipline. In turn, however, 

weaknesses in defining the, discipline are created, where aspects of geomorphology , are reflected

or practiced in other fields of science. 

As geomorphology is a science, it is permeated by theory. The most useful view of geomorphology 

as a science is one in which theory and observation are viewed symbiotically. Theory provides the 

generative force, whereas observation provides a vital policing role (Rhoads and Thorn, 1993). 

Theory is an integral component of science, yet theoretical considerations in geomorphology must 

be based on a firm understanding of the processes and resp0nses driving the natural systems. 

Fortunately, there are still _many avenues of research in theoretical and in applied aspects of the 

discipline open to the student of geomorphology, and many questions to be both asked and 

answered in many sub disciplines. 

"The acquisition of geomorphic knowledge is an explosion in response to the 

effort and technology applied to a seemingly endless number of questions." 

(Vitek and Giardino, 1993, ix) 

Looking at the present and into the past perhaps provides some insights into future directions for 

the discipline. Any collection of geomorphologists, if asked to define the curr.ent state of 

geomorphology, would probably only agree upon a generality which permits them to disagree on 

the nature of the current status of the discipline (Vitek and Giardino, 1993). Historical perspectives 
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on geomorphology have, nonetheless, emerged in the last decade and have provided insights into 

future directions (eg. Tinkler, 1985; Baker and Twidale, 1991; Vitek and Giardino, l 993). These 

perspectives provide direction to the student facing dilemmas of future prospects in a discipline that 

appears relatively obscure to the general public. 

" ... geomorphology has a role to play at the apex of a new scientific hierarchy. 

Rather than passively accepting a lowly position by mundanely applying idealised, 

long known physical and mathematical principles to nature, geomorphology might well 

assert itself as an integrative expression of what it is important to know of nature." 

(Baker and Twidale, 1991, p.95) 

The purpose of this study is to investigate the processes responsible for an anthropogenic­

geomorphic phenomena that threatens many natural environments; the erosion associated with 

footpaths. An interpretation of the footpath erosion mechanisms is derived through the investigation 

of the rates and controls of the erosion process. From this grounding, an attempt to place the 

findings within a theoretical framework is undertaken, and the implications and recommendations 

for the management of natural environments are assessed. 

1.2 Background to the study 

Rates of soil erosion for Africa are not exceptionally high by world standards. On a continental 

scale erosion rates are far lower than that of Asia, while at the scale of major drainage basins some 

rivers in India have 700 times the erosion rt;1te of the Niger river system (Stocking, 1984). General 

rates are, however, not particularly useful to land-use planners and managers due to localised high 

erosion rates. Strategies for erosion control in areas where accelerated erosion presents problems 

to land management can only be achieved through an und�rstanding of the soil erosion processes, 

how they operate and their interaction with different conservation practices (Morgan, 1986; 

Beckedahl et al., 1988). A need exists for detailed.studies of soil erosion in southern Africa to 

supplement the existing knowledge of soil loss and sediment yields (Beckedahl et al., 1988). 
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The focal region of this study, the KwaZulu/Natal Drakensberg, is an important ecological and 

recreational resource. Little knowledge exists of the factors causing erosion and transportation of 

sediment in the Drakensberg as a whole. In the areas of the KwaZulu/Natal Drakensberg erosion 

rates are generally low, yet soil eroded from footpaths can exceed soil loss tolerances for an area 

(Garland, 1987a). The absence of quantitative information restricts the prediction of erosion rates 

from footpaths and hampers the implementation of effective conservation measures. 

Two broad approaches can be used for estimation of soil loss. The first is the measurement of 

sediment yields from runoff plots. This is a localised approach measuring soil losses under specific 

climatic and geomorphic conditions. A second approach is that of soil loss modelling which yields 

indices of soil loss (Schulze, 1979). Models, such as the Universal Soil Loss Equation (USLE) 

(Wischmeier and Smith, 1978) and the Soil Loss Estimation Model for Southern Africa (SLEMSA) 

(Elwell, 1981) may be used to estimate soil losses and provide a framework -for broad land use 

management and planning. These models must, however, be treated with caution as they are 

particularly sensitive to local soil erosivity and rainfall energy (Schulze, 1979; Smithen and Schulze, 

1982; Albaladejo-Montoro and Stocking, 1989). 

The incidence of gully erosion is greatly increased along footpaths and cattle tracks since these are 

devoid of vegetation and thus are natural sites for the concentration of sheetwash, with consequent 

·increases.in flow velocities (McQuaid-Cook, 1978; Holy, i 980; Toy and Hadley, 1987; Beckedahl

eta!., 1988; Shakesby and Whitlow, 1991). There has, however, been limited research related to

the erosion of footpaths in comparison to the extensive literature available on erosion associated

with agriculture and forestry. Over the past three decades there have been several studies on the

mechanisms and controls of footpath erosion ( eg. Bayfield, 1973; Bryan, 1977; Weaver and Dale,

1978; Bratton et al., 1979; Quinn et al., 1980; Coleman, 1981; Garland et al., 1985; Tinsley and

Fish, 1985; Jubenville and O'Sullivan, 1987; Auerswald and Sinowski, 1989). Although rates of

footpath erosion have long been attributed to runoff amount and velocity and the character of the

footpath itself (Bryan, 1977), few studies have focused on determining actual rates of soil erosion

or footpath morphological changes through time (Tinsley and Fish, 1985; Garland, 1987a; 1988;

Lance et al., 1989). Similarly little is knowri of the overall effect of footpaths on the soil properties

(Ward and Berg, 1973; Starodubova, 1985) although some extrapolations may be made from

campsite studies in which vegetation disruption and compaction have been measured ( eg. Dotzenco

et al., 1967; Monti and Mackintosh, 1979; Cole and Marion, 1988).
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Coleman's ( 1981) model shown in Figure 1.1 provides a broad framework for investigating the 

various forces and environmental influences that determine the morphology of a footpath. Footpath 

morphology is a general term which includes the width, depth and cross-sectional profile. The 

morphology is determined by the interaction of the forces acting on the footpath (geomorphic and 

recreational) and the resistance of the materials of which the footpath is made (Coleman, 198 I; 

Garland et al., 1985). As the footpath develops the footpath itself may modify the effect of the 

forces by changing the underfoot characteristics and altering infiltration and runoff rates (Fig. 1.1 ). 

The model suggested by Coleman ( 1981) is applied in further discussions. The interactions of the 

_factors are broadly classified under geomorphological and recreational forces and the forces of 

resistance. 
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Figure 1.1 The interaction of forces in footpath erosion and the influence of environmental site 
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1.2.1 Geomorphological forces 

The rate of soil erosion depends on a complex interaction between erosivity forces of rainfall and 

runoff and the susceptibility of soil to detachment by these forces (Ulsaker and Onstad, l 984; 

Beckedahl et al., l 988). Many erosivity indices have been developed to correlate erosivity forces 

with quantities of soil loss. The simplest of indices is the total rainfall amount (A) which is related 

to the two major erosive agents, raindrop impact and surface runoff (Ulsaker and Onstad, 1984). 

Another simple index is the rainfall total kinetic energy (E) proposed by Wischmeier and Smith 

(1978). This has, however, considerable unexplained variation and is generally not considered a 

good indication of erosivity (Ulsaker and Onstad, l 984). Maximum rainfall intensity Cix) over 

specified durations (x) of 15 and 30 minutes have been evaluated (Wischmeier and Smith, 1978) 

while Foster and Meyer (1975) found that interrill sources of erosion were related to the square of 

the rainfall intensities. 

Some compound parameters have been developed. The El30 index (Wischmeier, 1959; Wischmeier 

and Smith, 1978) which is the product of the. rainfall total kinetic energy and the maximum 30-

minute intensity, is widely used in the USLE. Hudson (1965; 1971) found the KE> 25 (the rainfall 

total kinetic energy falling at intensities greater than 25mmlhr) to be the most appropriate index in 

Zimbabwe. In the development of the SLEMSA, Elwell (1981) used the seasonal kinetic energy 

as the erosivity index to estimate mean annual soil loss from sheet erosion. In western Nigeria, Lal 

(1976a, b) found correlations of soil loss with the Al30 index (product of rainfall amount and 

maximum 30-minute intensity). More recent research in southern Nigeria showed the E4t index 

(kinetic energy and maximum intensity for a 6-minute duration) to be a better erosivity index than 

the Alm or the EI30 (Salako et al., 1991). 

Indexes such as those listed above require testing for two main reasons. Firstly, the results obtained 

from one region are not necessarily transferable to a second region due to different local 

geomorphic characteristics. The results for Nigeria, cited above, highlight this problem. Further, 

a general tendency for results from other regions to be utilised in studies in southern Africa without 

regard to local variables or consideration of local geomorphic characteristics of erosion, has 

previously been criticised (Beckedahl et al:, 1988). Secondly, the effect of drainage modification 

by footpaths on different gradients, with the added influence of soil compaction and aggregate 
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disintegration by walking action, on erosivity index application still requires testing. 

The susceptibility of soil to detachment has been extensively used in both theoretical and practical 

approaches to soil erosion (Bryan et al., 1989). Spacial and temporal changes in soil moisture 

content as well as the physical and chemical dynamism of the soil surface change the precise 

processes of detachment. Soil erodibility cannot, therefore, be defined by a few properties alone 

and only rankings established for the same processes, measured under similar conditions can be 

compared (Kirby and Mehuys, 1987; Bryan et al., 1989). 

Knowledge of the relationship between flow . velocity, depth and discharge is important in 

applications of deterministic hydrology and erosion models (Govers, 1992). Although issues of flow 

velocities and depth are not a component of this research, quantities of runoff in relation to 

sediment yields from footpaths are investigated. Knowledge of variations in dischafge are necessary 

for the calculation of variations in the hydraulic parameters governing sediment detachment and 

discharge (Abrahams et al, 1989; Govers, 1992). Such relationships are virtually unknown for the 

hydraulics of footpaths. 

Rainsplash impact has been found to have little effect on runoff velocities but does increase the 

transport capacity and wash sediment concentrations (Savat, 1979; Kirkby, 1980; Bryan, 1987). 

Rainsplash.is therefore an important factor affecting particie entrainment (Bryan, 1987), with the 

detachability of the soil linked primarily to soil shear strength (Nearing and Bradford, 1985; Brunori 

et al., 1989). Further, soil surface slope has a positive effect on the raindrop force of detachment 

of soil particles. Slope effect acts through the addition of a gravity component to the drop 

detachment force rather than modifying the raindrop force (Torri and Poesen, 1992). This should 

theoretically contribute to higher sediment yields from. higher gradient slopes or footpaths, 

however, little empirical data on footpath gradient and soil loss are avail1,tble to substantiate this. 

It is widely accepted among geomorphologists that sediment removal by overland flow is particle 

size selective, yet the geomorphological literature contains few studies in which the size selectivity 

has been examined and upon which this view may be based (Poesen and Savat, 1980; Parsons et

al, 1991; Durnford and King, 1993). Young and Onstad (1978) found interrill sediments in a runoff 

plot to have higher sand contents and lower clay contents than the matrix soil and rill sediments. 

Meyer el al. ( 1980), however, found no difference in particle size distributions between eroded and 
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matrix soil. Generally, no broad relationship has been found between eroded and matrix soil 

(Parsons et al., 1991 ). A similar situation exists for the understanding of particle size selectivity of 

sediment generated from footpaths, where no general relatjonship has been established. This is due 

to the almost complete absence of data on soil and sediment particle size distributions, and is 

exacerbated by the difficulty of projecting findings for natural surfaces or those under agriculture 

to the compacted and disaggregated conditions of a footpath. 

Footpaths act as conduits for water, diverting and confining overland flow and sediment that would 
w ·---- • - ---- • 

otherwise drain directly downslope, along a new drainage channel. In principle this is similar to the 

_significance ofrills as drainage systems on hillslopes, clearly recognised by Horton ( 1945) and later 

identified as temporary or permanent channels (Schumm, I 956). A major difference bet�een rills 

and footpaths is that the drainage created by footpaths is not natural, and the pedestrian influence 

on the soil surface results in soil and vegetation characteristics which differ considerably from 

natural or agricultural environments. A further dissimilarity from rills is that the vegetation cover 

has been shown to be a major control on rill erosion rate, with other significant factors being soil 

·texture and aggregate stability (Govers, 1991). With a footpath, in the almost complete absence of

vegetation on the footpath tread surfaces, the interaction between geomorphological and

recreational forces appears more significant, while vegetation may play a role in stabilising the tread

peripheries. Rills also have the ability to readily adapt their geometry in response to changes in

discharge and slope ( Govers, 1992 ). Rill flow velocities may therefore be expected to be equal to

or close to equilibrium values, a situation not necessarily applicable to footpaths where recreational

pressures can have a major impact on footpath morphology.

The smaller scale, yet no less significant, processes alluded to above must be considered within the 

broader geomorphological influences on footpath erosion, and vice versa. The broader 

geomorphological · infl1,.1ences include the cross-slope (hillslope ), path gradient, aspect and 

.orientation, all of which have been found to influence footpath morphology. In the English Lake 

District Coleman (1981) showed that the extent of path erosion was found to increase with the 

square root of the path gradient. Trail width has been found to increase linearly with increasing path 

-gradient in Scotland (Bayfield, 1973) while in the North Rocky Mountains Weaver and Dale ( 1978)

found trail depths tended to be greater on slopes than on level sites. Auerswald and Sinowski

_( 1989) found that path depth increased linearly with path steepness in the Bavarian Alps. Garland

et al. (1985) found, however, that path cross-sectional area could not be satisfactorily predicted
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by hillslope, path gradient and unbroken path-length in the Drakensberg but found a weak yet 

significant relationship between depth and path gradient, depth and hill-slope gradient, and depth 

and width. 

In Sweden, Bryan (1977) observed that topography was significantly related to footpath orientation 

and that where paths follow the fall-line severe water erosion hazard exists, regardless of slope 

angle. Wh�n pat_!_i_s -�1?. parallel !9._g�e c�ntours_little d��ag_e is caused unless the incisio� is deep 

enough to divert the runoff. The footpath orientation is calculated as the difference between the 

path aspect and the cross-slope aspect and ranges between O O and 90 ° (Bratton et al., 1979; 

Tinsley and Fish, 1985). Bratton et al. (1979) found a significant negative correlation between 

orientation and erosion, thus confirming Bryan's (I 977) findings. 

1.2.2 Recreational forces 

Initially, footpaths may either be constructed or demarcated and 'walked-in' by users. Previous 

construction techniques employed in the Drakensberg were to cut-and-fill where footpaths 

traversed hillslopes. On shallower gradient slopes the A horizon (rooting zone) was removed to a 

depth of 80mm to define the footpath (Garland, l 988). This technique results in immediate 

compaction of the soil surface by pedestrians and almost precludes any form of stabilisation by 

vegetation. A more recent approach is to demarcate a new footpath by cutting the grass and 

allowing the pedestrians to walk the footpath in (Day et al., 1994). The trampling by visitors 

damages vegetation and initiates the erosion process (Willard and Marr, 1971) and heavy -

recreational use generally leads to changes in the physical and chemical properties of the soil (Monti 

and Mackintosh, 1979; Starodubova, 1985; Jusoff, 1989).%ryaJL(1977} sh9wed that vegetation 

is completely broke,.n down by an intensity-of-use approaching 8_00 - 1000 users (no time period 

specified) while Day et al. (1994) found vegetation to have completely disappeared after 600 users 
•-.- • • • • ---=--- r ,. " • 

over a period of four months at Royal Natal National Park, northern Drakensberg. Although 

previous findings show that soil loss generally does not commence until at least 30% of the ground 

surface is bare (Elwell and Stocking, 1976), breakdown of the soil by trampling has been shown 

to occur while wear of the vegetation is still in progress. By the stage where declining plant cover 

is evident, the critical period in which erosion is initiated has already past (Quinn et al., 1980). The 
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damage caused to vegetation is cumulative if the intensity-of-use is sufficient to prevent 

regeneration during the growing period. This is generally the situation for footpaths in the 

Drakensberg, where intensity-of-use restricts regeneration of vegetation and most paths are thus 

devoid of vegetation and have compacted tread surfaces. 

Associated with vegetation damage by pedestrians is the co�p�ction of the soil. Path depth depends 

on both the degree of compaction and on the extent of erosion (Weaver and Dale, 1978), however, 

scarce data are available on the relative degrees of compaction and soil truncation ( cf Bryan, 

1977). The degree of compaction varies with the type_ of sol}, s�iL!!i��s_t��� conJ_�{!!,_user -��nJ_ity 

and.the distributi�n ofthe_force exerted _by the feet ofthe_path_users (McQuaid..:Cook, 1978� Toy 

and Hadley, 1987). The extent of erosion is generally controlled by the geomorphic factors 

discussed above in combination with the shearing and disaggregating effects of the feet of 

pedestrians as soil particles are trampled, pushed and rolled along the footpclth (Coleman, 1981 ), 

Compressive forces decrease with increasing gradient, but the shearing effect on the tread increases 

(Quinn et al., 1980). Although the compressive forces decrease with increasing footpath gradients, 

the pace length of pedestrians also tends to decrease (Bayfield, 1973 ). This may explain the greater 

degree of compaction, and a corresponding trend of increasing footpath tread shear strength on 

steeper gradient sections of footpaths found by Day et al. (1994). 

Some further relationships between footpath intensity-=of-use and erosion have been established. 

Coleman ( 1981) found erosion to increase with the square of the user-intensity while findings by 

Dale and Weaver (1974) and Weaver and Dale (1978) show trail width to increase with the 

logarithm of users. Auerswald and Sinowski (1989) found trends for user-intensity influencing both 

footpath width and depth. In southwest Texas, Tinsley and Fish (1985) found that trail width and 

visitor-use were directly related to increased amounts of soil movement, but did not necessarily 

result in greater net erosion. Although relationships have been suggested concerning the 

geomorphic control of footpath erosion in the Drakensberg (eg. Garland et al., 1985; Garland, 

1988) the effects of user-intensity have not been investigated to any meaningful degree. 

_P_��estrian_be�a"_'�O�r is also an important component of footpath erosion Compaction generally 

decreases outwards from the centre of the footpath and the overall width of trampled vegetation 

adjacent to the bare central areas depends on the lateral spread of pedestrians (Bayfield, 1973; 

1987; Ward and Berg, 1973; Starodubova, 1985). The lateral spread is governed both by 
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individuals 'searching for footing', particularly on sloping sections, (Weaver and Dale, 1978) and 

by the desire for pedestrians in a group to walk abreast. Similarly, social behaviour at footpath 

intersections where pedestrians typically stop to rest and discuss the hiking experience, often causes 

trampled zones in the immediate vicinity of the intersection. 

Pedestrians generally are more damaging to vegetation when going downhill (Weaver and Dale, 

1978), ostensibly due to greater shearing _forces exerte� l;)y theJeet on the soil surface. Bayfield's 

( 1973) research indicates a greater tendency for pedestrians to leave the footpath when walking 

downhill, with an overall proportion of 30% of pedestrians walking off the footpath (bare tread) 

on the adjacent trampled zone .. Such trampled zones are not common in the Drakensberg,. however, 

secondary ( or multiple) footpaths are frequently found ( eg. Garland et al., 1985). No known 

research into the initiation of these secondary paths has been undertaken in southern Africa. In 

Scotland, Lance et al. (1989) observed the tendency for secondary paths to form where paths pass 

through wet hollows and, less frequently, where paths were narrower and firmer underfoot. 

Auerswald and Sinowski (1989) observed that an increasing number of pedestrians resulted in a 

distinct tendency toward extensive branching of paths, however, this tendency was not quantified. 

Generally the recreational control on the initiation of secondary paths is poorly understood. 

1.2.3 Resistance to erosion 

Resistance to erosion is governed by vegetation and soil characteristics, and to a lesser extent by 

lithology. The resistance of vegetation to trampling is well documented (eg. Burden and Randerson, 

1972; Bayfield, 1973; Liddle, 1975). Various factors, including climatic and soil conditions, 

influence the vigour and productivity of vegetation and thus its susceptibility to trampling 

(Coleman, 1981 ). Vegetation reduces raindrop impact, increases soil infiltration capacity and 

g�crec1.§�� TIJ.Qgff. Vegetated footpath� shoµLdJherefore e�perjence l��s_ ergsio_� th�� �are tread. 

su_rfac.�.s (Garland et al., 1985). Further, organic matter within the soil generally increases aggregate 

stability (Mbagwu and Piccolo, -1989; Nwadialo and Mbagwu; 1991 ), thus reducing the erodibility 

of the soil and decreasing the degree of compaction (Dotzenco et al., 1967; Day et al., 1994) and 

assisting in the regeneration of vegetation. 



11 

The resistance of soil is an important variable in soil erosion, the relevant factors being particle size, 

shear strength and stoniness (Coleman, 1981 ). Stoniness generally influences overland flow 

I 
hydraulics and sediment yield (�unte and Poesen, 1994) while the influence of particle size and 

shear strength have been incorporated into the above discussion of the geomorphological forces. 

Lithology plays an important role in determining soil characteristics and ultimately vegetation 

cover. In an assessment of erosion risk of footpaths in the Drakensberg, Garland (I 990) used 

lithology as a substitute for soil erodibility due to the differences in infiltration rates and lower 

potentials for runoff from different lithologies as recorded by Schulze (1979). Considerations of 

resistance to erosion from footpaths, therefore, need to take cognisance of lithological changes and 
••r

• • •  r -

1. ··. __!_h� r�ated soil and �t?getation characte1ts!!CS.

Investigation into the forces determining footpath morphology requires a holistic_approach which

focuses both on the localised processes such as rajnf�l_l erosivity an� runoff, and on the broader 

influences of user-intensity, path orientation, gradient, orientation and cross-slope gradients. Some 

interaction between the two categories is obvious. For example, the influence of path gradient 

applies broadly to modification ofhillslope drainage but it also influences rainsplash detachment and 

local runoff rates. The objectives of the study and the methodology adopted to achieve this are 

outlined in following sections. 

1.3 Objectives of the study 

Resejlrch indicates that footpaths in mountain �nvironments are generally more susceptible to 

�osion (Ketchledge and Leonard, 1970, Bratton et al., 1979). This is due mainly to the harsher 

climates, steeper slopes, thin�er soils and poorer vegetation cover often found in moµntainous 

environments. Research on erosion associated with footpaths in southe�n Africa has been limited 

to a few studies in the KwaZulu/Natal Drakensberg (Garland et al.; 1985; Garland, I 987a; h; 1988; 

1990; Day et al., 1994) and orie general report on the planning of hiking trails which includes minor 

reference to footpath design (Little et al., I 977). 

) 
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The Drakensberg region is both an important recreational and ecological resource. Unfortunately 

recreational use can result in a deterioration of this fragile resource. In the remote areas of the 

Drakensberg the two main anthropogenic influences are the burning programme and the existence 

of footpaths. Thus the management of footpaths and the planning and design of new footpaths 

should rate highly in management objectives. 

In order to conserve existing footpaths and to plan for new footpaths, a detailed knowledge of the 

controls of the erosion process and the anticipated rates of erosion under different environmental 

conditions is required. Due to the generally poor understanding of the phenomena of footpath 

erosion, !he research conducted for the purposes of this study aims to achieve the following 

objectives: 

• a greater understanding of the geomorphological and recreational factors controlling the

erosion process and the associated rate of erosion,

• a greater understanding of the erosive forces of rainfall and runoff as a control on soil

erosion rates,

• improve the understanding of the influence of soil and vegetation on resisting footpath

erosion rates,

• determine the rates of erosion on footpaths under different environmental conditions, and

• compare erosion rates with other available data so as to assess the severity of footpath

erosion for the area.

Fulfilling these objectives will enable recommendations to be made for both the management of 

existing footpaths and for the designing of.new footpaths such that the associated soil erosion can 

be minimised. 
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1.4 The study area 

Giant's Castle Game Reserve was selected as a research site due to its extensive footpath network 

and anticipated increases in visitor numbers over the next few years, accessibility from 

Pietermaritzburg and the availability of accommodation. The Reserve is located on the border 

between KwaZulu/Natal (South Africa) and Lesotho (Fig. l .2). It was established in 1903, is 34 

63 8 ha in extent and forms _a large portion of the Drakensberg Park currently administered by the 

Natal Parks Board. Giants Castle Game Reserve is situated in what is traditionally known as the 

Central Drakensberg. It is bounded in the north by the Natal Parks Board Monk's Cowl area, in the 

east by KwaZulu/Natal (previously referred to as a KwaZulu Homeland area) and in the south by 

the Natal Parks Board Highmoor and Mkhomazi areas. The western boundary is the watershed of 

the Main Escarpment which also serves as the KwaZulu/Natal and Lesotho international boundary 

(Fig. 1.2). Access to the Reserve is via the town ofMooiriver on a secondary road. The Reserve 

is a well known area of the Drakensberg and attracts both chalet and cottage dwellers to the Main 

Camp, and hikers who frequently use the mountain huts (Fig. 1.3). 

The Main Camp has a chalet and cottage facility comprising a total of 70 beds. No campsite is 

available as yet, however an extension to the Main Camp is planned which will include a campsite 

facility (Dale, pers. commun. ). This· will increase visitation numbers and thus place increasing 

pressure on the footpath network. Occupants of the main Camp frequently use the footpaths for 

day hikes and high intensity-use footpaths have been surfaced with concrete in the vicinity of the 

camp. The Reserve is also open to overnight hikers who make use of the mountain huts and, less 

frequently, the passes up the Escarpment which access the Lesotho Highlands (Fig. 1.3). 

The footpath network is extensive with footpaths generally starting in the vicinity of the Main Camp 

and linking up with the contour path (Fig. 1.3). The contour path extends below the Escarpment 

between 2200 and 2300m, passing two mountain huts, namely Giant's Hut and Ban�erman Hut. A 

third mountain hut, Centenary Hut, was opened approximately 7km north of Bannerman Hut along 

the contour path during the course of the research. A fourth hut, Meander Hut, is located 

approximately 4km east of the Main Camp. All huts accommodate up to eight persons. 
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Detailed descriptions of the environmental setting of Giant's Castle Game Reserve and the related 

anthropogenic influences are provided in Chapter 2 

ORANGE 

FREE STATE 

Letseng-la-Draai. 

29' 

✓-·-..,, 

I 

Ladysmith 

Kamberg 

Pietermaritzburg 

KWAZULU / NAT AL 

Main road 

Secondary road 

0 20 40 

----==� 

Figure 1.2 Location of Giant's Castle Game Reserve in KwaZulu/Natal 

km 

29" 

., 

N 

I 



........ _ 

LESOTHO 

.> 

\ 

International Boundary 

... / r:,,'- ---·,: 

<'.: , .. _) ___ :';:j 
Giant's Castle '·---. 

Game Reserve ' 

,, 

A Ka-Langalibalele contour path 
.,. Path section limll 

- Road 
B Bannerman Hut contour path 

Footpath C Bannerman Hui approach path 

---- Counter Gianrs Ridge path 

Figure 1.3 Study area in Giant's Castle Game Reserve 

0 1 

km 

15 

.,;••�/ 

\/�!

N 

~-::'-~-.. -_, -~--~:? 
(~: __ _ 

\~--~-----, 
~ ........ ~ ·-· .. ·•--_, .--
'•• 

· ........ ... ___ .- .------- ···-~ 

- 2 
p 

D l 



2. �Environmental Setting of Giant's Castle Game Reserve

2.1 Topography and drainage 
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The KwaZulu/Natal Drakensberg is a part of the Main Escarpment which extends from the Eastern 

Cape through KwaZulu/Natal and into the Orange Free State (Fig. 1.2). The Main Escarpment 

separates the coastal lowlands from the interior plateau of southern Africa and forms an enormous 

horseshoe-shaped step at distances ranging from 50km to 500km inland from the coast (King, 

1982). The topography of the Reserve can be divided into three zones: the Little Berg, Escarpment 

and Lesotho Plateau (Fig. 2.1 ). Peaks on the escarpment reach up to above 3400m and the valley 

floors in the Little Berg extend down to 1500m. The study area is part of the upper region of the 

Bushman's River catchment which drains to the northeast and finally into the Tugela River (Fig. 

1.2). 
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Figure 2.1 Superimposed transects at Giant's Castle Game Reserve (modified after Boelhouwers, 1992). 

2.2 Geology 

The stratigraphy of the Drakensberg is characterised by a concordant sequence of sedimentary 

strata which are overlain by basalts and intruded by a lattice of dolerite sills and dykes (Table 2. I). 
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The Upper Beaufort Subgroup, exposed at between 1500m and 1590m in the Bushman's River 

valley floor, is the lowermost member of the Karoo Supergroup to outcrop in Giant's Castle Game 

Reserve (Boelhouwers, 1988). It consists of fine-grained to medium-grained yellowish feldspathic 

sandstones, alternating with thicker members of red or maroon coloured mud stones and blue-green 

shales. The Beaufort-Molteno stratigraphic contact is readily distinguished whereas the Molteno­

Elliot and Elliot-Clarens contacts are gradational and therefore exact stratigraphic boundaries of 

the formations are difficult to define (Du Toit, 1954; Haughton, 1969; Eriksson, 1983). 

SUPER GROUP GROUP SUBGROUP/ FORMATION AGE 

Karoo 

Supergroup 

Table 2.1. 

Drakensberg Upper Triassic 

'Group Lower Jurassic 

(volcanics) 

Clarens Formation Upper Triassic 

(No group name) · Elliot Formation Upper Triassic 

Molteno Formation Middle Triassic 

Upper Beaufort Subgroup Lower Triassic 

Beaufort Group Middle Beaufort Subgroup Lower Triassic 

Lower Beaufort Subgroup Upper Permian 

Stratigraphy and ages of the upper part of the Karoo Supergroup (modified 

after Eriksson, 1983). 

The Molteno Formation is characterised by light-coloured, fine to course-grained sandstones which 

display argillaceous bed·s and lenses. These grade upwards into deposits of the Elliot Formation 

which display subordinate sandstone lenses set in massive red siltstones and mudstones. The 

Clarens Formation (previously known as the Cave Sandstone) overlies the Elliot Formation and 

consists of pale, fine sandstones with subordinate argillite layers and lenses (Du Toit, 1954; 

Eriksson, 1983). By comparison the contact of-the Clarens Fortnation with the Drakensberg Basalts 

is quite distinct. Small lenses of volcanics are occasionally found within the Clarens Formation 
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sandstones and low grade contact metamorphism has often affected the upper few metres of 

sandstone (Eriksson, 1983). The basalts consist of numerous individual lava flows, generally 

attaining a total thickness of over 1350m (King, 1982) and up to l 800m at Sani Pass (Dunlevey. 

et al., l 993) (Fig. 2.1 ). Secondary minerals of calcite, chalcedony, zeolite and analcime are 

common in amygdales (Brink, 1983) with a distinct zonal distribution (Dunlevey et al., 1993). A 

summary of the lithologies of the upper stratigraphic sequences of the Karoo Supergroup is shown 

in Table 2.2. 

GROUP 

Drakensberg 

No group 

name 

Table 2.2 

FORMATION LITHOLOGY THICKNESS ALTITUDE 

- basalt 1350m >1880m

Clarens sandstone 120m 1720 -1880m 

Elliot red siltstone and mudstones/ 50- 80m 1630 - 1720m 

sandstone lenses 

Molteno sandstones/mudstones/ 7-20m 1600m 

shaies 

Characteristics of the upper stratigraphic sequences of the Karoo Supergroup 

found in Giant's Castle Game Reserve (modified after Boelhouwers, 1992). 

2.3 Geomorphological evolution 

The earliest interpretation of the Main Escarpment (the dominant feature of the Drakensberg) was 

that of a huge fault (Suess, 1904). Such.interpretation was refuted by Penck (1908) who suggested 

it to be the product of scarp retreat. This theory was extended by Dixey's (1942) proposal of four 

erosion surfaces and the later recognition by Fair and King (1954) of three surfaces caused by 

cycles of erosion initiated by intermittent uplift since the Triassic, with parallel retreat of slopes. 

King (1976) later concluded that five datable surfaces exist. Five stages of uplift were identified, 
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the late Pliocene stage of uplift hypothesised as giving rise to a rejuvenation of streams in the Little 

Berg (King, l 982). Not all researchers agreed with these earlier interpretations. King was criticised 

for a lack of empiricism and. objectivity (Young,_ 1972; Le Roux, 1991 ). Problems emerged with 

the dating and correlating of surfaces over extensive areas (De Swart and Bennet, 1974; 

Summerfield, 1985) and Birkenhauer (1985) proposed structural control as the cause of the 

distinctly stepped topography. Simultaneously, a number of general problems associated with the 

application of denudation chronology in landscape interpretation emerged (Chorley et al., 1984; 

Selby, 1985). Oilier and Marker ( 1985) alternatively suggest that the Escarpment was initiated by 

erosion on the downwarped continental margins to the base level of the newly emerging coastline. 

In response to the confusion of geomorphological. interpretation there has been a re-evaluation of 

the geomorphological history of the subcontinent by Partridge and Maud (1987). 

Partridge and Maud ( 198 7) interpreted the mountainous regions above the Great Escarpment as 

being unrelated to particular phases of erosion, in contrast to King's reference to a Gondwana 

surface, although generally discrete phases of erosion can be identified. The oldest surface identified 

by Partridge and Maud (1987), the African surface, coincides generally with the African surface 

described by King (1967). Two surfaces of the post-African age were identified, and are referred 

to as the Post-African I and the more recent Post-African II surface. The relationship between 

surfaces and stages is hypothesised as being indicative of landform development by progressive 

backwearing and downwearing, where existing surfaces continue to develop at the expense of 

higher lying areas. 

Notwithstanding the work of King (interalia 1982) and Partridge and Maud (1987) few broadly 

based studies of geomorphic evolution of the sub-continent have appeared in the last two decades. 

The recent focus within the geomorphology of the sub-continent has been on landscape 

development at the regional to local scale and on landscape processes that are active under present­

day conditions. The presence of periglacial activity on the Lesotho Plateau supports the contention 

that periglacial processes have played, and continue to play, a role in modifying the morphology 

of the high Drakensberg (Lewis, 1988; Boelhouwers, 1991; 1994; Hanvey and Marker, 1992; 

Meiklejohn, 1992; 1994; Grab, 1994). The cryogenic influence may have extended down the Main 

Escarpment in the last glacial in the form of niche glaciers (Hall, 1994) with so.me evidence of 

cryogenic processes at lower altitudes (Lewi's, 19_88). 
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By analysing the scarps of the Main Escarpment basalts near Royal Natal National Park, Moon and 

Selby ( 1983) contested the idea of strictly parallel retreat, citing evidence for the occurrence of 

strength equilibrium slopes. Findings by Munro-Perry (1990) on the Clarens Formation Sandstone 

show that slope retreat will occur only under the specific condition of a resistant caprock. In the 

absence of a caprock the slope will decline. Moon ( 1990) showed that the parallel retreat model 

is not a general model and will occur only where there is sufficient difference in resistance in the 

capping and the underlying strata. Aithough some research has been directed to mass movement 

and erosion ( eg. Beckedahl, 1977; Boelhouwers, 1988, 1992; Sumner, I 993) the contribution of 

mass movement and erosion process to the landforming processes of the Drakensberg is as yet little 

understood. 

2.4 Climate 

The position of southern Africa,- in relation to the pressure and wind systems of the Southern 

Hemisphere, strongly influences the climate of the subcontinent. South of 20°S the climate of Africa 

is dominated by two subtropical anticyclones. The South Atlantic anticyclone feeds south westerly 

on-shore winds onto the west coast. The South Indian anticyclone fluctuates in position off the east 

coast; the cell withdraws in summer and advances in winter. This anticyclone controls the general 

airflow over Natal (Tyson, 1969; Schulze, 1972; Preston-Whyte and Tyson, 1988). South of the 

anticyclones is the zone of westerlies in which mid-latitude frontal depressions form and travel 

eastward. Over the subcontinent an anticyclonic circulation is the predominant feature. This 

weakens in summer and moves south through a few degrees oflatitude. The essential features of 

circulation in summer and winter are similar, yet the seasonal variations of climate with respect to 

rainfall and temperature are marked ( Jackson and Tyson, 1971). 

In winter the high pressure systems mo_ve northwards bringing the Westerlies and intermittent cold 

fronts. These fronts may extend far inland. The presence of the high pressure systems over the 

subcontinent and the occurrence of subsidence result in clear skies and calm conditions (Hurry and 

Van Heerden, 1981 ). In summer the Atlantic and Indian anticyclones move southwards causing the 
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westerlies to blow well south of the continent. There is a weakening and southward movement of 

the anticyclone positioned over the subcontinent. The development of weak and shallow low 

pressures over the plateau of southern Africa pennits the influx of humid air from the Indian Ocean 

which influences the eastern parts of southern Africa ( Jackson and Tyson, 1971; Hurry and Van 

Heerden, 1981 ). These broad circulation patterns in tum influence the local climatic parameters 

affecting Giant's Castle Game Reserve and are discussed below. 

There is a scarcity of climatic data for the_ Drakensberg area due to the small number of weather 

monitoring stations. All Natal Parks Board camps keep records of total rainfall. There are, 

however, only three automated weather stations within the Natal Parks Board Drakensberg areas. 

One station is at the Cathedral Peak Research Station (1870m a.s.l.) and the other two are at the 

Main Camp in Giant's Castle Game Reserve (1780m a.s.l.) (Fig. 1.3). The two stations in Giant's 

Castle Game Reserve are controlled respectively by the Natal Parks Board and the Weather Bureau. 

Both stations have been in operation intermittently since 1985. The most complete records come 

from the Cathedral Peak Research Station ( some 4 5 km northwest of Giants Castle Game Reserve 

Main Camp) whereas some high altitude data are available from above the Escarpment at Letseng­

la-Draai (3050m) (Fig 1.2). 

2.4. l Precipitation 

Rainfall amount and the associated kinetic energy vary spatially and seasonally in the Drakensberg. 

Total rainfall varies between about 1000mm in the Little Berg to 1800mm at the Escarpment 

(Tyson et al., 1976). Precipitation in the summer months between November and March accounts 

for 70% while the winter months (May to August) contribute_ only 10% to the total annual 

precipitation (Tyson et al., 1976). Most of the rain occurs in the form of thunderstorms with more 

than 100 rainfall-days being recorded on an annual basis in the Escarpment region (Schulze, 1974). 

Mean monthly rainfall totals and the number of rainfall days for Giant's Castle Game Reserve and 

at the Cathedral Peak Research Station are shown in Figure 2.2. Giant's Castle Game Reserve and 

Cathedral Peak have a similar number of rainfall days, although Cathedral ·Peak has a higher total 

rainfall. 
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Long-term rainfall intensity data are available from the Cathedral Peak Research Station. Rainfall 

kinetic energy relationships for Cathedral Peak show considerable seasonal differences (Fig. 2.3) 

with winter months displaying much lower kinetic energies than summer months (Schulze, 1978). 

The frequency of occurrence of extreme rainfall events above threshold intensities for selected 

durations are shown in Figu!e 2.4. This indicates the highest frequency of occurrence for the

selected parameters from October to the end of May. Peak occurrences are in the December -

January period and a second peak occurs in March. The return period for maximum expected 

rainfall intensities at Cathedral Peak are shown in Figure 2.5. Recent short-term intensity data from 

Giants Castle Game Reserve for the 1993/4 summer will be discussed in Sections 4 ·and 5 
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2.4.2 Temperature 
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Mean monthly temperatures above the Main Escarpment at Letseng-la-Draai (3050m) vary between 

-0.5°C in July and 11. 1 ° C in January (Grab, 1994). Temperatures are higher in the Little Berg and

mean monthly temperatures for Giant's Castle (1737m) rai:ige between 2°C in July to 15°C in

January (Schulze, 1981). Mean monthly temperature data for the two stations are provided in Table

2.3.

Few observations have been made of valley temperature structure in the many valleys that are a 

feature of the Little Berg. Lapse rates measured in the Bushman's River valley in Giant's Castle 

Game Reserve indicated a temperat_ure inversion in winter (Tyson et al., 
·1976). These valley 

inversions are intensified by the drainage of cool air down-valley. After sunrise, however, with the 
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receipt of direct solar radiation, inversions dissipate rapidly. In winter, conditions of clear skies, 

temperature inversions, dry air and the absence of wind, favour the development of frost. In the 

Little Berg frost may occur from May to September with a frequency in the order of 120 days per 

year (Tyson et al., 1976). 

J F M A M J J A s 0 N 

L-1-D 11.1 10 9.0 4.9 2.3 -0.5 0.1 2.0 5.4 7.3 8.3 

G.C.G.R.

Table 2.3. 

2.4.3 Wind 

15 12 13 7 7 2 3 4 8 10 10 

Mean monthly temperatures for Letseng-la-Draai (L-1-D) and Giant's Castle 

Game Reserve (G.C.G.R.) (modified after Schulze, 1981 ;_Grab, 1994). 
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The airflow.of the Drakensberg is strongly influenced by the presence of the Main Escarpment and 

the deeply dissected terrain of the Little Berg (Fig 2.1 ). Under clear, fine weather conditions, 

airflow patterns near the ground are completely dominated by topographically induced local winds 

(Tyson et al., 1976). These are formed on a variety of scales by the solar heating of the ground 

during the day and radiation-cooling by night. Anabatic and katabatic winds may drain warm and 

cool air on slopes by day and night respectively (Tyson et al., 1976). 

Strong pressure gradients are usually associated with the passage of frontal systems. 'Berg Wind' 

conditions generally precede a co.Id· front and wind velocities are high with and generally low 

humidity (Killick, 1963; Hurry and van Heerden, 1981; Preston-Whyte and Tyson, 1988). Strong 

winds accompanying thunderstorms are known to occur but these seldom last for long periods 

(Killick, 1963). The geomorphic influence of strong winds is mostly unknown as little aata are 

available to assess the influence of wind on soil movement. Although cited by Bainbridge (1979) 
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as being an underestimated form of soil transport, Garland ( 198 7b) suggests that the conditions in 

the Drakensberg do not favour extensive wind erosion and deflation has been assumed to operate 

only on bare soils (Boelhouwers, 1988). The effects of burning on wind erosion have, however, not 

yet been fully investigated. Some tentative figures place soil loss associated with burning and high 

wind speeds up to peak values of l 52 tons/ha near the Escarpment south of Kamberg (Sumner, 

1992). 

2.5 Soils 

Although some small scale soil surveys of the Cathedral Peak area have been undertaken (Schulze, 

1974; Granger, 1976) there has, as yet, been no comprehensive soil survey taken for the Natal 

Drakensberg. The Tugela Basin was mapped at a scale of l: l 00 000 by Van der Eyk et al. ( 1969) 

but little attention was given to the soils of the Little Berg and Escarpment zones. The soils in the 

Little Berg have been described as ferrallitic, structureless and acid due to a high degree of leaching 

(Schulze, 1974; Granger, 1976; Boelhouwers, 1988). At Cathedral Peak the A horizon is rich in 

organic matter and is classified as orthic. The A horizon is best developed on moist, cool south­

facing slopes, increasing in thickness downslope to a maximum of 25cm (Schulze, 1974; Granger, 

1976). This trend has also been observed elsewhere in the Drakensberg, as exemplified by 

Humphrey (1983) who reported organic matter contents in the Kamberg area of 10.3% on north­

facing slopes and increasing to 17. 7% on south-facing slopes. The soil appears to be low in clay 

content in the vicinity of the Main Camp in Giant's Castle Game Reserve and samples indicate the 

texture class to be classified as that ofloamy sand (U.S. Department of Agriculture texture classes 

cited in Strahl er, 197 5). 

Five soil forms have byen identified in Giant's Castle Game Reserve, namely Hutton, Griffin, 

Clovelly, Katspruit and Mispah Form (Van der Eyk et al., 1969; Garland, 1987b; Boelhouwers, 

1988). The dominant soil forms found in Giant's Castle Game Reserve and their general location 

are listed in Table 2.4. 



FORM 

Hutton 

Griffin 

Clovelly 

Katspruit 

Mispah 

Table 2.4 
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DIAGNOSTIC HORIZONS LOCATION 

orthic A / red apedal B low gradient slopes 

orthic A/ yellow-brown B / red apedal 8 low gradient moist conditions on cooler slopes 

orthic A / yellow-brown apedal B steep and/or south-facing slopes 

orthic A / firm gley poorly drained valley floors and in narrow 

strips along streams 

orthic A over rock dolerite outcrops and alonq scarp edqes 

Soil forms found in Giant's Castle Game Reserve (modified after Van der Eyk et al., 1969; 

Garland, 1987b; Boelh.ouwers, 1988). 

2.6 Vegetation 

Two of the dominant factors which have influenced vegetation in the Drakensberg are altitude and 

the long history of controlled burning (Garland, 1987b ). Three altitudinal belts of vegetation were 

recognised by Killick (1963) as the Montane, Subalpine and Alpine belt. These belts have generally 

been used in later studies (Edwards, 1967; Schulze, 1974; Granger, 1976; Boelhouwers, 1988) and 

are shown in Table 2.5. 

The montane belt supports the Themeda-Trachypogon sub-climax community. It is dominated by 

Themeda trianda and Trachypogon spicatus grassland and is interspersed with small communities 

of. Protea savanna. Pockets of shrub and woodland· with Leucosidea sericea and Buddleja 

salvifolia are found on rocky soils, in kloofs and on streambanks ( Garland, 198 7b). The subalpine 

belt consists of Themeda-Festuca
_ 
grassland where Themeda trianda is common, particula�ly on

north-facing slopes, and Festuca costata is common on south-facing slopes. Subalpine fynbos exists 

along streams and steep slopes at the head of main streams where there is some measure of 

protection ·rrom fire. The greatest variety of species are found on· south-facing slopes and are 

attributed to local moisture and 'clim,;itic conditions (Granger, 1976). The alpine belt supports.the 

Danthonia-Festuca-Pentaschistis association. Vegetation is characteristic of a harsh climate of wet 
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summers and freezing of soils in winter (Boelhouwers, 1988). Sites protected from fire may support 

Danthonia tussock grassland and stands of alpine fynbos (Garland, I 987b). Vegetation burning is 

one of the main anthropogenic influences on the natural environment of the Drakensberg and 

aspects of the burning programme will be discussed briefly below. 

VEGETAL BELT ALTITUDE LOCATION CLIMAX COMMUNITY 

(m) 

Montane 1280 - 1829 Valley floors to lowest Podocarpus lati/o/ius 

basalt cliffs Forest 

Subalpine 1830-2865 Edge of Little Berg to just Passerina-Phillippa-Widringtonia 

below summit Fynbos 

Alpine 2866-3353 Plateau and peak areas Erica Helichrysium 

Heath 

Table2.5 Vegetation belts and climax communities of the Drakensberg (after Killick, 1963). 

2. 7 Anthropogenic influence 

A brief assessment of the anthropogenic. history of Giant's Castle Game Reserve reveals to some

extent localised influences on recent geomorphological development. The history of the area prior 

to the tum of the century is poorly documented, but the area which is now the Reserve was mostly 

uninhabited with the Amahlubi tribe who have resided on the fringes of what is now the Reserve 

boundary. The 1849 'rebellion' by ChiefLangalibalele of the Amahlubi prompted Major Durnford 

of the Natal Carbineers to establish, in the mid 1870's, a base near what is now the Main Camp 

(Pearse, 1987). Some of the passes including the Ka-Langalibalele Pass and ·Giant's pass were 

dynamited, ostensibly to prevent Langalibalele escaping into Lesotho with his cattle. 
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The original homestead in Giant's Castle Game Reserve was built when the Reserve was established 

in 1903 and the Main Camp was subsequently developed closely upstream ofit (Fig l.3). During 

the first half of the l 900's cattle were farmed in the Game Reserve by Natal Parks Boa_rd staff and 

these were gradual]y phased out in the late 1960's and early 1970's. Horses were used extensively 

by the Reserve Management and may have numbered up to 80-100 at any one time in the late 60's, 

but were slowly reduced in numbers due to the increasing reliance on motorised transport. A 

number of jeep tracks were built in the early I 950's which provided access to the more remote areas 

of the Reserve and a link road was made to Loteni (south of Giant's). Most of the jeep tracks were 

progressively closed until the late l 970's and some rehabilitation of these tracks was attempted 

(Meiklejohn,pers. commun) . .There were a number of wattle woodlots located near the Main Camp 

and these were slowly removed after 1972. A burning programme was implemented when the 

Reserve was established and has been in operation since, on a biannual burn. 

The age of the footpaths is difficult to detennine. Some sections of the contour path were 

completed in 1965 but most of the other paths predate these. Bannerman Hut was completed in 

1965 and Giant's Hut in 1969170. Material for the construction of Giant's Hut was transported from 

the Main Camp along a jeep track which has since been closed. Material for Bannerman Hut was 

transported by horseback (Meiklejohn, pers. commun. ). 

The historical influence of the anthropogenic development oftbe Reserve must be considered when 

analysing contemporary rates of soil erosion and when determining or inferring the processes 

responsible. This line of discussion will be continued in Chapters 4 and S where results are 

contexualised into the broader framework of process-response mechanisms. The following chapter 

outlines the methodology used to determine the rates and controls of erosion from footpaths in the 

Reserve. 
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3. Methodology

Different methods have been implemented to determine footpath condition and to monitor changes 

in these conditions with time. The condition of a footpath refers to both the amount of soil lost and 

the related soil attributes (such as bulk density and moisture conditions) as well as the impact on 

vegetation adjacent to the footpath, which is in turn linked to the erosion process. The techniques 

of measurement range from localised assessment, such as transects across footpaths from fixed 

points ( eg. Colem� 1977; Tinsley and Fish, 1985) and the use of runoff plots ( eg. Garland, 1988; 

Day et al., 1994), to broader scale assessments through footpath surveys ( eg. Bayfield, 1973; Lance 

et al., 1989) and using aerial photography (eg. Coleman, 1977). Generally there is a trade-off in 

precision as the scale of assessment increases. 

Two systems of measurement are utilised in this study. Firstly, six experimental runoff plots were 

installed on a footpath to determine specific localised erosion rates and to determine the effect of 

footpath gradient on sediment yield. This approach is outlined in Section 3 . 1. Secondly, on a

broader scale, a point-based survey of four footpaths in the Reserve was conducted and the survey 

methodology described in Section 3 .2. A comparison of the two systems of measurement is 

outlined in Section 3. 3 . 

3.1 Experimental runoff plots 

3.1.1 Runoff plot size 

Runoff plots have "traditionally been used to establish erosion rates for pred.etermined areas under

specific soi� rainfall �nd vegetation cover conditions. Over the past decade, h9wever, a variety of 

plot sizes have been cited in the literature. These show no conformity to any one size specification 

or standard and range from as small as 0.61m x 1.5m (Abrahams and Parsons, 1991) to 50m x 60m 

(Romero-Diaz et al., 1991) (Table 3.1.). Only two series of runoff plots have been established on 
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a footpath to date (Garland, 1987a; Day et al., 1994). 

Authors(s) Runoff plot size 

(m) 

Romero-Diaz et al. (1988) 50 X 60 

Parsons et al. (1991) 18 X 35 

Parsons et al. (1993) 18 X 29 

Lal et al. (1989) 12.2 X 32.3 

Lal (1985) 4 X 25 

Hofmann and Ries (1991) 4 X 21.1 

Hussein and othman (1988) 4 X 20 

Rydgren (1988) 4.5 X 1�.5 

Hart (1984) 3.7 X 18.3 

Garland (1987a) 2 X 22 

Snyman and Foche (1991) 2 X 15 

Ulsaker and Onstad (1984) 3 X 10 

Kirky and Mehuys (1987) 1.75 X 10 

Abrahams et al. (1986) 1.8 X 5.5 

Williams and Buckhouse (1 �91) 1 X 5 

Day et al. (1994) 1 X 3 

Abrahams and Parsons (1991) 0.61 X 1.5 

Table 3.1 Some examples of runoff plot sizes utilised during the last decade. 

Garland (1987a; 1988) established runoff plots on an 11° north-facing slope in the Kamberg Nature 

Reserve, Drakensberg (Fig. 1.2) to monitor footpath erosion rates and assess the influence of 

burning on erosion rates. The runoff plots measured 2 x 22m ( conforming to the standard US_LE 

plot size) a1:1d obtained the only data currently available for long-term sediment movement from a 

footpath utilising this technique. Some deficiencies in our understanding of the rates of erosion still, 

however, need to be addressed. First the issue of sediment rates from runoff plots in relation to 
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variations in footpath gradient needs to be established and secondly, the influence of rainfall 

intensity and its relationship to quantities of runoff and sediment yield for individual rainfall events 

has not yet been assessed with respect to variations in the footpath grad_ient. 

The second study involving footpath runoff plots was established in 1993 and is currently being 

monitored at Royal Natal National Park in the northern areas of the Drakensberg (Fig. 1.2): This 

project involves the monitoring of sediment yield from various artificial footpath surfaces in a high 

intensity-use area (Day et al., 1994). Fourteen plots of two sizes (lm x 3m and lm x Sm) were 

established longitudinally on an experimental footpath section. Site specific factors, particularly 

gradient, precluded larger plots being established. The limitations on plot size parallel the conditions 

for runoff plots in Giant's Castle Game Reserve and will be discussed below. Sediment yield data 

from the study are not yet available. 

For the purposes of this study six erosion plots were installed on an established footpath near the 

Main Camp in Giant's Castle Game Reserve (Fig 3 .1). The footpath provides access to both Giant's 

Hut and to the Hide and is utilised as a starting point to access the eastern areas of the Reserve 

(including Meander Hut) for both recreation and management purposes. The monitored section was 

80m long which included the erosion plots and an automated electronic pedestrian counter. Both 

ends of the footpath section were demarcated by signposts which briefly informed the public of the 

aims of the project. The electronic counter was located in the centre of the experimental section 

and operated from a pressure sensitive pad · situated across the footpath. The counter was 

accompanied by a sign post requesting pedestrians to step on the pad. The grass type adjacent to 

the footpath is lhemeda trianda and soil type was identified as Hutton form. Hutton soils are 

considered to have low to moderate erodibility (Garland, 1988). 

The plots were installed on the footpath_ longitudinally and cover six different gradients (Fig. 3.2). 

The higWy variable nature of the footpath gradient imposed limits on the runoff plot length. Plot 

design was adapted from the design used by Williams and Buckhouse (1991), who established Im 

x 5m plots for monitoring micro-watershed processes, and from the 1 m x 3m design used by Day 

et al. ( 1994 ). For this study the runoff plot length was optimised at 3m- to ensure that gradients 

were constant within the plots while still varying the individual gradient between plots. A further 

constraint· on s_ize was that the plots were required to be located ·sufficiently close together to 

facilitate monitoring of sediment yield and runoff and to minimise any spacial variations in rainfall. 
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The width of the plots was dictated by the width of the footpath and the comfort of pedestrians, 

who were directed to walk through the plots. Footpath width where the plots were installed was 

50cm. Since the sediment generated from the footpath and fro·m the adjacent naturaf surface would 

be difficult to distinguish, pl_ot widths were optimised at Im. This width ensured that. pedestrians 

would not be encouraged to walk alongside the plots. A further consideration on plot size was the 

workshops 
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potential quantity of runoff that can be produced per unit area. A lm2 plot could theoretically 

produce up to 10 litres of runoff from a 10mm rainfall event if all the rainfall were converted to 

runoff Since _one of the objectives of the study was to determine the quantity of runoff generated 

and the costs of a tipping bucket system to monitor runoff were prohibitive the plot size was 

optimised at 3m2• A practical application of this is that it allows direct comparisons with data from 

the same runoff plot size from Royal Natal National Park, when these data became available.

Figure 3.2 Runoff plot installed on a footpath in Giant's Castle Game Reserve. 

(A marks the runoff plot, 8 the conduiting and C the sediment trap. Plot width is 1 m). 

3.1.2 Runoff plot design 

Galvanised iron sheeting (0.5mm gauge) was used as shuttering to delineate the plot areas. The 

steel wa$ cut into strips 250mm x 1250mm which were then inserted to a depth of 50-80mm into 

the ground with 100-l S0mm end-to-end overlap. This isolated the plots from runoff entering or 
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exiting the system other than through the constructed opening. The l 70-200mm protrusion of the 

shuttering above the ground minimised rainsplash in or out of the system. If rainsplash did occur 

above the height of the shuttering it was assumed that splash into the system wa� equivalent to 

splash out. Where pedestrians would have to step over the shuttering the ridge was covered with 

a rubber hose and the shuttering was reinforced with steel pegs inserted on the outer side of the 

shuttering. 

The plots were drained from the lowest corner by means of a specially designed. comer piece, 

constructed from galvanised iron sheeting, so as to ensure that no leakage occurred. The corner 

piece linked the shuttering to a length of galvanised iron conduiting (l-2m in .length) which 

transported the runoff and sediment to a sediment trap. The conduiting was covered by a simple 

roof system which prevented rainfall from collecting in the conduiting but could be removed to 

brush out sediment which may have settled before reaching the trap. The sediment traps were 

adapted from the design of wash traps used by Young (1960) and measured 600 x 600 x 400mm 

in size. Runoff and sediment from the plots was collected in three buckets within the trap which 

were arranged to overflow into one another, holding a total capacity of 27 litres. The buckets 

facilitated emptying during the lower volume runoff events. If the runoff volume exceeded the 

bucket capacity the overflow would be collected in the trap which could hold up to a maximum 

total capacity of 130 litres. Volumes of runoff in excess of this would overflow through a vent at 

the back of the trap. 

The plots were installed in two phases. The shuttering and sediment traps were installed on the 2nd 

and 3rd of September 1993 and the guttering two weeks later. Disturbance of the soil was kept to 

a minimum. The plots were given a settling time of 6 weeks before the monitoring began on the 

18th of October 1993. During this settling. period a total of 124mm of rainfall fell on 14 rainfall­

days. 

3.1.3 Monitoring 

The emptying procedure was demonstrated to members of the Natal Parks Board Staff who 

subsequently emptied the traps on a daily basis at 07:30. Containers with a two litre capacity were 
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provided to store runoff and sediment. Once the traps were emptied, the containers with samples 

were stored for collection and later removed for laboratory analysis. Logistical difficulties 

pertaining to both field monitoring ( up to 250kg of sediment and runoff were collected per rainfall 

event) and laboratory analysis (up to a five day laboratory procedure per rainfall event) precluded 

a continuous monitoring. 

The plots were regularly checked for disturbance and, although some damage to the shuttering by 

trampling did occur, public cooperation in the monitoring section was generally good. At no time 

were the plots seriously disturbed and the shuttering remained in place for the duration of the 

monitoring. :rhe sediment traps were kept locked to prevent tampering. The pressure pad was, 

however, broken on one occasion when the cable linking the pressure pad to the counter was 

detached ( ostensibly by a careless or perhaps inquisitive hiker). The counter failed on two other 

occasions due to moisture build-up in the circuitry. This resulted in intermittent user-intensity data 

and a loss of 53 days out of 119 recorded (see Chapter 4). 

Soil samples were collected from the footpath to enable comparisons to be made with the sediment 

collected in th_e traps. The samples were collected from the centre of the footpath tread surface to 

a depth of 50mm adjacent to each plot, so as to avoid disturbance within the plot. Samples were 

also collected from the adjacent natural surface to allow comparisons with the tread surface soil 

texture. Infiltration capacities for the plots were determined using the apparatus and procedure 

outlined in Finlayson and Statham (1980). This involved the use of a 100mm internal diameter pipe 

which was inserted into the footpath tread to a depth of 50mm. The infiltration rate was determined 

by measuring the drop of water level within the pipe until a constant reading was obtained. 

Measurements were again taken adjacent to the traps to prevent disturbance within the plots. The 

infiltration readings and soil samples are assumed to approximate the values within the 

corresponding plot. 

Rainfall data for the monitoring period were obtained from the N�tal Parks Board automated 

weather station located near the workshop and which is within 1 00m from the runoff plots (Fig 

3.1). Total rainfall received was monitored at 60-minute intervals. Technical problems precluded 

the use ofa shorter monitoring period. 
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3.1.4 Laboratory procedure 

The laboratory analysis of the runoff plot samples involved determining the quantity of runoff and 

the mass and particle size distribution (texture) of the sediment. Although various methods of 

particle size analysis are available (Black el al., 1973; Allen, 1981; Syvitski, 1991) the use of a 

vibrating sieve stack is the most practical for analysis of the coarse (sand and gravel) component 

of soil with realistic limits of 0.063mm and 16mm (Whalley, 1981 ). The fine soil particles, smaller 

than 0.063mm (silt and clay component), were analysed with a centrifugal particle size analyser 

(Shimadzu. SA-CP3 Centrifugal Particle Size Analyser). 

The laboratory analysis procedure for each rainfall event was divided into three stages (Fig. 3.3). 

An outline of the procedure is as follows: 

• The sample containers were first sorted according to rainfall-days. For each day the containers

were then sorted according to the respective runoff plot.

This could reach up to a maximum of 130 litres of water and sediment per trap, per rainfall-day for

the higher intensity and longer duration rainfall-days. The total sample mass was determined by

weighing.

• The sediment and runoff for each trap was then transferred to separate containers for a 24

hour settling period.

The relationship between the size of a particle X and the time taken to settle through a height h is

calculated using Stoke's equation (Day, 1973; Townsend, 1973). The equation can be expressed as:

X2 = 18ri h / g(p3-pL)t where T) is the viscosity of the water, h is the height through which the 

particles settle, g is the acceleration of gravity, Psis the particle density and PL is the liquid density. 

For a 300mm height within the settling containers, a clay particle density of 2.60 g/cm3 (Day, 1973) 

and. water temperature at 25 °C particles up to 1. 8 µm wil I have settled to the base of the container. 

Deviations from the theoretical value can, however, be caused by non-sphericity of the individual 

particles (Allen, 1981). 
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• The suspension was decanted.

39 

After the settling period, separation by decantmg was undertaken to a height of 20mm above the

sediment. This caused minimal disturbance to the precipitated sediment. The proced_ure for textural

analysis (particle size distribution) of the precipitated sediment is followed to the end of stage 2 while

the procedure for particle size analysis of the decanted suspension is outlined in stage 3.

• The sediment was dried.

The sediment was placed in an oven and dried at 105-110° C for a minimum of 24 hours (Whalley,

1981 ).

• The sediment was weighed.

This mass was subtracted from the initial total mass to determine the actual quantity of runoff

STAGE 2 

• The texture of the dried sediment was analysed by means of a vibrating sieve stack.

The general procedure outlined by Day (1973) and Briggs (1977) for sieve stack analysis was

followed. Standard 8in (200mm) sieves at regular phi units from -3cl> (8mm) to 4cl> (63µm) were

utilised (Fig. 3.4). The phi notation is a logarithmic transformation of millimetre values of particle

size. The standard transformation is cf> = -'log2X w�ere X is the particle diameter in millimetres

(Briggs, 1977) although some further modifications to the equation have been presented (Allen,

1981).

Sieve shaking time and sample size specifications have varied with author. McManus ( 1965) specifies 

a sieve time of 10 minutes for 4in (100mm) sieves. For 8in (200mm) sieves Day (1973) specifies a 

3 ininute period while a 5 - 10 min period is given by Briggs (1977) with a sample size between 0.1 

a11d 1.0 kg. Whalley (1981) specifies a 9 minute period with maximum loads of 0.1 - 0.15 kg for 

coarse sand and 0.04 - 0.06 kg for fine sands. In an analysis of sieve shaking time on sieve efficiency 

Dalsgaard et al. ( 1991) found no systematic difference in particles distributed in a sieve stack when 

time was increased from 10 minutes to 60 ruinutes. Dalsgaard et al. (1991) also found that although 

sieving efficiency increases with decreasing load the coefficient of variation increases with decreasing 

load. For the purposes of this study sieving time was taken as 10 min and sample size limited to a 

maximum of 1. 0 kg (Briggs, 1977) since splitting a sample can decrease precision of results 

(Emmerling and Tanner, 1974; Dalsgaard,- 1991). Shaking vibration was set at 50Hz as higher 

vibrations resulted in visible loss of fmer particles from percolation through the sieve contacts. The 
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Organic matter from soil samples can be removed with hydrogen peroxide (H202) (eg. Dalsgaard, 

1991 ). Although this treatment is effective when used judiciously it may cause problems should 

further reactions of the decomposition products occur (Drosdoff and Miles, 193 8; Day, 1973). Further 

problems could have been encountered with the solvents used in the preparation of samples for the 

centrifugal particle size analyser. Chemical treatment of the samples was thus avoided. The organic 

matter content in the samples was, however, generally very low and where organic matter was present 

this was removed manually and weighed separately. 

• A sample was removed from the> 4<!> tray.

Particle siz.e classification irito sand, silt and clay differs according to the classification system ( cf. Fig.

3.4). Townsend (1973) indicates that the United Stated Department of Agriculture (U.S.D.A.)

specifies 0.05mm (50µm) as the boundary, while the International Classification places the boundary

at 0.02mm (20µm). �e finest sieve used was 0.063mm (63µm) which corresponds to t�e Wentworth

scale (Briggs, 1977) for the sand/silt boundary. Thus for practical reasons the Wentworth scale was

followed and the silt/clay (fines) component will hereafter refer to all particle sizes below 63µm. The

silt/clay boundary is 2µm. To determine the partic_le size distribution of the silt and clay component

by centrifugal particle siz.e analysis a sample was taken by coning and quartering (Allen, 1981) from

the> 4<!> ( < 63 µm) tray.

• Particle size distribution of the fine fraction was then determined with the particle size analyser.

The particle size analyzer (SA-CP3) required consistent sample preparation and treatment for

optimum consistency of results. The sample was mixed with 100ml of 20% glycerol/distilled water

solution and Teepol solution was added as dispersant (10 drops per litre) as specified in the

instrument manual. Dispersion efficiency was tested by observing the interface of clear liquid and the

turbid lower layer for different Teepol concentrations under slow settling, as "suggested by Allen

( 198 l ). The solution was agitated for one minute and a portion transferred to the analyser chamber

for gravitational and centrifugal analysis. The analysis range interval was from > 4<!> (< 63µm; upper

limit 80µm)
°

to >12<1> (0.25µm) (Fig. 3.4). The upper limit allowed some overlap with the material

retained in the 63µm sieve to ensure a data continuum. This mass fraction was. added to the

corresponding sieve fraction. The procedure was repeated twice, unless the first two results were

within 10% of the results for each phi interval, in which case the procedure was repeated once.



STAGE3 

• The decanted suspension was weighed.

• A one litre sample was removed for suspended load determination by hydrometer.
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The solution was agitated for one minute and the one litre sample decanted from a depth of 50mm

below the meniscus. The hydrometer was calibrated against distilled water at room temperature for

each determination. Results from the first two steps of stage 3 gave the mass of suspended load.

• Suspended load particle size analysis.

The suspension was again agitated for one minute and sampled four times with a 25ml pipette at

50mm depth. The total l 00ml suspension was then used for particle size analysis. A Teepol solution

was added as dispersant (at a concentration of 10 drops per litre). The solution was agitated for one

minute and a portion transferred to the particle size analyzer cell for centrifugal analysis. The analysis

interval selected was from 8cp (4µm) to> 12cj) (0.25µm) (Fig. 3.4) to cover the predicted particle size

range calculated from Stoke's equation (see stage 1). The procedure was repeated in the manner

outlined in stage 2 above. Due to the overall relatively low proportions .of fines in the samples, all phi

soil mass proportions within the respective silt and clay components were combined for individual

samples to give total silt and total clay components.

Logistical constraints only permitted the first ten rainfall events to be fully analysed by the above 

procedure. There¢ter the laboratory procedure was conducted only to the end of stage 1. Textural 

analysis of the samples removed from the footpath tread surface and the adjacent natural surface 

followed the procedure outlined in stages 1 and 2. 

3.2 Footpath surveys 

Although there. is a generally followed technique for footpath attribute measurement at each survey 

point (eg. Bayfield, 1973; Garland et al., 1985) no standard has been set for the spacing distance 

of a point-based survey. Spacing is dependent on local conditions (such as footpath length and 

consistency of footpath morphology) and on amount of available field time . Although different 
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spacings have been utilised in previous research, ranging from 5 paces to 500m, a l 00m interval 

has been the most common (Table 3 .2). 

Author(s) Survey point 

spacinQ 

Bayfield (1973) 5 or 10 paces 

Bratton et a/.(1979) 500m 

Coleman (1981) not specified 

Garland et al. (1985) 100m 

Bayfield (1987) 50 paces 

Jubenville and O'Sullivan (1987) 100m 

Lance et al. (1989) 100m ' 

Table 3.2 Point spacing for previous footpath point-based survey research 

Access was granted to a data base of footpath conditions observed in l 989 in Giant's Castle Game 

Reserve. These data were from a footpath survey conducted by the Natal Parks Board in which 

most of the footpaths in the Drakensberg were surveyed at a specified I 00m point spacing 

(Thomson, pers. commun. ). Although some of these data are utilised in this study the intention here 

is not purely an analysis of the Natal Parks Board survey. The approach undertaken here has been 

two fold. Firstly, a new survey of the footpaths was conducted in 1993 with the intention of 

establishing variations in footpath morphology (such as footpath depth) and relating these to 

localised environmental conditions (such as footpath gradient). The second component of the 

survey was a comparison of data from the two surveys which would enable a comparison of 

footpath mofl)hology over a four year period from 1989 to 1993. Changes in morphology would 

then reflect footpath recovery or soil loss from the footpath. The techniques employed for both 

survey� are outlined in Sections 3 .2. l and 3.2.2. Subsequent comparisons of calculations of soil loss 

from footpaths with the soil loss data froin the runoff plots enables the comparison of local, scale­

specific process rate monitoring with a larger scale inductive approach to process study. The 

methodology for this procedure is outlined in Section 3.3. 



3.2. l Natal Parks Board footpath survey data base 
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The Natal Parks Board I 989 path survey was class-based with measured parameters for each 

survey site placed into predetermined classes on a pre-printed data sheet (Appendix I). Two 

examples of such classes have been extracted and are displayed- in Table 3. 3. 

Table 3.3 

I SITE NUMBER I I I I I 
PATH WIDTH 

< 50 cm 0 0 0 0 

50- 75 cm 1 1 1 1 

75-100 cm 2 2 2 2 

> 100 cm 3 3 3 3 

PATH SLOPE 

< 30 0 0 0 0 

3 - 6° 1 1 1 1 

6 - 10° 3 3 3 3 

> 10° 6 6 6 6 

Examples of the site attributes and footpath morphology attributes class rating in the Natal 

Parks Board Survey (extracted from the survey sheets, Appendix I) 

A number of the measured attributes are subjective and the classification is thus open to 

interpretation by the surveyor. When assessing the survey results, problems were encountered with 

locating the precise starting points of the surveyed footpath sections which precluded point by point 

matching with the second survey conducted in 1993. The width and depth classification alone were 

thus extracted to enable general comparisons with data from the present study.: In the present study 

some new parameters were measured and all exact results were noted. The survey procedure for 

the present study is outlined in the following· section. 
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3.2.2 Footpath survey 1993 

Four footpath sections totalling 21 km of footpaths were surveyed in 1993. These included two 

sections of the contour paths (Bannerman Hut contour path and Ka-Langalibalele Pass contour 

path) and two approach paths which start in the vicinity of the main camp and direct hikers to the 

contour path (Bannerman Hut approach path and Giant's Ridge path) (A-D, Fig. 1.3). 

All hikers are requested by Reserve Management to fill in forms at the Main Camp prior to 

proceeding on their hike. Although the overnight hikers tend to fill in the provided forms it has been 

observed that day hikers do not abide by this request. Back records of the register are not kept. The 

user-intensity of the footpaths could then not be established by this method. Footpath user-intensity 

for the, four footpaths was monitored by use of automated pedestrian counters. These were installed 

on the footpaths in June 1994 (Fig. 1.3) and operated for a six week period after which two of the 

counters were vandalised. 

The survey procedure was adapted from the procedure outlined in Bayfield ( I 973; 198 7) and 

Garland eta!. (1985). Survey-point spacing (100m) was measured with a trundle wheel. The first 

survey point for any footpath section was sited 5m beyond the footpath beacon or beyond the 

footpath intersection. At each site the following parameters were determined: 

- footpath width

- footpath depth

- footpath gradient

- footpath downslope orientation (to magnetic north)

- cross-slope gradient

- cross-slope orientation (to magnetic north)

- vegetation type( s)

- soil type

In the ·event of the point lying within 1 m of a water break the Survey point was resited 3m back 

from the water break to avoid the influence of localised sedimentation. Footpath width was 

measured, and depth cross-sectioned at an interval of 50mm (Fig. 3. 5). Where footpath width was 
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in excess of 500mm the depth cross-section interval was increased to 100mm. Footpath gradient 

was recorded with an abney level across the survey point and downslope orientation was recorded 

with a Brunton compass
_. 

S}milarly cross-slope gradient was recorded with an abney level on the 

upslope side of the footpath a distance of3m from the edge of the footpath. Downslope cross-slope 

orientation was measured with a compass. 

The dominant grass type was noted and other minor grass types, if present, were recorded. Soil 

form was identified and zoned for the footpaths sections. At 1 000m intervals two soil samples were 

extracted from the centre of the path tread to a depth of 50mm with a small core sampler (Blake, 

1973) to determine bulk density of the footpa_th tread. 

width 

path tread 

Figure 3.5 Path width and depth measurement 

! 

V 

depth 

� 

_j 

0 ___,,!0 

For short sections of some of the footpaths, secondary paths have developed ·running parallel to, 

and in close proximity to, the original (primary) footpath {Fig. 3.6). These are formed from hikers 

leaving the original footpath and walking next to it, often as a consequence of poor under-foot 

conditions. At survey sites where secondary footpaths were observed, the widths were recorded 

and depths profiled in the manner outlined above. 



Figure 3.6 Multiple footpaths on the Bannerman Hut approach path 

(A indicates the primary path with water breaks installed on it, 

B indicates a newly forming secondary path and C indicates additional secondary paths) 
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All of the footpaths, with the exception of the Ka-Langalibalele route, had water breaks installed 

to divert the flow of water off the footpath. Four types of water breaks were identified. These were 

the single log, the double log; the log/gabion and the single gabion systems (Fig. 3. 7 a-d). The 

objective of the drains is to divert the flow of water (and thus sediment) from the footpath. Where 

the footpath tread is below the adjacent surface a small drainage channel is constructed to facilitate 

water flow off the footpath. The number and type of water breaks between each survey site were 

recorded. The installation, function and maintenance of these water breaks will be discussed below 

3.3 Comparison of runoff plot results and survey results 

A comparison of the two methods of assessing erosion rates would provide an indication of the 

applicability of the small scaJe·process study to larger scale, yet less specific determinations (and 

vice versa) and allow for an evaluation of the merits of both monitoring systems. Problems of 
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scaling up from experimental studies to larger systems arise from the initial conditions of the 

experimental design and unrealistic boundary conditions ( eg. Parker and Schumm, 1982). Further 

difficulties arise with the extrapolation of the monitored rainfall events to long-term conditions. 

path tread 

---- - flow direction 

--

(a) Single log water break (b) Double log water break

/ small gabion 

(c) Double water break (small gabion/log) (d) Single small gabion water break

0 50 100 

approximate scale (cm) 

Figure 3.7 Water break types used in Giant's Castle Game Reserve 

-
I 

I 
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A number of assumptions thus need to be made to enable such comparison. With respect to runoff 

plot design, particularly plot length, it is assumed that the plot length represents similar soil loss 

conditions on a corresponding length of open footpath. In terms of rainfall, only a portion of the 

rainfall events for the four year period were collected by the runoff plots. As such, the data 

collected from the plots cannot precisely reflect sediment yields over the four year period. In 

addition, although 60-minute intensity data were collected during runoff plot monitoring there was 

no rainfall intensity data available for that extended period. Thus rainfall intensities during the 

monitored period could not be placed in context of the four year period. An approach to 

contextualising the runoff plot rainfall data into the four year period by total rainfall amount and 

the calculations on �onversion of the two scales to a similar unit for comparative purposes 

(tons/km/a) is outlined in Chapter 6 



4. Runoff plots and footpath survey results
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Data presented in this Chapter are the results obtained from the fieldwork and laboratory 

procedures outlined in Chapter 3. Results of the runoff plot monitoring and· from the path surveys 

are provided in Sections 4.1 and 4.2 respectively. The original laboratory and field data are too 

extensive to include in the dissertation, however condensed versions are provided in this chapter 

and in Appendix II and III. The interpretations and discussions of these results and comparisons 

with previous findings by other authors are presented in Chapters 5 and 6. 

4.1 Runoff plots 

4.1.1 User-intensity 

User-intensity data obtained for the monitored footpath section during the period of runoff and 

sediment monitoring was interrupted by three faiiures of the pedestrian counter. This resulted in 

a loss of data during periods of the runoff plot monitoring (Table 4.1). The counter system operates 

on' a cumulative total basis and all data are lost if the electrical current fails. Results from the 

automated counter (Table 4.1) show conversions for three periods to weekly averages. These data 

show that user-intensity has varied between 97 and 121 users per week for parts of the monitoring 

period. Persistent failure and vandalism of the counter prohibited further readings after 16/02/94. 

4.1.2 Runoff and Sediment yield 

The six runoff plots were numbered according to increasing gradient (Fig. 3.1 and Table 4.2). 

Sediment yield and runoff were collected for 22 rainfall days between 19/ l 0/93 and 18/01/94. 



Table 4.1 

Date Recording Counter Average 

period (days) reading per week 

19/10/93 - 03/11 /93 14 193 97 

04/11 /93 - 20/11 /93 16 failed -

21 /11 /93 - 24/11 /93 4 failed -

25/11/93 - 21/12/93 27 468 121 

22/12/93 - 23/01/94 33 failed -

24/01/94 - 16/02/94 24 342 100 

User-intensity recorded for the pedestrian counter during the runoff plot 

monitoring period. 
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Overtopping of the sediment traps occurred on two rainfall days (19/11/93 and 17/01/94). These 

data ate thus incomplete and therefore excluded from the totals for sediment yield and runoff The 

yields and runoff quantities for the remaining 20 individual rainfall events are shown in Table 4.3 _ 

The totals are compared with the runoff plot gradients in Figures 4.1, 4.2 and 4.3. Particle size 

analysis was completed for the first ten rainfall events and results are outlined in Section 4.1.3 while 

rainfall characteristics are provided in Section 4 .1. 4. 

Plot no. 1 2 3 

Path gradient 1.83° 4.00° 6.75° 

(1 ° 50') (4° 00') (6° 45') 

4 

10.20° 

I (10° 12') 

5 

14.50° 

(14° 30') 

6 

15.75° 

(15° 45') 

Table 4.2 Footpath gradients within the runoff plots in Giant's Castle Game Reserve. 

II I I I I I I II 



DATE 

plot no. 

19/10,93 

20/10,93 

21/10,93 

26/10,93 

11/11,93 

18/11,93 

26/11,93 

28/11,93 

29/11,93 

03/12/93 

00/12/93 

10/12/93 

14/12/93 

15112/93 

16/12/93 

22/12/93 

27/12/93 

29/12/93 

30/12/93 

01�1/94 

TOTAL 

Table 4.2 
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A B 

1 2 3 4 5 6 1 2 3 4 5 6 

1284 623 791 972 2C61 3556 37277 17949 15965 34579 17 '357 57192 

11 6 2 15 17 15 2801 19'35 2538 457 2784 2167 

533 270 272 362 913 1560 27700 17670 19800 31008 26110 23878 

30 36 97 90 260 102 16244 14640 13934 15010 15777 18171 

137 79 53 76 419 797 76293 26238 34240 59117 108188 128266 

232 107 62 76 192 286 11744 11949 9955 14842 15928 24074 

28 11 23 21 56 63 61ffi 5615 4570 5501 6167 10277 

4 3 4 4 4 52 8132 3215 4056 5972 72£/J 10237 

84 22 37 23 191 231 8147 8851 6176 9645 8224 12200 

3 4 5 0 24 73 11057 7516 7234 16083 16362 22417 

269 160 258 250 487 512 23901 21779 19014 24485 25664 73327 

2 1 1 0 7 3 1376 727 2046 1502 1841 2021 

10 3 10 7 15 34 3372 2182 3319 3173 3719 6066 

7 8 10 3 58 80 21532 14793 16251 32126 22638 41342 

12 8 11 9 79 100 10692 6921 5412 4017 6196 10625 

8 3 8 4 51 68 11064 11367 8173 13910 8173 13596 

117 2 31 58 44 473 11825 8521 10068 4009 6179 Z:B67 

3 5 7 31 9 28 4758 5106 4825 8152 7639 10173 

17 8 26 29 224 46 30705 21540 31321 32712 :n336 32942 

42 18 28 13 69 116 9786 10364 6192 10101 8228 10953 

2833 1375 1737 2041 5170 82()2 �'78 218896 � 3Z1Q90 345508 633899 

Sediment yield {A, in grams) and runoff (B, in litres) for the six plots during the monitoring 

period. 
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Figure 4.1 Total plot runoff in relation to plot gradient for the 1993/94 monitoring period. 

53 

Total runoff for the six plots shows a general increase in runoff with gradient (Fig. 4.1). Plot 1 (the 

lowest gradient plot with a gradient of 1. 83 °) displays the third highest total quantity of runoff for 

the monitoring period. This can in part be explained by the tread bulk densities and infiltration 

capacities of the runoff plots (Table 4.4). 

Plot no. 
·- �-� 

1 2 3 4 5 -6
-�_ ...... ,. - - �- -- ,..._ .•• ...JY.,_ ...... ,�~-• v- .- ·" � ,-... .. ,.,, . . .. 

Bulk density (g/cm3) 1.66 1.49 1.45 1.42 1.49 1.44 

Infiltration capacities (mm/hr) 231 458 523 459 518 460 

Tread bulk densities and infiltration capacities for the six runoff plots. 
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Mean bulk densities of runoff plots 2 to 6 vary between 1.42 and l.49g/cm3 (mean = 1.46g/cm3) 

while plot 6 has a higher mean bulk density of 1 . 66g/cm3
. This indicates either a higher degree of 

compaction or different soil properties (eg. texture) for plot 1 in comparison to plots 2 to 6. Since 

compaction by visitor use should be consistent throughout the monitored section the difference in 

bulk density must be related to soil properties. Soil textures of the runoff plots are described in 

Section 4.1.3. 

Differences in bulk densities and textures will result in different infiltration rates. Plot 1 has an 

infiltration capacity equal to approximately half that of the other 5 plots, which all have similar 

infiltration capacities (mean for plots 2 to 6 = 484 mm/hr with a standard deviation of 34 mm/hr). 

Plot 1 will be expected to generate higher quantities of runoff and hence greater flow velocities 

when compared with a hypothetical plot of the same grndient having a higher infiltration capacity 

This will increase the potential for detachment and entrainment of soil particles. 

In general the total runoff and total sediment yield for the plots increases with path gradient (Fig. 

4.1 and 4.2). The total runoff quantities obtained for plots 2 to 6 show an increase in runoff with 

increasing gradient (Fig. 4 .1 ). Linear regression of runoff against gradient for plots 2 to 6 gives an 

r2 value of 0. 780 which suggests that the relationship tends strongly towards being linear. The 

runoff generated from plot 1 is higher than the regression equation for plots 2 to 6 predicts, due 

to the lower infiltration capacity and the corresponding increases in runoff. 

The exact nature of the increase in sediment yield with gradient (Fig 4.2) lends itself to one of two 

interpretations. Firstly, although sediment yield for the runoff plots show plot I to have the third 

highest yield there is a gradual increase for path gradients (2,3,4) and increasingly higher sediment 

yields for the higher gradient plots (5,6) (Fig 4_.2). Some threshold between the gradients of plots 

4 and 5 is apparent, after which sediment yield increases rapidly. The central point for the threshold 

is estimated by calculation of the intercept between lines drawn through 2,3,4 and 5,6. The 

intercept value is 13.36° . This calculation is not idealdue to the low number of points, however 

there is a strong correlation with a r2 value of 0.987 fqr the three plots 2,3 and 4. 
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The second interpretation of the total sediment yields is that the data represents an exponential 

relationship of sediment yield against plot gradient for plots 2-6 (F_ig. 4.2). Linear regression of the 

log
10 of sediment yield of the five points gives a r2 value of 0.915, indicating a strong linear 

relationship (Fig. 4.3) while regression of the natural logarithm of sediment yield produces the same 

r2 value. There does, however, still appear to be a curvi-linear relationship within the logarithmic 

relationship. 

Figure 4.4 illustrates a comparison of total runoff and total sediment yield for the six plots. Linear 

regress�on of plots 2 to 6 gives a line of best fit with the equation.: 

y = 0.00216x - 3.436 with 

r2 = 0.886 

Including plot 1 into the linear regression alters this to· 

y = 0.00216x - 3.581 with 

r2= 0.868

The two regressions have .the same gradient for the line of best fit with similar y-intercepts and 

similar r2 values. This suggests that although plot 1 has higher sediment yields and runoff quantities 

than the other plots, runoff-sediment yield relationships appear to conform to the relationships for 

the other 5 plots. 

The nature of the sediment generated from within the runoff plots may provide insight into 

determining the process responsible for the erosion phenomena. Particle size characteristics for the 

runoff plots' sediment of the first IO monitored rainfall days are outlined in the following section. 
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4.1.3 Sediment particle size characteristics 

500 600 
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Mean, skewness and sorting values are graphical measures used to describe a particle size 

distribution . They are obtained from the cumulative percentage graphs for particle size distribution. 

A summation of the skewness and sorting value classifications are provided in Table 4.5. 

Skewness Value Sorting Value 

Very negatively skewed -1.0 - -0.3 Very well sorted < 0.35 

Negatively skewed -0.3 - -0.1 Well sorted o.35 - a.so

Symmetrical -0.1 - 0.1 Moderately well sorted a.so - 0.70

Positively skewed 0.1 - 0.3 Moderately sorted 0.70 - 1.00 

Very positively skewed 0.3 - 1.0 Poorly sorted 1.00 - 2.00 

Very poorly sorted 2.00 ._ 4.00 

Extremely poorly sorted > 4.00

Table 4.5 Skewness and sorting classification for particle size distributions (after Briggs, 1977). 
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Figure 4.7a Runoff plot 1 footpath tread and sediment yield distributions. 
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Figure 4.7b Runoff plot 2 footpath tread and sediment yield distributions. 

60 

>4 

>4 



Cl) 
Ol 

100 

80 

� 60 
� 
Cl) 
0. 
4) 
> 

"5 40 
E 

20 

0 

-·--
---
-··-·· 
--·--

---

-3 -2 

19 Oct 
20 Oct 
21 Oct 
26 Oct 
11 Nov 
18 Nov 
19 Nov 
26 Nov 
28 Nov 
30 Nov 
tread 

· 1 

...... . . . 
0 1 

phi 

___ . .1

2 3 

Figure 4.7c Runoff plot 3 footpath tread and sediment yield distributions. 
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Figure 4.7d Runoff plot 4 footpath tread and sediment yield distributions. 

I 
I 

.-I 
._.--_/ 

__ .- I 

/j 
/ . _ii 

I, 

4 

4 

61 

>4 

> 4

i3 

j 
C: 

Cl) 
c.. 

::J 
Q 

. .... .· / 
. ~ .:.::::- .. -- ··?' 

-J 
/ 

' 



100 

80 

60 

Cl) 

� 
� 

40 

20 

19 Oct 

--

20 Oct 

21 Oct 

---- 26Oct 

---

11 Nov

--
18 Nov 

26 Nov 

28 Nov 

30 Nov 

tread 

I 

I 

I 
j 

I 
I 

tread 

2 
phi 

Figure 4 7e Runoff plot 5 footpath tread and sect· iment yield distributions

3. 
4 

1
00 r====-�90;--1-------------------19 Oct 

--

20 Oct 

80 

c: 60 

Cl) 
0. 

� 
� 
tU 

3 40
E 
·a

20 

Figure 4.7f 

. . . . . . . . 
21 Oct 

---. 

260ct 

---

11 Nov

----..
18 Nov -
26 Nov 

---

28 Nov 

30 Nov 

tread 

3 
4 

62 

,. 4 

: 

.. 

63 

:1e sand, silt and clay components. 

stributions for the sediment for all 

illy poorly sorted tread material to 

on to . the total sediment mass is 

mean (<I>) 

- - -

- ... 

3.69 

1.2 

3.73 

2.95 .. . 

3.77 

3.00 

skewness 

-0.33

0.06 
- . .., 

-0.35

-0.54. .. ---"-�-----

-0.29

-0.44

sorting 

1.04 

2.92 
.. --· - .

0.87 

.. 1.-.9.4
... 

0.86 

1.49 ..... ,., ...... ,. ,, -· - - ----•.•� ...... ._.,.. ··-·· ...... 

3.77 

3.00 
- .-,,--c-- --

--� 

3.70 

3.10 

3.69 

3.22 

-0.1 0.82 

-0.38 1.54 
..,,... ......... -= P--T"?�""-oc,.,--,• •�- • �-.---

-0.15 0.84 

-0.41 1.06 
·- - --

-0.21 0.84 

-0.36 1.07 

particle size distribution characteristics. 

r the hydrological years (April to March) 

irised in Table 4.7. Total rainfall compares 

e Game Reserve, previously calculated by 

64 

mber of rainfall days recorded over the 

:; (Tyson et al., 1976) to a mean of 127 

No. raindays 

120 

94 

122 

136 

147 

143 

132 

125 

127 

togical years 1986-1994 (April to March) 

�rve. 

erosivity with quantities of runoff and 

to correlate rainfall characteristics for 

saker and Onstad, 1984� Salako et al. 

;ation of the correlation of a variety of 

.al rainfall events in order to determine 

est index is the total amount of rainfall 

rifall recorded in any 60 minute period 

vas also calculated as it has previously 

d Ulsaker and Onstad, 1984). Another 

e total kinetic energy (E) (Wischmeier 

:1.tion for kinetic energy used by Elwell 

- - -

-1 

I 

I 
I 

0 1 

phi 
2 

Runoff plot 6 footpath tread and sediment yield distributions 

>4 



65 

and Stocking (1973) in Rhodesia (Zimbabwe) and Schulze ( I 978) in Natal is used, in which: 

E = [29.82 - (127,5 l / l)] J m-2 mm-1 

where the intensity is in mm/hr. It may be deduced then from the above equation th�t a threshold 

intensity of 4.28 mm/hr is assumed for rainfall energy to have any effect (Schulze, 1978). 

A compound erosivity index produced from the· combination of two or more single variable indices 

is often the best estimator for soil loss (Ulsaker and Onstad, 1984). Three compound parameters 

are used in this study namely, the product of total rainfall energy and maximum 60-minute intensity 

(EI6()), the product of total rainfall amount and maximum 60-minute intensity ( AI60) and the product 

of rainfall energy, maximu11160-minute intensity and amount (EI60A). The last index is the quantity 

of runoff (RO). 

�pecific values for the various rainfall erosivity indices are provided in Appendix III. Relationships 

of the erosivity indices with sediment yield and runoff quantities were analysed using simple linear 

regression (Tables 4.8 and 4.9). The coefficient of determination (r2), with a maximum value of l 

and a minimum value of 0, indicates the fraction of total variance that is explained.by the linear 

relationship between the variables (Wonnacott and Wonnacott, 1972; Till, 1980). Coefficients of 

determination (r2) for sediment yield are displayed in Table 4.8. 

Plot 

1 

2 

3 

4 

5 

6 
.. -

·mean

Table 4.8 

A Ion Is/ E El.n Al.n El.,,A RO mean 

0.19 0.69 0.69 0.20 0.46 0.52 0.39 0.55 0.46 

0.00 0.43 0.44 0.03 0.09 0.12 0.02 0.22 ; 0.17 

0.14 0.54 0.50 0.18 0.31 0.37 0.21 0.37 0.33 

0.00 0.47 0.57 0.06 0.12 0.11 0.00 0.26 0.20 

0.12 0.64 0.71 0.27 0.48 0.41 0.07 0.63 0.42 

0.56 0.70 0.70 0.63 0.83 0.78 0.87 0.82 0.73 
- '"" - . .. --· . . • �o.. ,......_ - �- -- - . " -······ 

0.17 0.58 0.60 0.23 0.38 0.38 0.26 0.47 

Coefficients af determination (r2) for sediment yield and various erosivity indices. 

(A = amount of rainfall, 160 = maximum 60 minute intensity, 16/ = square of maximum 

sixty minute intensity, E = _total kinetic energy, El60 = produpt of E and 160 , 

E1
6
oA = product of E, 160 and A, RO = runoff) 
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The strongest mean erosion index linear correlations are for the 160 and 160

2 erosivity indices. Sixty 

percent of the variance of sediment yield can be explained by the 160
2 factor. The weakest 

correlation was for the total amount of rainfall (17%). When the correlations.are analysed for the. 

respective plots, the steepest runoff plot (plot 6) has the strongest mean correlation for the eight 

factors (73%) and runoff plot 2 the weakest ( 17% ). If plot 1 is excluded, the data then show a trend 

of increasing linear correlation with increasing plot gradient(Fig. 4.8). 

Figure 4.8 
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(El
60), with the El

60A index also showing a strong linear correlation (77%). No trend of mean 

correlation is evident for runoff and plot gradient. 

Plot 

1 

2 

3 

4 

5 

6 
--- .. 

mean 

Table 4.9 

A I
M 

I
M

2 E 

0.70 0.84 0.88 0.64 

0.44 0.54 0.56 0.59 

0.65 0.50 0.52 0.90 

0.70 0.69 0.77 0.61 

0.51 0.33 0.36 0.70 

0.68 0.84 0.85 0.66 
·--·· .. ... ..... . 

0.62 0.62 0.66 0.68 

. -

EI
M

0.97 

0.64 

0.89 

0.92 

0.72 

0.89 
. ·--·

0.84 

.. . .. , 

AI
M

El� 

0.90 0.96 

0.47 0.46 

0.66 0.88 

0.47 0.92 

0.39 0.56 

0.86 0.83 
. . .. . 

0.68 0.77 

Coefficients of determination (r2) for runoff and various erosivity indices. 

) 

mean 

0.84 

0.51 

0.77 

0.71 

0.53 

0.80 
.... . �- .. 

(A= amount of rainfall, 1
60 = maximum 60 minute intensity, l6a2 = square of maximum 60 minute 

intensity, E = total kinetic energy, El60 = product of E and 160, -ElsoA = product of E, 160 and A). 

4.2 Footpath surveys 

4.2.1 Surveyed footpath descriptions 

Four footpaths were surveyed in Giant's Castle Ganie Reserve in 1993 as outlined in Section 3.2. 

The Bannerman Hut approach path links the main camp to the contour path and is a route 

commonly used to get to Bannerman Hut (C, Fig 1.3, p.14). The footpath begins at the intersection 

with the World's View path near the· bridge crossing the Bushman's River and lies predominantly 

on north-facing slopes with a total path length of 5691m. The G-iant's Ridge path begins at the 

intersection with the Ka-Lan�alibalele path and ends at the contour path 2.3km from Qiant's Hut 

(D, Fig 1.3). This path lies on alternating north-and south-facing slopes and is used to access 



68 

Giant's Hut, and less frequently Giant's Pass. It has a total length of 6422m. Both paths begin 

almost at river level, pass up initially over the Clarens Formation sandstone and continue mostly 

over the basalts up to ~2300m, occasionally passing over dolerite intrusions. 

The two sections of the contour path that were surveyed in detail form part of the contour path 

which, in its entirety, extends north to the upper regions of the Injasuti River valley in the northern 

area of Giant's Castle Game Reserve, and south into Highmoor. The Bannerman Hut contour path 

is the section from the Bannerman Hut approach path intersection to the Bannerman Pass path 

intersection, with a path length of 4168m (8, Fig 1.3). It is used as an access to Bannerman Hut 

an�or Bannerman Pass. The Ka-Langalibalele contour path is from the Bannerman Hut approach 

path intersection to the Ka-Langalibalele pass path, with a length of 4605m (A, Fig 1.3). This path 

is used less frequently as a link between the two mountain huts. Typical hikes are from the Main 

Camp to either of the two huts. A less common hike is from the Main camp to Giant's Hut for the 

first overnight stop and then from Giant's Hut to Bannerman Hut for the second overnight stop. 

Return is then via the Bannerman Approach path. The journey may be taken in either direction. 

With hikers using this option the Bannerman Hut contour path will be traversed twice with the 

other paths traversed only once. The two sections of the contour path assessed here vary in altitude 

between 2200 and 2300m. 

Simple statistical descriptions of the four path sections are provided in Table 4. 1 0. The mean cross­

sectional area provides a good indication of the overall extent of soil loss on a path section. It is 

derived from the product of the width and the mean depth for each survey site. Where secondary 

paths were recorded the cross-sectional areas were considered individually and not as a cumulative 

total for that survey site. The number of secondary path sites was taken as the proportion of the 

total number of sites for that path section. User-intensity is expressed as a proportion of the 

maximum user-intensity recorded for the surveyed paths, the Giant's Ridge path, which recorded 

90? users over a two month period. 

Table 4. 10 indicates that the two contour path sections are different from each other in morphology 

and user-intensity, although simil�r in path gradient, orientation and cross-slope gradient. The 

number of survey sites where secondary footpaths were recorded differs considerably for the two 

co�tour paths. The Bannerman contour path section recorded 67% of the sites with secondary 

footpaths, whereas on the Ka-Langalibalele contour path section none were recorded. Cross-
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footpath cross-sections were calculated for each survey site and assigned into classes (Table 4 i2) 

Class Width to maximum No. of No. of No. of Class Width to maximum No. of No. of No. of 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Table 4.12 

depth ratio sinole multi. multi.* depth ratio single multi. multi.* 

0.00-0.50 0 0 0 15 7.01 � 7.50 6 1 0 

0.51 -1.00 0 0 0 16 7.51 -8.00 4 2 1 

1.01 - 1.50 0 2 2 17 8.01 - 8.50 2 0 0 

1.51 - 2.00 2 11 11 18 8.51 -9.00 6 0 0 

2.01 -2.50 11 5 5 19 9.01 -9.50 4 0 0 

2.51 -3.00 11 13 13 20 9.51 - 10.00 1 0 0 

3.01 -3.50 15 9 9 21 10.01 -10.50 1 0 0 

3.51 -4.00 14 4 4 22 10.51 -11.00 � 0 0 

4.01 -4.50 16 7 7 23 11.01-11.50 0 0 0 

4.51 -5.00 10 1 0 24 11.51 - 12.00 0 0 0 

5.01 -5.50 11 0 0 25 12.01 - 12.50 0 0 0 

5.51-6.00 12 1 0 26 12.51 -13.00 2 0 0 

6.01 -6.50 10 2 1 27 13.01 -13.50 0 0 0 

6.51 -7.00 5 1 0 28 13.50 -14.00 2 0 0 

Cla� intervals for path width to maximum depth ratios and number ofobservations for single 

paths and multiple paths in each class. 

(* indicates data excluding sites where rocky treads were recorded) 

The m..imber of observations in each class for survey points which had a single footpath and multiple 

footpaths are indicated in Figure 4.10. For survey sites where multiple footpaths were recorded, 

the lowest width to maximum depth ratio of the paths at the sites are included in the single footpath 

senes. 

A rocky tread provides a loose underfoot surface, making walking awkward or treacherous and 

increasing the potential for injury. This may encourage hikers to leave the main (primary) path and 

walk alongside it, creating a second path. The criteria for defining a rocky tread was set arbitrarily 
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as the condition when the tread was too rocky to allow stepping between rocks onto the path 

surface. At six of the surveyed sites where multiple paths_ were recorded this situation arose. If 

these rocky tread occurrences are excluded from the data, a threshold for the existence of multiple 

paths is evident at class 9. This indicates that the probability of multiple path development increases 

below a width to maximum depth ratio of 4.50 (Fig. 4.11). 
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4.2.4 Geomorphological forces 
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Relationships between dependent variables (width, depth, cros_s-sectional area) and inde·pendent 

variables (cross-slope gradient, orientation and footpath gradient) were analysed using Pearson's 

Product Moment Correlation Coefficient (Klugh, 1970; Till, 1980) which has been used 

successfully in a similar application (Garland et al., 1985). Correlation coefficients between 

variables for the four footpath sections are illustrated in Table 4.13 (all significant at least at the 

95% limit). 
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Ka-Langalibalele Bannerman Bannerman Giant's 

Path Attributes pass contour Hut contour Hut approach Ridge path 

path path path 

Width / depth 
; 

0.44 0.62 0.30 0.44 

Path gradient / cross-slope gradient 0.15 0.02 0.34 0.42 

Orientation / cross-sectional area -0.04 -0.59 -0.06 0.28 

Cross-slope gradient/ cross-sectional area 0.14 0.01 0.07 0.46 

Path gradient / cross-sectional area ' 0.13 0.25 0.41 0.50 

Path gradient / width 0.10 0.06 0.34 0.42 

Path oradient I depth 0.14 0.30 0.42 0.63 

Table 4.13 Product Moment Correlation Coefficients (r) for surveyed path attributes. 

Correlation values range between 0 and ± 1. 0. As a general rule, values for strong correlations are 

considered between ±1.0 and ±0.7, moderate correlations between ±0.7 and ±0.3 and weak 

correlations ranging between ±0.3 and 0 (Grau, pers. commun.). Table 4.13 indicates that all 

correlations are either moderate or weak. Notwithstanding this, comparisons of values provide 

insight into factors likely to influence the erosion process. 

Correlations between path width and depth are moderate and range from relatively strong for the 

Bannerman Hut contour path (r = 0.62) to relatively weak for Bannerman Hut approach path (r = 

0.30). Correlations between path gradient and cross-slope gradients are poor for the contour path 

sections but are somewhat stronger for the two approach paths. 

The Giant's Ridge path is the only path where cross-slope gradient can explain some of the variation 

in cross-sectional area (r = 0.46). This path section has the lowest mean path - slope orientation 

(Table 4.10) indicating that the path is generally mo.re orientated up the slope than the other path 

sections. The only path section in which there is a correlation between the path orientation and the 

cross-sectional area is the Bannerman Hut contour path (r = -0.59). The negative correlation 

indicates that as the path becomes more aligned with the orientation af the_ hillslope the cross­

sectional area tends to increase. 
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Correlations between path gradient and path morphology ( cross-sectional area, width and depth) 

are stronger for the approach paths than for the sections of the contour paths. For the two approach 

paths the correlation coefficients of path morphology and path gradient vary between 0.34 and 

0.63. With the exception of the moderately strong correlation between width and depth the Ka­

Langalibalele contour path section shows very poor overall correlations. 

The implications of the above findings will be discussed in greater detail in Chapter 5. In Chapter 

6 the Natal Parks Board 1989 survey results are compared to the 1993 survey results to determine 

soil loss from the footpaths over a four year period. Thereafter the soil loss from the runoff plots 

and that estimated from the surveys- are compared. 
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5. Discussion

Discussion of the results outlined in the previous chapter is divided into two sections. In the first 

section ( 5. 1) discussion deals with the runoff and sediment yield from the plots, soil particle size 

characteristics, rainfall characteristics and user-intensity. The second section (5.2) is a discussion 

of the footpath survey results. In,itially an empirical description of the footpaths is provided, after 

which the discussion broadly follows the themes of Coleman's model of forces of resistance, 

recreational forces and geomorphological forces and their influence on footpath morphometry. 

Implications and proposals for management are introduced in this chapter although a more in-depth 

synopsis is provided in. Chapter 7. 

5.1 Runoff plots 

5.1.1 User-intensity 

Few data are available on user-intensities for footpaths in the Drakensberg. Garland (1988) 

suggests that a moderately-used footpath has a user-intensity of 60 persons per month. Data 

collected for this study from automated counters on footpaths in Giant's Castle Game Reserve 

indicate user-intensities up to 450 per month in the vicinity of the Main Camp and as low as 90 per 

month for a section of the contour path (Table 4.10). This suggests that for Giant's Castle Game 

Reserve an intensity of less than 90 per month would be considered a relatively low intensity-of­

use. 

The maximum user-intensity of 468 recorded over a 27 day period in the monitored section (Table 

4. 1) equates to over 500 users per month, corresponding to a period during the summer school

holidays. The lowest intensity of 193 over a 14 day period; equates to approximately 400 users per 

month. Although the user-intensity data from the monitoring period was intermittent it can be 

concluded that the intensity-of-use of the monitored section containing the plots was generally high 
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in comparison to the user-intensities recorded for the other footpaths in the Reserve. The failures 

of the counters also precluded any assessment of changes in sediment yield with user-intensity and 

generally it can be �tated that the soil loss from the runoff plots is representative of a well-used 

footpath. 

5.1.2 Runoff and sediment yield 

The higher tread bulk density, infiltration capacity and different tread texture of runoff plot 1 sets 

it apart from plots 2 to 6. The different conditions within the plots are probably related to a 

difference in lithology underlying plot 1. The monitored section is located in the Clarens Formation 

sandstones, however a more detailed investigation of llnderlying bedrock which was exposed in an 

inspection pit dug adjacent to plot 1 revealed a layer of finer-grained sandstone similar to the 

subordinate lenses described by Du Toit (1954) and Eriksson (1983) (see Section 2.2, p.16). This 

change in lithology appears to have modified soil textural properties and bulk density in relation to 

the other five plots. On natural surfaces Hofmann and Ries (1991) found-that, amongst other 

factors, soil bulk density was related to runoff This and the corresponding decrease in infiltration 

capacity results in higher rates of runoff and greater potential for sediment removal by runoff 

Soil erodibility is related to soil texture, organic matter content, and permeability (Wischmeier et

al., 1971; Kirby and Mehuys, 1987). Due to the low organic matter contents of the tread surfaces, 

erodibility differences must arise from texture and permeability ( or infiltration) differences. The 

other five plots show soil textural characteristics similar enough to allow comparisons between 

them. Although the actual process of soil erosion will generally be the same for all the plots 

discussion of quantities of runoff and rates of erosion plot I will be considered separately from the 

other five plots. 

Total runoff quantities generated from the plots were found to increase with increasing footpath 

gradient (Fig. 4.1). Although the infiltration rates for plots 2 to 6 are similar, the higher footpath 

gradients produce greater quantities of runoff due to the increase in runoff velocities, and the 

relationship between .runoff and gradient is linear for plots 2 to 6. Sandy topsoils and dominantly 

silty topsoils are prone to liquefaction as a result of raindrop impacts when water saturated. This 
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provokes increasing pore water and pore air pressures (De Ploey, 1985). Liquefaction lowers the 

infiltration rate and runoff starts at a critical rainfall intensity which equals the infiltration capacity. 

Monti al_ld Mackintosh (1979) measured infiltration capacities ofless than Imm/minute (60 mm/hr) 

in heavily used recreational areas; values considerably lower than those found in this study but 

which may be related to contrasting soil characteristics as illustrated in the differences between plot 

l and the other five plots.

One possible interpretation of the relationship between sediment yield and footpath gradient 

indicates a threshold value of 13.36° for footpath gradient, above which erosion rates increase 

rapidly (Fig. 4.2). Bryan (1977) recognised that gradient is of critical importance and although the 

concept of a critical angle for the onset of severe erosion was suggested, no such angle was 

determined. Coleman (1981), however, found a threshold gradient between 15° and 17° to 

distinguish active from stable paths in the English Lake District. This indicates that thresholds may' 

well be recognised as an explanation of variations of erosion rate with gradient. 

An alternative interpretation is that of a logarithmic relationship between sediment yield and 

gradient This is strongly supported by regression of the logarithm ( either log
10 or log

0
) and 

sediment yield values against gradient, which produces a high correlation value of O. 915 as 

illustrated in Figure 4.3. Although some previous findings show the extent of erosion to increase 

linearly with path ·gradient {Bayfield, 1973; Dale and Weaver, 1974; Auerswald and Sinowski, · 

1989), Coleman (1981) interpreted extent of erosion as increasing with the square root of the slope 

gradient. 

Both the above interpretations have value in describing changes in rates of erosion with gradient. 

For management purposes the first interpretation is the most practical, suggesting that gradients 

above an effective range of 10-13° need to be avoided. The second interpretation is, however, 

probably-the more accurate reflection of the situation since it combines five values into one analysis, 

rather �han the combination of three and two values for determini_ng the threshold value in the first 

interpretation. Although gradient is obviously an important influence other factors may also 

contribute to the process and rate of erosion. These are discussed.below.

Soif is eroded both as primary particles and as aggregates of primary particles (Nwadialo and 

Mbagwu, 1991). This process comprises two stages: detachment and transport by both raindrops 
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and runoff (Ekwue, 1991). For footpaths, Bryan (1977) suggests that the onset of erosion is 

determined by the balance between flow velocity and soil resistance to detachment. The amount 

of soil detached by a .single raindrop has been closely correlated to the shear strength of the soil 

(Cruse and Larson, 1977) which is in tum related to the degree of compaction. Compaction and 

disaggregation or shearing of the footpath tread by trampling are important modifiers of the natural 

erosivity of the soil. Compaction of the soil alters the hydrological conditions as well as the 

physical, chemical and microbiological processes occurring in it (Starodubova, · 1985). Resistance 

of a soil to erosion increases with increasing compaction as a direct linear function (Lyle and 

Smerdon, 1965). Compaction of the soil should thus lead to an increase in the resistivity of the 

footpath tread to erosion relative to the adjacent natural surface. For net soi.I losses to exceed 

natural erosion rates the increase in soil resistance must therefore be negated by the scuffing 

influence of walking and the associated disaggregation, in combination with the increases in runoff 

generated from the footpath surface and runoff channelled from the adjacent natural surface. 

The recreational effects of sediment generation are thus an important contributor to the erosion 

process. Although soil erosion by recreational influence has been reported in many studies ( eg. 

Bayfield, 1973; Bryan, 1977; Coleman, 1977, 1981; Tinsley and Fish, 1985; Auerswald and 

Sinowski, 1989), few attempts have been made to understand the mechanics of the trampling 

process. The most wear of the footpath tread appears to result from soil deformation and smearing, 

related to the shearing forces associated with the action of the toe rather than the compaction forces 

associated with the heel during walking (Quinn et al., 1980). With increasing slope steepness the 

shearing forces become more important while the compressive forces decrease (Quinn et al., 1980). 

This phenomena would contribute to increasing sediment yields from the steeper footpath gradients 

where the shearing action of the foot has a greater impact on a steeper footpath, thus increasing 

the extent of disaggregation of the tread surface, while compaction has a greater influence on 

shallower gradients where soil resistivity will .be increased. 

Runoff generated fro_m the plots shows a general linear increase with total quantity of soil loss (Fig.

4.4). The similarity between regression equations, both including and excluding plot 1, suggests that 

the runoff-sediment yield relationship for plot 1 is broadly similar to that of the other five plots. 

This indicates that the erosion processes operative are likely to be similar even though the actual 

rates of erosion differ .considerably with respect to gradient. 
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Although Y air and Klein ( 1973) have cast doubt on the generally accepted assumption that runoff 

and erosion increase with increasing slope, findings in the present study confirm this generalisation 

for the. erosion of footpaths. Further data, - both long-term from these plots and from different 

environments, are required to confirm the type of relationships listed above and their spatial 

application. In addition, further knowledge on flow velocities and flow depths on footpaths will be 

important in the development of erosion models. Comparisons of the sediment yield data with other 

findings are discussed in Section 6.4. 

5.1.3 Particle size characteristics 

Erosion of the footpath in the monitored section has mostly removed the A horizon. As a result the' 

footpath tread surface lies predominantly within the B horizon, up to a depth of 200mm in places. 

The decrease in the fines content of the path treads in comparison to the adjacent soil B horizon 

(Fig. 4.5 and 4.6) is reflected in the sediment particle size distribution characteristics which indicate 

a corresponding increase in the proportion of silt and clay components in comparison to the tread 

material (Fig 4. 7a-f). Some mechanism of preferential removal of the fine particles from the tread 

surface is thus indicated. For practical purposes the term 'particle size' will hereafter include the 

contributions of aggregates unless otherwise stated. 

Runoff plots 2-6 have very negatively skewed tread particle size distributions while the sediment 

generated from the plots shows a shift towards more symmetrical distributions, including greater 

percentages of silt and clay than the tread material (Table 4.5). The converse is evident for plot 1 

where the tread of the plot has a symmetrical particle size distribution and the sediment is very 

negatively skewed. Although this. difference between tread and sediment for plot 1 is apparent, the 

particle· size distribution of the sediment is similar to that of the sediment of other plots. This is 

probal?ly related to a similar process of detachment and entrai�ent of particles regardless of the 

difference in parent material. The sediment generated from the plots is moderately sorted in 

comparison to the generally poorly sorted tread material. Some degree of sorting of particles is· 

expected due to the relationship bet�een flow velocity and particle size as illustrated in the 

Hjtilstrom curve ( eg. Press and Siever, 1986). 
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As outlined in Chapter 1, no general relationship has been established between the eroded and the 

matrix soils obtained for runoff plots. Some further comments on particle selectivity are provided 

below. Proffitt et al. ( 1993) found the rainfall detachment process to be aselective with respect to 

sediment size under simulated conditions, although other findings show the size distributions to 

differ (Moss et al., l 979; Alberts et al,, l 980; Poesen and Sa vat, l 980). In laboratory experiments 

Poesen and Savat (1980) indicate that sheetwash and rill flow selectively transport coarse grains 

more effectively. In contrast, on runoff plots of"eroded" and "uneroded" surfaces, Mbagwu (1988) 

found a preferential removal of finer particles(< 0.5mm) for the eroded plot and no change in 

distribution of the uneroded plot. Recent findings by Durnford and King ( 1993) indicate that the 

silt and clay discharges generally decreased with time due to the accumulation of sand on the soil 

surface. This armouring effect of the sand resulted in supply limitations to the silt and clay 

component under low-intensity rainfall events. Disruption of the soil by cultivation would reduce 

the effect. 

Few studies have dealt with particle size characteristics on footpaths. Starodubova ( 1985) found 

a deficiency of "fine earth" on footpaths in the Crimean Mountains although further detarls of 

particle sizes are not provided. In Sweden, Bryan ( 1977) found selective entrainment of fine 

textural separates, leaving larger separates and resistant aggregates on the tread surface, which he 

suggested contributed to turbulence and enhanced erosional capacity. On runoff plots which 

incorporated footpaths located in the Drakensberg, Garland (1988) found an increase in the sand 

content of the plots at the expense of the finer materials. Garland maintains, however, that changes 

in particle size distribution could not be explained by preferential erosion and that relative decreases 

in clay content may be associated with a slower replacement by weathering than the coarser 

components. Their non-replacement in the short-term would result in relative decreases. Garland 

further states that the decline in clay and organic matter could not be sustainable in the long term 

and that at some stage the lower limits would be reached. If this were not the case the soil would 

eventually consist of mineral sand, which was not observed. It is thus likely that this situation 

existed within the runoff plots in th(? present study where, since this is a well established footpath, 

the tread is at the lower limits of clay and organic matter due to slow replacement rather than 

preferential erosion. As silt and clay is produced it is readily mobilised on the surface and entrairied 

in runoff resulting in higher proportions of silt and clay in the sediment in relation to the tread. 

The higher silt and clay components of the sediment in relation to the tread may further be 
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attributed to the breakdown of aggregates by trampling and scuffing by the footpath users. This 

would "prepare" finer material on the footpath tread surface for transportation by runoff The 

shearing effects attributable to pedestrians increases with slope (Quinn et al, 1980).and thus an 

increase in fines available for transportation may be expected with increasing gradient. This scuffing 

and shearing will also disrupt the surface and minimise the armouring effect of coarser material on 

the tread surface (cf Durnford and King, 1993). :Conversely, however, with the decrease in forces 

of compaction with increasing gradient (Quinn et al., 1980), the extent of disaggregation of the 

tread surface may decrease and cause a decrease in the availability of fines for transportation on 

higher gradient footpaths. The difference between the particle size distributions of the sediment for 

different gradients in the runoff plots shown in Table 4.5 indicate only a small increase in the sand 

component of the sediment with increasing footpath gradient. This is attributed to increases in 

runoff velocities and discharge which facilitate the entrainment of larger particle sizes. To the 

knowledge of this author no data on this aspect of footpath erosion have been previously recorded 

in order to enable comparisons. 

Previous findings show that significant positive correlations between total soil organic matter and 

aggregate stability against water forces exist generally for soil (Hafez, 1974; Chaney and Swift, 

1984; Mbagwu and Piccolo, 1989). Further findings show organic matter to generally be positively 

related to the degree of soil detachment (Ekwue, 199 I). The low organic matter contents of the 

footpath tread surfaces (see Section 4. I .3) indicates poor potential for amendment of aggregate 

stability and detachment and this may well contribute to overall greater potential for the removal 

of finer soil particles. Since no vegetation was growing on the footpath in the monitored section, 

where organic matter was recorded in the collected sediment this most likely originated from the 

adjacent surface and was washed onto the footpath. 

Some caution on experimental procedure and possible influences on particle size characteristics 

needs to be noted here. The particle size distributions may not completely reflect the particle size 

distribution of the tread sut_face and the particles that are initially detached and entra,ined in runoff 

from the tread surface. Although the effect of transporting soil samples together with rainwater in 

bottles has been shown not to influence aggregate size distribution, provided wave motion was kept 

to ·a minimum (Cleary et al., 1987), some concern must b� expressed on sample collection and 

laboratory procedure. Generally, the main disruptive forces exerted on aggregates are caused by 

wetting of aggregates and on the intensity of drying. The lower the moisture content prior to 
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wetting the larger the disruptive forces of differential swelling and escape of entrapped air. 

Combined with intense drying this can result in finer aggregate size distribution (Emerson and 

Grundy, 1954; Kemper and Rosenau, 1984; Semmel.et al., 1990). Aggregate breakdown may occur 

by wetting after initial detachment from the tread surface, possibly during transportation to the 

sediment trap or within the sediment trap prior to _removal. Thus the initial aggregate size at the 

time of detachment and initial entrainment by rainfall and runoff may differ from that measured 

later. Further, analysis of runoff and sediment samples collected from the field may have been 

delayed up to two weeks before laboratory analysis could be undertaken. Such periods of 

submergence and saturation of sediment may have influenced the degree of aggregation of particles, 

particularly in the absence of the stabilising effect of organic matter ( cf Mbagwu and Piccolo, 

1989). Changes to aggregate size distribution may also have incurred during the drying procedure. 

All samples were, however, treated in a similar manner and results have value at least on a 

comparative basis. 

5.1.4 Rainfall erosivity 

Correlation between rainfall parameters and both runoff and sediment yields are discussed below. 

Due to the scarcity of published data from runoff plots l�cated on footpaths, these data are 

compared with results from previous research on rainfall indices obtained from natural surfaces 

and/or from research in agriculture unless otherwise stated. 

The correlations between rainfall intensity and sediment yield for the runoff plots in this study, 

shown in Table. 4.8, correspond to findings by Wischmeier and Smith (1978) and Foster and Meyer 

( 1975) for rainfall intensity and square of intensity respectively. This differs, however, from the 

findings of Ulsaker and Onstad (1984) who found poor correlations (r2 = 0.36 and 0.49 

respectively) at 30-minute durations. The weak correlation of rainfall amount and sediment yield 

in this study follows the findings of Wischmeier and Smith (1958), however, Ulsaker and Onstad 

(1984) found it to be one of the strongest indexes (r2 = 0.66). Ulsaker and Onstad (1984) also 

found the total kinetic energy of the rainfall event to be a relatively good erosivity index (r2 = 0.64). 

The relationships for rainfall energy related factors in.this study were, however, weak. Both EI and 

AI indexes were found to be poor reflections of sediment yield, which differs from the findings of 
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Ulsaker and Onstad (1984) in Kenya and Lal (1976a, b) in western Nigeria. The El
m 

(m = 6 min) 

was also used successfully as an erosivity index in southern Nigeria (Salako et al., 1991 ). All 

relationships involving the energy of rainfall in this study were only derived from six rainfall events . 

(Appendix III) due to the relative scarcity ofrainfall events above 4mm/hr (see Section 4.1.4). This 

low number of variables may thus not effectively represent relationships between rainfall energy and 

sediment or runoff All other indices were derived from the 15: rainfall events where rainfall interval 

data were available 

Correlations of sediment yield with runoff as shown in Table 4.8 were also generally poor in this 

study, although previously found by Ulsaker and Onstad (1984) to be strong (r2 = 0.71). The· 

correlations with runoff are, however, stronger in the higher gradient plots (r2 = 0.63 and 0.82 for 

plots 5 and 6 respectively) and may be related to higher velocities and greater quantities of runoff 

Hudson ( 1971) found a correlation coefficient of O. 94 for the KE > 25 inde� in Zimbabwe ( formerly 

Rhodesia). This index, which is also used in the SLEMSA model (Elwell, 1981) could not be 

applied in this study since no rainfall events were measured at this intensity. This was not due to 

an absence of such intensity events but rather due to the length of recording interval which 

precluded the recording of short, high intensity events. The EI index, at 30-minute duration, has 

previously been shown to be applicable in southern Afiica on a tentative basis (Smithen and 

Schulze, 1982). Data from footpath soil loss show the EI index (at 60-minute durations) to be 

applicable for rimoffbut not for soil loss. 

In only one other study have rainfall characteristics been related to soil loss from footpaths. Under 

different treatments of vegetation burning Garland (1988) recorded low correlations for the EI 

index relative to the rainfall intensity, measured at 24-hour and 60-minute durations, and total 

rainfall, Garland's (1988) results for soil loss correspond to some degree with the results for this 

study where rainfall intensity was most strongly correlated to soil loss. Th_e 160 and 160 

2 indices also 

show increases in correlations with iqcreasing gradient for plots 2-6 while rainfall amount was 

poorly correlated to soil loss. 

One of the major problems associated with determining relationships and with comparisons with 

previous findings is the difference in rainfall durations. Previous studies have considered maximum 

durations of 30 minutes and trends have been to decrease the durations below 30 minutes with 
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increasing success ( eg. Ulsaker and Onstad, I 984; Salako et al., 1991 ). This may to some extent 

account for the dissimilar correlations in comparison to previous findings. The corr.elations for 

intensity are, however, much stronger than those of the other factors, suggesting that in this 

environment the sediment yields can be explained most successfully by rainfall intensity. The final 

finding of significance with sediment yield is the apparent overall increase in mean correlations of 

sediment yield and erosi:vity indices with increasing gradient. This may be related: to the apparent 

increased potential for sediment entrainment in runoff from higher gradients. Such findings have, 

how�ver, not been recorded in the literature to date. 

Mean correlations for runoff and rainfall indices show strong correlations for all factors (Table. 

4.9). The strongest correlation is for the El
60 index, with generally stronger correlations for the 

compound indexes than the single variable indices. The absence of a general trend for mean 

correlations and runoff plot gradient may be a result of the overall high correlation values. These 

types of relationships have not previously been documented for footpaths although Salako et al.

(1991) computed correlations for field runoff plots. Their findings show strongest correlations for 

total ·rainfall amount and total kinetic energy, but all correlation values are lower than those found 

in this study. This may be related to the lower infiltration and faster generation of runoff from the 

compacted path treads. 

5.2 Footpath surveys 

5.2.1 General footpath descriptions 

The highest and lowest mean cross-sectional areas for the four surveyed footpaths are for the two 

sections of the contour path: the Bannerman Hut and the Ka-Langalibalele sections (Table 4.10). 

The Bannerman Hut contour path has a 28% higher mean cross-sectional area than the �a­

Langalibalele section. These two sections are, however, continuous and have similar environmental 

settings (Fig. 1.3, p.14). The mean footpath orientations are virtually the same (72° for Ka-
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Langalibalele and 70° for Bannerman Hut contour paths). Cross-slope gradients for the two 

contour path sections are similar ( 12. 7° and 13. 9°) with the higher mean cr:oss-slope gradient 

recorded for the Ka-Langalibalele section. It is unlikely that the difference in mean footpath 

gradient for the two contour path sections (2.8° and 3.2° for the Ka-Langalibalele and Bannerman 

Hut paths respectively) will account for the difference in the mean cross-sectional areas. 

More important in distinguishing between the extent of erosion of the two sections of the contour 

path is the user-intensity and the footpath history. Although the user-intensity of the Bannerman 

Hut contour section was recorded as more than twice the intensity of the Ka-Langalibalele section 

(Table 4. l 0) it is likely that the difference in intensities is even higher due to the closing of 

Bannerman Hut for five weeks during the two month monitoring period. A further consideration 

is that of the relative ages of the footpaths. The dates of construction of the Bannerman Hut paths 

are not known although the Ka-Langalibalele section was constructed, mostly by cut-and-fill, in the 

late l 960's and post-dates the Bannerman Hut paths (Meiklejohn, pers. commun. ). In the early 

l 960's horses were used to transport material up the Bannerman approach path and along the

contour path for the building of Bannerman Hut, which was completed in 1965 (Meiklejohn, pers.

commun. ). Horses are generally more damaging to vegetation and disruptive to soil than hikers 

(Weaver and Dale, 1978) and these previously higher user-intensities coupled with the relative ages 

of the footpaths may well account for the greater cross-sectional areas as well as the greater 

number of multiple footpaths, rather than conditions such as footpath gradients. 

The two approach paths have intermediate values of cross-sectional area for the four surveyed 

footpaths (Table 4.10). All general attributes are similar for the two approach paths. The 

Bannerman approach path has a slightly higher mean overall path gradient than the Giant's Ridge 

path (5.9° and 5.3°) and mean cross-sectional areas of 60lcm2 and 586cm2 respectively. This 

indicates that higher mean footpath gradients do not necessarily imply a greater extent of erosion 

since the Bannerman Hut contour path has a mean gradient of 3 .2° and a mean cross-sectional area 

of 651 cm2
. The two approach paths have approxi!llately one third of the survey sites where 

multiple paths were recorded. The highest number of multiple path sites was recorded for the 

Bannerman Hut contour path (67%) while none were recorded on the Ka-Langalibalele section. 

The number of multiple path sections appears to be a result of recreational forces and is generally 

controlled by hiker response to the path conditions. A further discussion pertaining to multiple 

footpaths is provided in Section 5.2.3. 
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The Giant's Ridge and Bannerman Hut approach paths have similar mean path-slope orientations 

of 46° and 54° respectively. These values can be expected to be lower than the corresponding 

values for the co_ntour path since the approach paths· generally direct hikers from lower altitudes 

near the Main Camp to the contour path, at higher altitudes. These footpaths should thus be more 

aligned to the hiUslopes. The Giant's Ridge path. recorded the highest present-day user-intensity, 

however the Bannerman Hut approach path may well have a higher intensity-of-use than recorded 

due to the closing of Bannerman Hut as outlined above. Both approach paths have similar mean 

cross-slope gradi,qnts, although up to 2° lower than the sections of the contour path. This difference 

can be attributed to the contour path being located nearer in altitude and position to the Main 

Escarpment, where gradients are generally steeper. The Bannerman Hut approach path is located 

on north-facing slopes while the Giant's ridge path alternates between north- and south-facing 

slopes, but lies predominantly on north-facing slopes. 

The number, type and spacing of water breaks along the four footpaths shown in Table 4.11 

indicates a similar trend to that of the footpath attributes described above. The two approach paths 

have a short mean separation of water breaks and have a high proportion of double water log 

systems. The Bannerman Hut contour path has a greater mean spacing and a higher proportion of 

single log systems, and some single gabion systems which are not present on the other footpaths. 

The Ka-Langalibalele section has no water breaks installed. It is probably the location of the two 

contour paths which has restricted both the number and type of water break installations. Due to 

the distance from Main Camp transportation of material is difficult. This would also account for 

the predominance of single water break systems on the contour path where breaks do occur. 

Although the gabion system uses local rock material this is not always readily available and the 

mesh wrapping still requires transportation to the site. In total very few of the gabion-type 

structures have been installed. 

The relationship between water break type and frequency and the extent of footpath erosion is not 

clear. The Ka-Langalibalel.e contour path section, which has no breaks installed, has a cross­

sectional area which is 85% of that of the Bannerman Hut approach path (which has the highest 

frequency of water breaks). In contrast the Bannerman Hut contour path has an 8% greater cross­

sectional area than the corresponding approach path, yet has a greater water break spacing. This 

indicates that the water break spacing alone cannot explain the mean �ariations in cross-sectional 

area and some interaction must exist between the water break structures, user-intensity and the 
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geomorphological forces operative at the break site. 

The most significant consideration with respect to the water breaks is that no research has as yet 

been conducted on the efficiency of the systems, the optimum installation attitude and spacing, and 

the maintenance of the structures. Little et al. (I 977) is frequently quoted by Natal Parks Board 

staff as a guide for footpath construction and installation of water breaks. This text, however, 

quotes no basis for scientific argument. As a consequence it may well be possible that water breaks, 

if installed incorrectly, or at the incorrect spacing are enhancing erosion by causing greater 

turbulence on the footpath tread, particularly if overtopping occurs. Further, the breaks are 

removing both runoff and sediment from the footpaths. The runoff plots described above indicate 

that runoff on footpaths has the potential to entrain particles over less than a three metre distance. 

This questions the desirability of removing the sediment from the footpath and may suggest that 

retaining the sediment on the footpath may be a more successful technique in slowing the rate of 

overall soil removal from the footpath tread. The converse is that greater quantities of runoff will 

be generated if no breaks are installed. The understanding of the dynamics of water breaks is a 

separate study within the field of footpath erosion and the scope of the present research precludes 

further investigation of the topic at this point. 

A more detailed examination of the footpath sections is provided in the following sections by the 

analysis of the variables measured at each site in relation to footpath morphology. 

5.2.2 Forces of Resistance 

The resistance to footpath erosion is governed primarily by vegetation and soil characteristics 

(Bryan, 1977; Coleman, 1981; Garland, 1990). The majority of the footpaths in the Drakensberg 

are w�ll established, have bare tread surfaces and are well defined, preventing .walkers from straying 

from the bare tread. Thus the influence of vegetation to resisting erosi.on is restricted to stabilisation 

of the sides of the footpaths and to the banks adjacent to footpaths where cut-and-fill construction 

techniques have been employed. 

The grass type 1hemeda trianda predominates adjacent to the approach paths while a mixed grass 
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type is found adjacent to the contour paths. Variations in mean cross-sectional area for the four 

surveyed path sections indicate that the contour paths sections have both the highest and the lowest 

cross-sectional areas, while the approach paths have intermediate values (Table 4.10). This suggests 

that variations in vegetation types cannot explain variations in the condition of the paths and 

although some overall change in resistance from predominantly Themeda trianda to a mixed grass 

type may be present, it could not be established. Such a situation is similar to that found by 

Jubenville and O'Sullivan (1987) in Alaska where vegetation type explained very little of the 

variance in soil loss. 

Due to the almost complete absence of vegetation on the footpaths in the study area, resistance to 

erosion is governed primarily by soil characteristics, a situation similar to that described by Bryan 

(1977) for footpaths with bare tread surfaces. Based on differences in infiltration rates and lower 

potentials for runoff from different lithologies (Schulze,' 1979), Garland (1990) regarded lithology 

as a suitable substitute for soil erodibility. The two sections of the contour path overlie basalt. The 

same applies for the two approach paths which have short sections below the Clarens Formation 

sandstone near the Main Camp and then overlie basalt. Thus, as with vegetation type, overall 

changes in mean cross-sectional area cannot be explained by soil type/lithology differences. 

Some further comments on soil erodibility are appropriate here. Stoniness can be a control on 
� 

....___ .  .. . 

. 

erosion in general (Bunte and Poesen, 1994) and also for erosion on footpaths (Coleman, 1981 ) . 
. ,.._ 

Although footpaths in this area of the Drakensberg can be stony near river and stream crossings, 

or where crossing bedrock outcrops, the majority of the footpaths are generally comprised of 

compacted B horizons. The influence of stoniness is thus localised and generally considered as a 

minor influence. Further, due to the tread surfaces being devoid of vegetation, even on the relatively 

low-use Ka-Langalibalele Pass contour path, the influence of organic matter on aggregate stability 

and on decreasing the degree of compaction are minimised. 

Although quantification of the resistance to erosion is not achieved in absolute tenns, it appears that 

vegetation and soil changes generally cannot explain variations in mean footpath morphometry and 

that the resistance to erosion can be considered as equivalent for the four footpath sections. Under 

the structure of Coleman's ( 1981) model, changes in morphology of the footpath must therefore 

be related to changes in the recreational and geomorphological forces. 
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5.2.3 Recreational forces 

The impact of pedestrians on the path surface (tread) is two-fold. Firstly, it causes compaction of 
----·-

the soil (Quinn et al., 1980) which is indicated by a lowering of the tread surface in relation to the 

adjacent natural surface. This compaction may decrease porosity to such an extent that the paths 

become practically impermeable, favouring runoff (Bryan, 1977; Starodubova, 1985). Secondly, 

it causes soil deformation and smearing or shearing of the soil (Quinn et al., 1980). This may result 

in truncation of the soil horizons by water erosion ( eg. Bryan, 1977). The relative importance of 

compaction and truncation by erosion on footpaths has not yet been fully investigated although 

Bryan (1977) found that soil truncation (independent of compaction) is related to intensity-of-use. 

Soil core samples taken from approach paths in the vicinity of the Main Camp indicate that 

compaction may account for as much as 20% of the cross-sectional area of a footpath on a path 

gradient less than 5°. The relative contribution of compaction and truncation to footpath 

morphology, however, requires further investigation and is considered beyond the scope of this 

study. 

A further influence of trampling is the effect on aggregate size distributions. When pressure is 

exerted on soil, aggregation increases up to a threshold which is dependent on soil· shear strength. 

Thereafter aggregation declines and drops close to zero. The decline in aggregation will increase 

soil erodibility with a tendency for the disaggregated particles to be removed (Bryan, 1977). Further 

findings by Bryan ( 1977) show that once vegetation is removed and soil becomes compacted by 

trampling a low user-intensity may maintain the path. Once vegetation damage has occurred, 

erosion can proceed with little human intervention and damage is cumulative from year to year if 

the vegetation is not allowed to recuperate, even under low user-intensity conditions. 

Other research has shown relationships to exist between path use and path morphology (Dale and 

Weaver, 19?4; Weaver and Dale, 1978; Coleman, 1981; Tinsley and.Fish, 1985; Auerswald and 

Sinowski, 1989) as summarised in Section 1.2.2·(p.8). On the basis of the u·nderestimation of user­

intensity of the surveyed footpaths during the monitored period, discussed above, the present user­

intensity will to some degree account for differences in mean cross-sectional areas between the path 

sections. Table 4.10 indicates that the Ka-Langalibalele Pass contour path section has the lowest 

mean cross-sectional area with the lowest user-intensity and it is unlikely that the relative intensity-
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of-use would have altered considerably had Bannerman Hut not been closed. With anticipated 

increases in the user-intensity for the Bannerman Hut approach path and contour path section 

during periods when the hut is open, and considering previous peak use periods such as during the 

building of the hut, it is concluded that intensity-:-of-use has an influence on path morphology. 

Without more accurate user-intensity data no further relationships can, however, be established. 

Compaction of a soil by pedestrians increases the soil bulk density. The bulk density of a footpath 

initially has a linear positive correlation with user-intensity but is likely to reach a level beyond 

which further compaction does not take place (Liddle, 1975). Jusoff ( 1989) found bulk densities 

to increase from 0. 99 g/cm3 to ·1.28 g/cm3 for the first 15cm in 'recreation-used' areas: On a 

footpath compaction increases towards the centre of the tread surface (Ward and Berg, 1973; 

Starodubova, 1985). Starodubova (1985) found the bulk densities of tread surface to vary 

according to user-intensity and season of the year. Starodubova (1985) found the 0-5cm layer had 

bulk densities up to 2.2 g/cm3
, with a corresponding decrease in porosity of up to 20%. For every 

0.1 g/cm3 increase in bulk density the soil porosity was found to decrease by an average of 3%. In 

camping sites in the Colorado ·Rocky Mountains the compaction effect of visitor use was most 

pronounced to a depth of 5cm of soil at lightly and moderately used sites and up to 12.5cm at 

heavily used sites (Dotzenko et al., 1967). 

Bulk densities for the tread centre of the surveyed footpath sections range between 0.91 g/cm3 and 

1.32 g/cin3 (Fig 4.9a, b). Bulk densities for the two approach paths are generally higher than those 

for the contour path sections. A general decrease in bulk densities is evident from the start of the 

approach paths towards the contour paths. This indicates that the intensity-of-use decreases away 

from the start of the footpaths, probably as a result of day hikers turning back when tired or short 

of time. The Bannerman Hut approach path has overall higher bulk densities than the other three 

footpaths which again indicates that the user-intensity recorded underestimates the intensity-of-use 

of the Bannerman footpaths. 

The Ka-Langalibalele Pass contour path section has the lowest mean tread bulk density. This is 

predictable considering the lower user-intensity. The higher bulk density of the Bannerman Hut 

contour path section, but lower overall values than the approach paths, again relates to differences 

in user-intensity. The unusual feature of the bulk density variation for the Bannerman Hut contour 

path, the increase in bulk density towards Bannerman Hut from the intersection with the approach 
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path, is probably related to higher user-intensities in the vicinity of the hut. 

The-formation of secondary (or multiple) footpaths running parallel and in close proximity to the 

original path generates a second drainage channel on the hillslope. This has the potential to increase 

the rate and quantity of soil loss at any particular site. The formation of these footpaths is a major 

problem showing a 2. 79 fold increase in cross-sectional area at the surveyed sites. In addition, a 

branching network of footpaths is unsightly and detracts from visitor experience. The prevention 

of secondary path initiation should thus rate highly in path management objectives and the reasons 

for their initiation need to be understood. 

Secondary footpaths need to be distinguished from the general broadening of footpaths associated 

with hikers trampling adjacent vegetation as described by Dale and Weaver ( 197 4 ), Bryan ( 1977), 

'Coleman ( 1981) and Bayfield ( 1987). Bayfield (1987) distinguishes between a bare width and a 

trampled width for footpaths in the Yorkshire Dales National Park. This trampled zone is not found 

in Giant's Castle Game Reserve except perhaps to a small extent and for short distances at the 

beginning of footpaths, or at footpath intersections. Even in the very high intensity zones near the 

Main Camp, where footpaths have been surfaced with concrete, the effect of trampling adjacent to 

the footpath is so minimal that the Natal Parks Board is required to cut the grass adjacent to the 

concrete paths to prevent it from hanging over the footpath. This grass dampens the legs of hikers 

. in the early morning or after rains and some written complaints from the public to this effect were 

received by the Reserve Management! 

It can generally be postulated that pedestrians leave a footpath due to poor underfoot conditions 

and thus walk next to it, initiating a second footpath. The controls governing the pedestrian 

behaviour are, however, not well understood. Although Auerswald and Sinowski ( 1989) observed 

a distinct tendency toward extensive branching of paths with an increasing number of pedestrian 

users, this was not quantified. Lance et al. ( 1989) found a trend for secondary paths to form where 

paths ran through wet h_ollows, and less frequently, where the new paths were narrower and firmer 

• underfoot. There also exists a greater tendency for hikers to leave the path coming downhill

(Bayfield, 1973 ). These observations are not sufficient to explain the existence of multiple paths

in Giant's Castle Game Reserve. Firstly the user-intensities do not satisfactorily account for the
. 

. 

relative number of secondary path sites on different path sections. Secondly, the secondary path

sites exist regardless of changes in soil moisture characteristics and thirdly, the tendency for hikers
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to leave the path when walking downhill does not explain the reason for leaving the path. 

A narrow, deep footpath can make walking uncomfortable and potentially hazardous, particularly 

if adjacent vegetation is hanging over the footpath and if the hiker is carrying a heavy backpack. 

Similarly, rocky treads make for poor underfoot conditions. Figures 4. 10 and 4.11 indicate that 

rocky treads may initiate secondary footpaths irrespective of width to depth ratios. Since the 

number of rocky treads recorded was minimal, the focus here is on width to depth ratios excluding 

the rocky tread data. The threshold value of between 4.01 and 4. 50 indicates that where width to 

depth ratios are below 4.50 the potential for a secondary footpath forming is increased, although 

a secondary footpath may not necessarily form. 

In summary, the compaction of a footpath can only be controlled by regulating intensity-of-use. The 

recovery of vegetation is difficult to achieve where a footpath tread is compacted, however once 

a path surface is compacted, only a low user-intensity is required to maintain the footpath (Bryan, 

1977). Thus the prevention of compaction and the regeneration of vegetation to stabilise a footpath 

will not be easily achieved ·and is probably best left to its own devices. The prevention of multiple 

path formation may, however, be possible due to the recognition of threshold for initiation. 

Recommendations for management will be outlined in Chapter 7. 

5.2.4 Geomorphological forces 

Results from relationships between footpath morphology (width, depth and cross-sectional area) 

and geomorphological variables (footpath orientation to slope, footpath gradient and cross-slope 

gradient) are outlined in Section 4.2.4. Since the two approach paths essentially guide hikers from 

low elevations to higher elevations some degree of correlation between footpath gradient and cross­

slope gradient is expect�d. Conversely, this is not anticipated for the contour path sections which 

generally follow the contours but have short sections of changing altitude. Such a trend is noted 

in Table 4. 13 where correlations for the approach paths are relatively stronger thari those for the 

sections of contour path. 

Correlations between path width and depth are moderate but are generally higher than other 



96 

correlation values. Although width and depth can be anticipated to be inter-dependent, Coleman 

( 1981) suggests that width tends to be influenced to a greater degree by recreational factors while. 

depth is influence by geomorphological factors. This may explain the absence of strong correlation 

values, although Coleman's footpath width includes a trample zone adjacent to a bare tread surface 

which is generally not observed in the study area. 

The overall weak correlations for the Ka-Langalibalele Pass contour path section show that none 

of the independent variables measured can explain variations in footpath morphometry. A similar 

situation exists for the Bannerman Hut contour path with the exception of a moderately strong 

negative correlation between footpath orientation and cross-sectional area-. This suggests that the 

extent of erosion is explained to some degree by the orientation of the footpath to the slope. As the 

footpath becomes more orientated with the hillslope the cross-sectional areas show a general 

increase, independent of actual footpath gradient. Similar findings have been recorded elsewhere. 

Bryan ( 1977) observed that topography is significantly related to trail orientation and that where 

paths follow the fall-line severe water erosion hazard exists, regardless of slope angle. Bratton et

al. (1979) also found a significant negative correlation between orientation and erosion. This type 

ofrelationship is, however, clearly not a general relationship for the footpaths measured in Giant's 

Castle Game Reserve since the two approach paths show very l_ow correlation values for this 

relationship, indicating either its irrelevance under the different environmental conditions of the 

approach paths, or alternatively some other overriding factor(s) influencing footpath morphology. 

Generally stronger correlations for footpath morphology ( cross-sectional area, width and depth) 

and footpath gradient of the approach paths in contrast to the contour path sections suggests that 

the morphology of the approach paths is controlled to a greater degree by footpath gradient. 

Relationships between footpath morphology and path gradient have been established by other 

authors. Auerswald and Sinowski · ( 1989) found that path depth increased linearly with path · 

steepness. Weaver and Dale (1978) found trail depths tended to be greater ·on slopes than on level 

sites, although Jubenville and O'Sullivan (1987) found that slope gradient within the same 

vegetation type explained only 34.3% of the total variance in cross-sectional area. Garland et al.

( 1985) found a weak yet significant relationship between depth and path slope, depth and hill-slope, 

and depth and width. Trail width has been found to increase linearly with increasing path slope 

(Bayfield, 1973;-Dale and Weaver, 1974) while Coleman (1981) showed-that the extent of path 

erosion was found to increase with the square root of the slope angle. 
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Giant's Ridge path is the only surveyed section in which there is any meaningful correlation between 

cross-slope gradient and cross-sectional area. This footpath has the lowest path-slope orientation 

indicating that of the footpaths surveyed it is the most orientated to the hillslope (Table 4.10). The 

mean orientation value ( 46°) is not, however, considerably lower than the mean orientation value 

for the Bannerman approach path ( 56°) which shows a very poor correlation between cross-slope 

gradient and cross-sectional area. Thus no general trend can be recognised here. 

Based on the assumption of higher user-intensities for the Bannerman approach path and 

particularly for the Bannerman contour path, some overall points emerge for the footpaths. The 

method of path construction and the path age must play a role in determining the morphology of 

the paths. It is apparent that as the use of the path increases, and the extent of erosion increases, 

the control of path design and construction on morphometry decreases. This is a result of the paths 

becoming more in equilibrium with the forces exerted on thein and is illustrated by the stronger 

correlations between independent and dependent variables for the higher-use footpaths than for the 

Ka-Langalibalele Pass path, which is a relatively new footpath and has lower intensity-of-use. On 

higher mean path gradients (the two approach paths) the path morphometry is correiated to the 

path gradient. On lower mean path gradients with relatively high user-intensities (Bannerman Hut 

contour path) the orientation of the path to the slope is an important controlling factor. 

It is apparent that, although some general trends have been recognised, multiple inter-relationships 

between variables as outlined above and between recreational and geomorphological variables may 

exist which may serve to explain more accurately variations the in footpath morphology. 
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This chapter compares the two techniques of measurement utilised in this study, namely the runoff 

plots and the path surveys. In order to enable a comparison of the data obtained by these methocis 

a conversion to similar units is required. The procedures for these conversions are outlined in 

Sections 6.1 and 6.2. The comparison of the soil loss values for the two methods follows in Section 

6.3 and the final section of the chapter (6.4) compares the footpath erosion rates determined for 

this study to those obtained by other authors within the Drakensberg and in areas beyond southern 

Africa. 

6.1 Conversion of runoff plot sediment yields to annual estimates 

To enable a comparison of soil loss on the runoff plot scale with the larger scale soil loss estimated 

from the footpath surveys, the runoff plot sediment yields require conversions of the 20 rainfall 

events to annual predicted soil losses. Since long-term detailed rainfall interval data are not 

available, direct comparisons of rainfall intensities and kinetic energies for the monitored events and 

the mean annual conditions could not be undertaken. To place the sediment yield data obtained 

during the monitoring period into the context of general rainfall characteristics the only feasible 

approach is a comparison of rainfall quantities. 

Mean total annual rainfall for the inclusive period 1989 to 1994 (the period between the two 

surveys) was 969mm p.a. (Table 4. 7). The total rainfall for the 20 monitored n1:noff plot events was 

183mm. This implies that the monitored events accounted for 18.9% of the total mean annual 

rainfall. Following the same procedure for the number of rainfall days monitored in relation to the 

mean annual number of rainfall days since 1989 ( 124) indicates that the number of rainfall days 

monitored was 16.1% of the mean annual number ofrainfall days. This indicates that 16.1% of the 

days monitored accounted for 18.9% of mean annual rainfall. Given the-similarity in these values, 

the assumption has been made that the sample of 20 monitored rainfall days is proportionately 
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representative of the annual soil loss ( this clearly assuming that the monitored rainfall events are 

a representative sample of the annual rainfall intensity). 

Based on the above, predictions for annual soil loss from the runoff plots can be tentatively 

extrapolated from the 20 rainfall events to a prediction of mean annual soil loss (Table 6.1 ). 

Calculations of the runoff plot annual prediction are the product of sediment yield (kg) from the 

20 rainfall events with 124/20. This was in tum converted from the 3m plot length to 1000m by 

multiplying with 333.3 and presented as tons by dividing by 1000. This gives soil loss units of 

tons/(m.km)/a (Table 6.1 ). 

Plot 1 2 3 4 

Sediment yield (kg) ' 2.833 1.375 1.737 2.041 

Plot annual prediction (kg/a) ' 17.57 8.53 10.77 12.65 

(sed yield x 124/20) 

Estimated yield 

(tons/(m.km)/a) (plot annua 5.86 2.84 3.59 4.22 

prediction x 333.3 / 1000) 

Table 6.1 Conversion of runoff plot sediment yields to annual estimates. 

6.2 Annual soil loss estimate for surveyed footpaths 

5 6 

5.17 8.202 

32.05 50.85 

10.68 16.95 

A comparison of the width and depth values measured between August and November 1993 and 

the September 1989 values of the Natal Parks Board has been undertaken in order to assess 

changes in footpath morphology over the four year period. Su�h changes in footpath morphology 

would then reflect soil l(?SS or accretion of soil on the respective paths, provideq the extent of 

compaction remained constant. 
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The Natal Parks Board survey is class-based, which precludes direct comparisons of width and 

maximum depth values. The values for width and maximum depth from the 1993 survey have thus 

been converted to classes following those utilised in the Natal Parks Board survey. These classes 

were then 'shifted' by subtracting a value from those measured in the 1993 survey and reassigning 

the values into the classes. This value would simulate the class distribution if the path tread was, 

for example 1cm narrower than that recorded in 1993. This procedure allows the 'shifted' class 

ratings to be compared to the Natal Parks Board survey classes and other values tested until the 

'best fit' shift value is established. This value would then correspond to the estimated change in 

footpath width or maximum depth between 1989 and 1993. The results of this procedure are 

outlined i� Figure 6.1 where class shifts are indicated for width and .depth for the Ka-Langalibalele 

contour path, Giant's Ridge and Bannerman Hut approach paths. Shifts are indicated as D-x or 

W-x where D and W are the mean width and maximum depth values for the 1993 and x is the shift

value in cm. No data for the Bannerman Hut contour path were available from the Natal Parks 

Board survey. The selected 'shift' values are listed in Table 6.2. 

Changes in width and depth have been converted into changes in cross-sectional area (Table 6.2). 

These values are in tum converted to volume along the length of the footpath and, using mean soil 

bulk density, finally into soil loss in tons/km/a. The calculations estimate soil loss to be 13.0 

tons/km/a for the Bannerman Hut approach path, 6.93 tons/km/a for the Giant's Ridge path and 

3.24 tons/km/a for the Ka-Langalibalele contour path (Table 6.2). Although these values are at best 

only estimates of soil loss they permit a comparison with the runoff plot sediment yields, allowing 

for a comparison of the measurement techniques. 

Before comparing the path survey results with those of the runoff plots some general comments 

on the survey results can be made. The low values of annual soil loss from the Ka-Langalibalele 

Pass contour path reflect the low user-intensity and the overall low footpath gradie_nt. By 

comparison the two approach paths, which have higher mean gradients, have over 200% greater 

soil loss values, with the value for the Bannerman Hut approach path almost twice that of the 

Giant's Ridge path- (Table 6.2). The difference between the values for the two approach paths 

cannot be explained by the data collected in this study since it appears that in most respects the 

environmental conditions of the two appro·ach paths are similar. It must, however, be stressed that 

these values are estimates of soil loss and are subject to inaccuracies that may be introduced both 

by the field techniques employed and by the analysis of the class system and interpretation of class 
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shifts. An assumption inherent in the technique is that the degree of compaction remains constant 

and that changes in morphology reflect soil erosion. This assumption is not valid if user-intensity 

changes significantly during the four year period. Such a situation has been shown to occur during 

the monitoring of user-intensity during 1994, some months after the four year period between the 

surveys. The influences of such changes in user-intensity on the degree of compaction and on the 

associated effect on path depth are, however, not known. 

Bannerman Hut Giant's Ridge path Ka-Langalibalele 

aooroach path Pass contour path 

1993 mean width (cm) 54 53 49 ' 
1993 mean depth (cm) ' 11 11 10 

' 

1993 mean c/sectional area (cm2) i 601 586 510 

Shifted width (cm) 0 W-5 D -1 

Shifted depth (cm) D-8 0-4 W-8

Altered c/sectional area (cm2) 162 336 369 

Change in c/sectional area (cm2) ·439 250 141 

Path length (km) 5.691 6.422 4.605 

Soil volume (cm3 x 107) 25.0 16.1 6.49 

Mean tread density (g/cm3) 1.18 1.10 0.92 

Soil mass (g x 107) i 29.5 17.8 5.97 

Soil mass (tons) ' 295 178 59.7 

Soil loss (tons/a) : 73.8 44.5 14.9 

Soil loss (tons/km/a) ' 13.0 6.93 3.24 

Table 6.2 Annual soil loss estimation for surveyed footpaths from 1989 to 1993. 

A further consideration is that Coleman ( 1977) recognises that cycles of erosion and recovery may 

exist on footpaths and notes that it woul� be important to separate real trends in erosion from mer� 

fluctuations. Thus some caution in the interpretation of the results and their implications for the 

I 

' 
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management of footpaths needs to be taken since identifying these values as 'real trends' or as 

'fluctuations' is not possible. The worst case scenario is that the results for annual soil loss from the 

surveys show that the footpaths are experiencing some degree of erosion, and that rates appear 

dependant on user-intensity and broadly on mean footpath gradient. A comparison of the two 

systems of measurement will assist in placing the survey results in perspective. 

6.3 Comparison of runoff plot sediment yield and survey soil loss estimates 

Comparing Tables 6.1 and 6.2 thus enables a comparison of the scales of measurement. An evident 

difficulty is that of the units of measurement. Data from the runoff plots estimates the soil loss in 

units of.tons/(m.km)/a while the surveyed footpaths have units of tons/km/a. An assumption is 

made that the quantities of sediment generated from the natural surface within the runoff plots are 

negligible in comparison to that sediment generated from the footpaths. This effectively equates 

with the areal units for the path survey estimates. Based on this the units for the runoff plots are 

directly comparable to those of the survey data. 

From Tables 6.1 and 6.2 it is apparent that the soil loss for the surveyed paths lies within the range 

of the soil loss from the plots and that there is some measure of agreement between the values for 

the two measurement techniques. A comparison of gradient shows that the soil loss values for the 

surveyed paths are, however, higher than the corresponding runoff plot values of similar gradient. 

There are three possible explanations for this. Firstly, the surveyed path gradients are mean path 

gradients and thus sections within those paths surveyed have higher gradients generating higher soil 

loss from above the threshold. Sections above the threshold would over-compensate soil loss for 

the lower gradients below the mean gradient values. Secondly, the plots are closed systems whereas 

the open paths in many instances act as drainage channels for the runoff from the adjacent slope. 

This increases the volume and velocity of runoff in an open path whi.ch would increase the potential 

for deta�hment and transport of soil particles. Lastly, although the two systems show some 

conformity of results the difference in technique and problems inherent in the assumptions outlined 
. 

. 

in the time scale conversions could introduce error and bias into the results. 
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Since the two techniques of soil loss measurement are based on certain assumptions, and difficulties 

are inherent in scaling upwards from a small to large scale ( eg. Parker and Schumm, 1982), it 

cannot be stated which technique is a more accurate assessment of rates, or which may be 

overestimating or underestimating soil loss. Notwithstanding this, the agreement of results between 

the two systems shows some measure of compatibility of the two techniques, indicating that either 

technique of measurement gives a reasonable interpretation of rates· of erosion from footpaths. 

Further, the agreement between the results indicates that if the surveyed path results represent a 

'fluctuation' in erosion rather than a 'real trend' (Coleman, 1977), then the fluctuation is not 

considerably different from the real values for soil loss which may be established over a longer 

period of time. 

6.4 Footpath erosion rates in perspective 

Stocking (1984) suggests that normal erosion rates in Africa should be less than 5 tons/ha/a but 

may increase to in excess of 100 tons/ha/a where vegetation cover is poor. In comparison, scaling 

up from estimated annual sediment yields (Table 6.1) for the 3m2 runoff plots to one hectare (10 

000m2) gives erosion rates between 28.4 and 169.5 tons/ha/a (Table 6.3) which indicates that 

erosion rates are potentially hazardous for steeper footpath gradients. 

Figures for path erosion presented above are linear measurements (tons/km/a) while other forms 

of erosion are spatially extensive ( eg. tons/ha/a). Soil loss from a footpath on a hectare of ground 

will consequently be much lower than from the traditional areal methods of representation ( Garland, 

1988). Further, the length of footpaths within a specified area can be ·any length which is greater 

than the shortest width of the unit area, depending on the extent of curvature of the footpath within 

the specified area. Thus a footpath with numerous_ switchbacks will have overall higher cumulative 

rates of erosion per unit area than a straight footpath located within the same unit area, even if the 

rates of erosion are the same per unit length of the footpath. Direct comparisons of areal data can 

thus be misleading. 
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Plot no. 1 2 3 4 5 6 
' 

Plot annual estimation (kg/a) 17.57 8.53 10.77 12.65 32.05 50.85 

Plot annual estimation (kg/m2/a) 5.86 2.84 3.59 4.22 10.68 16.95 

Estimated yield (tons/(m.km)/a) 5.86 2.84 3.59 4.22 10.68 16.95 

Estimated yield (tons/ha/a) 58.6 28.4 35.9 42.2 106.8 169.5 

Table 6.3 Runoff plot annual predicted values and estimated yields (from Table 6.1). 

For a footpath of gradient 11 ° in a runoff plot at Kamberg in the central Drakensberg, Garland 

(1988) found soil losses to be l .2.kg/m2/a. This increased to 2 kg/m2/a under burning treatment of 

the adjacent vegetation. By comparison, data from this study shows soil loss from the runoff plots 

to be higher with a range from 2.84 to 16.95 kg/m2/a (fable 6.3). Due to the proximity ofKamberg 

and Giant's Castle Game Reserve (Fig. 1.3) environmental conditions at the two sites should be 

broadly similar. Differences in erosion rates may be due to different user-intensities. Garland (1988) 

had a user-intensity of60 persons per month, walked on one day of each month, whereas this study 

recorded an intensity generally in excess of 400 users per month. A further consideration is that 

Garland (1988) shows that the soil loss monitored in that study was during a period oflower than 

normal annual rainfall. These differences in results between the two studies highlight the need for 

long-term runoff plot data for the Drakensberg. 

A scarcity of data exists for footpath erosion rates in and beyond southern Africa. Measured rates 

of footpath erosion obtained from previous research are shown in Table 6.4. Estimates of rates of 

erosion from both the runoff plots and from the survey data indicate that footpath erosion rates are 

not high in Giant's Castle Game Reserve in comparison to the data available, particularly for the low 

gradient and/or low intensity-use footpaths. 

I 
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Author(s) Location Rate Rate 

••�;,:--, • •  •..--.'.'>"' 'a•, • • -·�.-·. ·-·.--... ·-- ----.--,,--,,.:,.-. .--, .,,.,,,,.._.,_ ........ -.- .•--.--.•.· ,,,.,_ •... _., .. .. ............... •�=- ' .,.. - ... -�-.... - . ............ - � - .-,, -

..•... ,,{��frn21a2 .... . J_!on�!.(� .km)/a) .. 

Ketchledge and Leonard Adirondacks, USA 37 37 

(1970) 

Coleman (1979) English Lake District 21 21 

Anon (1986) Otto's Walk, Drakensberg 0.5 0.5 

Anon (1986) Gorge Path, Drakensberg 13 13 

Garland (1988) Kamberg, Drakensberg 1.2 1.2 

Present study Giant's Castle, Drakensberg 2.84 to 16.95 2.84 to 16.95 

Table 6.4 Some measured rates of footpath erosion (modified after Garland, 1988). 

(Conversion to tons/m.km/a by converting kg to tons (/1000) and converting 1 m2 to km (*1000)) 
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7. Conclusion

The Drakensberg is an important ecological and recreational resource area and thus the erosion 

caused by footpaths is a serious concern. Although erosion rates in the Drakensberg are generally 

low, localised soil erosion from footpaths can exceed the soil loss tolerance for an area (Garland, 

1987a). The intention of this study was to determine the rates and controls of erosion associated 

with footpaths in order to base both the conservation of existing footpaths and the planning of new 

footpaths on a clearer understanding of the mechanisms involved in the erosion phenomena. 

Little data exist on the actual rates of erosion of footpaths. Similarly, little is known of the controls 

on the erosion process in the Drakensberg and the associated influence on the rates of sediment 

generation: A two-fold approach was adopted in this study of footpaths in Giant's Castle Game 

Reserve. Firstly, rates of soil loss were monitored from six runoff plots installed on an intensively 

used footpath and secondly, surveys of four footpaths in the Reserve were taken in order to assess 

broader geomorphological and recreational influences on the morphology of footpaths. This chapter 

summarises the main findings of this study and outlines recommendations for the management of 

existing footpaths and for the planning of new footpath routes. 

Data obtained from the runoff plots indicate that sediment yield and runoff generally increase with 

�creasing gradient. A linear relationship exists between total sediment yield and total runoff (r2 = 

0.886) indicating an increase in total sediment with total runoff The relationship between runoff 

and footpath gradient indicates a linear increase in· runoff with gradient (r2 = 0. 780). In terms of 

sediment yield, the logarithm ( either natural or base 10) of sediment yield was found to be related 

to footpath gradient. A _more practical interpretation of sedim�n_.! _ _yield, however, indicates a

computed footpath gradient of 13 .36° as the threshold after which erosion rates increase rapidly. 

This is similar to the findings of Coleman ( 1981) who established the existence of a threshold 

gradient between 15° and 17° in the English Lake District. Runoff plots are, however, effectively 

closed systems. They prevent runoff from the hillslope, which would increase both the runoff rates 

and the tot�l quantity of runoff on the footpath, from being chann�lled into the footpath. The 

threshold value may therefore e�ectively be lower than 13.36°. More data, particularly long term 

data which incorporates the hillslope· component in some manner, are required in order to verify 
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these findings. 

Textural analysis of the sediment and samples. taken from the footpath tread surfaces indicate an 

increase in the proportion of fines in the sediment generated from the footpath in relation to the 

tread material. The tread material was also found to be generally coarser than the adjacent natural 

surface. Although this indicates that some mechanism of preferential erosion may be taking place, 

it is more likely that the relative decrease in fines (particularly clays) can be attributed to their 

slower replacement by weathering rather than by preferential erosion ( cf Garland, 1988). The 

higher silt and clay components of the sediment may also be attributed to the breakdown of 

aggregates by pedestrian trampling and scuffing which would "prepare" finer material on the 

footpath tread surface for transportation. 

The characteristics of rainfall are important in that they can be used to correlate rainfall erosivity 

with sediment yield and runoff Of the eight erosivity indices tested for this study the strongest 

mean correlations for sediment yield emerge for the rainfall intensity (recorded over 60-minute 

intervals) and the square of the rainfall intensity. This corresponds to findings by Wischmeier and 

Smith (1978) and Foster and Meyer (1975).respectively for natural plot treatments and to the 

findings of Garland ( 1988) for rainfall intensity on runoff plots incorporating footpaths. Poor 

correlations were found for indices related to kinetic energy and to total rainfall amount, and for 

· correlations between runoff and sediment yield. A gene.ral trend of increasing correlations with

increasing gradient for all indices was noted for the runoff plots. This may be related to the

increased potential for sediment entrainment by runoff from higher gradients.

Further findings associated with rainfall characteristics show the strongest correlation between 

runoff and erosivity indices for the EI
60 index. All indices showed high correlations, however, with 

generally :stronger correlations found for the compound indices than for .the single variable indices. 

No general trend was recognised for changes-in mean correlations with gradient, probably as a 

result of the high overall correlation values. 

Although a general trend has been to decrease the monitoring period for rainfall intensity to 30 

minutes and shorter ( eg. Ulsaker and Onstad, 1984; Salako et al., 1991 ), the 60-minute interval 

data available from the Natal Parks Board in Giant's Castle Game Reserve proved adequate for 

relating rainfall erosivity to sediment yield and runoff in this study. These indices require further 
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testing under different environmental conditions to verify their spacial application for both footpaths 

and under natural conditions. Where possible, shorter rainfall interval data may allow more realistic 

comparisons with findings of other authors. 

Results from the point-based surveys of four footpaths in the Reserve indicate that mean cross­

sectional area of footpaths cannot be attributed solely to mean footpath gradient. The two sections 

of the contour path, with mean path gradients of 2.8° and 3.2°, had both the highest and lowest 

mean cross-sectional area of the footpaths surveyed. The two approach paths had intermediate 

values for mean cross-sectional area and mean gradients of 5.3° and 5.9°. Similarly mean cross­

slope gradients arid mean path-slope orientation cannot explain the mean cross-sectional areas of 

the paths. It appears, however, that the overall extent of erosion of the surveyed paths, indicated 

by cross-sectional area, is dependent on the user-intensity and on the relative ages of the paths. 

These mean assessments do not, however, provide an indication of localised variations in path 

morphology. An assessment of the parameters measured at the surveyed sites provides a better 

understanding of the processes governing site-specific rates and extent of erosion. Coleman;s 

(1981) footpath morphology model of the interaction of geomorphological and recreational forces 

with the resistance of soil and vegetation is used as a theoretical framework for assessing the survey 

data. The general resistance to erosion is determined by soil and vegetation characteristics. Findings 

in this study indicate that changes in vegetation· type and in soil form cannot adequately explain 

variations in.footpath morphometry. Under the structure of Coleman's (1981) model changes in 

path condition must therefore be related to recreational and geomorphological influences. 

In addition to the scuffing and shearing influence on the soil surface, pedestrians cause compaction 

of the soil thus altering the soil physical properties and lowering the tread surface in relation to the 

adjacent natural surface. Compaction of a soil by pedestrians increases the bulk density of the soil. 

Soil samples removed from the centre of the tread on the surveyed footpaths indicate that bulk 

density decreases from the Main Camp towards the contour path. This is related to higher user­

intensities in .the vicinity of the Main Camp. The Ka-Langalibalele contour path section had the 

lowest overall bulk densities which is indicative of the lower user-intensity of the path, and of the 

lower mean cross-sectional area of the surveyed footpaths. The converse applies to the other three 
,.

surveyed footpaths where bulk densities reflect relatively high user-intensities. 
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A further important recreational influence is the formation of secondary footpaths. These secondary 

paths create a second drainage channel running parallel to the primary path. Their existence is not 

only unsightly
,_ 
but increases the overall path cross-sectional areas by an average of 2. 79 fold at the 

surveyed sites where multiple paths were recorded. A threshold width to maximum depth range of 

4.01 to 4.50 was determined as the control over the initiation of a secondary footpath since a 

narrow, deep path makes walking uncomfortable. Where width to depth ratios are below this range 

the potential for secondary footpath initiation increases. 

The geomorphological influences on footpath morphometry were assessed by correlating 

in4ependent site-specific variables such as footpath gradient, hillslope gradient and orientation with 

dependant variables of footpath morphometry. Although no strong correlations were recorded, a 

comparison of the moderate and weak correlations which were recorded provide insight into the 

factors controlling the erosion process. Some important considerations emerge. Although the Ka­

Langalibalele section of the contour path showed overall weak correlations, the cross-sectional 

areas recorded for the higher intensity-use Bannerman Hut contour path section could in part be 

explained by the orientation of the path to the slope ( cf, Bryan, 1977: Bratton et al., 1979). This 

suggests that where possible footpaths should not follow _the direct fall-line of the hillslope. The 

two approach paths, which have higher mean path gradients than the contour path sections, showed 

weak correlations for orientation but generally stronger correlations between footpath 

morphometry and path gradient. 

In considering geomorphological influences within the context of the recreational forces some 

overall points emerge for the footpaths. As the cumulative use of the path increases, and the extent 

of the erosion increases, the control exerted as a consequence of the initial path construction on 
' ·-·-·- --· ... . -- -···• -- . 

footpath morphometry decreases. This is as a result of the paths adjusting in an attempt to attain 

equilibrium with the forces exerted on them, as illustrated by the stronger correlation� obtained for 

the older and more used footpaths. Where footpath gradients are low and user-intensity high 

(Bannerman Hut contour path), path morphometry is dependant on orientation to the slope. Where 
� .; ' ·-· .... -

footpath gradients are higher and user-intensity high (Bannerman Hut approach path and Giants 

Ridge path), morphology shows some correlation to path gradient. Although these trends have been 

recognised, further multiple inter-relationships may· exist between the recreationar and 

geomorphological variables which may explain mote ac_curately the variations in footpath 

morphometry 
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Estimates of annual rates of erosion were determined for the runoff plots and for the surveyed 

footpaths. Extrapolation of sediment yield from the runoff plots indicate that annual estimates range 

between 2.84 and 16.95 tons/km/a, depending on footpath gradient. A comparison of a Natal Parks 

Board footpath survey conducted in 1989 with the survey data obtained during this study indicate 

that three of the surveyed footpaths have respective annual sediment yields of 3.24, 6.93 and 13.0 

tons/km/a. Since both the above techniques of determining rates of erosion are based on certain 

assumptions and with problems inherent in scaling upwards from small to large scale, it cannot be 

concluded from this study which technique has provided the greater accuracy in assessing the rates 

of soil loss. Notwithstanding this, the similarity of results obtained for the runoff plots and the 

surveys suggests that both systems provide 1;t reasonable assessment of rates of erosion from 

footpaths. The data further suggest that, if the results from the surveyed footpath represent a 

'fluctuation' in erosion rather than a 'real trend' (Coleman, 1981 ), such fluctuation is not 

considerably different from the real values. 

Although Stocking ( 1984) indicates that normal rates of erosion in Africa should be less than 5 

tons/ha/a, increasing up to 100 tons/ha/a where vegetation cover is poor, direct areal comparison 

with soil losses obtained from footpaths can be misleading. Footpaths are effectively a quasi-linear 

entity, thus complicating comparisons with standard areal measurements. Notwithstanding this, 

scaling the runoff plot sizes up to units of tons/ha/a indicate values between 28.4 and 169.5 

·tons/ha/a, suggesting potentially hazardous erosion rates for specific sites of higher gradient.

Comparing the erosion rates determined in this study with the scarce data available on footpath

erosion rates both in southern Africa and worldwide indicates, however, that the overall rates in

Giant's Castle Game Reserve are not exceptionally high.

7.1 RecQmmendations 

The findings of this study point toward recommendations for the management of the existing path 

network, and towards improved planning for the :construction of new paths. These are listed below: 

• The footpath gradient of 13.36° which was derived from the runoff plot data indicates a
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threshold after which erosion rates increase rapidly. Below this threshold, erosion rates 

appear to increase only gradually with increasing path gradient suggesting that when new 

footpath routes are planned, path gradients in excess of a practical range of I 0- 13 ° need to 

be avoided. Where path gradients on existing footpaths exceed this range careful 

maintenance and monitoring of footpath conditions need to be implemented. 

• A threshold footpath width to maximum depth range of between 4.01 and 4.50 was 

established below which the potential for multiple footpath development increases. This

width to depth range provides management with an approach to predicting potential sites

or zones of secondary path initiation. It is recommended that where secondary paths exist,

rehabilitation of the primary paths be undertaken as natural rehabilitation appears to be

slow. Paths under rehabilitation need to be clearly indicated as closed routes and where

possible, water breaks installed on the newly formed footpaths. A further consideration is

that the potential for secondary footpath development is clearly also dependent on the

presence of rocky tread surfaces, independent of the width to depth ratio. Although this is

a difficult situation to rectify, particularly where the footpaths cross exposed bedrock sites,

the situation can be relieved by removing loose clasts from the primary footpath tread

surface.

• Findings from the footpath surveys indicate that under low gradient conditions with high

user-intensities, .footpaths aligned with the orientation of the hillslope sho'?v' an overall

gr�ater extenLof. �!9sion independent of th� footp!th gradient. This indicates that, even

under low footpath gradient conditions, care should be taken when designing new path

routes to avoid orientating the footpath directly up or down the hillslope.

• As a technique for assessing footpath conditions monitoring changes in time, SLJrveying is 

perhaps more favourable than the static or fixed-point method which utilises a rigid bar 

between two points (eg. Coleman, 1977; Tinsley and Fish, 1985). Surveying allows a

greater number of readings to be taken from a variety of environmental conditions on a

footpath, thus reducing bias incurred by unusual local conditions, such as cross-slope

modifications of drainage. The disadvantages of the advocated technique are longer periods

in the field and some measure ofloss of site-specific pr�cision. His, however, a less time

consuming and a less labour-intensive procedure than monitoring runoff plots. A
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recommendation for future footpath surveys is that the class-based system of measurement 

be avoided and that all actual values be recorded. The survey point spacing also requires 

accurate measurement (such as with a trundle wheel) to facilitate comparisons with 

subsequent surveys. 

7.2 Directions for future research 

During the course of research various avenues of further research related to footpath erosion, 

considered to be beyond the scope of the study, have been higWighted. These pertain to both 

specific and general issues, which would assist in furthering understanding of the erosion process 

and the influence of footpaths on the ecological stability of the area. Some suggestions for future 

research on footpaths in the KwaZulu/Natal Drakensberg are provided below. 

• In terms of specific measurements, data are required on the rates of erosion from natural

surfaces in order to enable comparisons with erosion rates from footpaths. Although this

study has determined erosion rates from selected footpaths, future research will require an

assessment of the extent to which footpaths accelerate natural erosion rates. In addition,

more long-term data are required on the rates of erosion of footpaths under different

environmental conditions. This will also assist in identifying possible fluctuations or cyclic

patterns pertaining to erosion rates ( cf Coleman, 1981).

• The influence of water breaks on modifying erosion rates and mechanisms is as yet

hypothetic�.l. This conservation technique is ubiquitous in the Drakensberg yet similar

structures are seldom reported in the international literature. A thorough assessment into

their efficiency, particularly with respect to water break type, attitude of installation and

maintenance is required in order for their use to be optimised.

• In terms of general assessment, there is a need to ascertain the optimum level of use at

which a balance between public access and recreation on the one hand, and protection of 
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the resource on the other, can be achieved (Frissell et al.
, 

1980). The carrying capacity 

concept, when first applied to recreation, primarily reflected the ability of individual plant 

species to resist damage by trampling. Although there have been relationships established 

between path use and morphology, a need still exists for determining the actual physical 

carrying capacity of footpaths, particularly in the Drakensberg. The carrying capacity 

concept also needs to be placed within the context of the Limits of Acceptable Change 

planning system (eg. Martin et al
, 

1989) which redefines the question of "how much is too 

much?" to "how much change is acceptable?" Such shift in focus directs management 

attention away from the numbers of users toward management for desired social and 

ecolo�cal conditions as discussed by Frissell et al. (1980) and Ma_rtin et al. (1989). In short 

there is a need for establishing the carrying capacity of footpaths within the framework of 

social and ecological acceptance of change which is presented in such a manner so as to be 

of practical value to management. 

Notwithstanding the above recommendations for future research, this study has achieved a greater 

understanding of both the rates of footpath erosion and the factors controlling the erosion process 

in the Giant's Castle Game Reserve. The above findings provide management with 

recommendations upon which to base both the conservation of the existing footpath network and 

guidelines for the planning of new footpath routes. 
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Appendix I 
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z.. KROS IQIL.£Q.L 
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Compacted H l 
Clay l 
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Sc.nd (o"etonc) 4 

0,:-5enic 4 

Shalc/m·ntone 6 

Gravel 6 
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3.1. Width 

<50 ca, 0 
50 - 75 cm 1 

75 - 100 cm 2 
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10 - 15 cm 2 
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Stcbil ioed? y 0 

----·· H 3 
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Table I Data sheet utilised by the Natal Pa·rks Board for the footpath survey conducted in 1989. 
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Appendix II 

Date %sand % silt % clay % orQanic mean (d>) skewness sortinQ 

19/10/93 88.9 8.7 2.4 0.4 3.18 -0.53 1.22 

20/10/93 18.2 41.8 40 0 4.38 -0.43 0.62 

21/10/93 70.0 25.7 4.3 0 3.5 -0.42 1.29 

26/10/93 77.5 3.8 18.7 0.2 3.07 -0.1 1.22 

11/11/93 60.8 26.5 12.8 0 3.62 -0.27 1.18 

18/11/93 48.3 45.0 5.7 0.1 3.9 -0.43 1.05 

19/11/93 50.0 48.6 1.4 0.2 3.93 -0.22 0.85 

26/11/93 71.1 23.4 5.6 0 3.47 -0.11 1.02 

28/11/93 32.7 65.1 2.2 0 4.11 -0.39 0.77 

29111/93 58.0 39.5 2.5 0 3.76' -0.37 1.15 

mean 57.5 32.8 9.6 0.1 3.69 -0.33 1.04 

tread 86.2 13.6 0.6 0 1.2 0.08 2.92 

Table II.a Runoff plot 1 sediment and tread particle size distribution characteristics. 

Date % sand % silt %clay % organic mean (d>) skewness sorting 

19/10/93 70.0 26.9 3.1 0.2 3.72 0.09 0.66 

20/10/93 17.2 35.7 45.3 0 4.06 -0.31 0.27 

21/10/93 56.4 39.3 4.3 0 3.77 -0.21 0.93 

26/10/93 85.6 5.3 9.1 0 3 -0.13 1.08 

11/11/93 80.4 16.7 2.9 0.1 3.26 -0.04 0.85 

18/11/93 52.4 41.1 6.6 0.2 4.17 -1.14 0.95 

19/11/93 - - - - - - -

26/11/93 38.0 57.9 4.2 0 3.85 -0.55 1.06 

28/11/93 36.1 56.3- 7.6 0 4.04 -0.55 0_94· 

29/11/93 59.2 38.8 2.0 0 3.69 -0.31 1.13 

mean 55.0 35.3 9.5 0.1 3.73 -0.35 0.87 

tread 88.9 10.9 0.2 0 2.95 -0.54 1.04 

Table 11.b Runoff plot 2 sediment and tread particle size distribution characteristics. 
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Date % sand % silt % clay % orQanic mean (<b) skewness sortinq 

19/10/93 77.7 18.7 3.5 0.3 3.18 -0.52 1.17 

20/10/93 32.9 59.9 7.2 0 4.15 -0.40 0.18 

21/10/93 48.9 44.1 7.0 0.1 3.94 -0.24 0.97 

26/10/93 52.2 37.4 10.4 0 3.92 -0.15 0.88 

11/11/93 77.7 20.9 1.5 0 3.50 -0.10 0.80 

18/11/93 35.9 54.3 9.8 0.1 4.18 -0.32 0.75 

19/11/93 77.4 22.4 0.2 0.1 3.51 -0.38 1.20 

26/11/93 75.1 21.5 3.4 0 3.47 -0.17 0.89 

28/11/93 32.2 65.3 2.5 0 4.13 -0.47 0.88 

29/11/93 65.9 30.7 3.4 0 3.68 -0.16 0.90 

mean 57.6 37.5 4.9 0.1 3.77 -0.29 0.86 

tread 89.3 10.5 0.2 0 3.00 -0.44 1.49 

Table 11.c Runoff plot 3 sediment and tread particle size distribution characteristics. 

-Date %sand %silt % clay % organic mean·(<!>) skewness sortino 

19/10/93 78.4 20.2 1.4 0.4 3.52 -0.03 0.75 

20/10/93 16.6 67.6 15.8 0 4.40 -0.17 0.51 

21/10/93 70.S 27.1 2.4 0.1 3.63 -0.05 0.86 

26/10/93 63.8 30.8 5.4 0.2 3.70 -0.11 0.92 

11/11/93 68.6 30.1 1.3 0.1 3.63 -0.02 0.84 

18/11/93 63.6 34.8 1.5 0.2 3.73 -0.03 0.86 

19/11/93 - - - - - - -

26/11/93 68.3 27.4 4.4 0 3.63 -0.03 0.84 

28/11/93 39.7 52.1 8.2 o. 3.93 -0.41 1.01 

29/11/93 66.0 31.1 2.9 0 3.75 -0.05 0.75 

mean 59.5 35.7 4.8 0.1 3.77 -0.1 0.82 

·tread 90.2 9.7 0.1 0 3.00 -0.38 1.54 

Table 11.d Runoff plot 4 sediment and tread particle size distribution characteristics. 
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Date %sand % silt % clay % orqanic mean (d>) skewness sorting 

19/10/93 88.2 10.8 1.0 0 3.32 -0.31 0.76 

20/10/93 39.5 46.1 14.4 0 4.03 -0.46 0.92 

21/10/93 82.2 16.4 1.4 0 3.47 -0.16 0.70 

26/10/93 65.0 31.6 3.4 0 3.68 -0.10 0.90 

11/11 /93 82.0 16.5 2.5 0.2 3.53 -0.11 0.64 

18/11/93 55.1 43.3 1.6 0.1 3.82 -0.03 0.87 

19/11/93 - - - - - - -

26/11/93 51.5 40.1 8.4 o. 3.82 0.04 0.80 

28/11/93 60.1 36.9 2.9 0 3.63 -0.14 1.04 

29/11/93 64.7 33.2 2.1 0 3.70 -0.10 0.89 

mean 65.4 ' 30.5 4.2 0 3.70 -0.15 ' 0.84 

tread 87.0 12.8 0.2 0 3.10 -0.41 1.06 

Table 11.e Runoff plot 5 sediment and tread particle size distribution characteristics. 

Date %sand % silt % clay % organic mean (cl>) skewness sorting 

19/10/93 92.1 7.0 0.9 0.2 3.17 -0.26 0.80 

20/10/93 28.5 61.8 10.1 0 4.17 -0.54 0.86 

21/10/93 89.3 9.7 1.0 0.1 3.37 -0.37 0.81 

26/10/93 41.3 47.0 11.7 0 3.70 -0.14 0.96 

11/11/93 85.1 11.5 3.3 0 3.52 0.01 0.57 

18/11/93 56.5 39.8 3.7 0.1 3.84 -0.13 0.75 

19/11/93 - - - - - - -

26/11/93 51.5 40.1 8.4 0 3.93 -0.18 0.89 

28/11/93 57.1 37.0 5.9 0 3.82 -0.25 1.03 

29/11/93 65.9 31.1 1.0 0 3.72 -0.05 0.88 

mean 63.0 31.7 5.1 0 3.69 -0.21 0.84 

tread 84.3 15.4 0.3 0 3.22 -0.36 1.07 

Table 11.f Runoff plot 6 sediment and tread particle size distribution characteristics. 
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Appendix III 

Index A 160 160 
2 E Al6o El6o El6oA 

.. . . -- (mmL_ ______ . . (r,n_rr1,h.rJ_ . .. J�'!''.h.rJ• . . . J�_-!!J:'�!1'.':l , ('!lrr1�h.r
1

L . . ... JJ:r,n�
2

hr·
1
) _ .. ... H.:"!r:'.:1·�·

2
�r:�

1 

19/10,93 22· no data available 

20/10,93 s· no data available 

21/10,93 5• no data available 

26/10,93 7• no data available 

11/11,93 3• no data available 

18/11,93 7 7 49 11 49 77 539 

26/11,93 6 4 16 - 96 - -

28/11,93 5 3 9 - 15 - -

29/11,93 5 2 4 - 10 - -

03/12/ro 12 2 4 - 24 - -

00/12/ro 10 9 81 16 90 141 1409 

10/12/ro 7 2 4 - 14 - -

14/12/ro 5 3 9 - 9 - -

15/12/ro 19 4 16 - 16 - -

16/12,93 6 5 25 4 25 22 130 

22/12,93 12 5 15 4 25 22 259 

27/12/ro 15 8 64 14 64 111 1666 

29/12/ro 5 3 9 - 9 - -

30/12/ro 21 8 64 28 64 222 4664 

01,01/94 6 3 .9 - 9 - -

Table 1 Indices for rainfall events during the runoff plots monitoring period 

(* data from rainfall guage obtained during periods of failure of the automated weather station) 
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