

Universidad Autónoma del Estado de México

Facultad de Economía

Modelos Econométricos

(Pruebas de Bondad de Ajuste)

Unidad de Aprendizaje: Modelos Econométricos

Licenciatura: Economía

Elabora: M. en C. Rafael Morales Ibarra

GUIA EXPLICATIVA PARA EL EMPLEO DE ESTE MATERIAL

El presente material es un compendio de elementos básicos indispensables para el alumno en un primer curso de econometría, se parte del supuesto de que el alumno conoce y maneja correctamente el algún software en el que se pueda auxiliar para realizar las distintas pruebas. (en este caso empleamos EViews).

La parte teórica de este curso se compensa con "Notas de acompañamiento para el curso de modelos econométricos" por lo que el presente material se considera como referente básico que el estudiante debe tener en el análisis de un modelos econométrico, con la ventaja de estar ideadas que sea por su propia cuenta ejecutar y replicar cada una de las pruebas necesarias para valorar la bondad de ajuste de un determinado modelo econométrico. Se incorporan interpretaciones elementales sobre los resultados, no obstante, se requiere ampliar los conocimientos en teoría económica para tener una interpretación más específica.

Se parte con el modelo lineal general; su bondad de ajuste y la corrección a la violación a los supuestos al modelo. Como segunda parte, se incorpora información sobre algunos tópicos avanzados en la econometría para que el alumno explore dichas técnicas. Finalmente, se incorpora la bibliografía en la que puede consultar para un mayor análisis a los temas expuestos.

Contenido

Apartado	Tema	Diapositiva
	Guía explicativa	2
	Justificación	4
	Modelo General de Regresión Lineal	5
	Estimación de parámetros	10
	Método de Mínimos Cuadrados	12
	Propiedades de Mínimos Cuadrados Ordinarios	16
	Modelo de Regresión Múltiple	21
	Violación a los supuestos del modelo de RLM	23
	Ejemplo empleando EViews	40
	Modelo de Regresión	42
	Prueba de Normalidad	45
	Pruebas de significancia estadística	49
	Multicolinealidad	52
	Autocorrelación	54
	Heteroscedasticidad	61
	Bibliografía	73

JUSTIFICACIÓN

En una definición simple, la econometría es "la medición de los fenómenos económicos", sin embargo, esta disciplina va mas allá de la medición, mediante el uso de las Matemáticas, Economía y Estadística, la interacción de estas tres disciplinas es lo que da origen a la econometría. Particularmente, un modelo econométrico buscan definir y cuantificar las relaciones funcionales entre diferentes variables expresadas en un modelo económico contra los datos observados en la vida real. Un modelo económico es una abstracción de la realidad, que normalmente se expresa en una fórmula matemática.

El uso de la econometría como apoyo en el desarrollo de la ciencia económica, se debe iniciar primeramente en construir, por medio de relaciones matemáticas, un modelo que represente una cierta teoría que desee probar. Posteriormente, se puede hacer uso de la econometría, para explicar lo sucedido en el pasado y una vez validado el modelo matemático pasar a la etapa de pronósticos sobre el comportamiento económico en el futuro de dicha variable o fenómeno en el contexto económico.

I Modelo General de Regresión Lineal

El modelo lineal general

$$Y' = A + BX$$

Es decir,

$$Y = A + BX + (Y - Y')$$

$$Y = A + BX + e$$

Yobs = Estimado + Error estimación

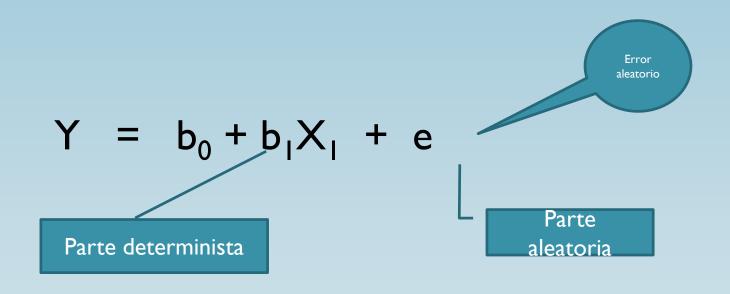
$$Y = B_0 + B_1 X_1 + e$$

El modelo lineal en términos generales

$$Y = B_0 + B_1 X_1 + ... + B_k X_k + e$$

Donde:

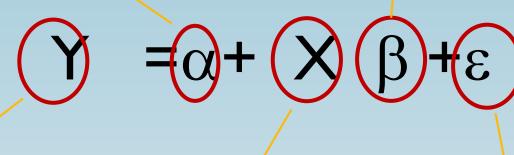
Y= Variable dependiente


 $X_1, X_2, ..., X_k = variables independientes (o explicatorias)$

e= error estocástico

B₁, B₂, ..., Bk= Estimadores de los parámetros

,


Modelo de la regresión simple

Un modelo funcional vistos de esta manera, se puede identificar dos de sus componentes, la parte determinista, una parte estocástica o aleatoria.

Coeficiente del Modelo: Indica el efecto de X en Y

Variable Dependiente

Variable Independiente

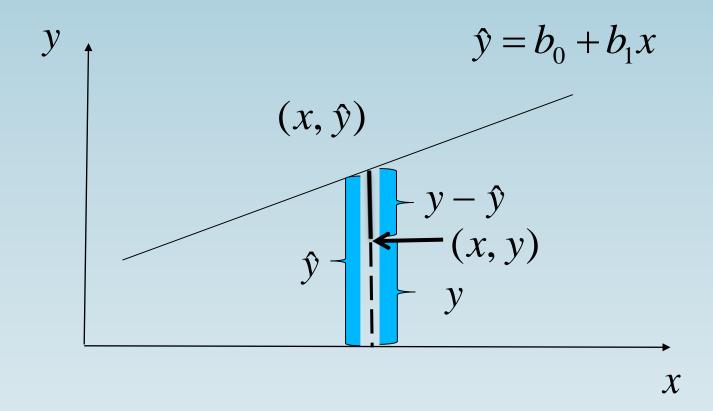
Error: Variables no observadas que influyen en Y

Estimación de los parametros

Error=
$$(Y_i obs - Y^{\hat{}})$$
 = Residuos

$$\begin{split} Y_i &= \hat{Y} + \hat{u} \\ Y_i &= \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i \\ \hat{u} &= Y_i - \hat{Y}_i \\ \hat{u} &= Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i \end{split}$$

Estimación de β_i


Empleando el método de MCO

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{Y}_i)^2$$

$$\sum \hat{\mu}_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$

$$\sum \hat{\mu}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

Método de Mínimos Cuadrados Ordinarios

Resolviendo

$$\min \sum \hat{\mu}_i^2 = \sum \left(Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i \right)^2$$

$$\frac{\partial \sum_{i} \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{1}} = 0$$

$$\frac{\partial \sum_{i} \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{2}} = 0$$
CPO

$$\frac{\partial^{2} \sum_{i} \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{1}^{2}} > 0$$

$$\frac{\partial^{2} \sum_{i} \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{2}^{2}} > 0$$
CSO

Resolviendo para $\hat{\beta}_1$:

(1)
$$\frac{\partial \sum \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{1}} = 2\sum \left(Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i}\right)(-1) = 0$$
$$\sum \left(Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i}\right) = 0$$
$$\sum Y_{i} - \hat{\beta}_{1}\sum 1 - \hat{\beta}_{2}\sum X_{i} = 0$$
$$\frac{\sum Y_{i}}{n} - \frac{\hat{\beta}_{2}\sum X_{i}}{n} = \hat{\beta}_{1}$$
$$\boxed{\overline{Y}_{i} - \hat{\beta}_{2}\overline{X}_{i}} = \hat{\beta}_{1}$$

Resolviendo para $\hat{\beta}_2$:

(2)
$$\frac{\partial \sum_{i} \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{2}} = 2 \sum_{i} (Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2} X_{i}) (X_{i}) (-1) = 0$$

$$\sum Y_{i} X_{i} - \hat{\beta}_{1} \sum X_{i} - \hat{\beta}_{2} \sum X_{i}^{2} = 0$$

Sustituyendo

$$\hat{\beta}_1 = \overline{Y} - \hat{\beta}_2 \overline{X}$$

$$\begin{split} \sum Y_i X_i - \left(\overline{Y} - \hat{\beta}_2 \overline{X}\right) &\sum X_i - \hat{\beta}_2 \sum X_i^2 = 0 \\ &\sum Y_i X_i - \overline{Y} \sum X_i + \hat{\beta}_2 \overline{X} \sum X_i - \hat{\beta}_2 \sum X_i^2 = 0 \\ &\sum Y_i X_i - \overline{Y} \sum X_i \left(\frac{n}{n}\right) = \hat{\beta}_2 \sum X_i^2 - \hat{\beta}_2 \overline{X} \sum X_i \left(\frac{n}{n}\right) \\ &\sum Y_i X_i - n \overline{Y} \overline{X} = \hat{\beta}_2 \sum X_i^2 - n \hat{\beta}_2 \overline{X}^2 \\ &\sum Y_i X_i - n \overline{Y} \overline{X} = \hat{\beta}_2 \left(\sum X_i^2 - n \overline{X}^2\right) \end{split}$$

$$\frac{\sum Y_i X_i - n \overline{Y} \overline{X}}{\sum X_i^2 - n \overline{X}^2} = \hat{\beta}_2$$

(1) Esto es igual a:

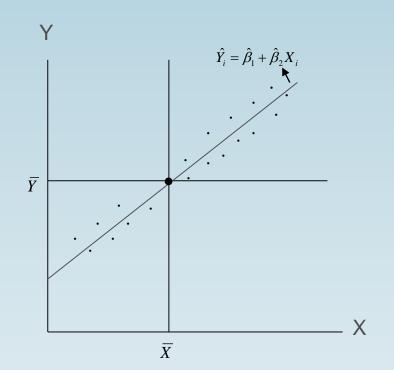
$$\frac{\partial \sum \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{1}} = 2 \sum \hat{\mu}_{i} (-1) = 0$$
$$\sum \hat{\mu}_{i} = 0$$

(2) Es decir,

$$\frac{\partial \sum \hat{\mu}_i^2}{\partial \hat{\beta}_2} = 2 \sum \hat{\mu}_i X_i (-1) = 0$$

$$\sum \hat{\mu}_i X_i = 0$$

Propiedades de los Estimadores MCO


I. Pasa a través de las medias muestrales de Y y X.

$$Y_{i} = \hat{\beta}_{1} + \hat{\beta}_{2}X_{i} + \hat{u}_{i}$$

$$\sum Y_{i} = \sum \hat{\beta}_{1} + \hat{\beta}_{2}\sum X_{i} + \sum \hat{u}_{i}$$

$$\frac{\sum Y_{i}}{n} = \frac{n\hat{\beta}_{1}}{n} + \frac{\hat{\beta}_{2}\sum X_{i}}{n} + \frac{0}{n}$$

$$\overline{Y} = \hat{\beta}_{1} + \hat{\beta}_{2}\overline{X}$$

II. El valor medio de Yest = valor medio de Yobs para:

$$\hat{Y}_{i} = \hat{\beta}_{1} + \hat{\beta}_{2} X_{i}$$

$$\hat{Y}_{i} = (\overline{Y} - \hat{\beta}_{2} \overline{X}) + \hat{\beta}_{2} X_{i}$$

$$\hat{Y}_{i} = \overline{Y} + \hat{\beta}_{2} (X_{i} - \overline{X})$$

$$\sum \hat{Y}_{i} = n\overline{Y} + \hat{\beta}_{2} \sum X_{i} - n\hat{\beta}_{2} \overline{X}$$

$$\frac{\sum \hat{Y}_{i}}{n} = \frac{n\overline{Y}}{n} + \frac{\hat{\beta}_{2} \sum X_{i}}{n} - \frac{n\hat{\beta}_{2} \overline{X}}{n}$$

$$\overline{\hat{Y}} = \overline{Y} + \hat{\beta}_{2} \overline{X} - \hat{\beta}_{2} \overline{X}$$

$$\overline{\hat{Y}} = \overline{Y}$$

III. El valor de la media de los residuos $\hat{\mu}_i$ es cero

Obteniendo

$$\frac{\partial \sum \hat{\mu}_{i}^{2}}{\partial \hat{\beta}_{1}} = 2\sum (Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i})(-1) = 0$$

$$\hat{\mu}_{i} = Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i}$$

$$-2\sum \hat{\mu}_{i} = 0$$

$$\bar{\mu}_{i} = 0$$

$$Y_{i} = \hat{\beta}_{1} + \hat{\beta}_{2}X_{i} + \hat{\mu}_{i}$$

$$\sum Y_{i} = n\hat{\beta}_{1} + \hat{\beta}_{2}\sum X_{i} + \sum \hat{\mu}_{i}$$

$$\sum Y_{i} = n\hat{\beta}_{1} + \hat{\beta}_{2}\sum X_{i}$$

$$Y_{i} = n\hat{\beta}_{1} + \hat{\beta}_{2}\sum X_{i}$$

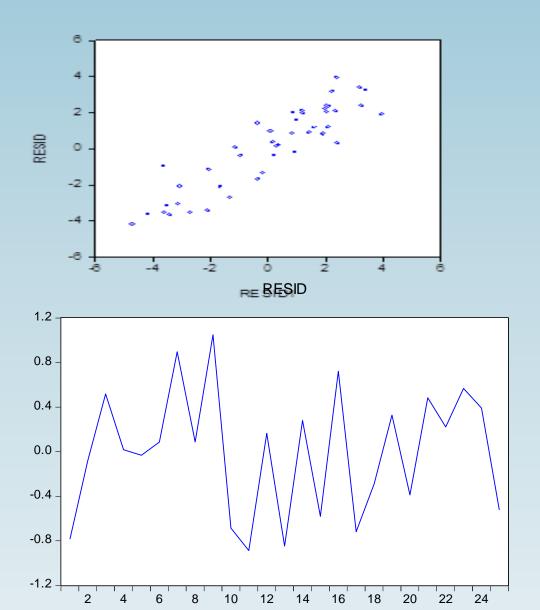
$$\bar{Y} = \hat{\beta}_{1} + \hat{\beta}_{2}\bar{X}$$

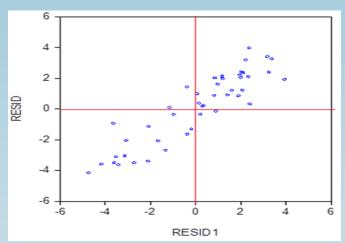
$$Y_{i} - \bar{Y} = \hat{\beta}_{2}(X_{i} - \bar{X}) + \hat{\mu}_{i}$$

$$y_{i} = \hat{\beta}_{2}x_{i} + \hat{\mu}_{i}$$

IV. Los residuos $\hat{\mu}_i$ no están correlacionados con el valor predicho de Y_i .

$$\sum y_i \hat{\mu}_i = \hat{\beta}_2 \sum x_i \hat{\mu}_i$$


$$\sum y_i \hat{\mu}_i = \hat{\beta}_2 \sum x_i \left(y_i - \hat{\beta}_2 x_i \right)$$


$$\sum y_i \hat{\mu}_i = \hat{\beta}_2 \sum x_i y_i - \hat{\beta}_2^2 \sum x_i^2$$

$$\sum y_i \hat{\mu}_i = \hat{\beta}_2^2 \sum x_i^2 - \hat{\beta}_2^2 \sum x_i^2$$

$$\sum y_i \hat{\mu}_i = 0$$

V. Los residuos $\hat{\mu}_i$ no están correlacionados con X_i . Esto es:

El modelo de regresión múltiple

- *n* observaciones de la forma $(x_{i1},...,x_{ik},y_i)$
- Objetivo: aproximar y a partir de $x_1, ..., x_k$
- $x_1, ..., x_k$: variables independientes o explicativas
- y: variable dependiente o respuesta (a explicar)

$$y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik} + u_i$$

$$\beta_0, \beta_1, ..., \beta_k \text{ coeficientes de regresión}$$

Regresión lineal múltiple, método matricial

$$Min_{\beta;\sigma^2}[Y-X\beta]'[Y-X\beta]$$
 $\hat{\beta}=[X'X]^{-1}XY'$

$$X_{Txk} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1t} \\ X_{21} & X_{22} & \dots & X_{2t} \\ \vdots & \vdots & \vdots & \vdots \\ X_{T1} & X_{T2} & \dots & X_{Tk} \end{bmatrix}$$

$$Y_{Tx1} = \begin{bmatrix} Y_{11} \\ Y_{21} \\ \vdots \\ Y_{T} \end{bmatrix}$$

$$\hat{\sigma}^{2} = \frac{\varepsilon \varepsilon'}{n-k} = \frac{\left[Y - X \hat{\beta} \right] \left[Y - X \hat{\beta} \right]}{n-k}$$

$$\hat{V}ar - \hat{C}ov(\beta) = \hat{\sigma}^2 [XX']^{-1}$$

Violación a los supuestos del modelo

- Linealidad
- ii. Normalidad
- iii. No colinealidad o tolerancia entre las variables independientes
- iv. Homoscedasticidad
- v. Autocorrelación

i). Linealidad

Cuando no se tiene linealidad, entonces, se dice que existe un error de especificación.

Un examen informal es realizar el diagrama de dispersión que viene a dar una idea no muy rigurosa al estudio de la linealidad.

Se puede complementar realizando un gráfico entre RESID vs Y estimadas.

Si la relación NO fuera lineal, el gráfico presentaría una estructura que así lo indicara.

i). Linealidad

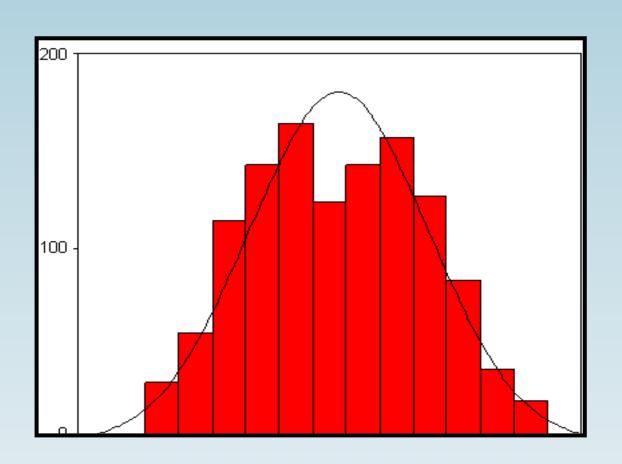
Se supone una relación lineal entre Yt y las Xi.

—En la práctica, este supuesto no suele verificarse.

— Si existe una estructura en el trazo de la relación evidente, se recurre de forma explícita a modelos no lineales.

ii). Normalidad

Se asume que los datos muestran una distribución normal.


i). Pruebas informales:

Graficas; histogramas, Box Plot, Diagramas de caja.

ii) Prueba Formal

Prueba de Jarque Bera

Ejemplo X=Variable calificaciones de historia

iii). Multicolinealidad exacta

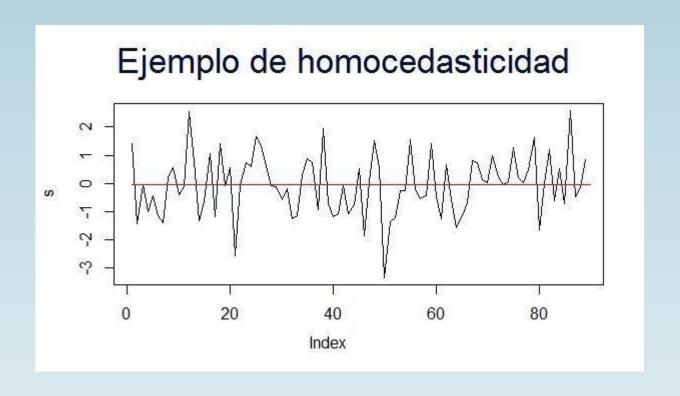
Significa que algún regresor (Xi) es combinación lineal exacta de los demás.

$$Yt = \beta_1 + \beta_2 D_{1t} + \beta_3 D_{2t} + \gamma_2 X_t + u_t$$

$$Yt = \gamma_1 + \gamma_2 X_{2t} + \gamma_3 X_{3t} + u_t$$

Donde:

$$D_{1t} + D_{2t} = 1$$


$$X_{2t} = D_{3t} - 1$$

Es difícil encontrar estimadores únicos para todos los parámetros de la relación que se analiza.

Cuando este problema se presenta, se recomienda re especificar el modelo en el cual elimine las variables que presentan colinealidad.

iv). Homoscedasticidad

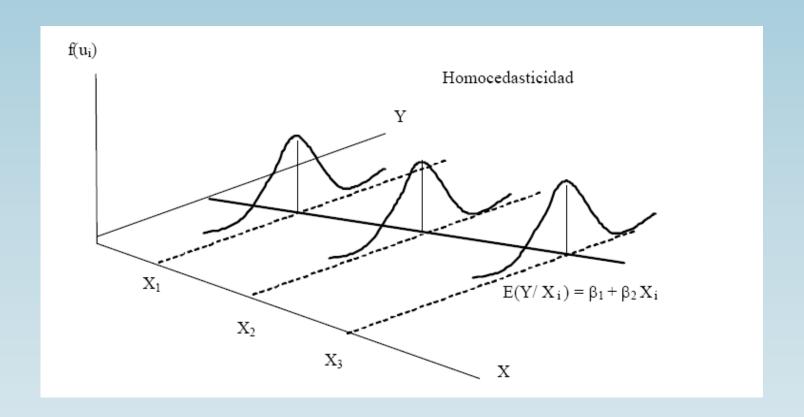
La homocedasticidad o igualdad de varianzas de los residuos y los pronósticos. Este supuesto de implica que la variación de los residuos sea uniforme en todo el rango de valores de los pronósticos

iv). Heteroscedasticidad

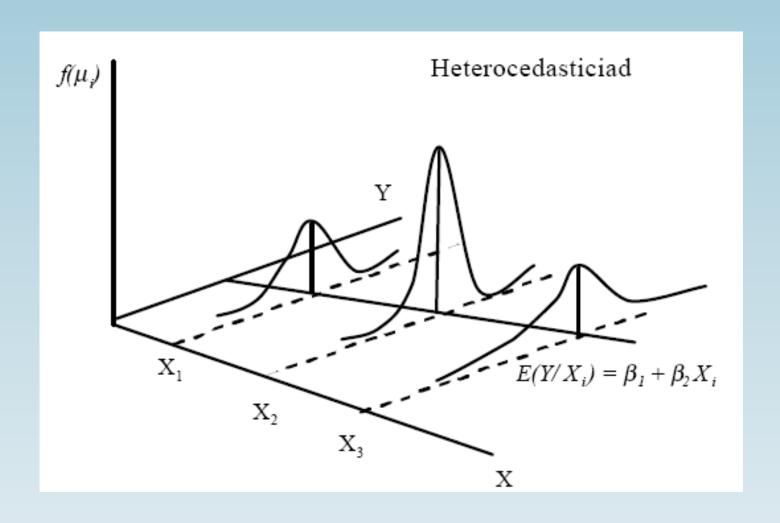
 Significa que la varianza de las residuales no es constante a lo largo del tiempo, por lo que se asume como un incumplimiento al supuesto

$$E(\varepsilon^2) \neq \sigma_i^2$$

- Cuando un modelo presenta el problema de heteroscedasticidad los estimadroes MCO pierden eficiencia.
- La varianza del estimador por MCO no es mínima.
- Para atender este problema se reparamétrizar el modelo para identificar el patrón o estructura de la varianza.

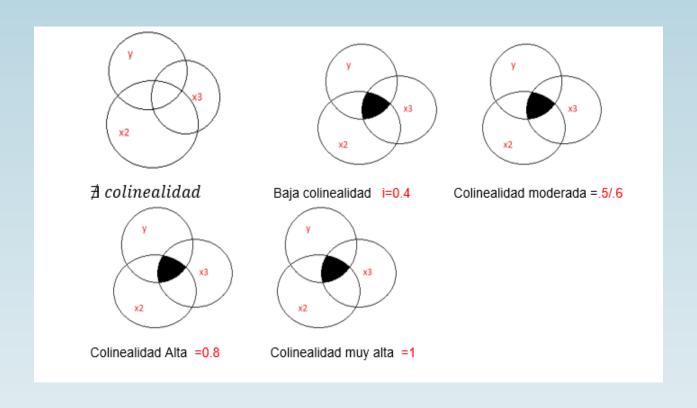

Formalizando:

lizando:
$$\mathbf{Y}_{t} = \mathbf{x}_{t}' \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t} \qquad Var(\boldsymbol{\varepsilon}_{t}) = E(\boldsymbol{\varepsilon}_{t}, \boldsymbol{\varepsilon}_{t}') = \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_{T}^{2} \end{bmatrix}$$


El análisis se basa mediante un análisis grafico de los residuos

- Residuos vs Yestimada
- (resid)^2 vs Yestimada
- ii) Pruebas formales: Goldfeld y Quant, Breusch y Pagan, White

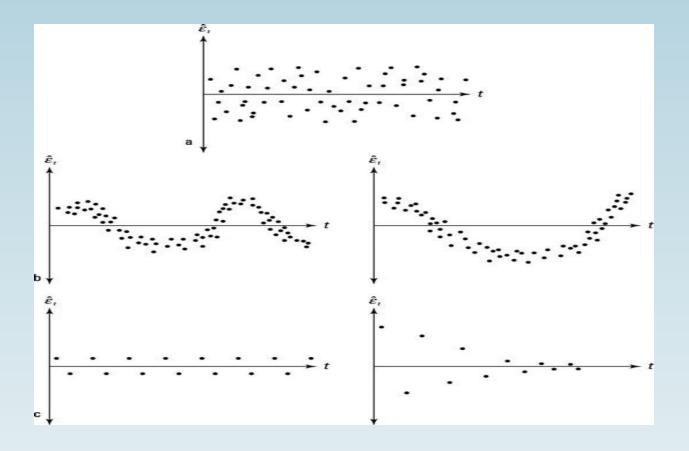
Homocedasticidad ...



Heterocedasticidad

iii). Multicolinealidad

Que una variable X_1 sea combinación lineal de otra X_2 , significa que ambas están relacionadas por la expresión $X_1 = b_1 + b_2 X_2$, siendo b_1 y b_2 constantes, por lo tanto el coeficiente de correlación entre ambas variables será 1.

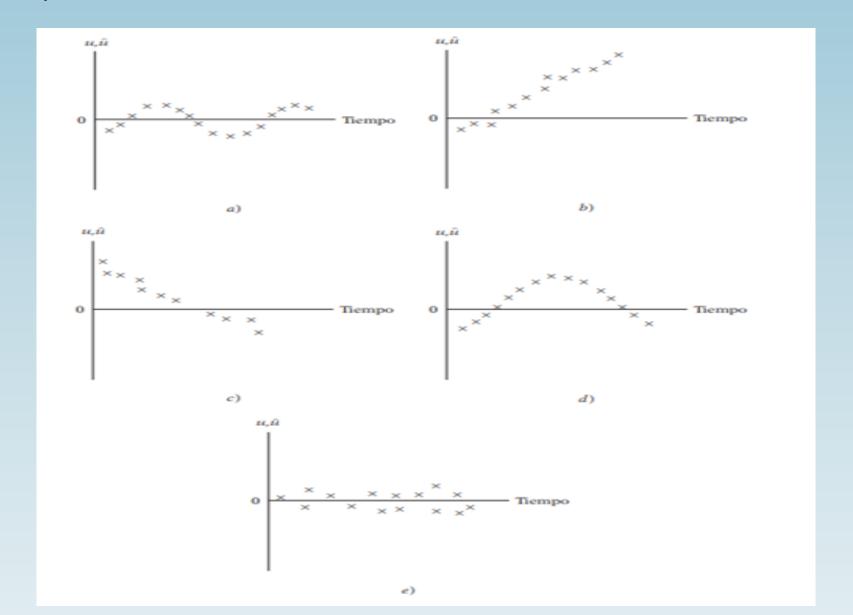


 Cuando un modelo presenta colinealidad entre sus Xi, significa que al menos una de las variables predictoras es totalmente redundante con otras variables del modelo.

 Es decir, se esta violando uno de los supuestos generales de la RLM que asume la no correlación entre las variables independientes.

V). Autocorrelación

Este supuesto de regresión y correlación indica que los residuos sucesivos deberán ser independientes. Esto es, que los residuos no muestren un patrón determinado de comportamiento al graficarlos con el tiempo, ya que cuando los residuos sucesivos están correlacionados a esta condición se le conoce como Autocorrelación.


La autocorrelación es uno de los problemas que habitualmente presentan los modelos econométricos, comúnmente son causantes de ajustes pobres y espurios.

La autocorrelación es habitual cuando se están empleando series temporales => Correlación Serial.

Mientras que cuando se emplean datos de sección cruzada este problema es menos común, aunque posible => Correlación Espacial

MODELO	Función de autocorrelación simple (FAS)	Función de autocorrelación parcial (FAP)
Autorregresivo (AR)	æ	dy.
De media móvil (MA)	SSE No. 10 No. 1	₹ EAS
ARMA	₹ 	₫
ARIMA	SAS TO THE	₹ 111111111 × k

Los patrones más comunes en la autocorrelación

Formalmente:

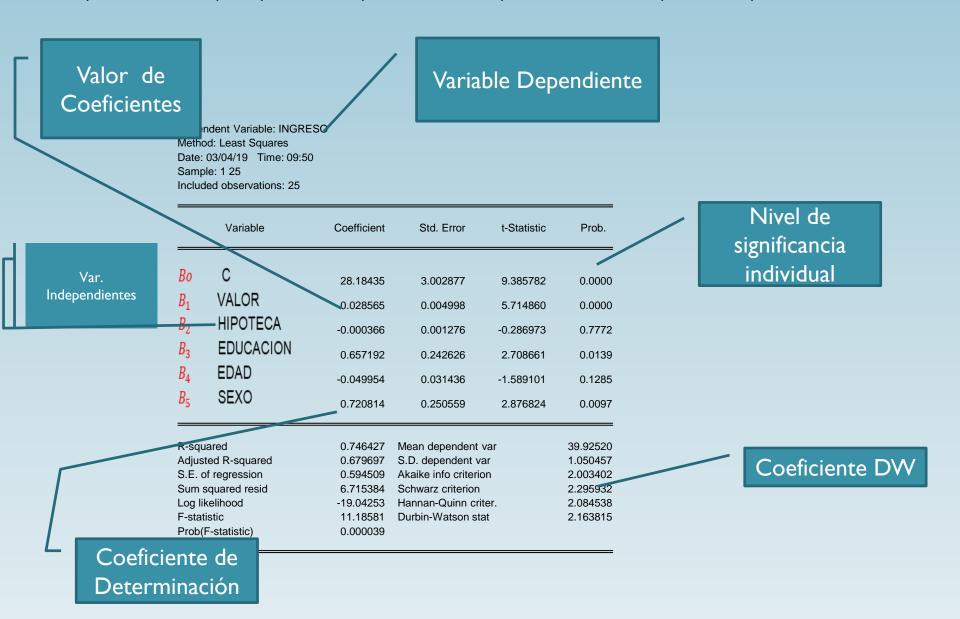
$$Y_t = x_t'eta + arepsilon_t$$

$$\begin{cases} E(arepsilon_{t-s}, arepsilon_t) = \gamma_s
eq 0 \\ E(arepsilon_t^2) = \sigma_arepsilon^2 \quad orall s
eq 0 \end{cases}$$
 Autocovarianza

Coeficientes de Autocorrelación

$$\rho_{r} = \frac{Cov(\varepsilon_{t-s}, \varepsilon_{t})}{Var(\varepsilon_{t-s})Var(\varepsilon_{t})} = \frac{\gamma_{s}}{\gamma_{0}} \quad s = 0, 1, -2, \dots$$

$$Var(\varepsilon_{t}) = E(\varepsilon_{t}, \varepsilon_{t}^{\prime}) = \begin{bmatrix} \gamma_{0} & \gamma_{1} & \dots & \gamma_{T-1} \\ \gamma_{1} & \gamma_{0} & \dots & \gamma_{T-2} \\ \vdots & \vdots & \vdots & \vdots \\ \gamma_{T-1} & \gamma_{T-2} & \dots & \gamma_{0} \end{bmatrix} = \sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & \rho_{1} & \dots & \rho_{T-1} \\ \rho_{1} & 1 & \dots & \rho_{T-2} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{T-1} & \rho_{T-2} & \dots & 1 \end{bmatrix}$$


Ejemplo en Eviews

ANÁLISIS DE REGRESIÓN LINEAL

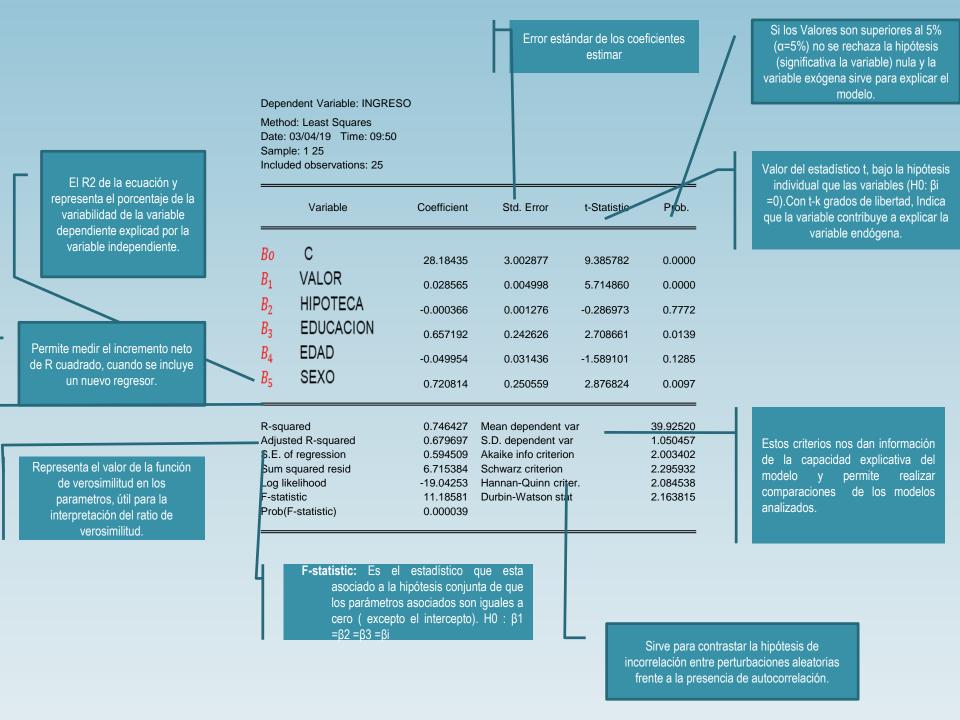
	Educació				
Edad	n	Hipoteca	Ingreso	Sexo	Valor
53	14	230	40.23	I	190
49	15	370	39.6	I	121
44	14	397	40.8	I	161
39	14	181	40.3	I	161
53	14	378	40	0	179
46	14	304	38.1	0	99
42	15	285	40.4	I	114
49	14	551	40.7	0	202
37	13	370	40.8	0	184
43	14	135	37.1	0	90
48	14	332	39.9	I	181
54	15	217	40.4	1	143
44	14	490	38	0	132
37	14	220	39	0	127
50	14	270	39.5	I	153
50	14	279	40.6	I	145
52	15	329	40.3	I	174
47	15	274	40.1	0	177
49	15	433	41.7	I	188
53	15	333	40.1	1	153
58	16	148	40.6	0	150
42	13	390	40.4	I	173
46	14	142	40.9	I	163
50	15	343	40.1	0	150
45	14	373	38.5	0	139

Modelo de regresión

LS ØINGRESO ØC ØVALOR ØHIPOTECA ØEDUCACIÓN ØEDAD ØSEXO

Dependent Variable: INGRESO Method: Least Squares Date: 03/04/19 Time: 09:50

Sample: 1 25


Included observations: 25

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
Во	С	28.18435	3.002877	9.385782	0.0000
B_1	VALOR				
-		0.028565	0.004998	5.714860	0.0000
B_2	HIPOTECA	-0.000366	0.001276	-0.286973	0.7772
B_3	EDUCACION	0.657192	0.242626	2.708661	0.0139
B_4	EDAD	-0.049954	0.031436	-1.589101	0.1285
B ₅	SEXO	0.720814	0.250559	2.876824	0.0097
R-squ	ıared	0.746427	Mean dependent	var	39.92520
	ted R-squared	0.679697	S.D. dependent v		1.050457
S.É.	of regression	0.594509	Akaike info criterion		2.003402
Sum	squared resid	6.715384	Schwarz criterion		2.295932
_	kelihood	-19.04253	Hannan-Quinn criter.		2.084538
F-stat Prob(iistic F-statistic)	11.18581 0.000039	Durbin-Watson st	at	2.163815

Coefficiente:

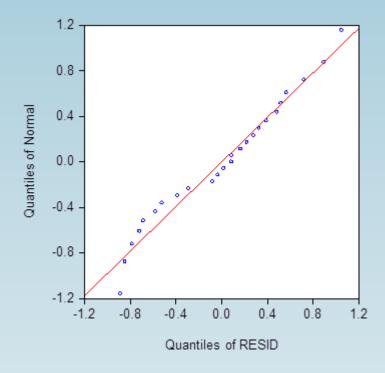
La interpretación de los coeficientes estimados por MCO., depende la de naturaleza y escala de la variable del modelo. Normalmente, se interpretan como el porcentual de la variable Ingreso ante una variación unitaria de alguna de las variables independientes.

Cuando se manejan datos en logaritmos, la interpretación se hace en términos de elasticidades.

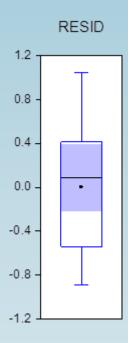
☐ Prueba de Normalidad

Prueba graficas o informales

- Gráfica Q-Q (Quantile Quantile)
- II. Diagrama de caja (box plot)


Pruebas Formales

Test de Jarque – Bera


Nota: Uno de los problema más frecuentes al trabajar con variables es saber si tiene distribución Normal. Pues no se puede aplicar los Test estadísticos si la población no es normal, en ese caso se trabajaría con pruebas no paramétricas o se puede graficar a las variables para tener una idea de la forma y de esta manera poder hacer las transformaciones del caso para que tengan una distribución normal.

Prueba Gráficas o informales

- I. Gráfica QQ (Quantile Quantile)
- II. Diagrama de caja (box plot)

En la media que los puntos se encuentren lo más cercano o sobre la línea roja se estará diciendo que los residuos son una variable normal.

Como el punto coincide con mitad de la caja y los bigotes están relativamente a la misma distancia Entonces, esta grafica indica normalidad con cierto sesgo a la izquierda

Test de Jarque – Bera

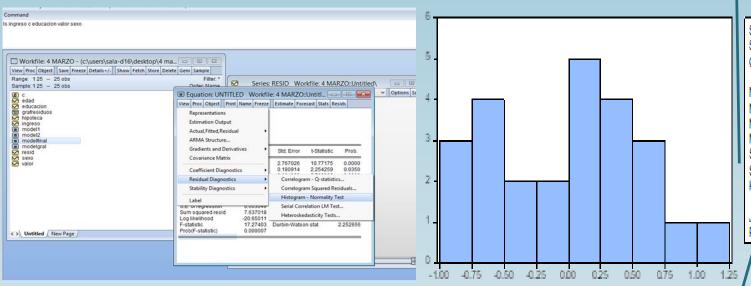
- 1). Ho : εt se aproxima a una distribución Normal.
- 2). H1: et no se aproxima a una distribución Normal.
- 3). Estadístico de Prueba

T= Tamaño de muestra

K= Kurtosis

S= Asimetría

k: Número de regresoras


$$JB = \frac{T-k}{6} \left[S^2 + \frac{(K-3)^2}{4} \right]$$

$$JB < \chi^2_{(5\%;2)} = 5.99$$

- 4). Criterio de Decisión:
- 5). Decisión: Si JB< 5.99 → RHo
- 6). Interpretación

. Test de Jarque – Bera

Si el coeficiente de asimetría tiende a cero, nos da indicios de normalidad.

Series: Residuals Sample 1 25 Observations 25 2.07e-15 Median : 0.086415 Manimum: 1.049239 Minimum. -0.886768Std Dev 0.564100 -0.019070Ske wness Kurtosis 1.979469 Jarque-Bera I 1.086394 Probability 8 1 0.580888

Como JB > a 5.99, entonces se concluye que según el test de normalidad Jarque-Bera, los residuos son normales. Por lo que ni se rechaza la hipótesis nula.

+++La kurtosis debería apuntar a tres, para corroborar la normalidad en los residuos

Existe una alta probabilidad de NRHo de normalidad (58%)

Prueba de significancia estadística

Prueba que se basa en la prueba de Wald.

Pruebas de significancia individual de los Betas

- 1), Ho: $\beta i = 0$
- 2). H1: Bi \neq 0

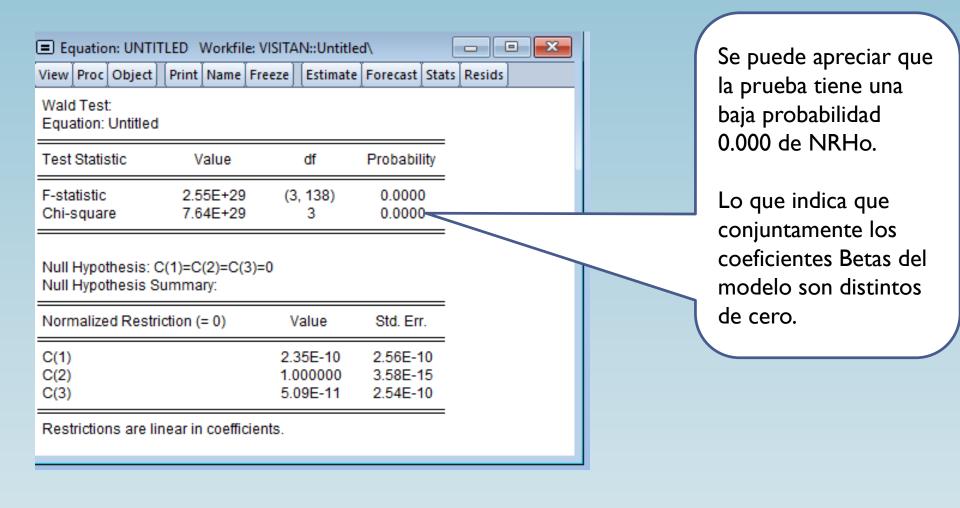
- B1< 0 ; Bo>0
- 3). Estadístico de prueba

[Tcalcuada=T]_ (.028985-0)/.005324=5.444537

t_tablas=t_(α /2,) n-1gl=t_.025,24gl=2.064 Si α =0.05

- 4). Región de rechazo
- 5). Criterios de Decisión .Si t_(α/2)>tc =NRHo .Si-t_(α/2)>tc =NRHo

Como:


 $tc>t(\alpha/2)\rightarrow Rho$, es decir, $4>2.064 \rightarrow RHo$

6). Interpretación: El parámetro Bi es estadísticamente distinto de cero. Por lo tanto Bi permite explicar el comportamiento del nivel de ingreso en este modelo.

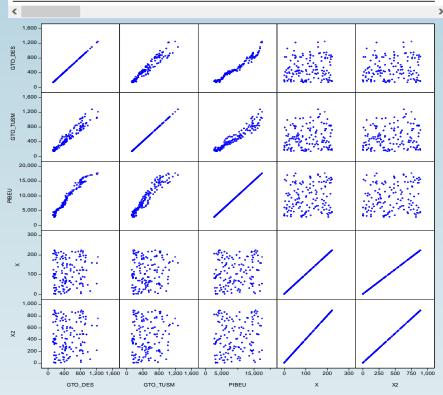
☐ P.H Significancia conjunta del modelo

- 1). Ho: B1=B2=...=Bk=0
- 2). H1: Bi≠0 i=1,2,...,k.
- 3). Estadístico de prueba Fc N-D. N-n gl
- 4). Criterio de Decisión:
 F statistic y Prob (F-statistic) se leen de manera conjunta,
 si consideramos que α=.05
- 5). Decisión ∴Si P-value<.05=RHo → .000150<0.05 Si P-value>.05=NRHo
- 6). Interpretacion

Si P-value <.05=RHo
$$\rightarrow$$
.083340>.05

Este contraste de restricciones lineales, utiliza el estadístico "W" y el "F" para contrastar los residuos del modelo sin restringir y los del modelo restringido.

Multicolinealidad


- Este problema se presenta cuando las variables Xi presentan alto nivel de correlación.
- En la practica es necesario establecer los limites de tolerancia de colinealidad.
- Existe un alto grado de correlación cuando (Klein, año 1977):

$$r_{X_i X_j} > R_Y$$

- Cuando un modelo presenta este problema, se refleja en mayores errores estándar en la prueba "t".
- El modelo presenta R2 altos.
- La prueba "F" es significativa y "t" bajo.
- La forma tradicional para detectar la colinealidad es calcular la matriz de correlaciones.
- Correlaciones > a 0.8 ó 0.85 son indicios de colinealidad.

Covariance Analysis: Ordinary Date: 09/18/19 Time: 14:16 Sample: 1980Q1 2014Q4 Included observations: 140

Correlation					
Probability	GTO_DES	GTO_TUSM	PIBEU	X	X2
GTO_DES	1.000000				
GTO_TUSM	0.957519	1.000000			
	0.0000				
PIBEU	0.981003	0.953684	1.000000		
	0.0000	0.0000			
Х	0.116304	0.125594	0.124054	1.000000	
	0.1712	0.1393	0.1442		
X2	0.116304	0.125594	0.124054	1.000000	1.000000
	0.1712	0.1393	0.1442	0.0000	

- En el modelo de Regresión que se emplea, se aprecia una alta colinealidad entre X y X2, que es estadísticamente significativa.
- □ También nos da indicios de multicolinealidad.
- □ En la matriz de correlaciones, se aprecia gráficamente la existencia de colinealidad entre X y X2, pero también se aprecia lata correlación entre PIBEU y el Gto_Turim

□ Autocorrelación

- Violación del supuesto: E(εt;εs)= 0 ∀ t ≠ s
- Este problema se produce cuando los errores del modelo presentan correlaciones entre ellas
- La matriz de varianzas y covarianzas de las perturbaciones son distintas a cero.
- Algunos de sus efectos, los estimadores MCO son insesgados es decir, que su varianza no es la mínima.}
- Estimadores inconsistentes que reducen la probabilidad de hacer pruebas de hipótesis.
- Algún mecanismo de solución al problema de la autocorrelación es reparametrizar el modelo y e incorporar al modelo el componente autorregresivo.

Test de Durbin-Watson: Autocorrelación de Primer orden AR(1).

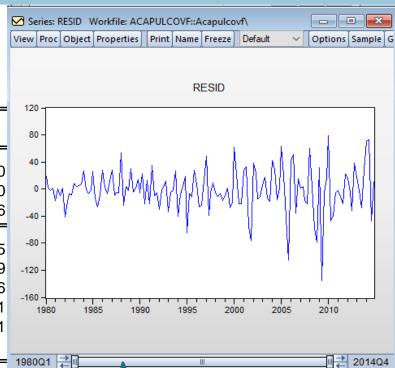
$$Y_{t} = x_{t}'\beta + \varepsilon_{t}$$

$$\varepsilon_{t} = \rho \varepsilon_{t-1} + u_{t}$$

- 1). H_0 : ρ = 0 (no existe autocorrelación de primer orden)
- 2). H1: $\rho \neq 0$ (Existe autocorrelación de primer orden)
- 3). Estadístico de prueba

$$\mathsf{DW=} \frac{\sum_{t=2}^{T} (\hat{\mathcal{E}}_t - \hat{\mathcal{E}}_{t-1})^2}{\sum_{t=1}^{T} \hat{\mathcal{E}}_t^2} = 2(1 - \rho)$$

- 4). Criterios
- Si el DW ≈ 2 → No existe autocorrelación positiva,
- Si DW > 2 → existe sospechas de una autocorrelación negativa y
- Si *DW* < 2 → existe sospechas de una autocorrelación positiva.


Dependent Variable: GTO_TURIN

Method: Least Squares

Date: 09/18/19 Time: 21:29 Sample: 1980Q1 2014Q4 Included observations: 140

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GTO_DES GTO_TUSM X	0.267599 0.752183 -0.073164	0.033088 0.033079 0.033080	8.087461 22.73899 -2.211698	0.0000 0.0000 0.0286
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.988030 0.987855 31.90257 139435.0 -681.9112 2.065570	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	508.2405 289.4889 9.784446 9.847481 9.810061

Como el valor de DW ≈ 2 entonces se deduce que no existe problemas de autocorrelación de primer orden

Los residuos del modelo, no muestran alguna estructura. Mas bien presentan media igual a cero y varianza constate.

Prueba de Breusch - Godfrey

Prueba más general que el DW, permitir procesos estocásticos p (AR(p)) o medias móviles de orden q (MA(q)), y se puede utilizar en variables endógenas retardadas.

$$Y_{t} = x'_{t}\beta + \varepsilon_{t}$$

$$\varepsilon_{t} = \rho_{1}\varepsilon_{t-1} + \rho_{2}\varepsilon_{t-2} + \dots + \rho_{r}\varepsilon_{t-r} + u_{t}$$

$$H_0$$
 : $\rho_1=\rho_2=...=\rho_r=0$ (ausencia de Autocorrelación)

AR (r) o MA (r)

$$H_1: \rho_1 \neq \rho_2 \neq ... \neq \rho_r \neq 0$$

$$LM = TR^2 \approx \chi_r^2$$

En Eviews:

View/Residual Diagnostics/ Serial Correlation LM Test...

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	7.402072	Prob. F(2,135)	0.0009
Obs*R-squared	13.62205	Prob. Chi-Square(2)	0.0011

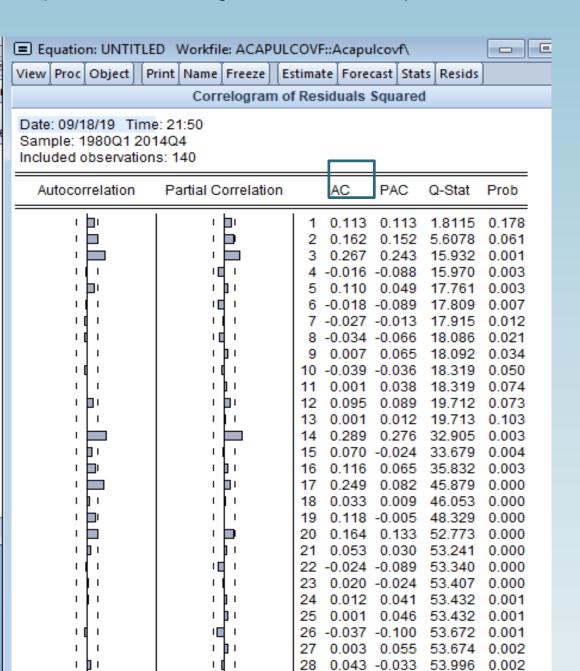
Test Equation:

Dependent Variable: RESID

Method: Least Squares

Date: 09/18/19 Time: 21:41 Sample: 1980Q1 2014Q4 Included observations: 140 Como la P-Valué < 0.05 (muy baja menor de 5%)

→ se RHo de incorrelación.


Por lo que el modelo no presenta autocorrelación

serial de ningún orden.

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GTO_DES GTO_TUSM X RESID(-1) RESID(-2)	0.044297 -0.044134 -0.002340 -0.058793 -0.334423	0.033764 0.033738 0.031649 0.082601 0.087454	1.311966 -1.308135 -0.073921 -0.711774 -3.823966	0.1918 0.1931 0.9412 0.4778 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.097300 0.070554 30.50872 125655.6 -674.6274 2.079411	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	ent var iterion rion	-1.296268 31.64549 9.708963 9.814022 9.751656

Empleando el correlograma, también se puede identificar la autocorrelación de orden p.

Las banda esta del correlograma estan representada por :

$$\pm \frac{2}{\sqrt{N}} = \pm \frac{2}{\sqrt{140}} = 0.1690$$

= ± 0.1690 los valores que sean iguales o mayor ha este valor nos indicará el orden de AR(r). Dependent Variable: GTO_TURIN

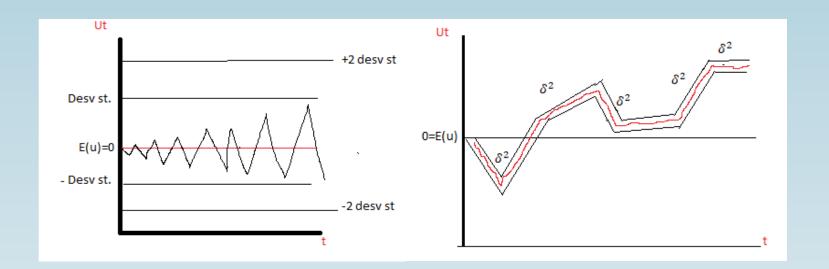
Method: ARMA Maximum Likelihood (BFGS)

Date: 09/18/19 Time: 22:09 Sample: 1980Q1 2014Q4 Included observations: 140

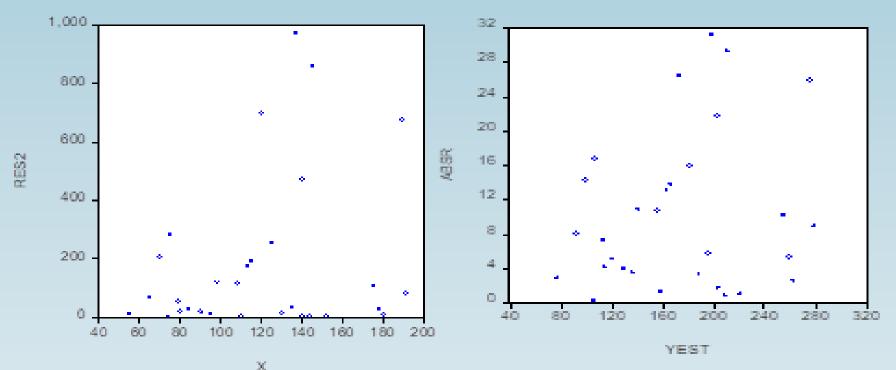
Convergence achieved after 30 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GTO_DES	0.983655	0.006421	153.1894	0.0000
GTO_TUSM	0.022850	0.006486	3.523241	0.0006
AR(1)	-0.964010	0.018535	-52.01067	0.0000
AR(2)	-0.994304	0.006248	-159.1506	0.0000
AR(3)	-0.966569	0.018106	-53.38340	0.0000
SIGMASQ	58.95788	7.957185	7.409390	0.0000
R-squared	0.999291	Mean depend	lontvar	508.2405
Adjusted R-squared	0.999265	S.D. depende		289.4889
S.E. of regression	7.848426	Akaike info cri		7.092278
Sum squared resid	8254.104	Schwarz crite		7.218349
Log likelihood	-490.4595	Hannan-Quin	-	7.143510
Durbin-Watson stat	0.982279	riailliail-Quili	II OIIIOI.	7.170010
Inverted AR Roots	.00-1.00i	.00+1.00i	97	


□ Cuando se detecta autocorrelación de orden, la forma eficaz de resolver este problema es introduciendo el o los componentes autorregresivos en el modelo regresado.

LS GTO_TURIN GTO_DES GTO_TUSM AR(1) AR(2) AR(3)


□ Las variables AR(1) AR(2) AR(3) permitirían a reparametrizar al modelo y ayudando a resolver el problema de autocorrelación de los errores en el modelo, considerando de que el error esta en función del mismo error pero rezagado hasta el tercer periodo.

☐ Heteroscedasticidad

- Ut tiene varianzas iguales var(ut=δ^2 → Homoscerasticidad
- Media de los errores=0 (característica esencial)

- ☐ Pruebas informales (gráficas)
 - i) $(RES)^2$ VS X (variables predictioras en las que se intuye están ocasionando hereroscedasticidad)
- ii) Residuos absolutos vs $Y_t = |RESID|$ vs Yest

Gráficamente se aprecia que en la medida que la variables X, Yest las varianzas son diferentes. Indicios de que existe problemas de hereroscedasticidad en el modelo.

Pruebas formales

□ Prueba de White

- 1) Ho: σi²=σj² (Homoscedasticidad)
- 2) H1: σi²≠σj² (Heteroscedasticidad)
- 3) Estadístico de Prueba

$$\lambda = obs*R^2 \longrightarrow m*R^2 [X^2]_{p-1gl}$$

- 4) Criterio
- Si P-Value > $0.05 \rightarrow NRHo$
- Si P-Value < 0.05 → RHo
- 5) Decisión
- 6) Interpretación

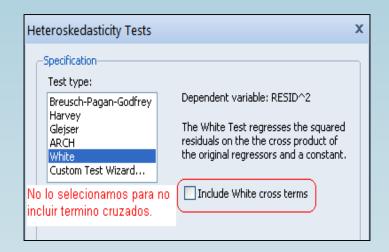
■ White sin termino cruzado (no cross terms)

Esta prueba considera los residuos del cuadrado como variable dependiente.

$$\hat{\varepsilon}_{t}^{2} = \rho_{0} + \rho_{1}x_{1i} + \rho_{2}x_{2i} + \rho_{11}x_{1i}^{2} + \rho_{22}x_{2i}^{2} + \rho_{12}x_{1i}x_{2i} + u_{i} \qquad i = 1...N$$

■ White con termino cruzado (cross terms)

La varianza toma forma general en función de regresores al cuadrado y de su producto cruzado


$$\hat{\mathcal{E}}_{t}^{2} = \rho_{0} + \rho_{1}x_{1i} + \dots + \rho_{k}x_{kt} + \rho_{11}x_{1k}^{2} + \dots + \rho_{kk}x_{kt}^{2} + \rho_{12}x_{1t}x_{2t} + \dots + \rho_{k-1,k}x_{k-1,t}x_{kt} + u_{i}$$

$$H_o: \rho_1 = \dots = \rho_k = \dots = \rho_{11} = \dots = \rho_{kk} = \rho_{12} = \dots = \rho_{k-1,k} = 0$$

$$LM = T * R^2 \approx \chi_{2k}^2$$

En Eviews

View/Residual Test/Specification White (no cross terms)

Heteroskedasticity Test: White

F-statistic	1.256119	Prob. F(1,28)	0.2719
Obs*R-squared	1.288058	Prob. Chi-Square(1)	0.2564
Scaled explained SS	1.203374	Prob. Chi-Square(1)	0.2726

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares

Date: 04/12/19 Time: 10:54

Sample: 1 30

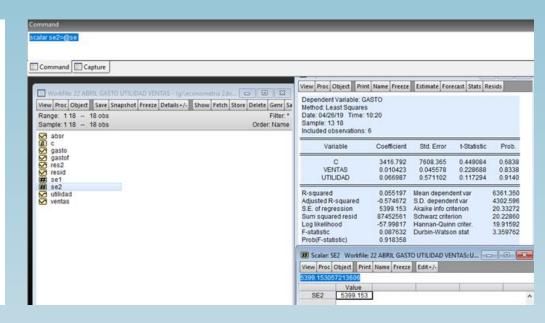

Included observations: 30

Con una probabilidad significativa de 25.6% (mayor al 5%) => NRHo, por lo que la varianza es constante y homoscedasticitica

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X^2	92.13619 0.005757	95.16400 0.005137	0.968183 1.120767	0.3412 0.2719
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.042935 0.008754 271.6452 2066152. -209.6682 1.256119 0.271908	Mean depender S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	var erion on criter.	183.1635 272.8422 14.11121 14.20462 14.14110 1.107964

Test Goldfeld - Quant

- 1). H0: No existe Heteroscedasticidad
- 2). H1: Existe Heteroscedasticidad.
- * Omitir r observaciones intermedia (r < T/3)
- * Los dos grupos tiene tamaño (T-r)/2
- En nuestro caso tenemos 18 observaciones, que se ordenan ascendentemente
- Se eliminan las 6 (r < 18/3=6) centrales formando dos grupo donde el primer grupo tiene de 1 hasta 6 y el segundo grupo 13 hasta 18.

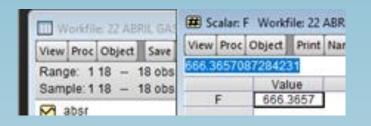


Dependent Variable: GASTO Method: Least Squares Date: 04/26/19 Time: 10:13

Sample: 16

Included observations: 6

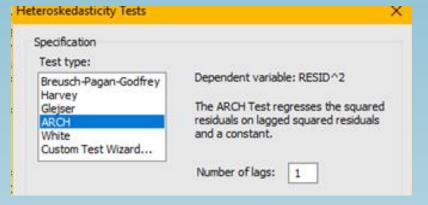
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C VENTAS UTILIDAD	-296.7583 0.031819 0.038924	202.1852 0.012183 0.077715	-1.467755 2.611724 0.500849	0.2385 0.0796 0.6509
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.823615 0.706025 <mark>209.1555</mark> 131238.1 -38.49266 7.004123	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter Durbin-Watson stat		361.6333 385.7572 13.83089 13.72677 13.41408 1.560330



Calculando el Scalar Scalar se1=@se para el primer grupo y la desviación del error para el segundo grupo Scalar se2=@se =666.36

f=666.3857

la f o estadístico se distribuye con 5 grados de libertad en el numerador y denominador (por el número de datos de cada bloque y en formula k-1).


Para rechazar o no la hipótesis nula necesitamos del estadístico F, por lo que crearemos este estadístico en el cuadro de comandos.

Calculando el escalar: scalar prob=(1-@cfdist(f,5,5)) prob=0.00000047

Como la P-Value > $\alpha \rightarrow NRHo$ Si prob < $\alpha \rightarrow Rho$

Como la probabilidad de Rho es inferior a .05 entonces concluimos que el modelo presenta problemas de heteroscedasticidad.

Heteroskedasticity Test: ARCH

F-statistic 7.126226 Prob. F(4,9) 0.0072 Obs*R-squared 10.64044 Prob. Chi-Square(4) 0.0309

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/29/19 Time: 10:42 Sample (adjusted): 5 18

Included observations: 14 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-995247.2	3400307.	-0.292693	0.7764
RESID^2(-1)	1.165136	0.409853	2.842816	0.7704
RESID^2(-2)	-1.339561	0.468225	-2.860932	0.0188
RESID^2(-3)	3.908678	1.947529	2.006994	0.0757
RESID^2(-4)	-0.646034	2.312899	-0.279318	0.7863
R-squared	0.760031	Mean depende	ent var	7883793.
Adjusted R-squared	0.653379	S.D. depender	nt var	14425942
S.E. of regression	8493209.	Akaike info cri	terion	35.01989
Sum squared resid	6.49E+14	Schwarz criterion		35.24812
Log likelihood	-240.1392	Hannan-Quinn criter.		34.99876
F-statistic	7.126226	Durbin-Watson stat		1.997328
Prob(F-statistic)	0.007180			

☐ Pruebas de ARCH

ARCH= Auto Regressive Conditional Heteroskedasticity

Busca probar que la heteroscedasticidad está condicionada con la varianzas de n periodos pasados.

En Eviews

- 1°. Regresionamos el modelo original: gasto=f(utilidades,ventas)
- 2°. View / residual diagnostic / heteroskedasticity / ARCH

Declarar el numero de rezagos para identificar el orden autoregresivo.

Se aprecia que estadísticamente el orden autoregresivo es de orden AR(3) y AR(4)

☐ Solución a la Heteroscedasticidad

→ Emplear Mínimos Cuadrados Ponderados,

$$Y_{t} = X_{t}'\beta + \varepsilon_{t} \qquad V : Ponderador$$

$$\sum = E(\varepsilon_{t}, \varepsilon_{t}') = \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_{T}^{2} \end{bmatrix} = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_{T} \end{bmatrix} = VV'$$

Modelo transformado

$$Y_{t}^{*} = x_{t}^{*} \beta + v_{t}$$

$$\beta_{MCO} = [X'^{*}X]^{-1} X^{*}Y'^{*}$$

$$V^{-1} = \begin{bmatrix} 1/\sigma_{1} & 0 & \dots & 0 \\ 0 & 1/\sigma_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1/\sigma_{T} \end{bmatrix}$$

- ☐ Proceso: Mínimos cuadrados ponderados
- Paso 1. Estimar los betas empleando MCO, sin considerar la existencia de hereroscedasticidad.

- Paso 2. Establecer la forma del error utilizando el procedimiento de White.
- Paso 3. Transformar las variables (Y, x) dividiendo las por la ponderación.
- Paso 4. Estimar el modelo por MCO con variables transformadas.

Dependent Variable: GASTO Method: Least Squares

Date: 09/19/19 Time: 15:53

Sample: 1 18

Included observations: 18 Weighting series: VENTAS

Weight type: Inverse standard deviation (EViews default scaling) HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 3.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
VENTAS	0.030037	0.007401	4.058345	0.0008
Weighted Statistics				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.144264 0.144264 5209.674 4.61E+08 -179.0754 1.130860 Unweighted	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Weighted mean dep.		5223.248 8887.639 20.00837 20.05784 20.01520 6399.366
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.466652 0.466652 2706.517 1.103484	Mean dependent var S.D. dependent var Sum squared resid		3056.883 3706.002 1.25E+08

Como el ejemplo es u modelo que didácticamente presenta problemas de heteroscedasticidad, se emplea como factor de ponderación a la inversa de la desviación de los errores (Inversa std.dev.). Y en Weight (ponderación) establecemos a la variable Ventas.

□ Bibliografía

- 1. Greene, W. (1998), Análisis Econométrico, Macmillan Publishing Company.
- 2. Gujarati, D. (2003), **Econometría**, Ed. McGraw-Hill 4.a edición.
- 3. Johnston, J y DiNardo, J. (2001), **Métodos de Econometría**, Ed. Vicens-Vives 3ª edición.
- 4. Stock, J.H. y M.W.Watson (2003): Introduction to Econometrics. Pearson Education.
- 5. Wooldridge, J.M. (2006), **Introducción a la Econometría**: un Enfoque Moderno. International Edition New York. Paraninfo Thompson Learning, 2a Ed.
- 6.Sachs, J.D,. y Larraín, Felipe B.(1994). **Macroeconomía en la economía mundial**. Prentice Hall.