
ar
X

iv
:1

70
7.

04
96

7v
3 

 [
as

tr
o-

ph
.H

E
] 

 1
1 

A
ug

 2
01

7

Search for Anisotropy in the Ultra High Energy Cosmic Ray

Spectrum using the Telescope Array Surface Detector

R.U. Abbasi1, M. Abe2, T. Abu-Zayyad1, M. Allen1, R. Azuma3, E. Barcikowski1,

J.W. Belz1, D.R. Bergman1, S.A. Blake1, R. Cady1, B.G. Cheon4, J. Chiba5,

M. Chikawa6, T. Fujii7, M. Fukushima7,8, T. Goto9, W. Hanlon1, Y. Hayashi9,

M. Hayashi10, N. Hayashida11, K. Hibino11, K. Honda12, D. Ikeda7, N. Inoue2,

T. Ishii12, R. Ishimori3, H. Ito13, D. Ivanov1, C.C.H. Jui1, K. Kadota14, F. Kakimoto3,

O. Kalashev15, K. Kasahara16, H. Kawai17, S. Kawakami9, S. Kawana2, K. Kawata7,

E. Kido7, H.B. Kim4, J.H. Kim1, J.H. Kim18, S. Kishigami9, S. Kitamura3, Y. Kitamura3,

V. Kuzmin15, M. Kuznetsov15, Y.J. Kwon19, J. Lan1, B. Lubsandorzhiev15,

J.P. Lundquist1, K. Machida12, K. Martens8, T. Matsuda20, T. Matsuyama9,

J.N. Matthews1, M. Minamino9, K. Mukai12, I. Myers1, K. Nagasawa2, S. Nagataki13,

T. Nakamura21, T. Nonaka7,∗ A. Nozato6, S. Ogio9, J. Ogura3, M. Ohnishi7,

H. Ohoka7, K. Oki7, T. Okuda22, M. Ono13, R. Onogi9, A. Oshima9, S. Ozawa16,

I.H. Park23, M.S. Pshirkov15,24, D.C. Rodriguez1, G. Rubtsov15, D. Ryu18,

H. Sagawa7, K. Saito7, Y. Saito25, N. Sakaki7, N. Sakurai9, L.M. Scott26, K. Sekino7,

P.D. Shah1, T. Shibata7, F. Shibata12, H. Shimodaira7, B.K. Shin9, H.S. Shin7,

J.D. Smith1, P. Sokolsky1, B.T. Stokes1, S.R. Stratton1,26, T.A. Stroman1,

T. Suzawa2, Y. Takahashi9, M. Takamura5, M. Takeda7, R. Takeishi7, A. Taketa27,

M. Takita7, Y. Tameda11, M. Tanaka20, K. Tanaka28, H. Tanaka9, S.B. Thomas1,

G.B. Thomson1, P. Tinyakov15,29, I. Tkachev15, H. Tokuno3, T. Tomida25, S. Troitsky15,

Y. Tsunesada3, K. Tsutsumi3, Y. Uchihori30, S. Udo11, F. Urban24,31, T. Wong1,

R. Yamane9, H. Yamaoka20, K. Yamazaki27, J. Yang32, K. Yashiro5, Y. Yoneda9,

S. Yoshida17, H. Yoshii33, Y. Zhezher15, R. Zollinger1, and and Z. Zundel1

1 High Energy Astrophysics Institute and Department of Physics and Astronomy,

University of Utah, Salt Lake City, Utah, USA

2 The Graduate School of Science and Engineering,

Saitama University, Saitama, Saitama, Japan

3 Graduate School of Science and Engineering,

Tokyo Institute of Technology, Meguro, Tokyo, Japan

1

http://arxiv.org/abs/1707.04967v3


4 Department of Physics and The Research Institute of Natural Science,

Hanyang University, Seongdong-gu, Seoul, Korea

5 Department of Physics, Tokyo University of Science, Noda, Chiba, Japan

6 Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan

7 Institute for Cosmic Ray Research,

University of Tokyo, Kashiwa, Chiba, Japan

8 Kavli Institute for the Physics and Mathematics of the Universe (WPI),

Todai Institutes for Advanced Study,

the University of Tokyo, Kashiwa, Chiba, Japan

9 Graduate School of Science, Osaka City University, Osaka, Osaka, Japan

10 Information Engineering Graduate School of Science and Technology,

Shinshu University, Nagano, Nagano, Japan

11 Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

12 Interdisciplinary Graduate School of Medicine and Engineering,

University of Yamanashi, Kofu, Yamanashi, Japan

13 Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan

14 Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan

15 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

16 Advanced Research Institute for Science and Engineering,

Waseda University, Shinjuku-ku, Tokyo, Japan

17 Department of Physics, Chiba University, Chiba, Chiba, Japan

18 Department of Physics, School of Natural Sciences,

Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea

19 Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea

20 Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan

21 Faculty of Science, Kochi University, Kochi, Kochi, Japan

22 Department of Physical Sciences,

Ritsumeikan University, Kusatsu, Shiga, Japan

23 Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea

24 Sternberg Astronomical Institute,

2



Moscow M.V. Lomonosov State University, Moscow, Russia

25 Academic Assembly School of Science and Technology Institute of Engineering,

Shinshu University, Nagano, Nagano, Japan

26 Department of Physics and Astronomy,

Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA

27 Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan

28 Graduate School of Information Sciences,

Hiroshima City University, Hiroshima, Hiroshima, Japan
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Abstract

The Telescope Array (TA) experiment is located in the western desert of Utah, USA, and observes

ultra high energy cosmic rays (UHECRs) in the Northern hemisphere. At the highest energies,

E > 10 EeV, the shape of cosmic ray energy spectrum may carry an imprint of the source density

distribution along the line of sight different in different directions of the sky. In this study, we

search for such directional variations in the shape of the energy spectrum using events observed

with the Telescope Array’s surface detector. We divide the TA field of view into two nearly

equal-exposure regions: the “on-source” region which we define as ±30◦ of the supergalactic plane

containing mostly nearby structures, and the complementary “off-source” region where the sources

are further away on average. We compare the UHECR spectra in these regions by fitting them

to the broken power law and comparing the resulting parameters. We find that the off-source

spectrum has an earlier break at highest energies. The chance probability to obtain such or larger

difference in statistically equivalent distributions is estimated as 6.2±1.1×10−4 (3.2σ) by a Monte-

Carlo simulation. The observed difference in spectra is in a reasonable quantitative agreement with

a simplified model that assumes that the UHECR sources trace the galaxy distribution from the

2MRS catalogue, primary particles are protons and the magnetic deflections can be neglected.

Keywords: Ultra High Energy Cosmic Ray, Large Scale Structure, Anisotropy, Spectrum, Composition
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INTRODUCTION

Ultra high energy cosmic ray (UHECR) primaries lose a notable fraction of energy in

interactions with photons of cosmic microwave background radiation (CMBR) while propa-

gating over distances comparable to the size of local cosmological structures such as voids

and clusters of galaxies. The attenuation length depends on the particle type and energy.

Protons which have energy > 1019.7 eV lose the major part of their energy in pion photo-

production. Consequently, the spectrum of protons is expected to show the suppression of

flux at these energies, which is known as the GZK cut off [1, 2]. Another relevant process

for protons propagating in the CMBR is e+e− pair creation. This reaction is important for

protons with E ≃ 1018.6 eV. Heavier nuclei also loose energy in interactions with photon

background fields through the photo-disintegration processes [3] that typically lead to split-

ting off of individual nucleons. The mean free path of this process also becomes smaller at

higher energy.

The losses alter the UHECR energy spectrum in a way that depends on the distance to

the source. As a result, UHECR energy spectra may be different in different areas on the

celestial sphere: harder in the direction of nearby structures and softer where the large-scale

concentrations of matter are further away. In this work, we confront this expectation with

the TA data by comparing energy spectra of UHECR in regions which contain large number

of nearby objects with those corresponding to local voids. This approach is complementary

to the anisotropy studies focused on the distribution of arrival directions only.

EXPERIMENT AND DATASET

Telescope Array (TA) experiment [4] employs a hybrid approach to the detection of

UHECR with energies E > 1018 eV. Cosmic rays are observed using both fluorescence tele-

scopes and a surface detector array. The surface detector of TA consists of 507 scintillation

counters deployed on a square grid with 1.2 km spacing, covering an area about 670 km2 [5].

The operation of the surface detector started in 2008. Its duty cycle is 95% on average.

TA has accumulated the largest exposure in the Northern hemisphere. The fluorescence

telescopes have a much smaller duty cycle of ∼ 9% [6]. In this analysis, cosmic-ray events

with energies, E > 1019 eV observed by the surface detector of TA in the period from May
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FIG. 1. The zenith angle distribution of observed shower events with energy E ≥ 10 EeV.

2008 to May 2013 are used.

From Monte Carlo simulations, the trigger efficiency of cosmic-ray showers at zenith

angles of less than 55◦ reaches 100% in the energy range greater than 1019 eV. Corresponding

estimated energy resolution is about 20%, while the angular resolution is better than 2◦[4, 7].

The distribution of the zenith angles of the observed events is shown in Figure. 1. It agrees

well with the geometrical exposure which is also shown on the plot for comparison.
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ANALYSIS FOR SUPER GALACTIC PLANE (SGP)

In this analysis, we divide the sky into two parts: the one containing a larger number of

nearby objects and another one with a lesser number of nearby objects. These parts will

be referred to as the “on-source” and “off-source” areas, respectively. We then compare

the energy spectra in the on-source and off-source sky regions. As the division criterion we

use the positions of sources with respect to the Super Galactic Plane (SGP). The SGP is

a major structure in the nearby Universe containing a number of massive galaxy clusters

at distances of a few tens of Mpc [8]. For the analysis, we choose the on-source region as

the region of the sky containing the SGP. The exposure of the TA experiment is almost

equally divided when we define a sky within ±30◦ of the SGP as the on-source area and

the rest as the off-source area. The fractions of the total exposure corresponding to the on-

and off-source areas are 52% and 48%, respectively. Another — technical — advantage of

this choice is that the zenith angle distributions in the two regions are practically identical.

(Detailed discussion of systematic effects is given in the next section.) In principle, one

may base the choice of the on- and off-source regions directly on the matter distribution in

the nearby Universe. However, to use matter distribution directly in the simple approach

adopted here, all the details about the UHECR propagation, composition at high energies,

etc, are needed. Given the existing uncertainties and limited statistics, we find the more

simple approach adopted here to be more than adequate at the present stage.

Once the on- and off-source regions are fixed, we first compare the energy distributions

of the observed events coming from these regions. Figure. 2 shows the energy distribution of

all the observed showers obtained for the entire exposure (thin histogram), and separately

for the On-source and Off-source areas (filled and empty squares, respectively). The lines

show the fits to these distributions by a broken power law, with the fitting function defined

as follows:

∆N(E)

∆ log10

(

E
E0

) = C0

(

θ(Eb − E)

(

E

E0

)

−α1

+ θ(E −Eb)

(

Eb

E0

)

−α1+α2
(

E

E0

)

−α2
)

(1)

Here, E0 = 1 EeV, C0 is a normalization constant proportional to the total number of

events, while α1,2 are spectral indexes below and above the break, respectively. The best fit
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FIG. 2. The energy distributions of observed shower events for the on- and off-source areas.

The black histogram shows distribution of all events. Closed and open symbols show energy

distributions observed in On-source and Off-source regions respectively.

parameters for the energy distribution obtained for the entire exposure are

C0 = 2.14+0.34
−0.30 × 104 α1 = −1.775+0.053

−0.053

log10(Eb/EeV) = 1.778+0.040
−0.068 α2 = −3.91+0.64

−0.66

(2)

This fit is shown by the thin solid line on Figure. 2. When fitting the energy distributions

in the on- and off-source regions, the slope before the break, α1, is set to the value obtained
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Region Co α1 log10(Eb/EeV ) α2

All 2.14+0.34
−0.30 × 10+4 −1.775+0.053

−0.053 1.778+0.040
−0.068 −3.91+0.64

−0.66

On source (1.1128 × 10+4) (−1.775) 1.832+0.069
−0.041 −3.91+0.70

−1.30

Off source (1.0286 × 10+4) (−1.775) 1.668+0.052
−0.053 −3.86+0.58

−0.82

TABLE I. Parameters of the best fit broken power law in the SGP case.

from the fit to the distribution for the entire exposure, equation. (2). At higher energy in

this energy range, mean free path of cosmic ray become shorter. It is expected that the

differences at high energies due to different attenuation of flux for close and far sources,

while negligible differences at low energies are expected. There is additionally the effect of

increased isotropization in a coherent magnetic field at the lowest energy bins especially in

case of nuclei other than proton. However, non-zero difference in spectrum slope would be

exist. The small difference at lower energy side will be reflected to a change of α2 and Eb

those are free parameter in the fitting. The normalization, C0, is scaled to the corresponding

fraction of the exposure in each region, while log10(Eb/E0) and α2 are set free and obtained

from the fitting in corresponding areas. There are bins with zero count at highest energy

bins. Those bins are also included in the likelihood calculation. The resulting broken power

law functions are plotted in Figure. 2 as solid and dashed lines. The results of the fit are

summarized in Table. I. Figure. 3 shows the best-fit values of parameters together with the

confidence contours in the log10(Eb/E0) − α2 plane. As one can see, there is a difference

in break energy between the on-source and off-source areas, ∆ log10(Eb/E0) = 0.16. Off-

source, the break occurs at lower energies, in agreement with expected larger attenuation

for larger source distances. The fraction of events above the break in the off-source region,

Noff (E > Eb)/Nall(E > Eb), is 0.337± 0.050 instead of 0.48 as expected from the exposure

ratio.

To estimate the chance probability that the observed difference in the energy distribution

occurred as a result of a fluctuation, we performed the following simulation. In each energy

bin the events have been randomly re-labeled as the on- and off-source events following the

binomial distribution with the parameters that correspond to the ratio of the correspond-

ing exposures, that is the on-source probability 0.52 and the off-source probability 0.48.

After this re-shuffling, the new On-source and Off-source energy distributions have been

9
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constructed and fitted by the broken power laws in exactly the same way as the original

data, giving the new values of the break energies and the numbers of events after the break.

This procedure then has been repeated 5 × 104 times. Figure. 4 shows the distribution of

occurrences of parameters that characterize the off-source energy distribution shape — the

break energy Eb and the fraction of events above the break Noff (E > Eb)/Nall(E > Eb). The

horizontal axis corresponds to the off-source break energy and vertical axis to the event frac-
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obtained in Monte Carlo simulations. Red point and dashed line represents observed value in real

data.

tion above the break energy. The values observed for the data are marked by the horizontal

and vertical dashed lines which divide the parameter space into four regions.

The number of occurrences of parameters in the resulting four regions of the parameter

space is summarized in Table II.

Following the predictions of the UHECR propagation models that suggest that the spec-

trum in the off-source region should have a lower break energy and a smaller number of

11



Condition case Fraction

Eb > 101.668EeV ,
Noff (E>Eb)

Nall(E>Eb
> 0.337 45031 0.9008(±0.0013)

Eb < 101.668EeV ,
Noff (E>Eb)

Nall(E>Eb
> 0.337 4606 0.0921(±0.0013)

Eb < 101.668EeV ,
Noff (E>Eb)

Nall(E>Eb
< 0.337 31 0.00062(±0.00011)

Eb > 101.668EeV ,
Noff (E>Eb)

Nall(E>Eb
< 0.337 352 0.00704(±0.00037)

TABLE II. The number of occurrences N with given break energy and number of events above the

break, and the corresponding fractions.

events above the break, we consider a trial successful if it has both of these parameters

smaller than in the data. The fraction of successful trials (third line in Table II) in our MC

simulation is 31, which gives the p-value p = 6.2× 10−4 (3.2σ).

SYSTEMATIC ERRORS

As the spectrum of UHECR is potentially sensitive to reconstruction biases, an important

question is whether the on- and off-source regions correspond to the same observational

conditions, notably the same zenith angle distribution of the events. For the adopted on-

and off-source regions, the distributions of zenith angles of exposure are plotted in Figure. 5.

The relative deviations of these distributions from the total (geometrical) exposure are shown

on the bottom panel; one can see that they do not exceed several percent. The difference

between the two regions in observing condition is thus negligible considering our statistics.

The time variation of the energy scale due to change in atmospheric conditions can be

another source of a systematic error. To check its influence, the event rate with energies

greater than 1019.0 eV was studied in anti-sidereal time [9]. The amplitude of fluctuations

of the event rate in the anti-sidereal time was found to be at most 5% ±3%. Given the

observed spectral index around 1019.0 eV, this corresponds to the energy shift by ∼ 2.5%.

One may estimate the effect of this possible energy shift by re-doing the calculation of the

p-value with the event energies shifted by 2.5% upwards. The resulting p-value is 6.9×10−4

(3.2 σ), i.e., the effect of this uncertainty is negligible.

12



E
xp

os
ur

e 
(a

rb
itr

al
 u

ni
t)

0

0.005

0.01

0.015

0.02

0.025

0.03
)

°
30 ≤On source (SGP lat 

) 
°

30Off source (SGP lat > 

 (Deg)θZenith angle 
0 10 20 30 40 50

%

-10
0

10
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distributions from the total (geometrical) exposure are shown on the bottom panel.

DISCUSSION

To see if the observed differences in energy distributions are compatible with model pre-

dictions , we performed a simplified numerical simulation using a propagation code CRPropa

2.2.0.4 [10] and the source distribution from the 2MRS catalogue [11] using the density pro-

file calculation described in [12]. In a simplified expectation, when the composition at origin

consists of nuclei, the expected difference of spectrum between on and off-source region start

13
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profile.

develop from lower energy and show gradual development as compared to the case of proton.

That is because nuclei have photo-disintegration as a dominant energy loss process while

proton have pion production with energy threshold. Figure. 6 displays the results. Here

protons were assumed as primary particles. The injection index and evolution parameter

were set to −2.2 and 7, respectively, as to reproduce the observed TA energy spectrum

[13]. Simulations are done in one dimension assuming 0.1 nG random magnetic field. The

14



difference of the observed energy distributions in the on-source and off-source regions were,

qualitatively, well reproduced by this simulation, given the simplifications made when mod-

elling the propagation. A quantitative comparison with the theoretical predictions would

require a more accurate modeling of the propagation, as well as a better understanding of

the UHECR composition not available at present TA statistics.

SUMMARY

Using data obtained by the TA surface detector in first 5 years, a new approach to

search for the anisotropy of UHECR is developed. It employs the modulation of the energy

spectrum due to energy losses in the interactions with the CMBR during propagation of

primaries. Such modulations occur in a different way for sources at different distances;

as a result, the UHECR spectra may differ in region of the sky that contain nearby matter

concentrations (sources are closer on average) and regions that do not contain such structures

(sources are further on average). The TA field of view was divided into two almost equal-

exposure parts: the on-source region within ±30◦ from the SGP, and the complementary off-

source region. The energy distributions of the observed TA events in these regions were fitted

by a broken power law. The results of the fit are summarized in Table. I. The parameters

that characterize the energy spectra in the two regions differ: in the off-source region the flux

has earlier suppression as compared to the on-source region, in qualitative agreement with

expectation from the propagation models. The chance probability that this difference arises

as a result of a fluctuation in two statistically equivalent distributions was estimated to be

∼ 6.2×10−4 (3.2σ). We conclude that there is a ∼ 3σ indication of the spectrum differences

of UHECR in different regions of the sky in the Northern hemisphere. In on-source region,

it is known there is a direction with excess of number of event which is found in a paper [14].

The excess is evaluated using events with energy above 57 EeV and by integrating number

of events with area of 20◦. The nature of this excess is not known yet. In this paper, the

approach applied does not use specific threshold in energy and angular size. We believe that

the approach proposed here can be developed further, and may help to reveal the sources of

cosmic rays and their chemical composition.
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