
Study of non-linear viscoelastic behavior of the human red blood cell

H. Castellinia, B. Riquelmeb,c

 
a Departamento de Física, FCEIA (UNR), Pellegrini 250, 2000 Rosario, Argentina;

hcaste@fceia.unr.edu.ar
b Área Física, FCByF (UNR), Suipacha 535, 2000 Rosario, Argentina;

briquel@fbioyf.unr.edu.ar
c Óptica Aplicada a la Biología, IFIR (CONICET-UNR), Bv. 27 de febrero 210 bis,

2000 Rosario, Argentina; riquelme@ifir-conicet.gov.ar

Abstract

The  non-linear  behavior  of  human  erythrocytes  subjected  to  shear  stress  was
analyzed using data series from the Erythrocyte Rheometer and a theoretical model
was developed. Linear behavior was eliminated by means of a slot filter and a sixth
order Savisky-Golay filter was applied to the resulting time series that allows the
elimination of any possible white noise in the data. A fast Fourier transform was
performed on the processed data, which resulted in a series of frequency dominant
peaks. Results suggest the presence of a non-linear quadratic term in the Kelvin-
Voigt  phenomenological  model.  The  correlation  dimension  studied  through
recurrence quantification  analysis  gave C2=(2.58±0.08).  Results  suggest  that  the
underlying dynamics is  the same in each RBC sample corresponding to healthy
donors.
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1. Introduction

In most biomechanical studies, soft tissues have generally been characterized by
linear  models  of  viscoelastic  materials  because  they  show  simultaneous
characteristics  of  elastic  solids  and  viscous  fluids.  Particularly,  the  viscoelastic
behavior of the red blood cell membrane (RBC), both in human and other animal
species has been widely studied [1,2]. RBC viscoelasticity simultaneously involves
the  storage  and  dissipation  of  energy  under  the  application  of  a  force.  At  the
molecular  level,  the  partial  dissipation  of  energy  (relaxation  phenomenon)  is
associated  with  various  types  of  movements  of  the  protein  structures,  which
manifest themselves through important variations of the macroscopic properties. 
Viscoelastic materials are usually modelled by consistent approaches such as the
Maxwell  and  Kelvin–Voigt  rheological  models.  The  model  of  quasilinear
viscoelasticity was initially proposed by Fung to be applied in soft tissue modelling
and takes into account both nonlinearity and time dependence [3]. However, these
traditional  models  were considered as a theoretical  approach,  since they merely
present a partial or phenomenological description of soft tissue. Thus, the original
models have been modified by adding more elements in order to achieve a better
characterization of the mechanical behavior. Consequently, the complexity of the
resulting model was greatly increased due to the presence of these additional terms.
Recently, the fractional calculation, an old concept with novel application, has been
used in modelling viscoelastic material. 
The Fractional  Rheological Technique uses differential  and integral  operators of
arbitrary  order  and  it  is  a  powerful  tool  to  study  the  viscoelastic  behavior  of
materials.  This  technique  has  been  successful  to  describe  plastic  materials  and
allows a better description of viscoelasticity than traditional  models without  the
introduction of extra physical parameters. Also, there is a series of studies aiming at
the  characterization  of  the  mechanical  effect  on  soft  biological  tissues  using
fractional viscoelastic models.
In this work, we propose a non-linear fractional viscoelastic model to describe the
rheological  behavior  of  RBC  under  stationary  and oscillating  shear  stress.  The
proposed model take into account the peculiar effects observed in the stationary and
dynamical  assay using a “Reómetro Eritrocitario”,  an instrument based on laser
diffractometry  technique  recently  developed  in  our  laboratory.  The  recurrence
quantification  analysis  (RQA)  applied  to  the  residual  dynamics  is  aims  at
corroborating the nonlinear behavior observed in the oscillating shear stress tests.

2. Materials and Methods

A theoretical  model  that  fits  the observations was developed.  The Kelvin-Voigt
model was modified by the addition of a non-linear quadratic term associated with



the presence of internal normal stress. Also, the ordinary derivative was replaced by
a fractional derivative.

2.1. Biological Samples

Human blood samples (n=4) from healthy donors were drawn from the antecubital
vein, anticoagulated with EDTA/Na2, stored at 4ºC and analyzed within 2 hours
after  the  extraction  time,  as  recommended  in  the  “New  guidelines  for
hemorheological laboratory techniques” [4]. To carry out measurements, 100 µL of
each blood sample was poured in 4.5 mL of a solution of polyvinyl pyrrolidone
(Sigma PVP360) at 5% (w/v) in PBS (viscosity = (22.0 ± 0.5) cp, pH = (7.40 ±
0.05) and osmolality = (295 ± 8) mOsmol/kg at (25.0 ± 0.5) ºC).

2.2. Equipment and Measurements

Data  were  obtained  using  the  Erythrocyte  Rheometer  [5],  a  new  instrument
developed  in  our  laboratory  that  give  stationary  and  dynamic  viscoelastic
parameters of RBCs. Like the first prototype called Erythrodeformeter [6,7,8], the
Erythrocyte Rheometer is based on laser diffractometry technique (ektacytometry).
This  instrument  was  used  to  determine the  stationary and dynamic  viscoelastic
parameters  of  RBCs.  In  the  stationary  mode  the  lower  disk  rotates  at  constant
speed,  whereas  in  the  oscillating  mode  the  lower  disk  moves  at  sinusoidal
oscillating speeds with frequencies of 0.5, 1 and 1.5 Hz.

2.3 Mathematical background

The fractional derivative dates back to the time of the invention of calculus [9] and
it was introduced again by Watson in 2004 [10]. The notation Duf denotes the uth

order  fractional  derivative  of  the  function  f,  where  u  >  0.  There  are  many
definitions of the fractional derivative: herein, the Caputo definition was used:

Dα f (x)=
1

Γ(m−α)
∫
0

t
f (m )

(τ)

(t−τ)
α+1−m d τ (1)

when m – 1 < α < m is the integer , and:

Dα f (t)=
dm f (t )

d tm              (2)

When  α=m. If the periodic function is considered, then the fractional derivative is



Dα f (t) , and its frequency response will be:

F (Dα f (t))(ω)=(i ω)
α F ( f (t ))(ω) (3)

where F(f(t))(ω) is the Fourier Transform of f(t).

2.4 A non-linear fractional viscoelastic model of RBC

In the present work, the Kelvin-Voigt  model was modified by the addition of a
non-linear term together with the modification of viscous behavior of RBC by the
use of the fractional derivative. The modified Kelvin-Voigt model is:

ητ
α−1 Dα

γ+μ γ+ϵγ
2
=σ  (4)

where σ is the shear stress, γ is the angular deformation, τ is the relax time, η is the
viscous coefficient, μ is the Young modulus and  is slight non-linear behavior.

3 Processing and results

3.1 Dynamic study

Fig.  1 shows an example of the time series representative of the RBC temporal
deformations obtained using the Reómetro Eritrocitario in oscillating mode at 1.5
Hz. The linear behavior was eliminated by means of a slot filter and a sixth-order
Savisky-Golay filter was applied to reduce the noise in time series. Then, the data
were normalized to null mean and unit variance. A sample space consisting of the
data corresponding to RBCs from 4 healthy donors was studied. Fig. 2 shows an
example of the curves obtained. 
A fast Fourier transform (FFT) was performed on the processed data, leading to a
series of frequency dominant peaks (see Fig. 3). These results suggest the presence
of a non-linear quadratic term in the Kelvin-Voigt phenomenological model. The
peak  corresponding  to  second  harmonic  can  be  explained  from the  rheological
equation (4) considering the solution:

γ(t )=∑
n=1

∞

γn ei nω t
 (5)

where, without loss, it can be generally assumed γ0=0. Then:

Dα e i nωt
=(inω)

α e i nωt (6)



Replacing equations (5) and (6) in (4) and grouping terms into potentials of e inω t

results in:

γ(t )=γ1e iω t
+ϵ

τ γ1
2

1+(2 iω τ)
α e2 iωt

+o(ϵ
2
) (7)

where the linear solution (γ1) and the second harmonic term (γ2) are:

γ1=
τ

α
σ0 /η

1+(iw τ)
α

;
γ2=ϵ

τ γ1
2

1+(2 iω τ)
α

(8)

In order to corroborate this hypothesis, the RQA method [11] was used to calculate
the Grassberger-Procaccia dimension which corresponds to log-log slope as can be
seen in Fig. 4. The value found of the correlation dimension was C2=(2.58±0.08),
which is consistent with the oscillating dynamics of a second-order system.
It is very difficult to numerically calculate   using only the power spectrum. Yet, it
is possible to assume that its value is low so as to be neglected for the stationary
study. The numerical calculation of  will be considered in a future work.

3.2 Stationary study

Fig. 5 shows an example of curves obtained in human RBC under stationary shear
stress. The data correspond to longitudinal and transversal axes of the diffraction
pattern. This figure shows the presence of overshooting that can be modelled by the
fractional derivative. Then, the solution from equation (4) when =0 and  σ(t)=t)=σ0

H(t)=t-t0) is:

γ(t )=A0 ( 1−Eα(−(t−t 0)
α
/ τ

α
))

                   (9)

where  Eα(t)=t) is  the  Mittag-Leffler  exponential,  A0 is  a  constant  and  H(t)=t-t0) is
Heaviside function.
Fig. 6 shows the parametric time evolution of Eα(t)=t) for a selected α set (0.5, 1.0,
1.2  and 1.7).  The  overshooting  seen  in  the  curve  for  stationary  shear  stress  is
consistent with  α >1.  To fit  this  solution to a sample numeric stationary assay,
genetic  algorithm was used  to  find  A,  α,  t0 and  τ.  Fig.  7  compares a standard
solution  of  Kelvin-Voigt  model  with  the  propose  model,  clearly  showing  that
fitting solution in  the experimental  data with fractional  derivative is  better than



with the ordinary derivative.

4. Discussion

The appearance of quadratic terms in the Kelvin-Voigt equation is associated with
the presence of normal stresses against simple shear, which would suggest a limit
in the isometric deformation of the RBC. 
The  use  of  fractional  derivative  proves  to  be  a  better  theoretical  framework to
characterize human red blood cell behavior under stationary shear stress, without
introducing  extra  parameters  such  as  the  use  of  second-order  derivatives.  The
choice  of  the  nonlinear  model  is  in  agreement  what  is  observed  in  the  power
spectrum and with the slope observed in the RQA. All this evidence suggests that
the behavior of the RBCs would not be that of a linear viscoelastic material. 
These results  provide information on the non-linear viscoelastic behavior of the
erythrocyte membrane. Moreover, this type of analysis will allow to decide on the
validity of the application of this same mathematical model in the case of altered
RBCs  due  to  hemorheological  pathologies  (diabetes,  hypertension,  anemia,
parasitosis,  etc.)  as  well  in  vitro alterations  caused  by  different  agents
(phytochemicals, anesthetics, drugs, etc.).
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Figures 

Figure 1: Data at 1.5 Hz of frequency corresponding at major axis of the diffraction
pattern recording as a function of time.

Figure 2: Graphic of results obtained from data processing.



Figure 3: Power spectrum where a peak is seen at twice the excitation frequency.

Figure 4:  Graphs showing that  the residual  dynamics is  universal  of correlation
dimension C2 = (2.58 ± 0.08).



Figure  5:  Curves  of  erythrocyte  response  to  the  stationary  shear  stress
corresponding to (a) longitudinal and (b) transversal exes of the diffraction pattern.

Figure 6: Graph of normalized fitting solution with fractional derivative showing
parametric time evolution of Eα(t) for a selected α sets corresponding to 0.5, 1.0,
1.2  and 1.7.  The  overshooting  seen  on  the  curve  for  stationary  shear  stress  is
consistent with α >1.
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Figure 7: Standard solution of Kelvin-Voigt model (blue line) compared with the
propose model (red line). A better fit in the experimental data was obtained using
propose model.
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