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1 Introduction

A configuration of n particles is called central when the acceleration vector of each
particle is a common scalar multiple of its position vector. One of the reasons why
central configurations are interesting is that they allow us to obtain explicit homographic
solutions of the n-body problem, that is, motions where the configuration of the system
changes size but keeps its shape. Also, they are important in the study of total collisions.

Even the finiteness of the number of central configurations is a very difficult question.
This conjecture was proposed by Chazy [7] and Wintner [21] and was listed by Smale as
problem number 6 on his list of problems for this century [18]. Central configurations,
which appear so deeply in the dynamics of the n body problem are very difficult to count
[18]. A complete enumeration of all such solutions for n ≥ 4 represents a very difficult
task for the present day methods.

For the collinear n-body problem, an exact count of the central configurations of n
bodies was found by Moulton (1910). He showed that there are n!/2 equivalence classes.

Saari [19] proved that the regular N−1 dimensional simplex is a central configuration
of N bodies for any value of the masses. In particular, case N = 4 has been well known
over a century (Lehmann-Filhés 1891,[11]). The fact that the tetrahedron is the unique
spatial central configuration of four bodies was proved by Pizzetti (1904, [16]).

The number of planar central configurations of the n-body problem for an arbitrary
given set of positive masses has been established only for n = 3, namely, Euler’s three
collinear configurations and Lagrange’s two equilateral triangle configurations. For n = 4,
Hampton and Moeckel [9] showed that, in addition to the tetrahedral spatial configura-
tions, there are only finitely many equivalence classes of planar central configurations.

For n = 5, Hampton and Jensen [10] with computer assistance showed the finiteness
of the spatial central configurations with positive masses, with the exception of some
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explicit special cases of mass values, and Albouy and Kaloshin [3] have proved that the
planar 5-body central configurations are finite apart from some explicitly given special
cases. For n ̸= 6, it is not known, in general, if the number of equivalence classes of
central configurations is finite. The finiteness question and a number of other interesting
questions on central configurations are discussed in a recent problem list given in Albouy
et al. [2].

In this paper we analyze the families of central configurations of the spatial 5–body
problem with four masses equal to 1 and the fifth mass, m, varying from 1 to 0. In partic-
ular we will find two bifurcation values of m. This is accomplished by using bifurcation
theory and the method of analytical continuation to follow numerically the central con-
figurations as the mass parameter m varies, and we use symbolic computation software
Mathematicar to handle the more tedious calculations.

2 Spatial central configurations in the 5-body problem

In this section we will describe the setting of the newtonian 5-body problem in Euclidean
three-space and we give the equations of central configurations of 5 bodies in R3.

We start by considering the spatial 5–body problem

mi q̈i = −
5∑

j=1

j ̸=i

Gmi mj
qi − qj

|qi − qj |3
,

i = 1, . . . , 5, where qi ∈ R3 is the position vector of the punctual mass mi in an inertial
coordinate system and G is the gravitational constant which can be taken equal to one.
The configuration space of the spatial 5–body problem is defined as

P = {(q1, . . . ,q5) ∈ R15 : qi ̸= qj , for i ̸= j}.

Given masses m1, . . . , m5, the corresponding configuration (q1, . . . ,q5) ∈ P is central
if the acceleration vector for each body is a common scalar multiple of its position vector
(with respect to the center of mass). That is, if there exists a positive constant λ such
that

(1) q̈i = −λ (qi − qm) ,

for i = 1, . . . , 5, where qm is the position vector of the center of mass of the system given
by

(2) qm =

∑5
i=1 miqi∑5
i=1 mi

.

Therefore, the configuration (q1, . . . ,q5) ∈ P of the 5–body problem with positive masses
m1, . . . , m5 is central if there exists λ such that (λ,q1, . . . ,q5) is a solution of the system

(3) λ (qi − qm) =
5∑

j=1

j ̸=i

mj
qi − qj

|qi − qj |3
, for i = 1, . . . , 5.

We choose the coordinates for the body with mass mi as qi = (xi, yi, zi) for i =
1, . . . , 5. Without loss of generality we assume that the body with mass m1 is fixed at
(x1, y1, z1) = (0, 0, 1) and that x3 = 0, the last assumption is to avoid the rotation with
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Figure 1. Equal mass spatial 5-body central configurations. These fig-
ures were taken from [14].

respect to the z−axis. By taking the center of mass at (0, 0, 0), system (3) can be written
as

(4) fi =

5∑

j=1

j ̸=i

mj
qi − qj

|qi − qj |3
− λqi = 0, for i = 1, . . . , 5.

It is easy to check that

(5) m1f1 + m2f2 + m3f3 + m4f4 + m5f5 = 0.

Assume now that m2 ̸= 0, from (5) the vectorial equation f2 is a linear combination of
the other ones and it can be eliminated. Moeover since the center of mass is fixed at the
origin, from (2) we get

x2 = −m4x4 + m5x5

m2
, y2 = −m3y3 + m4y4 + m5y5

m2
, z2 = −m1 + m3z3 + m4z4 + m5z5

m2
.

Finally we isolate λ from the first component of the vectorial equation f1 and we substi-
tute it into the other equations. In short system (4) has been simplified to a set of eleven
equations which depend on eight unknowns, namely, the position variables y3, z3, x4,
y4, z4, x5, y5, z5. Clearly the eleven equations obtained are not all independent. Then
in order to have a central configuration, we are seeking the zeros of the system of eight
equations in the eight unknowns that satisfy the remaining three equations. Since, equa-
tions obtained are essentially nonlinear, their solutions must be done combining numeric
and symbolic computations, which are carried out using Mathematicar, is just a good
tool for doing such calculations.

3 Some previously known results

The main impulse for our study comes from previous results which are described below.

3.1 Central configuration for the 5-body problem with equals masses

Kotsireas and Lazard [12] assumed that non-planar equal mass central configurations of
5 bodies always have several symmetries and used linear algebra and Gröbner bases to
classify symmetric spatial central configurations of 5 bodies with equal masses. They
conjectured that there are only four three-dimensional central configurations of 5 bodies
with equal masses (up to isometry, rescaling and permutation of the particles), namely
two convex and two concave (see Figure 1). Alvarez-Ramı́rez et al. [6] and Santoprete
and Lee [14] succeeded in proving the conjecture to be correct.

3.2 Central configuration in the (4 + 1)-body problem

The (4+1)-body problem is a particular case of the 5–body problem with 4 equal masses
and an infinitesimal mass. Next we summarize the known results of this problem. In
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[17] the author shows that a configuration with four equal masses located at the vertices
of an equilateral tetrahedron and an infinitesimal mass at its barycenter is a central
configuration . Almeida [5] proved that for the (4+1)-body problem there are 25 central
configurations with the four positive equal masses forming a tetrahedron, among which 12
are non-convex. They provide 6 different classes of central configurations up to isometry,
rescaling and permutation of the particles. Later, Tsai [20] found the same result using
Gröebner bases.

It is well known that four equal masses in the plane are necessarily in non-collinear
central configuration, namely, a square, an equilateral triangle with a mass at its center,
and a particular isosceles triangle with another mass on its axis of symmetry, see [1]. We
see that each one of these central configurations provides a central configuration of the
spatial (4 + 1)-body problem with four equal finite masses contained in the same plane
and the fifth particle with infinitesimal mass lying out of this plane.

In short we have 9 different classes of central configurations of the (4 + 1)-body
problem.

4 Bifurcation analysis

We continue numerically via the analytic continuation method the central configurations
of the 5–body problem with equal masses to the (4 + 1)–body problem and viceversa.
We note that the four classes of central configurations of the 5–body problem with 5
equal masses can be continued to 9 different classes of the 5–body problem with four
equal masses and the fifth mass close to 1, depending on the position of the mass that is
continued to values different from 1. We find two critical values, one is the well known

bifurcation mass value mc = 10368+1701
√

6
54952 ≈ 0.264496 . . . while the second one is given

by mf ≈ 0.66 . . . .
Our main result is summarized as follows.

Theorem 1 There are 5 different families of central configurations connecting the 5–body
problem with equal masses and the (4 + 1)–body problem without bifurcation.

There are 2 families of central configurations starting at the 5–body problem with
equal masses and ending at the bifurcation point with m = mc and 2 additional families
ending at the bifurcation point mf .

There are 3 families of central configurations starting at the (4 + 1)–body problem
and ending at the bifurcation point with m = mc and 1 additional family ending at the
bifurcation point mf .
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