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Abstract 

Chloroplast-to-nucleus retrograde signaling (RS) is known to impact plant growth and 

development. In Arabidopsis, we and others have shown that RS affects seedling 

establishment by inhibiting deetiolation. In the presence of lincomycin, a chloroplast 

protein synthesis inhibitor that triggers RS, Arabidopsis light-grown seedlings display 

partial skotomorphogenesis with undeveloped plastids and closed cotyledons. In 

contrast, RS in monocotyledonous has been much less studied. Here, we show that 

emerging rice seedlings exposed to lincomycin do not accumulate chlorophyll but 

otherwise remain remarkably unaffected. However, by using high red (R) and blue (B) 

monochromatic lights in combination with lincomycin, we have uncovered a RS 

inhibition of length and a reduction in the B light-induced declination of the second 

leaf. Furthermore, we present data showing that seedlings grown in high B and R light 

display different non-photochemical quenching (NPQ) capacity. Our findings support 

the view that excess B and R light impact seedling photomorphogenesis differently to 

photoprotect and optimize the response to high light stress.  
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Introduction 

Light is fundamental for plants as a source of energy and as an essential environmental 

cue. The quality, intensity, direction and duration of ambient light inform the plant 

about its immediate surrounding, time of day, and season. To capture this information, 

plants possess multiple photoreceptors sensitive to different wavelengths, including the 

red (R) and far red (FR) sensing phytochromes and the blue (B) /UV-A sensing 

cryptochromes. Rice, a model monocotyledonous plant, contains three phytochromes 

(phy) (phyA, phyB, and phyC) [1], and three cryptochromes (CRY) (OsCRY1a, 

OsCRY1b, and OsCRY2) [2, 3]. The contribution of each photoreceptor to light-

regulated development has been elucidated through the study of deficient and 

overexpression mutants, which have shown similar but also distinct functions compared 

to their Arabidopisis counterparts [3-7].  

Light or its absence is especially critical during germination and seedling establishment 

[8]. Early seedling growth and development is first fueled by the seed reserves, and this 

heterotrophic lifestyle can proceed in the dark for a few days. Seedlings in darkness 

exhibit skotomorphogenic development, characterized in rice by long coleoptiles, long 

first leaves, and elongation of the second internode. Upon light illumination, elongation 

of coleoptiles, first leaves, and internodes is inhibited, and seedlings switch to a 

photomorphogenesis pattern of growth with the development of fully functional 

chloroplasts and transition to autotrophy [5]. During this process, R, FR and B light 

contribute to the inhibition of elongation through the action of both phytochromes and 

cryptochromes. In contrast to Arabidopsis, rice phyA and phyC are both responsible for 

responses to FRc [4, 5], whereas phyB and phyC are involved in the responses to Rc, 

and CRY1a and CRY1b are the main CRYs involved in the deetiolation response to B 

[3]. Interestingly, B light promotes the declination of second leaf blades via CRY 

function, and phys (most prominently phyB) behave antagonistically [5]. Furthermore, 

supplemental B light has been shown to be essential for proper growth by enhancing 

photosynthesis and increasing the total nitrogen content of rice leaves [9].  
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In addition to providing environmental information, light can also be a source of stress 

for the plant. Whenever it is absorbed beyond photosynthetic capacity, excess energy 

becomes harmful causing oxidation of the photosynthetic apparatus and eventually cell 

death. In response, plants induce a photoprotective mode known as non-photochemical 

quenching (NPQ), which dissipates the excess energy as heat [10]. NPQ has been 

shown to be particularly important for plant fitness and productivity in field conditions 

[11, 12]. Mechanistically, NPQ is comprised of different components defined by their 

time-scales of induction and relaxation. The fastest component is qE, energy quenching 

in the antenna of photosystem II (PSII). qE relies on specific carotenoids from the 

xanthophyll group and on the qE protein effector PSBS [10]. PSBS is able to sense 

thylakoidal pH changes and activate the energy-dissipation mode by a mechanism that 

is not yet resolved [13, 14]. The slowest NPQ component is qI, photoinhibitory 

quenching that comprises all processes directly related to photoinhibition of PSII [15].  

Assembly of fully functional chloroplasts during deetiolation requires exquisite 

coordination between the nucleus and the chloroplast. Most of the chloroplast 

components are encoded in the nuclear genome [16], and need to be imported into the 

chloroplast following their synthesis in the cytosol, a process referred to as anterograde 

regulation [17]. Chloroplast can in turn communicate with the nucleus in a process 

called retrograde signaling (RS), that adjusts nuclear gene expression to chloroplast 

status [18, 19]. This RS taking place during chloroplast biogenesis has been called 

“biogenic control”, and involves tight regulation of the expression of nuclear-encoded 

photosynthetic genes (PhANGs) such as those from the LHCb gene family [20]. 

Activation of RS takes place when chloroplast are damaged under stress conditions like 

high light, or with the use of chemicals like lincomycin that specifically inhibit plastid 

translation [21, 22]. Activation of RS causes repression of PhANG expression through 

a process that is mediated by the plastid-localized protein Genomes Uncoupled 1 

(GUN1) and involves repression of GOLDEN2-LIKE (GLK) gene expression [20, 23-

27]. In Arabidopsis, RS has been shown to optimize not only pigment accumulation 

and photosynthetic capacity but also morphogenic development to acclimate to high 
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light stress [21, 27, 28]. Accordingly, the gun1 mutant is more sensitive to high light 

[21].  

Our previous studies together with others [21, 27], have established in Arabidopsis that 

GUN1-mediated RS blocks photomorphogenic development during seedling 

deetiolation, particularly the inhibition of cotyledon separation. Indeed, light grown 

seedlings grown in the presence of lincomycin show a phenotype resembling dark-

grown seedlings, with longer hypocotyls and appressed cotyledons with undeveloped 

plastids that do not green [27]. This response involves repression of GLK1 expression 

and has been proposed to minimize the area exposed to potentially damaging light [27]. 

In contrast, RS in monocots has been much less studied [29-31], and whether it impacts 

photomorphogenesis has not been addressed. Here, we aim to start to characterize the 

RS response in rice to better understand how RS has evolved as a photoprotective 

mechanism for plants. We show that emerging rice seedlings activate RS in response to 

chloroplast stress, but their early development is remarkably unaffected by lincomycin 

and they do not exhibit characteristics of dark-grown seedlings, in clear contrast to 

Arabidopsis. Interestingly, seedlings grown under R or B monochromatic lights respond 

differently to lincomycin, and we uncover an inhibition of the length and the declination 

angle of second leaf blades in B light. Furthermore, we present data that indicate that 

seedlings grown in B and R light have distinct capacity to induce NPQ and display 

different photoprotection mechanisms to optimize growth in high light environments. 

Methods 

(a) Plant material and growth conditions 

Rice (O.sativa cv. Nipponbare) was used in all experiments. After harvesting, rice seeds 

were incubated at 37oC for two weeks to break dormancy. Before sowing, seeds were 

dehusked and sterilized for 1 min in 75% ethanol with shaking, followed by a 20-min 

treatment in 2.5% bleach and 5 washes with sterile water. Eight seeds were plated on 

0.5 MS medium without sucrose in 14-cm high glass jars covered with 1 layer of 

transparent plastic film, except for the red light treatments where 7-cm high glass jars 

were used.  
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For constant light experiment, plants were grown at 25-28oC for 5 days in darkness (D), 

or in continuous blue (B) (450 nm) (provided by Philips GreenPower LED research 

module blue), red (R) (660 nm) (provided by Philips GreenPower LED research deep 

red), or white light (W) at the specified light intensities. Light spectra were measured 

with a Flame-S spectrometer (Ocean Optics), and fluence rates were measured with a 

LI-190R quantum sensor (LI-COR). 

In the deetiolation experiments, plants were first grown in continuous dark at 25-28oC 

for 3 days, and then transferred to light for another 4 days. Lincomycin treatments were 

done by supplementing the media with 2 mM lincomycin (Sigma-Aldrich L2774). All 

the experiments were performed with at least two biological replicates as specified in 

each figure legend.  

For seedling morphology measurements (See figure S1), seedlings were photographed 

using a digital camera Nikon D8000 and measurements were done using the NIH Image 

software (Image J, National Institutes of Health) [32].  

(b) RNA extraction and quantitative RT-PCR 

Shoot tissue from 5 day-old rice seedlings was harvested and immediately macerated 

in liquid N2 in the dark prior to storage at -80 ℃. Frozen samples were mechanically 

ground with TissueLyser II (QIAGEN) into frozen powder, and extracted using 

Maxwell® RSC Plant RNA kit (Promega, AS1500) according to manufacturer 

instructions. cDNA synthesis was done using NZY First-Strand cDNA Synthesis Kit 

(NZYtech, MB12502), and cDNA samples were used for real-time PCR (Light Cycler 

480; Roche) using SYBR Green I master (Roche Life Science) following previously 

described procedures [27]. For gene expression analyses, three independent biological 

replicates were assayed, each with two technical repeats. Primers are described in Table 

S1.  

(c) Pigment extraction and quantification 

For fresh weight chlorophyll (Chl) extraction, rice shoot samples were weighed, frozen, 

and ground in liquid nitrogen. Samples were extracted in Extraction buffer (45% 

ethanol, 45% acetone and 10% water) and then shaken for 3 h in the dark at 4 oC. 
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Samples were centrifuged at 12,000g for 5 min, and the supernatant absorbance was 

measured at 645 nm and 663 nm in a Spectramax M3 plate reader (Molecular Devices). 

Chlorophyll content was calculated according to Arnon [33], following the equations 

Chl A = 12.72 *A663 - 2.59 * A645; Chl B = 22.88 * A645 - 4.67 * A663. 

For dry weight Chl and carotenoid extraction, samples were ground and freeze-dried 

overnight in the dark using a Freeze-dryer ALPHA 2-4 LD machine (at -47 ℃ and 0.055 

mbar). Each sample was weighed and extracted in pre-cooled 80% acetone for 1 h at 

4 ℃ in the dark. Absorbance was measured at 663, 647 and 470 nm using a UV-Vis 

spectrophotometer (UV-2600, SHIMADZU). Chl and carotenoid content were 

calculated according to Lichtenthaler [34]: Chl A = 12.25 * A663-2.79 * A647; Chl B 

= 21.50 * A647-5.10 * A663; Total Chl = 7.15 * A663 + 18.71 * A647 or Chl A + Chl 

B; Carotenoids = (1000 * A470 - 1.82 * Chla - 85.02 * Chlb) / 198. 

(d) Data analyses and statistics 

R, Rstudio program, and GraphPad Prism version 7 for Mac (GraphPad Software, La 

Jolla California USA) were used to perform the data analyses and visualization. 

Seedlings whose total length was less than 0.4 times the mean length of their biological 

replicate were eliminated as poorly germinating seeds. Morphological data were 

analyzed by one-way ANOVA analysis, and the mean difference of each treatment in 

the multiple comparations was calculated using Tukey test. For two-group comparisons, 

such as low and high light treatment, or with and without lincomycin treatment, 

student’s t-test was used. For gene expression and chlorophyll content comparations, 

data are the means ± s.e.m of biological triplicates (n = 3). Statistically significant 

differences were defined and labeled with *, **, and ***, corresponding to P values < 

0.05, < 0.01, and < 0.001, respectively.  

(e) Fluorescence measurements 

In vivo chlorophyll fluorescence was measured at room temperature using a pulse 

modulated amplitude fluorimeter (MAXI-IMAGING-PAM, Heinz Waltz GmbH, 

Germany). Photosynthetic parameters including Fv/Fm, and non-photochemical 

quenching (NPQ) were assessed as described elsewhere [35]. Briefly, seedlings were 



 8 

first dark adapted for 30 min. Next, a blue measuring light (450 nm, 0.5 μmol photons 

m− 2 s− 1) was turned on and a very short saturating pulse (SP) (800 ms, 2700 μmol 

photons m− 2 s− 1, 450 nm) was applied. Fluorescence signal before (Fo) and after (Fm 

or maximum F) the SP was recorded to estimate the maximum quantum yield of 

photosystem II (PSII), (Fv/Fm) defined as Fv/Fm = (Fm - Fo)dark/Fmdark [36]. NPQ of 

chlorophyll fluorescence was then measured by exposing dark-adapted seedlings to 800 

μmol photons m−2 s−1 during 10 min, followed by a 70 min dark recovery period. NPQ 

was calculated as NPQ = (Fm − F′m) / F′m [37], where Fm corresponds to maximum 

fluorescence from dark-adapted plants during a SP, and F'm to maximum fluorescence 

after SP applied every minute in the light as well as in the dark recovery period. 

Results 

(a) Lincomycin-induced retrograde signaling blocks pigment accumulation in rice 

and prevents growth and full separation of the second leaf 

Rice seedlings were grown under continuous darkness (D), low (40 µmol m-2 s-1) red 

light (R), low (10 µmol/m2/s) blue light (B), and low (40 µmol m-2 s-1) white light (W) 

for 5 days (figure 1a, b). Light intensities were selected based on similar coleoptile 

lengths. Different photomorphogenic features (coleoptile length, coleoptile angle, first 

and second leaf length, and leaf declination) were quantified as described in figure S1. 

Dark-grown seedlings exhibited vertical (angle ~6o) elongated coleoptiles (2.1 cm) 

around the first and second leaves, which were 3.4 and 4.3 cm respectively (figure 1a, 

b). Light dramatically inhibited coleoptile elongation (to ~0.6 cm) and the growth of 

the first leaf (to 1.6 cm) to a similar extent in all three different light conditions (figure 

1a, b). In contrast, elongation of the second leaf was inhibited in R and W compared to 

D (to ~2.7 cm), but not in B. Light also promoted opening of the coleoptile in all light 

conditions tested, and B and W were more efficient than R (to 72o , 69o and 55o 

respectively) (figure 1a, b). Additionally, we observed that light-induced chlorophyll 

accumulation was ~2.6-fold higher in B compared to R (figure 1c). These data are in 

accordance to previous reports [3, 4, 38] and illustrate how light affects early rice 

seedling photomorphogenesis. 
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To investigate how retrograde signaling might affect this process, we first defined the 

optimal lincomycin concentration to use. Rice seedlings grown in W were treated from 

germination onwards with 0.25 mM, 0.5 mM, 1 mM and 2mM lincomycin in 0.5 MS 

media without sucrose. Seedlings showed a progressive decrease in pigmentation and 

were completely white in 2 mM lincomycin, which was chosen for further experiments 

(figure S2). At this concentration, we confirmed the block of chlorophyll accumulation 

in B and R (figure 1c) which correlated with gene expression repression of OsLHCB 

and OsGLK1 (figure 1d), hallmarks of retrograde signaling (RS) [27], confirming that 

lincomycin induces RS in rice in both R and B light conditions.  

We next compared the morphology of lincomycin treated with non-treated control 

seedlings grown under continuous D, R, B, and W light conditions (figure 1a, b). 

Besides the abovementioned blockage of pigment accumulation, lincomycin increased 

the coleoptile angle in light-grown seedlings, which was significant in B and W with 

an increase of ~20o. The treatment also had an effect on the growth of the first and 

second leaves in R and B, but not in W. Interestingly, lincomycin increased leaf length 

in R and the effect was opposite in B. Finally, RS did not affect coleoptile length in the 

dark or in any of the light treatments (figure 1a, b), which might be expected as the 

coleoptile does not develop functional chloroplasts.  

To complete this characterization, we also analyzed the effect of light and lincomycin 

in 3-day dark-grown seedlings transferred to R and B for 4 days (figure 2). Under these 

conditions, B-light inhibited the elongation of the first and second leaves more 

efficiently than R, and lincomycin further repressed this growth (as observed above in 

continuous B conditions), whereas it did not have any significant effect in D or R light 

seedlings. We also observed separation of the second leaf specifically in B light, a 

response that has been described to increase with higher B intensities [5]. Indeed, we 

observed an increase in the second leaf angle declination when seedlings were 

transferred to high B (150 µmol m-2 s-1) compared to low B (40 µmol m-2 s-1). 

Interestingly, this increase was significantly affected in the presence of lincomycin 

(figure 2c, S3). 
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Together, these results indicate that lincomycin-induced chloroplast damage impacts 

two main processes during rice seedling deetiolation: (1) it blocks pigment 

accumulation, and (2) although it has modest morphologic effect in the overall growth 

of the emerging seedling, it prevents growth and full separation of the second leaf. 

These results contrast with Arabidopsis, where lincomycin-treated seedlings resemble 

dark-grown seedlings [27]. Interestingly, however, the observed inhibition of the 

second leaf growth and declination in rice, albeit of less importance, is reminiscent of 

the inhibition of cotyledon separation, the main developmental effect of RS in 

Arabidopsis seedlings [27, 39].  

(b) High light treatment uncovers distinct effects of high red and high blue light 

in the photomorphogenesis of rice seedlings  

The above results investigate the effects of monochromatic light on retrograde signaling 

in lincomycin-treated seedlings. However, because we wished to understand how each 

light quality by itself impacts development through retrograde signaling, we decided to 

use high intensity B and R light in untreated seedlings. To this end, we started by 

examining the effects on photomorphogenesis of rice seedlings subjected to continuous 

low (40 µmol m-2 s-1) and high (450 µmol m-2 s-1) R light, and low (10 µmol m-2 s-1) and 

high (150 µmol m-2 s-1) B light. High R and B intensities resulted in similar coleoptile 

length (figure 3a, b). High R blocked chlorophyll accumulation as described before [40], 

whereas, remarkably, high B did not (figure 3a, c). Even seedlings grown in higher B 

intensities (300 and 450 µmol m-2 s-1) were green (figure S4). This result suggested that 

high B and R might have different capacities to induce RS. Indeed, high R repressed 

the expression level of LHCB and GLK1, whereas high B did not significantly impact 

their expression compared to low B (figure 3d), indicating that high R light but not high 

B can induce chloroplast damage triggering RS under these conditions. Interestingly, 

high R did not produce any apparent morphologic change other than lack of 

pigmentation, whereas high B induced clear inhibition of growth (figure 3a, b), an effect 

similar (albeit of weaker magnitude) to that induced by lincomycin (figures 1 and 2). 

This inhibition of growth was stronger in higher B light intensities (figure S4). These 
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results suggest that high B might induce a RS that selectively affects growth but not 

pigmentation. Alternatively, the inhibition of growth under these conditions might be 

independent of RS (e.g. only photoreceptor-mediated). 

Again, to complete this characterization, we examined the phenotype of dark-grown 

seedlings transferred to high light (figure 4). In seedlings grown in the dark for 3 days, 

transfer to high R for 4 days prevented chlorophyll accumulation, while transfer to high 

B did not (figure 4a, b), similar to what we observed in continuous high light (figure 3, 

S4). No other phenotype was observed for high R-grown seedlings (figure 4a). In high 

B, we again observed inhibition of growth resulting in shorter leaf lengths (figure 4b, 

c, S3). As discussed above (figure 2c), second leaf declination was promoted by high 

B (figure 4b, c, S3).  

Together, these results suggest that during rice seedling deetiolation, high R induces 

chloroplast damage triggering RS that results in a blockage of pigment accumulation 

while has little effect on morphology, whereas high B does not induce repression in the 

expression of the RS markers LHCB and GLK1 under these conditions, whereas it 

clearly inhibits elongation growth. To our knowledge, this direct comparison between 

the effects of high R and high B in the accumulation of pigments and morphology is 

novel in rice or any other model plant.  

(c) Blue light triggers higher accumulation of chlorophylls and carotenoids in rice 

seedlings compared to red light 

Our results above prompted us to investigate further the differences in pigment 

accumulation between seedlings grown in R and B. Interestingly, chlorophyll levels 

were higher in B compared to R, both in low and high fluences (figures 1c, 3c), with 

similar Chlorophyll A/B ratio (figure 5a). Carotenoid quantification (figure 5b) 

revealed that carotenoid content in low B was also ~1.7-fold higher than that of low R, 

and did not change in high B, whereas high R induced blockage of carotenoid 

accumulation similar to what we observed for chlorophylls (figure 3c). In accordance 

to high pigment levels in B-light grown seedlings compared to R, expression of genes 

encoding the enzymes phytoene synthase 1 (PSY1), that catalyzes the carotenoid 



 12 

biosynthesis rate limiting step, and Mg2-chelatase/Genomes uncoupled 5 

(CHLH/GUN5) involved in chlorophyll synthesis [38, 41], showed higher expression 

levels in B compared to R (figure 5c). These results are in general agreement with 

described light-specific transcriptional signatures of rice metabolism [42]. It is 

interesting to note that Nipponbare, the rice cultivar used in this work, lacks OsC1 

function, a R2R3-MYB gene necessary for OsCHS1 expression and anthocyanin 

production [43]. Thus, our seedlings do not accumulate anthocyanin even in B light, 

conditions where flavonoid production in cotyledons and leaves is enhanced in 

Arabidopsis or commonly seen in wild rice varieties [44].  

(d) Photosynthesis efficiency and photoprotection in high red and high blue light 

Given the differences in pigmentation between R- and B-light grown seedlings (figures 

3-5), we hypothesized that each light quality might have a different impact on the 

photosynthetic efficiency and photoprotective capacities of the seedling. We first 

measured the maximum quantum yield of PSII (Fv/Fm), as an indication of PSII 

functionality. Fv/Fm levels of high B-light grown seedlings were unaffected compared 

to low B treatments (figure 6a), even in higher B light intensities (average Fv/Fm of 

0.6-0.8) (figure S5). Interestingly, seedlings grown in low R displayed Fv/Fm levels 

similar to low and high B (figure 6a), even though the total chlorophyll content and 

carotenoid was significantly reduced in seedlings grown in low R compared to B 

(figures 1c, 3c, 5b). Finally, as expected due to the lack of pigments, seedlings grown 

in high R displayed greatly reduced Fv/Fm levels, of average 0.3, indicative of 

photoinhibition (figure 6a). 

Because we detected a decrease of Fv/Fm specifically in high R but not in high B, 

suggestive of a differential capacity in activating photoprotective mechanisms, we next 

tested if light quality had an effect on the induction of non-photochemical quenching 

(NPQ), one of the main photoprotective strategies against high light (HL) in plants. 

Low B and R light-grown seedlings were dark adapted for 30 min and then exposed to 

800 µmol m-2 s-1 of actinic light for 10 min to observe the induction and relaxation of 

NPQ. Strikingly, NPQ dynamics after exposure to HL were remarkably different in low 
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B light-grown seedlings compared to low R light (figure 6b, c). First, B light-grown 

seedlings showed significantly higher maximum NPQ levels in the light compared to 

R, and they were also faster in their response. Second, dark relaxation of fluorescence 

quenching was incomplete in R light-grown seedlings compared to B, indicating again 

photoinhibition. These NPQ values in B light-grown seedlings were not significantly 

changed in seedlings grown in higher B light intensities (figure S5). A more complete 

graph showing a longer dark relaxation period and levels of qE (energy quenching) and 

qI (photoinhibitory quenching) components is presented in figure S6. These NPQ 

differences correlated with the observed differences in carotenoid content (figure 5b). 

Moreover, transcript levels of the qE effector PSBS appeared also to be light regulated. 

In rice, PSBS protein is encoded by two genes, PSBS1 and PSBS2 [45]. In agreement 

with a role in NPQ [45-47], expression of both genes was elevated in B compared to R 

light grown seedlings (figure 6d). 

Discussion 

Our findings support a scenario whereby RS in rice plays distinct roles under red and 

blue light conditions to fine tune photomorphogenesis and photoprotection under 

potentially photodamaging conditions. Using monochromatic lights of different 

intensities and in combination with lincomycin treatment, we have uncovered a possible 

role for RS in rice to inhibit leaf growth and declination. Furthermore, our comparative 

data in R and B lights suggest that, whereas high R induces RS and can cause 

photobleaching, B light induces higher carotenoid and chlorophyll content, higher 

PSBS expression, and might equip plants with the capacity to withstand high light as 

exemplified by increased NPQ levels compared to R. 

We show that, remarkably, disruption of chloroplast function in rice seedlings by 

treatment with lincomycin from germination onwards only affected the rice 

photomorphogenic development modestly (figures 1a, b, 2). This is in clear contrast to 

Arabidopsis, where lincomycin blocks deetiolation and seedlings resemble dark-grown 

seedlings with lack of pigmentation and appressed cotyledons [27]. However, our 

observation that in B-light grown seedlings lincomycin inhibited the length and the 
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small increase in declination angle of the second leaf once it unfolded (figure 2c, d) 

indicates that RS can reduce the area exposed to light, which might protect the seedling 

from damage in a high light environment. Together with previous results in Arabidopsis 

showing RS inhibition of cotyledon separation [27], we suggest that a common role of 

biogenic retrograde signals in dicots and monocots might be to minimize the area of 

the seedling exposed to potentially damaging light, by inhibiting cotyledon separation 

or seedling growth and second leaf length and declination.  

Our data showing that high B and R lights have different effect on seedling 

pigmentation and development suggests that both lights induce distinct processes and 

might have different capacity to induce chloroplast damage in rice. This effect is 

probably at least partially masked when using monochromatic light in the presence of 

lincomycin, as evident in experiments under continuous B light with or without 

lincomycin: B light by itself, even of intensities high enough to inhibit growth almost 

completed, did not seem to affect greening, whereas addition of lincomycin in low B 

completely blocked seedling greening (figures 1a, 2a, c, 3a, c, 4b, S3). Therefore, the 

use of monochromatic high light has allowed us to dissect the ability of each 

wavelength to cause chloroplast damage and induce RS in rice. Interestingly, high R 

light inhibited pigment accumulation compared to low R, but seedlings otherwise 

looked unaffected (figures 3a, b, 4a). This suggests that RS induced by high R light 

specifically affects pigment accumulation and might not participate in tuning 

morphogenesis to the prevailing high light. In contrast, high B light-grown seedlings 

were able to accumulate pigments but were overall shorter (figures 3a, b, 4b, c). This 

elongation inhibition is similar to the effect that we saw with lincomycin (figures 1a, b, 

2). However, because our results suggest that RS was probably not induced under this 

high B condition (figure 3d), and growth inhibition also took place in the presence of 

lincomycin (figures 1a, b, 2), our interpretation is that this effect might be 

photoreceptor-mediated and can take place whether RS is activated or not. Intriguingly, 

studies in Arabidopsis have suggested that plastid signals that affect 

photomorphogenesis are dependent on cryptochrome 1 [39].  

Our data show a clear difference in the NPQ response when plants were grown in 
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continuous B or R light. B light-grown seedlings were able to induce higher NPQ levels, 

which correlated with higher transcript levels of the qE effector protein PSBS (figure 

6b-d). Indeed, higher PSBS levels have been shown to increase qE capacity in many 

photosynthetic organisms, including rice [46]. At the same time, B light-grown 

seedlings also showed increased levels of total carotenoids compared to R-grown plants 

(figure 5b). Whether the increased NPQ in B light compared to R is due to enhanced 

PSBS expression and/or enhanced carotenoid content in B remains to be further studied. 

Interestingly, in the green microalgae Chlamydomonas reinhardtii, B light (and also 

UV-B independently) control NPQ induction through photoreceptor-mediated 

regulation of the expression of the main qE effectors [48, 49], which established for the 

first time a molecular link between photoreception and photoprotection. In this context, 

it is tempting to speculate that we have also uncovered a novel control of 

photoprotection by B light in higher plants that deserves further investigation. On the 

other hand, low R light-grown seedlings showed reduced NPQ levels, lower PBSB gene 

expression and lower carotenoid content compared to low B light-grown plants (figures 

6b-d, 5b). When grown in high R light, they showed a complete albino phenotype 

(figure 3a), possibly as a consequence of decreased photoprotective capacities. 

Interestingly, low B light treatment allowed chlorophyll and carotenoid content 

restoration in high R-grown rice seedlings [40], suggesting a requirement for B light 

signaling in seedling photoprotection. Altogether, our results showing increased 

photoprotective capacities in B compared to R may explain why, under the conditions 

used, B light-grown rice seedlings may withstand HL without chloroplast damage and 

RS induction. 

In Arabidopsis, we have previously shown that the RS regulating photomorphogenesis 

is mediated by Genomes Uncoupled 1 (GUN1), a plastid-localized member of the 

pentatricopeptide repeat family [25], and by Golden2-like 1 (GLK1), a transcription 

factor involved in the promotion of chloroplast development [27]. In rice, ectopic 

overexpression of OsGLK1 was shown to induce chloroplast biogenesis in non-green 

cells, but the work was mostly done in calli and did not address possible morphogenic 

implications [50]. As for GUN1, no rice mutants are available to date. Future work will 



 16 

address the molecular players of high light-induced RS in rice and how they mediate a 

different response to R and B light. Upcoming studies will also aim to decipher how B 

and R light-induced signals are mediated and interact to provide photoprotection, a 

relevant question in natural environments. 
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Figure Legends 

Figure 1. Effect of lincomycin treatment on light-regulated development of rice 

seedlings under continuous light. A. Representative 5-day old rice seedlings grown 

under continuous dark (D), red light (R) (40 µmol m-2 s-1), blue light (B) (10 µmol m-2 

s-1), and white light (WL) (40 µmol m-2 s-1) at 25 oC with or without lincomycin (linco, 

2 mM) treatment. B. Quantification of coleoptile angle, and coleoptile, first and second 

leaf length in 5-day old rice seedlings (n= 16) under the conditions indicated in A. C. 

Chlorophyll content in R and B-light grown with or without lincomycin D. GLK1 and 

LHCB and expression in seedlings grown as detailed in A. Gene expression and 

chlorophyll data correspond to the mean ± s.e.m. of independent biological triplicates. 
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Multiple groups in B were analyzed by one-way ANOVA analysis. Different letters 

denote statistically significant differences among means of each group by Tukey test. 

Student’s t-test was used in B, C, and D for the analysis between lincomycin treated 

and non-treated groups in each light condition. Asterisks denote statistically significant 

differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 (***). 

Figure 2. Effect of lincomycin treatment on light-regulated development of dark-

grown rice seedlings transferred to light. A. Representative 7 day-old rice seedlings 

grown under continuous dark (D), or under D for 3 days and then transferred to red 

light (40 µmol m-2 s-1) (DR) or blue light (10 µmol m-2 s-1) (DB) for 4 days at 25 oC 

with or without lincomycin (linco, 2 mM). B. Quantification of coleoptile angle, and 

coleoptile, first and second leaf length in rice seedlings (n= 16) grown under the 

conditions indicated in A. C. Representative seven day-old rice seedlings grown under 

dark for 3 days and then transferred to low blue light (10 µmol m-2 s-1) (DB10) or high 

blue light (150 µmol m-2 s-1) (DB150) for 4 days at 28 oC with or without lincomycin. 

D. Quantification of second leaf angle and third leaf length in rice seedlings (n= 16) 

grown under the conditions indicated in C. Multiple groups in B were analyzed by one-

way ANOVA analysis. Different letters denote statistically significant differences 

among means of each group by Tukey test. Student’s t-test was used in B and D for 

mean comparison between two groups. Asterisks denote statistically significant 

differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 (***). 

Figure 3. Effect of continuous high-intensity red and blue light on seedling 

development. A. Representative 5 day-old rice seedlings grown under low (40 µmol 

m-2 s-1) (R40) or high (450 µmol m-2 s-1) (R450) red (R) light, and low (10 µmol m-2 s-

1) (B10) or high (150 µmol m-2 s-1) (B150) blue (B) light at 25 oC. B. Quantification of 

coleoptile angle, and coleoptile, first and second leaf length in rice seedlings (n= 16) 

grown under the conditions indicated in A. C. Chlorophyll content in seedlings grown 

under the conditions indicated in A. D. GLK1 and LHCB and expression in seedlings 

grown as detailed in A. Gene expression and chlorophyll data correspond to the mean 

± s.e.m. of independent biological triplicates. Student’s t-test was used in B and D for 
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mean comparison between two groups. Asterisks denote statistically significant 

differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 (***). 

Figure 4. Effect of high-intensity red and blue light on the development of dark-

grown rice seedlings transferred to high light. A. Representative 7 day-old rice 

seedlings grown under dark (D) for 3 days and then transferred to low (40 µmol m-2 s-

1) (DR40) or high (450 µmol m-2 s-1) (DR450) red (R) light at 25 oC. B. Representative 

7 day-old rice seedlings grown under dark (D) for 3 days and then transferred to low 

(10 µmol m-2 s-1) (DB10) or high (150 µmol m-2 s-1) (DB150) blue (B) light at 28 oC. 

C. Quantification of coleoptile and second leaf angle, and coleoptile, first, second and 

third leaf length in rice seedlings (n= 16) grown under the conditions indicated in B. 

Student’s t-test was used for mean comparison between two groups. Asterisks denote 

statistically significant differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 (***). 

Figure 5. Red and blue light differently affect pigment accumulation. Rice 

seedlings were grown for 5 days under low (40 µmol m-2 s-1) (R40) or high (450 µmol 

m-2 s-1) (R450) red (R) light, and low (10 µmol m-2 s-1) (B10) or high (150 µmol m-2 s-

1) (B150) blue (B) light at 25 oC. A. Quantification of ChA/ChlB ratio (total content is 

shown in figure 3c) B. Quantification of carotenoid content. C. Relative gene 

expression of PSY1 and CHLH/GUN5. Data are the means ± s.e.m of independent 

biological triplicates. Means were compared by student’s t-test, and asterisks denote 

statistically significant differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 (***).  

Figure 6. Photosynthesis efficiency and photoprotection capacities of rice seedlings 

grown red and blue light. Rice seedlings were grown for 6 days under low (40 µmol 

m-2 s-1) (R40) or high (450 µmol m-2 s-1) (R450) red (R) light, and low (10 µmol m-2 s-

1) (B10) or high (150 µmol m-2 s-1) (B150) blue (B) light at 28 oC. A. Maximum 

quantum yield of PSII (Fv/Fm). Values correspond to four independent seedlings. B. 

Representative colored images of NPQ in the second leaf data shown in C. The color 

scale is shown on the right. Left panel: NPQ induction after 5 min in high light. Right 

panel: NPQ relaxation after 20 min in dark. C. NPQ induction (light) and relaxation 

(dark). Values are the mean ± SD of six independent seedlings grown at the specified 

light conditions. D. Relative gene expression of PSBS1 and PSBS2. Data are the means 
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± s.e.m of independent biological triplicates. Means were compared by student’s t-test, 

and asterisks denote statistically significant differences: P values < 0.05 (*), < 0.01 (**) 

and < 0.001 (***).  
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Supporting Information 

Figure S1. Morphological parameters measured in rice seedlings. Five (A) or seven (B) 

day-old grown Nipponbare seedlings were taken out of the jars, carefully positioned 

and pictured to measure coleoptile length and angle, the length of each leaf, and the 

second leaf declination as indicated using ImageJ software. 

Figure S2. Eight day-old rice seedlings were grown in the dark (D) or low intensity 

light (white light, 1 µmol m-2 s-1) (W1) at 21oC in the presence of different lincomycin 

(L) concentrations as indicated. A. Representative rice seedlings grown under D, W1, 

and W1 with 0.25 mM (L0.25), 0.5 mM (L0.5), 1 mM (L1) lincomycin. B. 

Quantification of coleoptile angle, and coleoptile, first and second leaf length (n= 10) 

of seedlings grown as indicated in A. C. Representative rice seedlings grown under W1 

with (L2) or without 2 mM lincomycin. D. Quantification of coleoptile angle, and 

coleoptile, first and second leaf length (n= 16) of seedlings grown as indicated in C. 

Student’s t-test was used for the analysis between lincomycin treated and non-treated 

groups. Statistically significant differences were defined with P value < 0.05. Asterisks 

denote statistically significant differences: P values < 0.05 (*), < 0.01 (**) and < 0.001 

(***).  

Figure S3. A. Representative 7 day-old rice seedlings grown at 28
 o
C under continuous 

dark (D) for 3 days and then transferred to blue light of different intensities: 10 (µmol 

m
-2

 s
-1 

(DB10 ), 150 µmol m
-2

 s
-1 

(DB150), 300 µmol m
-2

 s
-1 

(DB300), and 450 µmol 

m
-2

 s
-1 

(DB450). B. Quantification of coleoptile angle, and coleoptile, first, second and 

third leaf length, second leaf declination angle in seedlings (n = 24) grown as indicated 

in A. C. Chlorophyll A (CHLA), chlorophyll B (CHLB), total chlorophylls (CHLS) and 

carotenoid content in seedlings grown under the conditions indicated in A. Data 

correspond to the mean ± s.e.m. of independent biological triplicates. Multiple groups 

in C were analyzed by one-way ANOVA analysis. In B, different letters denote 

statistically significant differences among means of each lincomycin non-treated group 

by Tukey test, and student’s t-test was used for the analysis between lincomycin treated 
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and non-treated groups. Asterisks denote statistically significant differences: P values 

< 0.05 (*), < 0.01 (**) and < 0.001 (***).  

Figure S4. A. Representative 5 day-old rice seedling grown at 28 oC under continuous 

high blue (B) light of different intensities: 10 (µmol m-2 s-1 (B10 ), 150 µmol m-2 s-1 

(B150), 300 µmol m-2 s-1 (B300), and 450 µmol m-2 s-1 (B450). B. Quantification of 

coleoptile and second leaf angle, and coleoptile, first, second and third leaf length in 

seedlings (n = 8 for B10 and B150, n=30 for B300 and B450) grown as indicated in A. 

In B, different letters denote statistically significant differences among means of each 

group by Tukey test. 

Figure S5. Photosynthesis efficiency and photoprotection capacities of rice seedlings 

grown in blue light. Rice seedlings were grown for 5 days (A and B) or first grown in 

dark for 3 days then transfer to blue light for 4 days (C and D) under different blue light: 

10 (µmol m-2 s-1 (B10 ), 150 µmol m-2 s-1 (B150), 300 µmol m-2 s-1 (B300), and 450 

µmol m-2 s-1 (B450) at 28 ºC. A. Maximum quantum yield of PSII (Fv/Fm) of 5-day old 

seedlings. Chlorophyll fluorescence was measured after 30 min of dark adaptation 

using 800 μmol photons m−2 s−1 of actinic light. Values are the mean ± SD of at least 

eight independent seedlings grown at the specified light conditions. B. NPQ induction 

(light) and relaxation (dark) of 5-day old seedlings. C. Maximum quantum yield of PSII 

(Fv/Fm) of 7-day old seedlings. D. NPQ induction (light) and relaxation (dark) of 7-

day old seedlings.  

Figure S6. NPQ induction and relaxation kinetics of 6-day old rice seedlings grown in 

low red (40 µmol m-2 s-1) (R40) and low blue (10 µmol m-2 s-1) (B10) at 28 ºC. 

Chlorophyll fluorescence was measured after 30 min of dark adaptation using 800 μmol 

m−2 s−1 of actinic light. Values are the mean ± SD of six seedlings. The extent of the 

NPQ components qE (energy quenching) and qI (photoinhibitory quenching) is 

indicated.  
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Table S1. List of primers used for qRT-PCR. 
 

Gene name Gene  
number 

Primer 
name 

Sequence (5’ -> 3’) Ref 

Ubiquitin LOC_Os03g13170 EMP1289 AACCAGCTGAGGCCCAAGA [51] 
  EMP1290 ACGATTGATTTAACCAGTCCATGA [51] 
LHCB LOC_Os09g17740 EMP1167 GACCGCGTCCTCTACCTCG [30] 
  EMP1168 CCTTGAACCACACGGCCTC [30] 
GLK1 LOC_Os06g24070 EMP1169 TGCGAGATTTCCTGCTCCAC  
  EMP1170 CTCGCTTGATGGTTGAACCTG  
PSBS2 LOC_Os04g59440 EMP1301 ACGACAACGACGACCAATGA  
  EMP1302 GCTAGTCCACTTAACCGTCTCC  
PSBS1 LOC_Os01g64960 EMP1303 GATCGGTGAGGTAGCACGAG  
  EMP1304 CATTGGCTCCCGACACCAG  
PSY LOC_Os06g51290 EMP1327 GGGAAGGCGAAGAAATTGCTA [52] 
  EMP1328 GTGAGTAGGGCATCAGCAATGA [52] 
CHLH LOC_Os03g20700 EMP1336 AACTGGATGAGCCAGAAGAGA [53] 
  EMP1337 AAATGCAAAAGACTTGCGACT [53] 
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