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Abstract
A comprehensive catalog of variability in a given species is useful for many important pur-

poses, e.g., designing high density arrays or pinpointing potential mutations of economic or

physiological interest. Here we provide a genomewide, worldwide catalog of single nucleo-

tide variants by simultaneously analyzing the shotgun sequence of 128 pigs and five suid

outgroups. Despite the high SNP missing rate of some individuals (up to 88%), we retrieved

over 48 million high quality variants. Of them, we were able to assess the ancestral allele of

more than 39M biallelic SNPs. We found SNPs in 21,455 out of the 25,322 annotated genes

in pig assembly 10.2. The annotation showed that more than 40% of the variants were

novel variants, not present in dbSNP. Surprisingly, we found a large variability in transition /

transversion rate along the genome, which is very well explained (R2=0.79) primarily by ge-

nome differences in in CpG content and recombination rate. The number of SNPs per win-

dow also varied but was less dependent of known factors such as gene density, missing

rate or recombination (R2=0.48). When we divided the samples in four groups, Asian wild

boar (ASWB), Asian domestics (ASDM), European wild boar (EUWB) and European do-

mestics (EUDM), we found a marked correlation in allele frequencies between domestics

and wild boars within Asia and within Europe, but not across continents, due to the large

evolutive distance between pigs of both continents (~1.2 MYA). In general, the porcine spe-

cies showed a small percentage of SNPs exclusive of each population group. EUWB and

EUDM were predicted to harbor a larger fraction of potentially deleterious mutations, ac-

cording to the SIFT algorithm, than Asian samples, perhaps a result of background selection

being less effective due to a lower effective population size in Europe.

Introduction
In this new era of sequencing, it is feasible to routinely obtain whole genome sequence data
from an increasing number of individuals, making it possible the analysis of populations at the
genomic level. The availability of this large amount of data allows us to study any species
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variability to an unprecedented detail. An intriguing observation from these studies is that, de-
spite intensive selection and small effective sizes, animal domestic species harbor much more
variability than anticipated [1–4]. In the particular case of the pig, this variability is especially
remarkable and is likely caused by a complex demographic history and to the availability of a
large amount of breeds [5–7].

The availability of a reference genome makes it feasible the large scale variant discovery
with new sequencing technologies or 'next' generation sequencing (NGS). In pigs, the last as-
sembly of porcine reference sequence (assembly 10.2) was released in November 2012 [8]. Al-
though still incomplete, around 8% of the sequence is estimated to be missing from the
assembly [8], it still constitutes the best resource to date in the genome of the pig. Currently,
over a hundred pig sequences of about 20 different breeds and several countries have been pub-
lished and are publicly available [8–12]. Despite these resources, so far, a comprehensive cata-
log of variants mined out these pig genomes is missing. Such a catalog is useful for many
purposes: to design high density genotyping arrays, be it genome-wide or focused in specific
genome regions or geographic origins of interest, to confirm SNPs from other experiments, to
improve the reference genome, to identify variants of potentially large deleterious effect that
can be followed up in functional studies, and to increase the general biological knowledge of a
species. For instance, as we shall see, we discover a large mutational bias in the pig genome that
is largely explained by the differential CpG content and recombination rate along
the chromosomes.

Here, we report such a catalog (data have been submitted to dbSNP at the following
URL: http://www.ncbi.nlm.nih.gov/SNP/snp_viewBatch.cgi?sbid=1062009 and they are also
available at the website http://bioinformatics.cragenomica.es/numgenomics/), obtained from
analyzing 128 genomes from wild boar and domestic pig samples worldwide distributed.
In addition, we report annotation, allele frequencies in four major pig groups and we
infer the ancestral allele for the majority of the SNPs. Knowledge of the ancestral allele is
required for many statistical tests of selection so this is an additional value of the catalog
here presented.

Materials and Methods

Samples
We analyzed a total of 133 suid genomes (S1 Table), 128 pigs (Sus scrofa) and five outgroups
(S. barbatus, S. cebifrons, S. verrucosus, S. celebensis, and an African warthog, Phacochoerus
africanus). The 128 pig genomes were classified into four large groups: Asian Wild Boars
(ASWB, n = 41), that comprise wild boars from China, Japan and East Russia; Asian Domestics
(ASDM, n = 23), including 9 Chinese breeds like Meishan or Xian; European Wild Boars
(EUWB, n = 9) from Spain, France, Switzerland, and the Netherlands; and European Domes-
tics (EUDM, n = 55) from all major breeds Duroc, Large White, Landrace, Pietrain Hampshire
and local breeds (Iberian, Tamworth). European domestics include as well American village
pigs, which have a predominant European, although hybrid, origin [13].

All samples had been shotgun sequenced with Illumina’s technology but at different depths,
ranging from ~3× in a Tibetan wild boar [11] to 22× in a Wuzhishan pig, a miniature Chinese
breed [9]. Here, we analyzed only two out of all available 25 lanes in the Wuzhishan pig so
depths could be comparable across samples. The majority of genomes data were public
[8,9,11,12] and 26 additional unpublished genomes were also used (E. Bianco et al., submitted).
Main sample details are in S1 Table. In all, over 28 x 109 reads, occupying around 2Tb of disk
in bam format, were analyzed.
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Alignment and variant calling
The detailed bioinformatics pipeline is in S1 Script. The samples from Groenen et al., [8]
(n = 50) were downloaded as bam files mapped against assembly 10.2. For the rest of samples,
raw reads were mapped against assembly 10.2 with BWA [14] allowing for 7 mismatches and
using default options otherwise. Duplicate removal and sorting were done with samtools v
0.1.18-sl61, using rmdup and sort options, respectively [15]. For all bam files, both the down-
loaded bam files and those generated in-house, GATK v. 2.7 IndelRealigner [16] was ran to im-
prove the alignment around indels, default options were used.

Genotypes were called for each individual separately using samtools (v 0.1.19+) mpileup op-
tion and filtered with vcfutils.pl varFilter [15]. We excluded indels in this analysis because of
their low reliability for the range of depths in our samples [17]. For a SNP to be called, we set
the minimum depth to 5× and the maximum depth of twice the average sample’s depth plus
one, minimummap quality and minimum base quality were both set to 20:

samtools mpileup-Q 20-q 20-m2-Dugf Sus_scrofa10.2.fas PIG_NAME.
realigned.bam | bcftools view-vcg—| vcfutils.pl varFilter-d 5-D
(MEAN_DEPTH�2)+1-Q 10> PIG_NAME.iSAM.flt.vcf

Individual vcf files were then merged using custom scripts. For each individual, missing var-
iant positions were coded according to bcftools output without the “-v” flag to avoid variant
calling; confident homozygous-reference calls were coded as &rsquo;0/0' (homozygous for ref-
erence allele), and the position was marked as missing ‘./.’ otherwise.

VCFtools v0.1.12a [18] was used to filter the resulting multi individual vcf file, to extract
outgroup genotypes, to analyze each of the four groups separately, and to filter out genotypes
for which raw depth was� 5 but where their high quality read depth was lower than 5
(–mindp). Allele frequency and allele count were calculated with the options—freq and—
count, respectively, and transition / transversion rate was calculated in windows of 1Mb with
the options—TsTv and—TsTv-summary. R version 3.0.2 was used to plot results [19].

Ancestral allele determination
The variant calling and the merging steps were done including the five outgroup samples. An
awk script was used to ascertain the ancestral allele, applying the following criteria:

1. The SNP must be biallelic where at least one of the alleles is the reference allele.

2. A) The SNP must be present in at least two Sus spp. genomes, and be homozygous in all Sus
spp. samples where the SNP is called;
B) Otherwise, it must be present in P. africanus genome and be homozygous.

3. The ancestral allele must be either the reference or the alternative allele in S. scrofa (that is, a
third allele must not be segregating).

In sites not complying with these conditions, the ancestral allele was considered
as unknown.

Exclusive variants and diagnostic SNPs
Population allele frequencies were obtained with VCFtools [18]. We defined an exclusive segre-
gating variant as a site in which the derived allele is segregating only in the target group and it
is not present in any of the remaining groups. Only those biallelic RA sites (R refers to the ref-
erence allele and A, to the alternative), and where all four groups had at least 50% of individuals
with genotypes called were used. Shared and private alleles were plotted with gplots R library
with venn package [20].
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Joint site frequency spectrum between groups was also calculated. For each group, we select-
ed the modal group size (the number of samples n where the highest number of variants was
called in exactly n individuals). The count of derived alleles was performed and plotted with R
package lattice (levelplot option, [21]).

Genome context
We evaluated whether the number of SNPs per window and the transitions / transversion rate
(Ts/Tv) correlates with genome features knowing to affect variability: GC content (%GC), CpG
count, gene density and recombination rate. GC percentage and CpG count were calculated
based on the Sus scrofa reference genome assembly 10.2 [8], and gene density was obtained as
the percentage of the window sequence that is part of a gene according to Sus scrofa 2.75 GTF
annotation. Genes overlapping two or more windows were discarded. We used the recombina-
tion rate (cM/Mb) from Tortereau et al., [22] with the same genome partitioning as in that
work, in windows of ~1 Mb long. In addition, we computed percentage of missing genotypes
per individual per window, averaged over individuals. To quantify the effect of each variable,
we fitted the following linear models using the R function lm [19]:

N snps ¼ β0þ β1 Ts Tv þ β2 logðrec rateÞþ β3 GC percentage þ β4 CpG countþ β5

Gene Density þ β6 missing rate þ e; ½equation 1�
and

Ts Tv ¼ β0þ β1 N snpsþ β2 logðrec rateÞþ β3 GC percentage þ β4 CpG countþ β5

Gene Density þ β6 missing rateþ e; ½equation 2�

We used the logarithm transformation of recombination rate because the raw values were
highly skewed.

SNP annotation
All variants were annotated with Ensembl variant effect predictor (VeP) pipeline v76 [23] on
Ensembl version 76 (using dbSNP build 140). Among the terms used in the annotation, we fo-
cused on stop gain and stop lost (sequence variants which cause a premature stop codon or the
stop codon is changed resulting in an elongation of the protein), missense variants (non synon-
ymous variants) and synonymous variants (a variant in a coding region that does not change
the aminoacid). The definition of all terms used is available at http://www.ensembl.org/info/
genome/variation/predicted_data.html. Variant annotation was performed both on the
whole data set and by group. When there was more than one alternative allele, all possible alter-
natives were retained. The effect of the aminoacid changes was predicted using SIFT [24,25],
a tool that tentatively predicts whether a missense variant affects protein function because
of sequence homology and of the physical properties of amino acids. Default options
were used.

Simulation of the bioinformatics pipeline
In this study, we used NGS data from different sources. These data are noisy and highly unbal-
anced, with highly variable depth across samples (S1 Table). Moreover, the pipeline applied is
complex and the properties of the SNP calling procedure are not necessarily known. As a fun-
damental caution when analyzing such a complex data, it is advisable to evaluate, even if
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approximately, the performance of the pipeline applied. Here, we evaluated how reliable are
the SNPs called and estimated how many SNPs were retrieved out of all those actually segregat-
ing in the samples by simulation. To do this, we employed Pipeliner [26], with small modifica-
tions. Pipeliner seamless integrates several steps and softwares:

1. Simulates, with the coalescence, genome data reflecting as much as possible the
population analyzed.

2. Maps simulated SNPs into a reference DNA sequence, this is done by replacing the refer-
ence base by an alternative base in the SNP position for each haplotype and produces a fasta
file for each sequence; next, each individual genome is created by randomly choosing
two sequences.

3. Simulates the sequencing process producing reads that mimic Illumina’s technology; we
used ART (v. 1.5.1, [27]) to do so.

4. Runs BWA [14] to map the reads against the reference sequence.

5. Analyzes the output and reports several statistics of interest; among them:

a. Recovery: percentage of original genotypes that are correctly identified.

b. Sensitivity: percentage of callable genotypes, i.e. present in sites that pass the filters
used, that are correctly identified.

c. False Discovery Rate (FDR): percentage of genotype calls performed that
are incorrect

Pipeliner was fine tuned to duplicate as faithfully as possible the actual bioinformatics pipe-
line used to analyze the real data. First, to obtain the ‘real’ sequences in our sample, we simulat-
ed 256 sequences (128 diploid individuals) with MaCS [28], using the following structured
population model:

NUMINDS = 128
EUDM = 55
ASDM = 23;
EUWB = 9
ASWB = 41
macs NUMINDS�2 100000-t 0.0005-r 0.0005-I 4 EUWB�2 EUDM�2 ASWB�2
ASDM�2-n 1 0.2-n 2 0.5-n 3 2.5-n 4 3-em 0.049 2 4 5-eM 0.06 0-ej 0.07 2
1-en 0.09 1 5-en 0.2 1 7-en 0.21 4 10-ej 0.08 3 4-ej 10 1 4

The command above simulates an older first split into two populations (Asia and Europe,-ej
10 1 4) and, a much more recent event, the split between domestic and wild populations in
both continents (-ej 0.08 3 4 and-ej 0.07 2 1). This model is very similar to the model of [29].
Parameters were chosen such that estimates of nucleotide diversity were similar to those found
in the real data. For the ART simulator [27], average depths were set for each individual as
those empirically observed, ranging from 3x to 22× (S1 Table). As reference genome, we ran-
domly chose one of the 'European' sequences, given that the assembly was derived from a
Duroc specimen [8].

Finally, alignment, variant calling and merging were done following the pipeline used for
real data, which resulted in a simulated multi individual vcf file. We used mstatspop
v.0.998982beta [30] to evaluate the proportion of correctly called SNPs, the proportion of false
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SNPs and not identified SNPs. The whole process was repeated 100 times. Note that, despite
we tried to faithfully represent the complexities of SNP calling for our specific set of samples,
we ignored known difficulties in mapping due to structural variants or repetitive elements. The
whole pipeline to do the simulation is in S1 Script.

Results

In silico evaluation of the bioinformatics pipeline
First, we evaluated our pipeline by simulation as described. We need to distinguish two issues.
The first one is how many SNPs out of those segregating can be recovered. This is the main tar-
get in the real data analysis and, in this case, uniformly high depth and coverage may not be so
critical because a SNP position that is not covered in one individual may have been covered in
another one (provided is not a singleton). The second issue is how reliably called is each indi-
vidual genotype. Accurate genotype calling is important for allele frequency estimates but not
so much for SNP detection; for instance, suppose a heterozygous Reference/Alternative (RA)
genotype is actually called as ‘AA’, the SNP will be equally identified, but frequency estimate
will be strongly biased. With Pipeliner [26], we evaluated both issues as described in methods.
Fig. 1 illustrates the overall expected power and percentage of wrongly identified SNPs. As can
be seen, we expect to have discovered about 95% of all SNPs that may have been segregating in
the 128 samples analyzed; of those, less than 0.5% variants are expected to be false positives. By
population group, the outcome varies according to depth, the Asian populations being slightly
worse than European populations because of shallower depth (Fig. 2). Even in those popula-
tions, power was 90% and FDR ~1%. The relatively high power of the pipeline, even at sallow
depth, is due in part to the demographic model, which has very long branches between the
Asian and European populations, followed by a bottleneck. This model, that reflects a plausible
history of the pig genome, predicts an excess of non singletons compared to the neutral model;
in turn, this means that a given SNP that is not called in one individual because of shallow
depth can still be discovered in another sample. Singletons are unique and, therefore, this can-
not happen in this case.

As for individual genotypes, we should expect according to the simulations, under the best
case scenario, to recover ~70% of heterozygous genotypes, 73% of homozygotes for the alterna-
tive allele (AA) and 76% of the homozygotes for the reference allele (RR, S1a Fig). The average
percentage of genotypes passing all quality filters that are correctly identified (sensitivity) is ex-
pected to be close to 1 for homozygote genotypes, and slightly lower for true RA genotypes
(97.5%, S1b Fig). In all, the most likely reason for a SNP not to be correctly identified is that it
was missed because of low depth or quality, rather than being incorrectly identified. FDR was
very low, in the order of 1% for heterozygous genotypes (S1d,f Fig).

In all, Pipeliner simulations predict that we could expect our bioinformatics protocol to be
highly reliable, allowing us to uncover about 95% of all SNPs in the samples with rather low
false discovery rate. In practice, the real situation is likely to be worse than simulated because
we are simulating the best case scenario, without considering the true complexities of the ge-
nome, e.g., duplications, indels, repetitive sequences, unequal GC content and so on. It is nev-
ertheless difficult to consider all these complicating factors in a simulation, and Pipeliner
results should be taken as an upper limit, mainly valid for well aligned genome regions.

Individual missing and genotype rates
In the real data, we computed the number of identified SNPs in the whole sample that were not
callable in each individual, as a percentage of all SNPs identified. The average individual SNP
missing rate was 35%, ranging from 88% of an Asian Domestic (a Penzhou individual, [11]) to
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4% of a European Domestic individual (an Iberian domestic, Bianco et al, submitted). Logical-
ly, missing rate was highly correlated with average depth: the lowest depth individuals, most of
them ASDM and ASWB samples, had the highest missing rate (Fig. 2a). This high variability in
missing rate is reflected in the number of times a SNP was genotyped in the dataset: 61,665

Fig 1. Using simulations, estimated percentage of segregating sites correctly detected (a) and percentage of false SNPs (b), according to the
Pipeliner simulations. ALL_INDS: all samples; ASDM, Asian domestics; ASWB, Asian wild boar; EUDM, European domestics; EUWB, European wild boar.

doi:10.1371/journal.pone.0118867.g001
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variants were genotyped in only one individual and only 23 SNPs were genotyped in all indi-
viduals (Fig. 2b).

The cumulative number of SNPs arranged by the times each SNP was called is in Fig. 2c:
50% of SNPs were called in 90 individuals and the SNPs genotyped in more than 115 individu-
als were less than 1% of the total variants counts. In other words, we found basically the same
number of SNPs in 115 samples than in the whole set (n = 128).

Fig 2. Individual missing rate (a); number of times a variant was called (b) and cumulative number of times a variant was called (c).

doi:10.1371/journal.pone.0118867.g002

Table 1. Total variants detected and number of variants per allele number at that locus.

Number of Allele(s) at position Num. of positions %

1 allele (AA) 362,740 0.75

2 alleles (all) 46,918,498 97.50

2 allele (R/A) 46,903,316 97.47

2 allele (A1/A2) 15,182 0.03

3 alleles (R/A1/A2) 828,854 1.72

4 alleles (R/A1/A2/A3) 9,384 0.02

Total number of variants 48,119,476

R = Reference allele; A = Alternative allele; A1 = Alternative allele 1; A2 = Alternative allele 2; A3 =

Alternative allele 3.

doi:10.1371/journal.pone.0118867.t001
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General SNP statistics and genomic context
We found, among the 128 S. scrofa samples, a total of 48,119,476 SNPs that were called in at
least one individual and passed all depth and quality filters. The majority (97.5%) were
biallelic variants, whereas the rest presented 1, 3 or 4 alleles (Table 1). For 377,922 variants,
only the alternative allele(s) were found; 12% of the 362,740 variants called as homozygote for
the alternative allele were called in only one individual, but 71,081 (0.15% of total variants
detected) were called in at least 64 individuals. These latter SNPs could reflect errors in the as-
sembly. On average, we found ~19,000 ± 7,000 variants per Mb window (Fig. 3). By chromo-
somes, chromosome 10 had the highest number of variants per bp, with 26.7 variants per kb.
The lowest number of variants per kb was found in chromosome 1 (15.9 variants per kb)
(S2 Table).

Average transition / transversion rate was Ts/Tv = 2.04 ± 0.28. This average rate is compara-
ble to that found in other species [31–33]. A higher than one Ts/Tv is expected because of the
molecular mechanisms behind transitions and transversion but there was, nonetheless, a geno-
mewide large variability (Fig. 3, middle); 125 windows showed Ts/Tv> 2.5 and 30 had Ts/Tv
< 1.5, also see S2 Fig. Although mutational bias is known to vary widely along the genome,
there was a striking apparent correlation between number of SNPs and transition / transver-
sion rate, both increasing in telomere regions; CpG count followed also similar patterns
(Fig. 3).

We were intrigued by this observation, which seems not to have been reported previously.
First, we noted that the rate of missing rate is correlated to the number of SNPs but this correla-
tion was not too high, explaining only ~4% of variability for number of SNPs per window
(Fig. 4a). Therefore, contrary to what would have been expected, missing rate is not relevant to
predict the number of SNPs in a window or, in other words, this means that mapping align-
ment quality and depth (the two most influential factors in calling SNPs from NGS data) are
independently distributed of nucleotide variability, at least in our data (Fig. 4a). In contrast,
a much stronger relation was found between number of SNPs and Ts/Tv rate genomewide
(R2 = 0.36, Fig. 4b).

In an attempt to explain how number of SNPs and Ts/Tv are interrelated, we fitted the line-
ar models in equations 1 and 2. Table 2 shows the estimates of each independent variable, in in-
creasing order of fit explained (R2). For number of SNPs, Ts/Tv rate and recombination rate
suffice to explain most of variability, whereas missing rate explains, marginally, only 3% in-
crease in R2. This indicates that the increase in number of SNPs per window is partly explained
by an increase in the number of transitions. Gene density in turn is almost irrelevant, in agree-
ment with our previous results [10]. All variables together explain 52% of variability, which
means that there are still many more factors than those studied here that are relevant for ex-
plaining the number of SNPs per window (Fig. 4c, Table 2).

The results for the Ts/Tv ratio are far more interesting. First, most of variability (61% out of
79%) is explained by CpG count (Table 2); this is likely due to the high instability of methylated
CpG sites, which frequently mutate towards transitions [34]. Further, differences in recombi-
nation rate explain another 14% in R2, whereas the rest of factors are only marginally relevant.
Note that GC% per se, once corrected by the other factors, is not important, nor is gene density.
In all, variability in Ts/Tv rates is fairly well explained (Fig. 4d) by a differential composition in
CpG in the genome and varying recombination rates. Our analyses also suggest, but do not
prove, that the correlation of number of SNPs and Ts/Tv ratio that we observe is likely an indi-
rect consequence of both variables being affected by the same genome features, i.e., recombina-
tion rate and high mutability of CpG rich regions.
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Ancestral allele
The ancestral allele was determined for biallelic (RA only) and monoallelic (AA) SNPs. Follow-
ing the rules detailed in methods, it was possible to determine the ancestral allele for
39,017,375 out of 47,266,056 such SNPs (82%). Of them, 31,939,953 (82%) had the reference
allele as ancestral, whereas the opposite occurred in the remaining SNPs. The number of times
the reference allele is expected to be the ancestral allele can be approximated by the frequency
of the ancestral allele across SNPs in a population of size 2N, where N is the number of individ-
uals analyzed. This frequency q can be obtained from Ewen’s sampling formula,

qN ¼ 1=ðP2N�1

i¼1 1=iÞ. Due to large variability in missing rate (Fig. 2a), the number N to choose
is not clear. Taking N = 100 (the modal sample size, Fig. 2b), the expected frequency of the an-
cestral allele is 0.83 and for N = 128, q = 0.84, i.e., very close to what was observed (82%).

Variants per population group
We calculated the number of variants per group (Table 3). The lowest number of variants was
detected in European Wild Boars, which was also the group with fewest samples, whereas the
highest number of variants was found in the Asian Wild Boars, also the most numerous group,
although at lower average depth (S1 Table, Fig. 2a). Note that the expected number of SNPs (S)
to be detected is proportional to the number of samples sequenced, in a neutral model, E(S) =

Fig 3. Number of SNPs per kb (top), average transition / transversion rate (middle) and CpG count per kb (bottom) per window.On the x axis, each
dot represents a window of ~1Mb long. Different colors correspond to different chromosomes, from SSC1 to SSC18.

doi:10.1371/journal.pone.0118867.g003
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qN θ L, where qN is Ewen’s sampling term, q is nucleotide diversity per base pair, and L, the
length sequenced.

Next, we investigated for how many SNPs the derived allele was specific to one pig group or
shared between two or more groups. To do so, we used the 34,500,122 variants where the an-
cestral allele was identified and called in at least 50% of the pigs in each group. Fig. 5 shows the
results in a Venn plot. A total of 4,052,639 (12%) variants was segregating in all four groups; in
39% of the variants (1,660,106 + 8,089,523 + 3,896,250), the derived allele was present only in
Asian populations, whereas 18% (4,363,064 + 915,532 + 872,262) were exclusive of European

Fig 4. Number of SNPs vs. missing rate (a), and vs. Ts/Tv ratio (b); fitted vs. observed number of SNPs (c) and Ts/Tv (d) using equations 1 and 2,
respectively.

doi:10.1371/journal.pone.0118867.g004
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populations. We found that ~ 9M SNPs were found exclusively in wild boars, whereas ~6.5 M
variants were exclusive of domestics. Not unexpectedly, because of their higher variability com-
pared to European wild boars, Asian wild boar had the highest number of unique variants
(8,089,523 or 23.5% of the variants) and European wild boars, the lowest (only 915,532 or
2.65%). Note, however, that almost none of the SNPs had an exclusive allele fixed in any of the
groups (only 14 in European wild boar, Table 3).

Joint site frequency spectra between populations, that is, how correlated are allele frequen-
cies between populations, is a useful tool to infer demographic parameters (e.g., [35]). Here we
computed the SNP joint site frequency spectrum between population groups: Domestics vs.
Wild within continents and Asia vs. Europe within domestication status. Given that the

Table 2. Multivariate regression estimates for number of SNPs and Ts/Tv ratio.

Number of SNPs / kb

Independent variable Estimate ± SD t-statistics Increase in R2

Ts/Tv rate 0.56 ± 0.03 19.59*** 0.36

Log(rec. rate) 0.34 ± 0.02 18.20*** 0.12

Missing rate -3.12 ± 0.39 -7.90*** 0.03

Gene density -0.12 ± 0.12 -7.69*** 0.01

GC % 0.11 ± 0.03 3.82*** <0.01

CpG count / kb -0.03 ± 0.04 -0.61 <0.01

Sum 0.52

Ts / Tv rate

Independent variable Estimate ± SD t-statistics Increase in R2

CpG count / kb 0.62 ± 0.02 24.18*** 0.61

Log(rec. rate) 0.24 ± 0.01 20.19*** 0.14

N SNPs / kb 0.25 ± 0.03 19.59*** 0.04

Missing rate 0.67 ± 0.27 2.53* <0.01

GC % -0.02 ± 0.02 -1.21 <0.01

Gene density 0.01 ± 0.02 1.14 <0.01

Sum 0.79

All dependent and independent variables are standardized, except percentage of missing values; recombination rates are log-transformed;

*, P<0.05;

***, P<10-3.

Note that variables tend to be significant even if its effect is small because of the large number of observations (windows). For that reason, the increase in

R2 due to each variable is a more useful assessment of its importance.

doi:10.1371/journal.pone.0118867.t002

Table 3. Number of individuals and variants detected per group of populations.

Group Number of individuals used Number of Variants detected Exclusive segregatingvariants Exclusive fixed variants

ASDM 23 26,499,318 1,660,106 0

ASWB 41 35,719,205 8,089,523 0

EUDM 55 29,564,324 4,363,064 0

EUWB 9 12,562,569 915,532 14

Exclusive and fixed variants when filtering by SNPs called in at least 50% of the individuals in each group.

doi:10.1371/journal.pone.0118867.t003
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number of individuals genotyped for each SNP varies, we only considered for these calculations
the SNPs present in the modal group size, that is, for each group, the number of samples n that
contained the maximum number of SNPs genotyped in exactly n samples (Fig. 6). Note that
the spectra are rectangular due to unequal number of samples per group. Comparisons of wild
boar vs. domestics within continents show a diagonal pattern, that is, a positive correlation in
allele frequencies between wild boar and domestics; this is the outcome of domestics being de-
rived from local wild boars in each continent. There are some interesting differences between
Asia and Europe though. In Europe, the pattern is somewhat less marked and with an increased
density of markers at extreme frequencies (very low and very high allele counts). We interpret
this as the result of low effective population size in Europe and the marked divergence of Asia
and European groups. In contrast, the joint spectrum between continents was completely dif-
ferent, a result of the long evolutionary distance that separates Asian from European pigs (> 1
MYA), be it wild or domestics. In this case, the joint spectrum is dominated by alleles at ex-
treme frequencies, particularly in Europe. For instance, consider the lowest and uppermost
rows in ASWB vs. EUWB, they correspond to SNPs that may segregate at intermediate fre-
quencies in Asia, but are singletons in Europe, and make most of the SNPs. This pattern is also
observed when contrasting ASDM vs. EUDM although less marked, likely a result of Asian in-
trogression in EUDM.

Fig 5. Number of exclusive and shared variants in the four groups. In each population, the variant must have been called for at least in 50% of the
sample size.

doi:10.1371/journal.pone.0118867.g005
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Fig 6. Joint site frequency spectra between population groups.Only SNPs found in the modal number of samples per groups were used. In each figure,
x and y axis represent counts of the derived allele from 1 to 2N in each population, where N is the number of samples having the largest number of SNPs
genotyped. Note that a count of 2N in say axis x means that the derived allele is fixed in that population but the same SNP can be segregating in the other
population. The frequency of bivariate counts is represented in colors, with the log-scale as shown in the vertical bar. The more frequent a class is, the lighter
the color, where dark green correspond to rare classes.

doi:10.1371/journal.pone.0118867.g006
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Variant annotation
The 48,119,476 variants called were analyzed by the VeP program (v-76, [23]). We found SNPs
overlapping with 21,455 out of the 25,322 annotated genes and 25,166 transcripts. About half
(22,336,270) of the variants were novel, i.e., not present in dbSNP (build 140), variants. Most of
the SNPs were annotated into intergenic (67.5%) or intronic (29.5%) regions, about 1%
(463,030 SNPs) were annotated into coding regions. On average we found 1,013 SNPs per
gene, including coding and non coding variants, as well as upstream, downstream regions and
intronic variants. The detailed number of variants per category and per chromosome is in Sup-
plementary material S3 Table. Among the 463,030 SNPs annotated into coding regions,
246,976 were synonymous. The most severe variant classes, according to their predicted func-
tional consequences, are listed in Table 4 for all individuals and by group.

Stop gains overlapped 3,502 genes. Of them, 30 had the stop codon as homozygous in all
samples (i.e., the reference allele was not found). The 174 stop lost SNPs found were located in
160 genes, 10 of them had the alternative allele fixed, suggesting a longer protein than that an-
notated or an error in the annotation. A summary description of these genes is in S4 Table.

A total of 168,785 non-synonymous (missense) variants were found in 15,790 genes. SIFT
predictions were obtained from 166,958 of these variants; 29% were predicted to have deleteri-
ous consequences (SIFT score< 0.05) on protein function (S3 Table). By population group,
the percentage of predicted deleterious missense variants ranged from 12% (ASDM) to 28%
(EUDM, S3 Table). We also identified how many SNPs with extreme frequency (>0.8 and
<0.20) differences between wild boar and domestics were synonymous or non-synonymous.
In contrast to Rubin et al., [36], we did not find any over representation of non synonymous
variants in domestics, neither in Europe nor in Asia (S5 Table). The most likely reason for this
discrepancy is that Rubin et al. [36] pooled Asian and European wild boars; if we repeat the
analyses with the same wild boar pool as these authors, we also retrieved an excess of non syn-
onymous mutations in domestic pigs. A further complication for this analysis is that sample
size is quite unbalanced, especially in Europe, so the presence of a new SNP in EWB can largely
sift the population allele frequency.

Table 4. Summary of the SNP annotation results for the most deleterious consequence obtained using VEP.

ALL ASDM ASWB EUDM EUWB

Splice donor variant 1,325 452 538 898 297

Splice acceptor variant 1,280 391 542 887 257

Stop gained 5,224 873 1,373 3,630 739

Stop lost 174 74 98 124 44

Initiator codon variant 359 155 209 237 98

Missense (non-synoynmous) variant 168,785 61,401 83,093 110,565 39,205

Splice Region variant 38,562 18,541 23,852 24,432 9,410

No. potentially deleterious (SIFT<0.05) 48,379 12,918 19,303 30,087 9,011

Total gene variants 21,741,159 10,732,921 14,632,536 12,645,639 4,941,666

Intergenic 33,988,809 17,284,550 23,626,744 21,137,970 7,829,133

Total variants* 48,119,476 25,427,907 34,471,527 29,073,261 11,602,230

Annotation term order is in decreasing order of severity according to Ensembl #.

*Note that the total of intergenic + genic variants is greater than the number of variants because it includes all those variants carrying more than

one allele.
#(http://www.ensembl.org/info/genome/variation/predicted_data.html)

doi:10.1371/journal.pone.0118867.t004
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Discussion

The pig is a highly variable and diverse species
To our knowledge, we present the most comprehensive SNP catalog of any livestock species to
date. Using primarily published sequences, we identified over 48 million variants in the autoso-
mal pig genome, which is more than the 28.3M SNPs recently reported in cattle [4]. Despite
unequal and sometimes shallow coverage, the number of SNPs discovered per Mb was ~19,000
or one per 50 bp. This clearly shows how massive sequencing efforts have the ability to unfold
vast amounts of hidden variability that could not have been detected until now. This work
therefore expands dramatically the catalog of variants that are of potential interest in the pig
breeding industry and beyond, given that the pig is also an important biomedical model. This
effort, it should be noted, refers only to SNPs, similar works remain to be done for structural
variants, mainly CNVs and indels.

Of the 48M identified SNPs, 46% were novel, indicating as well how incomplete are the por-
cine genomic resources available so far. These SNPs overlapped with 21,455 out of the 25,322
pig annotated genes, and we found an average of 1,013 variants per gene. Further, this catalog
was obtained from worldwide samples, domestic and wild, making it an unbiased account of
polymorphism in the species. Simulations suggest that the dataset generated should be highly
reliable, at least for non complex regions where read mapping is not an issue. Simulation of the
NGS pipeline with Pipeliner [26], using exactly the same options and comparable depth for
each of the 128 pig samples, suggest that the SNPs reported are very likely to be real (FDR ~
1%) and that we have uncovered a large percentage of the SNPs segregating in the populations
sequenced. We estimate that, in the best case scenario, excluding NGS mapping problems in
complex genome regions, about 90% of the SNPs segregating in the Asian samples sequenced
and close to 100% for European samples sequenced may have been detected (Fig. 1). At least
for genome regions with good mapping properties, we have likely reported a large part of com-
mon SNPs in the pig species. Aside from genome complexities, It should be noted that, in cur-
rent assembly, still about 8% of genome is estimated to be missing [8] so using an improved
future assembly could even increase the amount of SNPs that can be retrieved from the
same dataset.

Genomic context does matter
As in Drosophila and other species, including pigs [10,37,38], we found a significant correla-
tion between recombination rate and number of polymorphisms, as predicted by models of
hitchhiking and background selection [39,40]. In general, we also found an increased number
of SNPs towards telomeric regions (Fig. 3).

But perhaps the most surprising observation is that this increased number of SNPs is largely
explained by a correlated change in mutational bias Ts/Tv, and not by the percentage of miss-
ing values caused by shallow depth (Fig. 3, Fig. 4b, Table 3). In turn, most of this Ts/Tv bias is
explained by CpG content and recombination rate (Fig. 4d). We are not aware of this phenom-
enon having been reported in other species, and whether this happens in other mammal or
non mammal species should be investigated further. Our analyses suggest that an elevated CpG
content subsequently increases the ratio of transition/transversion caused by methylation and
affecting, indirectly, the number of SNPs.

The pig species has relatively few group exclusive SNPs
Ascertaining SNPs with extreme frequencies between groups is useful for traceability purposes,
and to identify signatures of selection and of domestication. We looked for exclusive variants
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in all pairwise comparisons (ASDM, ASWB, EUDM, and EUWB), and also between domestics
and wild boar between and within continents, setting the minimum sample size to half the
group size per each group. About 4M SNPs were segregating in all groups, suggesting that
these SNPs are very old, prior to divergence between the European and Asian clades that oc-
curred ca 1 MYA or that they were introgressed more recently in European breeds from Asia
[41]. Asian wild boar showed the highest number of private variants (> 8 million, Fig. 5), in
agreement with an Asian origin of the species [6,42], and the larger geographic span of sam-
pling locations in Asia than in Europe. In contrast, less than 1M were exclusive of European
wild boar. Interestingly, there were ~10 times more shared SNPs between domestics (ASDM
vs. EUDM) than between wild boars (ASWB vs. EUWB). This could be due in part to the larger
number of EUDM animals sequenced, but also to the introgression of Asiatic germplasm into
European domestic breeds during late 18th century onwards, which likely has introduced alleles
that had been lost in the European wild boar [43,44].

Higher frequency of potentially deleterious variants in Europe than in
Asia
Annotation is one of the most critical and time consuming aspects of any genome, and that of
the pig is still largely based on in silico automatized procedures. Therefore, the SNPs annota-
tion provided here cannot be considered the definitive annotation; furthermore, about 8% of
the pig genome is thought to be missing from current annotation [8] so these results should be
taken with some caution. Similarly, a low SIFT [25] score cannot be taken as an infallible proof
of damaging status because these algorithms are error prone and also, SIFT is based on the
premise that function and protein evolution are correlated, and rely on protein conservation
though species [24]. Nevertheless, they can serve as guide to prioritize variants that can be of
interest for follow up studies.

With all these caveats in mind, it is nonetheless interesting to remark that we found a higher
proportion of potentially deleterious variants in European Domestics (24%) and European
wild boars (18%) than in Asian pigs (12%, Table 4). Although further works to verify this
should be done, it could be due to the lower effective population size in European populations,
as compared to Asia, which in turn results in natural selection being less effective in purging
deleterious alleles. An alternative explanation would be that artificial selection in European
breeds has resulted in an increase in alleles that are perceived as deleterious by current SIFT al-
gorithms. However, this does not explain the increased frequency of potentially deleterious al-
leles in European wild boar.

Conclusions
We have carried out a large scale data mining effort of currently available pig genomes to un-
cover over 48M autosomal SNPs; a parallel simulation study suggests that false discovery rate
should be very low, at least in genome regions with good 'mappability'. About 40% of the SNPs
had not been reported, which shows how incomplete pig genome resources are. Intriguingly,
we have found a large variability in mutational bias (transition / transversion rate) along the
pig genome that is primarily explained by differences in CpG content and recombination rate.
As for number of SNPs per kb, it is relatively insensitive to the rate of missing values and it de-
pends mainly on Ts/Tv and recombination rates. The pig is a species with a very complex de-
mographic history, where European and Asian branches isolated ~1 MYA only to be crossed in
modern times to result in the most widely used pig breeds worldwide. As a result, there exists a
relatively small percentage of SNPs that are exclusive of these European breeds compared to
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other populations. In contrast, the differences between Asian and European wild boars are
much higher.

Ethics statement
DNA samples and genome analyses from all samples in this work have been published previ-
ously, and we refer to the original works for details [8–10,12,13,36,37]. DNA samples were ob-
tained from blood samples collected according to national legislation, from tissue samples
from animals obtained from the slaughterhouse, or from semen. For Spanish samples in partic-
ular, animal manipulations were performed according to the Spanish Policy for Animal Protec-
tion RD1201/05, which meets the European Union Directive 86/609 about the protection of
animals used in experimentation.
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(SH)

S1 Fig. Simulated evaluation of expected genotype recovery (a) and sensitivity (b), error
types for heterozygous genotypes (c), heterozygous genotype false discovery rate (d), error
types in homozygous for the alternative allele (e), false discovery rate for homozygote alter-
natives alleles (f). RR = genotyped as homozygous for the reference; AA = genotyped as homo-
zygous for the alternative; RA = genotyped as heterozygous.
(TIFF)

S2 Fig. Genomewide distribution of standardized statistics by windows of ~1Mb.N SNPs,
total number of SNPs per window; Ts/Tv, transition / transversion rate; CpG, number of CpG
counts; log rec. rate, logarithm of recombination rate in cM/Mb from Tortereau et al.
(TIFF)

S1 Table. Details of samples analyzed. ASDM, Asian Domestics; ASWB, Asian Wild Boar;
EUDM, European Domestics; EUWB, European Wild Boar; N, number of samples; Average
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