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Abstract 1 

The pathological importance of mixed viral infections in plants might have been 2 

underestimated except for a few well-characterized synergistic combinations in certain 3 

crops. Considering that the host ranges of many viruses often overlap, and that most 4 

plant species can be infected by several unrelated viruses, it is not a surprise to find 5 

more than one virus simultaneously in the same plant. Furthermore, dispersal of the 6 

great majority of plant viruses relies in quite efficient transmission mechanisms 7 

mediated by vector organisms, mainly but not exclusively insects, that can contribute to 8 

the occurrence of multiple infections in the same plant. Recent works using different 9 

experimental approaches are showing that mixed viral infections can be remarkably 10 

frequent, up to a point that they could be considered the rule more than the exception. 11 

The purpose of the present review is to describe the impact of multiple infections, not 12 

only on the participating viruses themselves, but also on their vectors and on the 13 

common host. From this standpoint, mixed infections arise as complex events that 14 

involve several cross-interacting players, and consequently require a more general 15 

perspective than the analysis of single-virus/single-host approaches for a full 16 

understanding of their relevance. 17 

[194 words] 18 

 19 

Introduction 20 

The diversity of viruses is extraordinary, with virtually all kind of cellular life forms 21 

being susceptible to be parasitized by many different viruses, and obviously, plants are 22 

not an exception (Wolf et al., 2018). Plant viruses are grouped in numerous families 23 

(about 30) and genera (more than 145), with an extraordinary diversity, what makes 24 

them one the most abundant group of pathogens (near 1500 species listed in the last 25 

report of the International Committee on Virus Taxonomy ICTV, available at 26 

https://talk.ictvonline.org/files/master-species-lists/m/msl/8266 ), being responsible 27 

for a large number of all known plant diseases. Nowadays, our knowledge of the 28 

virosphere is facing a major challenge to classify and accommodate many recently 29 

discovered viruses (Koonin and Dolja, 2018; Zhang et al., 2019). One of the reasons 30 

explaining why this enormous diversity was somehow overlooked until now comes from 31 

the fact that attention was mostly focused on agents of diseases, and in the case of 32 
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plants, only viruses causing economic losses in crops and ornamentally valuable species 1 

have been deeply studied for decades. A particularly interesting case of this tendency to 2 

bias our knowledge is the frequent existence of mixed infections in plants occurring 3 

when they invade the same host. This common situation was clearly underestimated in 4 

available studies, with not so many reported examples, despite the fact that many plant 5 

viruses are generalists and thus able to infect different plants, both crops and wild plants 6 

(Alexander et al., 2014; Elena et al., 2009). Furthermore, many vectors of plant viruses 7 

are polyphagous, or are organisms associated with multiple hosts, being capable to 8 

transmit more than one virus to the same plant (Syller, 2014). All these conditions argues 9 

in favor of a more frequent presence of multiple viruses in plants, and indeed 10 

metagenomics approaches using high-throughput next generation sequencing 11 

techniques have started to reveal the real extent of mixed infections between known 12 

and occasionally unknown viruses in the virome in plant hosts, either wild plant or crops 13 

(Mascia and Gallitelli, 2016; Rwahnih et al., 2009; Roossinck et al., 2010; Roossink et al., 14 

2015). Since the field of plant virology in the coming years will be undoubtedly 15 

dominated by a much more frequent detection of mixed viral infections, we think it is 16 

timely to review what it is known about them, acknowledging that they can be quite 17 

complex, and that their establishment relies not only on the properties of each one of 18 

the actors involved (viruses, common host, and vector(s)), but also (maybe mainly) on 19 

the relationship and interactions between them. Moreover, other layers of complexity 20 

can be added to the multiple viral infections up to the ecological sphere, as the presence 21 

of natural enemies of the vectors, or the influence of non-viral pathogens in the host 22 

plant. However, those aspects are explored elsewhere and will not be addressed in the 23 

present review (Dáder et al., 2012; Jeger et al., 2011a, 2011b; Prager et al., 2015). 24 

Similarly, the importance of multi-pathogenic attacks (Abdullah et al., 2017) and even 25 

the combination of biotic and abiotic stresses in more holistic approaches (Saijo and Loo, 26 

2019) are bringing the attention of researchers. Nevertheless, we are going to 27 

concentrate here in the combination of heterologous viruses, although it is important 28 

to keep in mind that these cases are only a subset of many other putative relationships 29 

between the numerous sources of stress that plant must face. 30 

Some mixed viral infections known up to date are the origin of huge economic 31 

losses in important crops worldwide, as they cause a decline in plant vigor and 32 
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productivity. Logically, these cases have been studied in depth. As a first example, the 1 

corn or maize lethal necrosis (MLN) disease that affect one the main crop species in the 2 

world, causing economically devastating losses. This disease results from the 3 

combination of the Machlomovirus Maize chlorotic mottle virus (MCMV) and different 4 

members of the family Potyviridae (Mahuku et al., 2015; Redinbaugh and Stewart, 2018; 5 

Stewart et al., 2017; Scheets, 1998; Uyemoto et al., 1980). 6 

The sweet potato viral disease (SPVD) is another good example of the 7 

consequences of a well-characterized mixed viral infection (Clark et al., 2012). Sweet 8 

potato is considered a crop essential for food security in extended areas, as it is a basic 9 

dietary component for large populations in China and Africa. One of the peculiarities of 10 

sweet potato compared to other crops relays in its rapid multiplication by vegetative 11 

propagation of cuttings, a rather beneficial agronomic trait that implies a high risk of 12 

accumulating pathogens, in particular viruses. Probably most marketable sweet 13 

potatoes are infected simultaneously by several viruses of the remarkable large list of 14 

over 30 different viruses that can infect this plant. The SPVD results from the synergistic 15 

interaction of isolates of the crinivirus Sweet potato chlorotic stunt virus (SPCSV) and the 16 

potyvirus Sweet potato feathery mottle virus (SPFMV), and can cause losses up to 90% 17 

of the crop yield (Karyeija et al., 2000). Another well-known viral combination in the 18 

same crop is the sweet potato severe mosaic disease (SPSMD), caused again by a 19 

synergism between SPCSV and the ipomovirus Sweet potato mild mottle virus (SPMMV) 20 

(Mukasa et al., 2003; Tugume et al., 2005). 21 

Cassava is also another important staple food crop with a high incidence of 22 

multiple viral infections. Again, the vegetative propagation is often perpetuating 23 

infections by many viruses (Jacobson et al., 2018; Legg et al., 2015; Rey and 24 

Vanderschuren, 2017; Zinga et al., 2013). Recent research works are revealing some viral 25 

combinations particularly complex in this host (Abarshi et al., 2012; Carvajal-Yepes et 26 

al., 2014; Reddy et al., 2012). 27 

A last example of a crop with important problems caused by multiple viruses is 28 

grapevine. In this case, the cultivation method relying on grafting and propagation of 29 

clonal varieties also can favor mixed infections. Currently, approximately 70 virus and 30 

virus-like agents have been documented in different grapevine cultivars worldwide 31 

(Martelli, 2014). The grapevine leafroll disease (GLD) is an extreme example of a multiple 32 
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viral infection, as it is a complex disease caused by the association of up to eleven 1 

Grapevine leafroll-associated viruses (GLRaVs) (Naidu et al., 2014, 2015). 2 

Although all these examples, together with the above mentioned new 3 

knowledge that metagenomics approaches are bringing to the surface, reveal that mixed 4 

infections occur in a high frequency, a vast number of research efforts in plant virology 5 

still deal only with single infections. This might respond to the difficulties and constraints 6 

of working with several pathogens at the same time from a methodological standpoint, 7 

and also to the tendency to simplify questions, a logical first approach to any 8 

scientifically-oriented endeavor. Undoubtedly, the field of plant virology has been (and 9 

still is) particularly successful to provide novel and valuable knowledge that extends to 10 

the adoption of valid control measures against many viral diseases. But in most cases 11 

there are still complexities that remain to be elucidated, and we believe it is timely to 12 

recognize the importance of mixed viral infections. Here we try to summarize a selection 13 

of the most relevant literature available about the topic, with emphasis on the outcomes 14 

for each one of the players involved, and focusing mainly on plant viruses transmitted 15 

by insects, as they represent the major group of plant virus vectors. Nevertheless, we 16 

include a few examples of viruses disseminated through contact, or even several cases 17 

in which subviral agents participate in multiple infections. The review has been 18 

organized in three parts, referring to the impact of mixed infections to viruses, vectors 19 

and host plants. However, as a cautionary warning, this separation was adopted only to 20 

facilitate the classification of topics, and it is important to keep in mind that mixed 21 

infections often relies in the participation of the three mentioned players. Thus, the 22 

expected effects of mixed infections most probably will have consequences to each one 23 

of the players, as represented schematically in figure 1. A concluding remarks section 24 

includes a general discussion on the implications of mixed viral infections, addressing 25 

their importance for the ecology of viruses, and for the control strategies against viral 26 

pathogens. 27 

 28 

Impact on viruses 29 

During a mixed viral infection, the viruses involved may interact between them 30 

in a range that goes from synergism to neutralism to antagonism, having a direct impact 31 

into the plant host, and also potentially in their relationships with vector organisms. The 32 
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outcome would depend on the different aspects and parameters evaluated, such as the 1 

inside-host interactions between viruses, or the virus adaptation to the host (Mascia and 2 

Gallitelli, 2016; Syller, 2012). When there are no changes in viral accumulation (or their 3 

dynamics) during the mixed infection compared to the single infections with the 4 

individual viruses, the interaction is often called neutral, and the phenotypes (or 5 

symptoms in broad sense) can be the same as those observed in single infections, 6 

instead of the frequent occurrence of host affectations with additive symptom 7 

expression (Mascia and Gallitelli, 2016). On the other hand, if there are differences 8 

between the single and the mixed infections, the interactions can be classified as 9 

synergistic or antagonistic. 10 

In a synergistic interaction, at least one of the viruses is beneficed by the 11 

presence of the other(s), what is manifested by an increase in the viral titer and/or 12 

pathogenicity (or other supra-level properties, like the capacity to disseminate 13 

efficiently by the vector organism) when compared to a single infection. The resulting 14 

symptoms are often more severe than those observed in single infections of the same 15 

viruses. There are several reasons that could explain, individually or combined, this 16 

effect (see figures 2 and 3 for schematic representations). It can be caused by an 17 

increase in replication; or by the possibility to invade new plant tissues; and even by the 18 

interference with plant defenses (particularly, but not necessarily unique, with post-19 

transcriptional gene silencing mechanisms). Consequently, synergisms may have a high 20 

economic impact when occurring in crops because the resulting diseases are likely to 21 

become more severe. As an example we can cite the serious epidemic of cassava mosaic 22 

disease, caused by a mixed infection between isolates of African cassava mosaic virus 23 

(ACMV) and the Uganda strain of East African cassava mosaic virus (EACMV-UG), both 24 

from the genus Begomovirus, and leading to huge annual economic losses (Legg and 25 

Fauquet, 2004). Many other cases are mentioned in Table 1. A frequent combination of 26 

synergistic interaction involves a potyvirus with different unrelated viruses, in most 27 

cases clearly favoring the second (Pruss et al., 1997), with the involvement of the potent 28 

RNA silencing suppressor HC-Pro of potyviruses (Valli et al., 2018). Interestingly, an 29 

exception is the SPVD mentioned in the introduction, where the potyvirus partner 30 

SPFMV is the one that benefits from the presence of the crinivirus SPCSV (Karyeija et al., 31 

2000), and in this case it was observed that the RNA silencing function of SPFMV was 32 
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shifted to a different gene product other than HC-Pro (Mingot et al., 2016; Untiveros et 1 

al., 2016). 2 

There are some particularities in the interactions leading to conceptually clear 3 

synergisms that not always are easy to identify such as that, because they affect traits 4 

beyond the measurable viral load. For instance, one kind of synergism could be the so 5 

called helper dependence, in which one of the viruses involved is defective in one or 6 

more essential functions that in turn can be supplied by the other virus, the helper, 7 

acting as a provider or facilitator (Mascia and Gallitelli, 2016). In an extreme situation of 8 

this, one virus might become a sort of parasite of the other, such as in the interaction 9 

between Groundnut rosette virus (GRV), its satellite RNA (satRNA) and Groundnut 10 

rosette assistor virus (GRAV) that together causes the Groundnut rosette disease (GRD): 11 

GRV and its satRNA depend on the coat protein of GRAV to be encapsidated and 12 

transmitted by the aphid vector Aphis craccivora (Murant, 1990). Another similar 13 

situation is the vector-mediated transmission by complementation in trans, also named 14 

heterologous complementation, or transcomplementation. In certain viruses, such 15 

potyviruses and caulimoviruses, there are non-structural proteins denominated helper 16 

components that are needed for vector transmission, acting as specific molecular 17 

bridges between the virus particles and the vector (Pirone and Blanc, 1996). It has been 18 

observed in mixed infections involving potyviruses and other unrelated viruses that 19 

these last ones may benefit from the action of helper components to be transmitted. 20 

For instance, Potato aucuba mosaic virus (PAMV) is the only known member of the 21 

genus Potexvirus that can be transmitted by aphids thanks to transcomplementation 22 

when present in a mixed infected plant together with a potyvirus (Kassanis, 1961; 23 

Manoussopoulos, 2001). 24 

Contrarily to the cases mentioned, in the frame of an antagonistic interaction 25 

the presence of more than one virus results detrimental for at least one of them, for 26 

instance with a measurable decrease in the viral load. In general it has been postulated 27 

that most of the described antagonisms need the interaction, direct or indirect, between 28 

proteins from the viruses involved in the mixed infection (DaPalma et al., 2010; Díaz-29 

Muñoz, 2019). Comparing to synergistic interactions there are less examples of 30 

antagonism, as expected because attenuation instead exacerbation is more likely to 31 

remain unnoticed. Furthermore, in a theoretical situation of synergism plus antagonism 32 
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(as in the last column of the lower panel in figure 1), it is more likely that the outcome 1 

were described as synergistic for the enhanced virus, simply because not enough 2 

attention was paid to the alleviated partner. As well documented examples, we can 3 

mention the suggested antagonism between isolates of Potato virus X (PVX) and Potato 4 

virus Y (PVY) in tobacco (Ross, 1950), and the recent work in papaya with mixed 5 

infections between isolates of Papaya ringspot virus (PRSV) and Papaya mosaic virus 6 

(PapMV) (Chávez-Calvillo et al., 2016). Also we can mention the antagonism observed in 7 

tomato between isolates of Tomato torrado virus (ToTV) and Pepino mosaic virus 8 

(PepMV), where the severity of ToTV symptoms was unaffected, but differences in virus 9 

accumulation were observed in mix-infected plants with the titer of ToTV slightly 10 

increased in the early moments of the infection, whereas that of PepMV was strongly 11 

reduced at all time-points, including a pronounced decrease at later times. In this case, 12 

effects on the epidemiology of viruses have been reported (Gómez et al., 2009, 2010). 13 

As an additional case, in Nicotiana benthamiana plants an antagonism was reported 14 

between two tobamoviruses, Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic 15 

virus (TMV), with decreased levels of HLSV if compared with a single infection, whereas 16 

those of TMV remained almost unaltered (Chen et al., 2012). 17 

An interesting type of antagonistic interaction is the cross-protection, also 18 

known as homologous interference or super-infection exclusion that takes place when 19 

the presence of one virus prevents or interferes with a subsequent infection by another 20 

virus generally, but not exclusively, homologous (Syller and Grupa, 2016). In the context 21 

of agricultural activity, cross-protection can be very useful for biological control against 22 

viral diseases, mainly in cases where no genetic resistance mechanisms are known, or 23 

they cannot be easily implemented. In such scenario, avirulent or mild protecting viruses 24 

can be inoculated in crop plants to prevent aggressive viral infections in the field, acting 25 

as a kind of “vaccine” and reducing economic losses. Successful cases of cross-protection 26 

are the control of Citrus tristeza virus (CTV), Zucchini yellow mosaic virus (ZYMV) and 27 

Papaya ringspot virus (PRSV) (Ziebell and Carr, 2010). 28 

An important factor that influences the outcome of a mixed infection is at which 29 

moment the viruses arrive and infect the host. Co-infection is defined when the viruses 30 

simultaneously infect the host, arriving at roughly the same time, whereas super-31 

infection refers to mixed infections where the viruses arrive at different moments 32 
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(Saldaña et al., 2003). In nature, occurrence of each one depends on the viral density 1 

and the number of healthy hosts available during the epidemic episode: at the 2 

beginning, with low viral densities and high number of uninfected plants, the occurrence 3 

of co-infections can be favored; later, as the diseases spread and the numbers of healthy 4 

host plants decrease gradually whereas the viral density increases, super-infections 5 

become more frequent (Moya et al., 2001; Saldaña et al., 2003). The moment of 6 

infection might influence virus evolution, through its impact on virus fitness, that 7 

increases in co-infections but does not differs from a single infection situation in super-8 

infections (Moya et al., 2001). Also, the outcome of super-infections may be dramatically 9 

influenced by aspects as the order of infection with the viruses involved, and the time-10 

frame between the infections, and for both co-infections and super-infections, 11 

differences in the capacity of viruses to invade or not certain tissues have been 12 

observed. Next, a series of examples are provided to illustrate the different outcomes 13 

that can result. 14 

In the previously mentioned work in papaya, the outcome of the mixed infection 15 

was different when the plant was infected first with PapMV and then with PRSV, causing 16 

the antagonism mentioned, whereas if the order was the inverse, or if the viruses arrived 17 

simultaneously, the result was a synergism (Chávez-Calvillo et al., 2016). Similarly, the 18 

example given above of an antagonistic interaction between HLSV and TMV occurred in 19 

the frame of a co-infection, but authors mentioned that in a super-infection the 20 

presence of HLSV protected the host  against a late arrival of TMV, thus acting in practical 21 

terms as a cross-protection event (Chen et al., 2012). Another example of conditional 22 

outcome derives from one of the first synergisms described: tobacco plants infected 23 

with isolates of Potato virus Y (PVY) and Potato virus X (PVX) (Goodman and Ross, 1974; 24 

Smith, 1931; Vance, 1991). When PVX was inoculated on a tobacco previously infected 25 

with PVY, the levels of accumulation of PVX increased considerably compared with the 26 

single infected control. However, this synergism was compromised if the time between 27 

the infections with the two viruses was higher than 24 hours, and some years later, it 28 

was demonstrated that the silencing suppressor of the potyvirus PVY (HC-Pro) was one 29 

of the factors involved in the outcome of the synergism (González-Jara et al., 2005). As 30 

a final example of the different relationships occurring between viruses in mixed 31 

infections, we can cite a work in tomato plants involving mixed infections of Tomato 32 
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chlorosis virus (ToCV) and Tomato spotted wilt virus (TSWV) that resulted in a synergism 1 

that even can end with the death of susceptible plants. In those plants there was a high 2 

increase of ToCV accumulation whereas the levels of TSWV remained unaltered. Co-3 

infection of TSWV-resistant plants with ToCV did not alter the resistance behavior of the 4 

plants, however, and most interestingly, when the resistant plants were challenged in a 5 

super-infection, with ToCV arriving before TSWV, the resistance was lost. This 6 

observation suggested that ToCV might need a certain time to affect the defense 7 

response in the resistant plants, such as requiring enough time to express some proteins 8 

acting as suppressors of RNA silencing, or to reach a certain accumulation level (García-9 

Cano et al., 2006). However, the interference with the plant defense mechanisms by 10 

viral proteins is probably not the only component that determines if an interaction will 11 

be synergic or antagonistic: some proteins may facilitate the replication, inter-cellular 12 

movement and/or the inside-host spread of the other virus (Elena et al., 2014).  13 

Mixed infections by the same combination of viruses but in different host plants 14 

may also lead to different outcomes, for instance in the virus accumulation levels, the 15 

affectations to the host, and the transmission by vector organisms. We will consider 16 

these aspects in different sections, but it is relevant to stress that virus-virus interactions 17 

are highly dependent of the environment (i.e, the common host) where they are present 18 

together. As an example, we can cite a mixed infection between two criniviruses, 19 

Tomato chlorosis virus (ToCV), and Tomato infectious chlorosis virus (TICV) in two 20 

different host plants: Physalis wrightii and Nicotiana benthamiana (Wintermantel et al., 21 

2008). Compared to single infections, the titer of both viruses decreased in mixed 22 

infections of P. wrightii, whereas in N. benthamiana TICV titers increased and ToCV 23 

decreased. Vector transmission efficiencies by Trialeurodes vaporariorum were directly 24 

correlated to the accumulation levels of both viruses, with more transmission of TICV 25 

from mixed infected plants (this case fits in the proposed effect of the last column in 26 

figure 1). Even more interestingly, the vector Trialeurodes abutilonea was able to 27 

transmit TICV from mixed infected plants, even if it was described as non-vector for this 28 

virus alone (Duffus et al., 1996). This suggests that a complementation for transmission 29 

might have taken place, with ToCV providing one or more factors necessary for the T. 30 

abutilonea–TICV association and subsequent transmission, in a process independent of 31 

host factors as the virus was transmitted from both hosts (Wintermantel et al., 2008). 32 
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The interaction between viruses inside a host cell (as represented schematically 1 

in figure 2) can be highly influenced by the multiplicity of infection (MOI) that indicates 2 

the number of viral genomes present in the same cell (Gutiérrez et al., 2010). There are 3 

some indications that the MOI is controlled by virus-encoded functions, such as the 4 

suppression of RNA silencing mechanisms (Donaire et al., 2016). In mixed infections of 5 

N. benthamiana with two genotypes of TMV, it was observed that the MOI was higher 6 

at initial stages, and then changed (Gonzalez-Jara et al., 2009). Determining the values 7 

of MOI and how are they regulated can help to decipher the relationships between 8 

dynamics of virus populations and the control of genome copy numbers (Gutiérrez et 9 

al., 2012). Beyond the cellular level but closely related with this topic, is the tissue 10 

tropism or the specificity of each virus to infect only some cell types or tissues (Mascia 11 

and Gallitelli, 2016). During infection of a host plant, viruses could be found in different 12 

cells, from all types, to only those found in vascular tissues, or exhibit for instance 13 

restrictions to enter meristems or invade seeds. In the case of mixed viral infections, we 14 

could expect modifications and changes in host responses that might condition the 15 

pathology of the viruses involved. These responses, for instance, might alter the tissue 16 

tropism, a phenomenon observed mainly in phloem restricted viruses (Mascia and 17 

Gallitelli, 2016). In single infections of Nicotiana benthamiana plants, Tomato yellow 18 

spot virus (ToYSV) localizes in mesophyll cells, while Tomato rugose mosaic virus 19 

(ToRMV) is restricted to the phloem. However, when the plant is infected by both 20 

viruses, the localization of ToRMV changes, and the virus becomes able to invade 21 

mesophyll cells as well (Alves-Júnior et al., 2009). Also in N. benthamiana, the  mixed 22 

infections between isolates of the potyvirus Potato virus A (PVA) and the luteovirus 23 

Potato leaf-roll virus (PLRV) allows the last one to infect all cell types in leaves, whereas 24 

in single infection it is restricted to the phloem. A possible explanation would be that 25 

movement proteins from PVA could complement movement deficiencies of PLRV 26 

(Savenkov and Valkonen, 2001). Similarly, in Nicotiana clevelandii and N. benthamiana 27 

plants mix-infected with PLRV and the umbravirus Pea enation mosaic virus-2 (PEMV-2), 28 

PLRV gained the capacity to be mechanically transmitted as it could be located in 29 

mesophyll cells. Again, a modification in the cell-to-cell movement and the interference 30 

with the host RNA silencing mechanisms by the PEMV-2 may explain this observation 31 

(Ryabov et al., 2001). Additional examples of similar outcomes are: the mixed infection 32 
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by the begomovirus Abutilon mosaic virus (AbMV) and either the potyvirus Cowpea 1 

aphid-borne mosaic virus (CABMV) or the tombusvirus Artichoke mottled crinkle virus 2 

(AMCV), that provoked occasionally the localization of AbMV in other tissues than the 3 

phloem (Sardo et al., 2011), and the case of a movement-deficient strain of CMV in 4 

zucchini squash assisted in systemic spread by co-infection with a strain of the potyvirus 5 

Zucchini yellow mosaic virus (ZYMV) (Choi et al., 2002). 6 

Besides these modifications in tissue tropism and virus distribution within the 7 

host, in some cases the mixed viral infection can even alter the host range. An example 8 

is the case of two sobemoviruses, Southern cowpea mosaic virus (SCPMV) and Southern 9 

bean mosaic virus (SBMV), that can infect Vigna unguiculata (cowpea) and Phaseolus 10 

vulgaris (common bean) respectively but not reciprocally. Even if the genomic RNA of 11 

SCPMV can replicate in bean cells, it cannot assembly viral particles. However, in co-12 

infection with SBMV it was observed that SCPMV accumulated in an encapsidated form 13 

both in inoculated and systemic bean leaves. Nevertheless, when the experiments were 14 

performed inversely, authors observed that SCPMV did not complement the host range 15 

restriction of SBMV in cowpea. Thus, the presence of SBMV modified the host range of 16 

SCPMV allowing it to infect bean, but SCPMV did not alter the host range of SBMV, as it 17 

was unable to infect cowpea (Hacker and Fowler, 2000). 18 

 19 

Impact on vectors 20 

Vectors are key players in many virus life-cycles, as a majority of plant viruses 21 

rely on them for dispersion and existence along time. The virus transmission process by 22 

a vector organism involves host-finding, acquisition (often through feeding, as in the 23 

case of phytophagous vectors), transport, and finally inoculation or delivery of virus to 24 

a new host plant. As the mobile partners in a plant-virus-plant interaction leading to 25 

dispersal of infection, the vectors can show preferences for different host plants, where 26 

to acquire first, and to inoculate later, and that will condition the virus spread process. 27 

The importance of mixed viral infections in the aphid-transmission of plant viruses was 28 

already reported in a review article rich in examples (Rochow, 1972), dealing with points 29 

like the behavior of vectors, or even recombination and transcapsidation events. All 30 

these key concepts might have an impact on virus evolution. 31 
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Additionally, some recent works are showing that the vector behavior and/or 1 

physiology can be influenced by changes in the plant induced by viruses, what can in 2 

turn condition the spread and epidemiology of the viruses (Bosque-Pérez and 3 

Eigenbrode, 2011; Bak et al., 2017). Therefore, in the case of mixed infections, the 4 

possibility of manipulative strategies needs to be considered. For instance, a surprisingly 5 

example of vector manipulation by viruses was described in rice plants, and reflects the 6 

relationships of two reoviruses, Southern rice black-streaked dwarf virus (SRBSDV) and 7 

Rice ragged stunt virus (RRSV) with their insect vectors: the white-backed planthopper 8 

(WBPH, Sogatella furcifera) transmits SRBSDV, while the brown planthopper (BPH, 9 

Nilaparvata lugens) transmit RRSV (Wang et al., 2014). Preference assays using a Y-10 

shape olfactometer-based device demonstrated that plants infected with SRBSDV 11 

modified the behavior not only of its vector WBPH, but also of the non-vector BPH. Virus-12 

free WBPH were more attracted to infected plants than viruliferous insects, and 13 

viruliferous insects were more attracted to healthy plants than to infected ones: this 14 

result is consistent with manipulation of the vector to increase virus spread through 15 

virus-induced host modifications. Interestingly, the preference assays with BPH, a non-16 

vector of SRBSDV, showed only preference of rice plants infected with SRBSDV over a 17 

healthy plant, when they were viruliferous for RRSV, therefore favoring the occurrence 18 

of mixed infections. Further experiments are needed to elucidate the mechanisms 19 

involved in this behavior, and explain why viruses may manipulate host selection in 20 

order to favor the existence of mixed infections. 21 

The apparent manipulation of the vector by the virus often triggers an increase 22 

in the transmission rates, and consequently in the virus spread, what assures the 23 

existence of the virus species in the long term. In other words, virus acquisition will be 24 

increased by vector attraction to infected plants, and transmission will be improved by 25 

attraction to healthy plants where the virus can be inoculated. This concept is known as 26 

the vector manipulation hypothesis, and it was proposed to explain the different 27 

approaches employed by the pathogen to enhance its dissemination (Ingwell et al., 28 

2012). The virus may influence directly the vector and modify its behavior, mainly in 29 

viruses that are transmitted in a persistent way while the virus is inside the body of the 30 

vector, as in the case of the thrips Frankliniella occidentalis (Pergande) feeding behavior 31 

altered when infected by the tospovirus Tomato spotted wilt virus (TSWV): infected 32 
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males feed more than uninfected ones, thus increasing the possibility of virus 1 

inoculation (Stafford et al., 2011). This proposed general concept is still awaiting further 2 

studies to verify how common it is, and especially it will be interesting to measure 3 

transmission efficiencies and vector behavior parameters in mixed infections. For 4 

instance, a recent research effort in our laboratory has incorporated measurements of 5 

aphid feeding behavior through Electrical Penetration Graphs (EPG), finding that a 6 

particular sub-phase related with virus acquisition was prolonged by aphids feeding on 7 

melon plants co-infected by the potyvirus Watermelon mosaic virus (WMV) and the 8 

crinivirus Cucurbit yellow stunting disorder virus (CYSDV), compared to single infected 9 

controls. Interestingly, this behavior might compensate a reduction in WMV load, thus 10 

assuring efficient transmission of the potyvirus (Domingo-Calap, Moreno, Diaz-Pendón, 11 

Moreno, Fereres and López-Moya, submitted). 12 

Also, viruses may influence indirectly the vectors by modifications in the host 13 

infected plant that will have an impact on the vector (Dietzgen et al., 2016). The 14 

manipulations exerted by the viruses often result in a positive or neutral effect on the 15 

transmission by vectors, and are similar between different viruses depending on their 16 

mode of transmission (described in more detail in the next section) (Mauck et al., 2012). 17 

As an example we can cite the mixed infection of Potato virus Y (PVY) and Potato leafroll 18 

virus (PLRV) in potato plants that altered the performance of their most effective 19 

vectors, the aphids Myzus persicae and Macrosiphum euphorbiae. It was seen that for 20 

both vectors the fecundity increased in mixed infected potato plants, as well as their 21 

preference for those plants (Srinivasan and Alvarez, 2007). According to the authors, this 22 

behavior could be explained, at least in part, by an increase of sugars and amino acids 23 

in the phloem as a result of an inhibited phloem transport in mixed-compared to single-24 

infected plants. Additionally, it is likely that, when together, both viruses manipulate 25 

somehow the plant to make it more attractive to the insects by visual and olfactory 26 

clues. As mixed infections of those viruses are quite frequent in potato plants, the quality 27 

of hosts and the behavior of vectors during this interaction could have important 28 

epidemiological repercussions (Chatzivassiliou et al., 2008). Another example of this 29 

kind of multiple-level interactions involving vectors is provided by the above mentioned 30 

mixed infection of WMV and CYSDV in melon: our work showed a late time recovery 31 

phenotype of the mix-infected plants after a first onset of strong synergistic damage, 32 
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resulting in a better condition and development, and thus resulting in more foliage 1 

surface available for acquisition of the viruses by vectors (Domingo-Calap, Moreno, Diaz-2 

Pendón, Moreno, Fereres and López-Moya, submitted). 3 

An interesting feature related with mixed infections is that some viruses gain the 4 

ability to be transmitted by vectors that are not their natural vectors when they are 5 

infecting alone a susceptible plant. As we already mentioned, the case of PAMV showed 6 

that a virus belonging to a taxonomic group, potexviruses, characterized by only contact 7 

dissemination, can acquire an efficient vector-mediated transmissibility during mix-8 

infection with a potyvirus. The key molecular feature here was the presence of a 9 

conserved motif DAG, typical of potyviruses, in the potexvirus, as demonstrated in an 10 

elegant work through mutagenesis of the PVX CP to engineer the same aphid-11 

transmissibility feature (Baulcombe et al., 1993). 12 

Acquisition of new vector capacities was seen also in mixed infections by viruses 13 

from the family Luteoviridae, or in co-infections of unrelated viruses with a luteovirus. 14 

The general phenomenon can be named genomic masking or transcapsidation, and 15 

basically consist in a viral genome being encapsidated by the capside of other virus 16 

present at the same time in the plant, generating a sort of chimeric new entity with 17 

shared properties (represented in figure 2 by orange+blue or blue+orange virus 18 

particles). Examples of this were observed in mixed infected plants in which a virus 19 

gained transmissibility by different species of vectors. For instance, the aphid Sitobion 20 

avenae is a good vector of the MAV strain of the luteovirus Barley yellow dwarf virus 21 

(BYDV-MAV) in single infections, while the aphid Rhopalosiphon padi specifically 22 

transmit the strain RPV of the polerovirus Cereal yellow dwarf virus (CYDV-RPV). 23 

However, in plants mix-infected by both viruses, BYDV-MAV became transmissible also 24 

by R. padi, because the RNA of BYDV-MAV was encapsidated inside CYDV-RPV capsids, 25 

what conferred the transmissibility by R. padi (Creamer and Falk, 1990; Rochow, 1970). 26 

Similar results were described in oat and wheat mixed infected by two strains of BYDV 27 

(BYDV-MAV and BYDV-PAV), where besides transcapsidation, alterations in transmission 28 

specificity and synergism in symptoms where observed (Baltenberger et al., 1987; 29 

Creamer and Falk, 1990). 30 

The transcapsidation phenomenon is not restricted to luteovirus, and was also 31 

observed in viruses of the genus Umbravirus and some luteovirus-associated RNAs 32 
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(specific sub-viral RNA replicons) that do not encode for a capsid protein. Their aphid-1 

transmission capacity is absolutely dependent on the transcapsidation with other co-2 

infecting luteovirus (Syller, 2000; Casteel and Falk, 2016).  3 

It is worth mentioning here a related situation known as heteroencapsidation, 4 

where a virus genome can acquire partially the properties of the particles of another 5 

one through heterologous encapsidation. For instance, electron microscopy was used 6 

to demonstrate that a non-aphid-transmissible isolate of the potyvirus Zucchini yellow 7 

mosaic virus (ZYMV) can produce heteroencapsidated particles in mixed infection with 8 

the potyvirus Papaya ring spot virus (PRSV), and thus being efficiently transmitted  by 9 

aphids (Bourdin and Lecoq, 1991). Other well documented examples involves whitefly-10 

transmitted begomovirus from the family Geminiviridae, where the frequent 11 

recombinations that occurs during mixed infections are one of the main sources of 12 

variability in this genus. To cite one case of heteroencapsidation, in a mixed infection 13 

between Tomato leaf curl Palampur virus (ToLCPalV) with Tomato leaf curl New Delhi 14 

virus (ToLCNDV) in tomato and cucurbits, it was demonstrate the whitefly transmission 15 

of recombinants (Kanakala et al., 2013). From an epidemiological point of view, these 16 

transcapsidation events occurring in the frame of a mixed viral infection can have a huge 17 

influence on the spread of a given virus, allowing it to be putatively transmitted by new 18 

vectors and arriving to new hosts, and thus contributing to speed up speciation events. 19 

In fact, recent taxonomical proposals based in the similarities of viral polymerases (Wolf 20 

et al., 2018) argues in favor of evolution processes involving capture and switching of 21 

capsid genes, with mixed infections representing a key step to explain how these kind 22 

of events could happen. 23 

As mentioned, viruses are able to manipulate the host plant using different 24 

strategies that modify the vector biology, fitness and behavior, and consequently might 25 

have an impact on virus transmission and disease dynamics (Fereres and Moreno, 2009). 26 

This is known as indirect mutualism and confer advantages to the vector that would 27 

result in an increase of virus transmission and, consequently spread (Li et al., 2014). Such 28 

modifications in the host mainly rely on nutritional changes and on a manipulation of 29 

the defense responses, making the plant more attractive and suitable for the vector (Bak 30 

et al., 2017; Casteel and Falk, 2016; Casteel et al., 2014; Casteel et al., 2015; Luan et al., 31 

2014; Li et al., 2014). This process is not random and the host alterations are strongly 32 



 17 

related with the transmission mode of each virus (Mauck et al., 2012; Mauck, 2016). 1 

Briefly, plant viruses transmitted by insects are classified in two major groups, each one 2 

sub-divided in two more groups, according to some parameters needed for acquisition, 3 

retention and inoculation. The time duration of those periods are related with the tissue 4 

tropism and the localization inside the host, and on the other side with the insect. In the 5 

first mode of transmission, called “noncirculative” the virus does not need to enter the 6 

insect body and the virion particles are retained in the stylet or foregut region of the 7 

vector. If the retention of the virus in the vector is brief (seconds to minutes), viruses 8 

are classified in the sub-group following a “nonpersistent” transmission mode, and if it 9 

takes minutes to hours they are classified as “semipersistent”. On the other hand, the 10 

viruses that cross cellular barriers and reach the body cavity of the insect to end up in 11 

the salivary glands are named “circulative” or “persistent”. If they only circulate inside 12 

the vector are classified as “nonpropagative”, and if there is multiplication inside the 13 

insect they are called “propagative” (Kaur et al., 2016; Casteel and Falk, 2016; Mauck et 14 

al., 2018). Thus, a host plant that is modified to be attractive (by visual and olfactory 15 

clues) even if its quality as feed for a phytophagous insect is reduced, will be well 16 

adapted for a more efficient transmission of a nonpersistent virus: the vector is first 17 

attracted to the infected plant, but when it feeds on it (and thus acquire the virus in a 18 

brief lapsus of time), the insect does not receive enough gratification to colonize and 19 

remain in the plant, and then goes to another plant carrying the virus. On the other 20 

hand, viruses that are transmitted in a semipersistent or persistent manner will get 21 

benefit if they manipulate the host to promote long-term feeding, thus favoring 22 

acquisition of the virus (Mauck et al., 2012). These attraction-repulsion processes can 23 

be quite dynamic, and some works have described that feeding preferences and 24 

behavior of vectors could change after virus acquisition (Ingwell et al., 2012; Moreno-25 

Delafuente et al., 2013; Rajabaskar et al., 2014). Collectively, all these studies suggest 26 

that viruses might have been favored by natural selection to adopt strategies to enhance 27 

its transmissibility/dispersion in the context of mixed infections, using for that purpose 28 

many different leverages, from altering vector behavior via controlling vector 29 

interactions with their host plants, to other mechanisms controlling transmissibility. The 30 

last column in the upper panel of figure 1 tries to illustrate that vectors can be essential 31 

parts of the pay-off mechanisms achieved and favored during mixed infections. 32 
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 1 

Impact on plants 2 

The host plant is the organism to be preserved in agricultural production, and 3 

consequently the attention about the outcomes of mixed viral infections, considered as 4 

pathogenic attacks, has been mainly focused on the synergistic or antagonistic 5 

responses. We have already mentioned those along the previous sections, and an 6 

extensive catalogue of known cases is provided in Tables 1 and 2, with comments 7 

primarily dedicated to provide information on how the different host plants are 8 

impacted by the simultaneous presence of the viruses mentioned. In this section we will 9 

add some additional comments about a few cases that illustrate the wide variety of 10 

effects caused by the presence of multiple viruses in a host plant, in particular effects 11 

that go beyond the expected additive response to the individual viruses. 12 

An example of host modification induced by a mixed infection can be found in 13 

grapes of plants infected with isolates of Grapevine leafroll-associated virus 1 (GLRaV-14 

1), Grapevine virus A (GVA), and Rupestris stem pitting-associated virus (RSPaV) 15 

(Giribaldi et al., 2011). A proteomic analysis of samples from such mixed infected plants 16 

revealed several changes in the host, with an expected major influence in the oxidative 17 

stress responses (in the fruit skin), and in the cell structure (in the pulp). The oxidative 18 

stress responses can be induced by biotic stresses, including several pathogens 19 

(Demidchik, 2015; Muthamilarasan and Prasad, 2013). On the other hand, the 20 

alterations on cell structure might be linked to the cytoskeleton and the movement of 21 

viruses (Lucas, 2006; Henry et al., 2006). 22 

Another key element in the responses of plants towards viruses is the RNA 23 

silencing or post-transcriptional gene silencing pathways. The RNA silencing is a 24 

mechanism present in all eukaryotes that regulates many essential processes, such as 25 

chromatin modification, DNA methylation, and transposon activity among many others, 26 

and relies in the activity of several types of the so called “small RNAs”. In plants, it is also 27 

one of the most important antiviral defense systems induced in response to both RNA 28 

and DNA viruses (Baulcombe, 2004; Csorba et al., 2009; Wang et al., 2012; Vaucheret, 29 

2006). We have already anticipated in previous sections the importance of the 30 

mechanisms of RNA silencing for the outcome of mixed infections. In fact, all plant 31 

viruses encode at least one RNA silencing suppressor (Csorba et al., 2015), and therefore 32 
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during mixed infections we should consider that at least two of them might be acting 1 

simultaneously. As indicated, the numerous cases of potyviruses contributing to 2 

synergistic responses during multiple infections have been associated with the strong 3 

activity of HC-Pro as RNA silencing suppressor (Pruss et al., 1997). Also within the same 4 

family Potyviridae, a deep-sequencing study carried out in wheat showed that the 5 

synergistic mixed infection caused by the combination of the tritimovirus Wheat streak 6 

mosaic virus (WSMV) and the poacevirus Triticum mosaic virus (TriMV) caused major 7 

changes in the endogenous small RNA profile of the host plant, with an expected impact 8 

in the defense responses that differs between single and mixed infections (Tatineni et 9 

al., 2014). 10 

The influence of the host plant in the outcome of viral mixed infections has been 11 

mentioned already, and there are some additional examples in table 1. It has also been 12 

reported that in some synergistic viral combinations, the outcome varies depending on 13 

the host plant cultivar. For instance, the previously cited synergistic interaction between 14 

WSMV and TriMV induced different disease outcomes depending on the wheat cultivar 15 

(Tatineni et al., 2010). Other examples illustrate the influence of the cultivar in the 16 

outcome of the mixed infection, as the co-infections between (i) Tomato chlorosis virus 17 

(ToCV) and Tomato infectious chlorosis virus (TICV); (ii) Potato virus X (PVX) and Potato 18 

virus Y (PVY) or Tobacco etch virus (TEV); and (iii) Pepper huasteco virus (PHV) and Pepper 19 

golden mosaic virus (PepGMV) (Wintermantel et al., 2008; Gonzalez-Jara et al., 2004; 20 

Mendez-Lozano et al., 2003). All these cases probably reflect differences in the RNA 21 

silencing and antiviral responses of the host in a way that might play important roles not 22 

only in the establishment but also in the development of the disease. As a consequence, 23 

the management of viral diseases through control measures would need to consider the 24 

effects of mixed infections. Particularly worrisome would be the risk of compromising 25 

genetic resistance, as in the case of ToCV and TSWV already discussed (García-Cano et 26 

al., 2006). Further investigations will be useful to determine if other resistances can be 27 

as well compromised by the combined actions of viruses during mixed infections. 28 

 29 

Concluding remarks 30 

In this review we have pointed out several aspects related to mixed viral 31 

infections that support their great relevance not only for pathology but also for plant 32 
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virus ecology and epidemiology. These two later disciplines are partially related but 1 

deserve specific attention. When talking about ecology, we refer to the interactions of 2 

the virus populations with the environment and its components, whereas the term 3 

epidemiology is more linked to the disease caused, and how it is spread in the frame of 4 

complex associations between the viruses and the host plants, passing through the 5 

decisive participation of vectors (Jones, 2014). Understanding why and how pathogenic 6 

viruses can spread in a given ecosystem is the main challenge of the epidemiology, but 7 

in a mixed infection scenario, the factors controlling the spread become more complex, 8 

and it is absolutely essential to understand them to build effective strategies to control 9 

the frequent diseases caused by multiple viral infections.  10 

An important work front to fight against the negative effects of the mixed 11 

infections is to interfere with the transmission by vectors. As mentioned before, the 12 

dispersion of the majority of plant viruses rely on the action of vectors, on one hand as 13 

an efficient way to overcome the sessile nature of the plants, and on the other hand to 14 

provide effective means to cross the strong cell wall and deliver viruses into the 15 

susceptible parts of the cell. Usually, a viral infection begins with the specific interaction 16 

of the vector and the virus, mediated by proteins from both of them (Gutiérrez et al., 17 

2013). As discussed in this review, in the frame of a mixed infection, affectations and 18 

changes both in vectors and in viruses may occur and have an influence on the 19 

transmission. Thus, understanding in detail those modifications may be essential to 20 

interfere with key steps in the interaction vector-virus and interrupt the viral cycle, 21 

limiting the spread of the infection (Whitfield and Rotenberg, 2015). 22 

The knowledge generated by the study of mixed viral infections could become a 23 

rich source of useful information, for instance to design effective control measures, or 24 

even to engineer resistant plants against viruses. As mentioned in the “impact on 25 

viruses” section, one example of this later strategy is represented by cross-protection, 26 

based in the antagonism between viruses, and consisting in the activation of plant 27 

defenses (such as the mentioned RNA silencing mechanisms) by the first virus, thus 28 

preventing or alleviating the damaging infection by the second. This strategy has been 29 

successfully applied to protect plants with a high economical interest like citrus, 30 

cucurbits and papaya, through inoculation of plants with a mild strain of a virus, 31 

preventing the infection by a more virulent strain in the field (Ziebell and Carr, 2010). 32 
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However, we must recognize that the complexities of the interactions require more 1 

investigations. Indeed, when designing strategies to engineer resistant plants against 2 

viruses, it is worth taking into account the impact that possible mixed infections in 3 

nature can have. One relevant example reports the expression of an artificial microRNA 4 

(amiRNA) targeting the viral RNA-silencing suppressor HC-Pro of Turnip mosaic virus 5 

(TuMV) in Arabidopsis thaliana transgenic plants. High levels of resistance against the 6 

infection by the homologous virus were observed, however, if the plant was previously 7 

infected by Tobacco rattle virus (TRV), Cauliflower mosaic virus (CaMV) or Cucumber 8 

mosaic virus (CMV), the resistance was lost and TuMV has able to infect the plant in the 9 

frame of a mixed infection with one of the other mentioned viruses (Martínez et al., 10 

2013). 11 

The relationship between viruses in the frame of a mixed infection can have a 12 

clear impact on the evolution of each virus involved, as the competition for the host 13 

resources influences directly the fitness of viruses. This competition can be specified at 14 

many levels, some of them depicted schematically in figure 2, and others still waiting to 15 

be analyzed in depth. Among new aspects that might require attention are for instance 16 

those occurring due to the different mechanisms of translation, or the conflicting 17 

situation prompted by the different codon usages of the viral partners and the host 18 

(Adams and Antoniw, 2004; Belalov and Lukashev, 2013; Miras et al., 2017). As a result 19 

of all these competitions, mixed infections must be considered as another key factor 20 

that influences virus evolution, and indeed recent studies have proposed models to 21 

predict the long-term evolution of viruses in the frame of mixed infections (Alizon et al., 22 

2013; Escriu et al., 2003; Elena et al., 2014; Tollenaere et al., 2016). Virulence increases 23 

can be predicted due to the competitive advantage of virulent parasites, as the mixed 24 

infections are prone to alter the immune defense and cause phenotypic changes in the 25 

host. Thus, a higher virulence can be consequence of the competition for resources 26 

during a mixed infection (Choisy and de Roode, 2010).  27 

To confirm these predictions and incorporate the derived knowledge into 28 

strategies of virus control, more research will be highly desirable. The presence of more 29 

than one virus in the plant also makes possible genetic exchanges between them, and 30 

even the formation of new hybrid viruses containing parts from the genomes of the 31 

distinct viruses, through reassortments or recombinations (DaPalma et al., 2010). 32 
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Eventually, speciation events might take place, therefore contributing to the expansion 1 

of the global virome. Moreover, it seems that the choice of a given host by a given virus 2 

is not random, and it is driven by some still unknown mechanisms, what reinforces the 3 

importance of multiple infections from an evolutionary and epidemiologic point of view 4 

(Malpica et al., 2006).  5 

Finally, recognizing the importance of mixed infections could be also 6 

instrumental for a safer biotechnological exploitation of plant viruses (Psin et al. 2019). 7 

For instance, we must take into account that when using a viral vector to express a 8 

protein or a valuable product in a susceptible plant that can be infected with another 9 

virus, we are dealing with a particular scenario of mixed infection, and thus we must be 10 

aware of the possible consequences this can have to the pathosystem under study. On 11 

the other hand, the examples existing in nature where plants are capable to tolerate, 12 

survive and even thrive while supporting a multiple and highly variable virome, as in the 13 

case of sweet potatoes, deserve attention from researchers, since understanding how 14 

this particular plants can stand the multiple infections might provide clues for dealing 15 

with damage caused by viral pathogens in other crops. Genomic studies might give clues 16 

on key traits that could eventually provide wide range tolerances to multiple stresses. 17 

 18 
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Table 1. Examples of mixed viral infections in plants caused by pairs of viruses 1 
Virus 1 a Virus 2 b Host plants c Comments References 

Abutilon mosaic 
virus (AbMV) 
(Begomovirus) 

Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 

Nicotiana 
benthamiana and 
Tomato (Solanum 
lycopersicum) 

Synergism between RNA 
and ssDNA viruses. Change 
in the tissue tropism of 
AbMV (no phloem-
limitation) 

Wege and 
Siegmund, 
2007  

Abutilon mosaic 
virus (AbMV) 
(Begomovirus) 

Tomato mosaic 
virus (ToMV) 
(Tobamovirus) 

Nicotiana 
benthamiana and 
Tomato (Solanum 
lycopersicum) 

Negative effect of ToMV 
on  AbMV accumulation 
and a synergistic 
enhancement in 
pathogenicity 

Pohl and Wege, 
2007  

African cassava 
mosaic virus 
(ACMV) (isolate 
ACMV-CM) 
(Geminivirus) 

East African 
cassava mosaic 
Cameroon virus 
(EACMCV) 
(Geminivirus) 

Nicotiana 
benthamiana and 
Nicotiana 
tabacum 
(protoplasts) 

Synergism with increase in 
symptom severity and viral 
accumulation of both 
viruses. PTGS involved in 
the interaction 

Vanitharani et 
al., 2004  

African cassava 
mosaic virus 
(ACMV) 
(Geminivirus) 

Uganda strain of 
East African 
cassava mosaic 
virus (EACMV-
UG) 
(Geminivirus) 

Cassava (Manihot 
esculenta) 

Synergism and cause of 
the Cassava mosaic 
disease (CMD). Field 
survey in Central African 
Republic 

Zinga et al., 
2013 

Bean pod mottle 
virus (BPMV) 
(Comoviridae) 

Soybean mosaic 
virus (SMV) 
(Potyviridae) 

Soybean (Glycine 
max) 

Synergism. Effects on 
biochemical traits of the 
plant, and on behaviour 
and performance of 
vectors 

Peñaflor et al., 
2016; Lee and 
Ross, 1972 

Bean pod mottle 
virus (BPMV) 
(Comovirus) 

Bean yellow 
mosaic virus 
(BYMV) or 
Peanut mottle 
virus (PMV) 
(Potyvirus) 

Soybean (Glycine 
max) Neutralism Anjos et al., 

1992  

Bean yellow 
mosaic virus 
(BYMV) 
(Potyvirus) 

Pea mosaic virus 
(PMV) 
(Potyvirus) 

Pea (Pisum 
sativum) 

A non-aphid-transmissible 
isolate of BYMV depends 
on mixed infection with 
PMV to be transmitted 

Hobbs and 
McLaughlin, 
1990  

Beet mild 
yellowing virus 
(BMYV) 
(Polerovirus) 

Groundnut 
rosette virus 
(GRV) 
(Umbravirus) 

Nicotiana 
clevelandii; 
Nicotiana 
benthamiana  

BMYV became 
mechanically transmissible 

Mayo et al., 
2000  

Cassava brown 
streak virus 
(CBSV) 
(Ipomovirus)  

Ugandan 
cassava brown 
streak virus 
(UCBSV) 
(Ipomovirus) 

Cassava (Manihot 
esculenta) 

Synergism and cause of 
the cassava brown streak 
disease (CBSD) 

Jacobson et al., 
2018; Rey and 
Vanderschuren, 
2017 

Cowpea chlorotic 
mottle virus 
(CCMV) 
(Bromovirus) 

Soybean mosaic 
virus (SMV) or 
Peanut mottle 
virus (PMV) 
(Potyvirus) or 
Tobacco 
ringspot virus 
(TRSV) 
(Secoviridae) 

Soybean (Glycine 
max) 

Effect of mix infections on 
plant characteristics and 
chemical composition. No 
synergism observed 

Demski and 
Jellu, 1975  
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Cucumber 
mosaic 
cucumovirus 
(CMV) 
(Cucumovirus) 

Blackeye 
cowpea mosaic 
potyvirus 
(BICMV) 
(Potyvirus) 

Cowpea (Vigna 
unguiculata), 
Cassia obtusifolia, 
Cucumis sativus, 
Cucurbita pepo, 
Glycine max, 
Nicotiana 
tabacum, 
Phaseolus 
lunatus, 
Phaseolus vulgaris 

Synergism and cause of 
the Cowpea stunt disease. 
In  greenhouse can reduce 
yield of cowpea. Aphids 
can transmit both viruses 
from mixed infected plants 

Pio-Ribeiro et 
al., 1978  

Cucumber 
mosaic 
cucumovirus 
(CMV) 
(Cucumovirus) 

Blackeye 
cowpea mosaic 
potyvirus 
(BICMV) 
(Potyvirus) 

Cowpea (Vigna 
unguiculata) 

Synergism. Severe 
symptoms might not be 
only due to an increase on 
CMV levels 

Anderson et al., 
1996  

Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 

Turnip mosaic 
virus (TuMV) 
(Potyvirus) 

Nicotiana 
benthamiana 

Synergism. Analysis of the 
CMV 2b protein function in 
the mixed infection 

Takeshita et al., 
2012  

Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus)  

Pepper mottle 
virus (PepMoV) 
(Potyvirus) 

Pepper (Capsicum 
annuum ) 

Synergism. Detailed 
evaluation of symptom 
severity and statistical 
proof of synergy 

Murphy and 
Bowen, 2006 

Cucumber 
mosaic virus 
(CMV) (Fny-CMV 
and LS-CMV) 
(Cucumovirus) 

Watermelon 
mosaic virus 
(WMV) 
(Potyvirus) 

Zucchini squash 
(Cucurbita pepo)  

Synergism with a high 
increase of CMV levels 

Wang et al., 
2002  

Cucumber 
mosaic virus 
(CMV) (Fny-CMV 
and LS-CMV) 
(Cucumovirus) 

Zucchini yellow 
mosaic virus 
(ZYMV) 
(Potyvirus) 

Zucchini squash 
(Cucurbita pepo) 
and melon 
(Cucumis melo) 

Strong synergistic 
pathological responses 

Wang et al., 
2002  

Cucumber 
mosaic virus 
(CMV) (Fny-CMV) 
(Cucumovirus) 

Zucchini yellow 
mosaic virus 
(ZYMV) 
(Potyvirus) 

Cucumber 
(Cucumis sativus) 
and bottle gourd 
(Lagenaria 
siceraria) 

Quantification of 
synergism by real-time RT-
PCR 

Zeng et al., 
2007  

Cucumber 
mosaic virus 
(CMV) (impaired 
in long-distance, 
strain M-CMV) 
(Cucumovirus) 

Zucchini yellow 
mosaic virus 
(ZYMV) (strains 
ZYMV-A and -
AG) (Potyvirus) 

Zucchini squash 
(Cucurbita pepo) 

Synergism in pathology 
and gain of long-distance 
movement for M-CMV 

Choi et al., 
2002  

Lettuce 
infectious 
yellows virus 
(LIYV) (Crinivirus) 

Turnip mosaic 
virus (TuMV) 
(Potyvirus) 

Nicotiana 
benthamiana 

Synergistic interaction with 
enhanced accumulation of 
LIYV, mediated by the 
entire TuMV or only the 
TuMV P1/HC-Pro sequence  

Wang et al., 
2009b  
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Maize chlorotic 
mottle virus 
(MCMV) 
(Machlomovirus) 

Maize dwarf 
mosaic virus A 
(MDMV-A) 

Corn (Zea mays), 
sorghum(Sorghum 
vulgare) and 
wheat (Triticum 
aestivum) 

Synergism and cause of 
the corn lethal necrosis 
disease (CLND). Field 
survey in Kansas, US 

Uyemoto et al., 
1980  

Maize chlorotic 
mottle virus 
(MCMV) 
(Machlomovirus) 

Wheat streak 
mosaic (WSMV) 
(Rymovirus)  

Corn (Zea mays), 
sorghum(Sorghum 
vulgare) and 
wheat (Triticum 
aestivum) 

Synergism and cause of 
the corn lethal necrosis 
disease (CLND). Field 
survey in Kansas, US 

Uyemoto et al., 
1980  

Maize chlorotic 
mottle virus 
(MCMV) 
(Machlomovirus) 

Sugar cane 
mosaic Sugar 
cane mosaic 
virus-MD-B 
(SCMV-MD-B 
(formerly known 
as Maize dwarf 
mosaic virus 
MDMV-B) 
(Potyvirus) 

Maize (Zea mays) 

Synergism with high 
increase of MCMV levels. 
Decrease in chlorophyll 
levels and in the ratio of 
chloroplast to cytoplasmic 
rRNA 

Goldberg and 
Brakke, 1987  

Maize chlorotic 
mottle virus 
(MCMV) 
(Machlomovirus) 

Wheat streak 
mosaic (WSMV) 
(Rymovirus)  

Maize (Zea mays) 

Synergism and cause of 
corn lethal necrosis (CLN, 
nowadays called maize 
lethal necrosis). WSMV 
infections were enhanced 
by MCMV and more 
pronounced at higher 
temperatures 

Scheets, 1998  

Maize chlorotic 
mottle virus 
(MCMV) 
(Machlomovirus) 

Sugarcane 
mosaic virus 
(SCMV), or 
Maize 
dwarfmosaic vi- 
rus (MDMV), or 
Johnsongrass 
mosaic virus 
(JGMV) (all 
Potyvirus) 

Maize (Zea mays) 

Synergism caused by co-
infection of MCMV with 
anyone of the indicated 
Potyvirus. The resulting 
disease is known as maize 
lethal necrosis (MLN) and 
causes high economic 
losses.  

Stewart et al., 
2017 

Papaya ringspot 
virus (PRSV) 
(Potyvirus) 

Papaya mosaic 
virus (PapMV) 
(Potexvirus) 

Papaya (Carica 
papaya) 

Super-infection (first 
PapMV) causes 
antagonism, but co-
infection or super-
infection (first PRSV) 
causes synergism 

Chávez-Calvillo 
et al., 2016  

Parsnip yellow 
fleck virus (PYFV) 
(Secoviridae) 

Anthriscus 
yellow virus 
(AYV) 
(Secoviridae) 

Parsnip (Pastinaca 
sativa) 

PYFV depends on mixed 
infection with AYV to be 
aphid-transmitted. 
Electron microscopy to 
detect viral particles in 
aphids 

Murant and 
Goold, 1968; 
Murant et al., 
1976  

Peanut mottle 
virus (PMV) 
(Potyvirus)  

Tobacco 
ringspot virus 
(TRSV) 
(Secoviridae) 

Soybean (Glycine 
max) 

Effect of mix-infection on 
plant characteristics and 
chemical composition. No 
synergism observed 

Demski and 
Jellu, 1975  
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Pepper huasteco 
yellow vein virus 
(PHYVV) 
(Begomivirus) 

Pepper golden 
mosaic virus 
(PepGMV) 
(Begomivirus) 

Pepper (Capsicum 
annuum) 

Synergism. Analysis of 
symptom severity, viral 
DNA concentration and 
tissue localization 

Rentería-
Canett et al., 
2011  

Plum pox virus 
(PPV) (Potyvirus) 

Tobacco etch 
virus (TEV) 
(Potyvirus), or 
Potato virus X 
(PVX) 
(Potexvirus), or 
Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 

Nicotiana 
tabacum;  
Nicotiana 
benthamiana; 
Nicotiana 
clevelandii  

Function of HC-Pro in the 
long-distance movement 
and in the control of the 
host range of potyviruses 

Sáenz et al., 
2002  

Potato leaf roll 
virus (PLRV) 
(Luteovirus) 

Tobacco mosaic 
virus (TMV) 
(Tobamovirus) 
or Potato 
spindle tuber 
viroid (PSTVd) 
(Pospiviroid) or 
Alfafa mosaic 
virus (AMV) 
(Bromoviridae) 
or Potato virus 
M (PVM) 
(Carlavirus) or 
Potato virus S 
(PVS) 
(Carlavirus) or 
Potato virus T 
(PVT) 
(Tepovirus) or 
Potato virus X 
(PVX) 
(Potexvirus) 

Solanum 
brevidens 

Solanum brevidens is 
tolerant to PLRV and 
accumulation of this virus 
did not vary in mixed 
infections with any of the 
viruses or viroids tested 

Valkonen, 1992  

Potato leafroll 
virus (PLRV) 
(Polerovirus) 

Pea enation 
mosaic virus-2 
(PEMV-2) 
(Umbravirus) or 
Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 
or Potato virus X 
(PVX) 
(Potexvirus) or 
Groundnut 
rosette virus 
(GRV) 
(Umbravirus ) 

Nicotiana 
clevelandii; 
Nicotiana 
benthamiana 

PLRV gain mechanical 
transmissibility when in 
mix infections with PEMV-
2 or GRV 

Mayo et al., 
2000  
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Potato leafroll 
virus (PLRV) 
(Polerovirus) 

Pea enation 
mosaic virus-2 
(PEMV-2) 
(Umbravirus) or 
Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 
or Potato virus X 
(PVX) 
(Potexvirus) or 
Tobacco mosaic 
virus (TMV) 
(Tobamovirus) 
or Potato virus Y 
(Potyvirus) 

Nicotiana 
clevelandii;  
Nicotiana 
benthamiana 

PEMV-2  complement 
PLRV mechanical 
transmission and facilitate 
its full systemic infection 
(cell-to-cell and inside-
phloem movement) 

Ryabov et al., 
2001  

Potato virus X 
(PVX) 
(Potexvirus) 

Potato virus Y 
(PVY) (Potyvirus) 

Nicotiana 
tabacum 

Synergistic interaction with 
an increase of infectious 
PVX particles, probably 
related to an alteration in 
the relative levels of (-) 
and (+) strands of PVX RNA 

Vance, 1991  

Potato virus X 
(PVX) 
(Potexvirus) 

Tobacco vein 
mottling virus 
(TVMV) or 
Tobacco etch 
virus (TEV) or 
Pepper mottle 
virus (PMV) or 
Potato virus Y 
(PVY) 
(Potyvirus)   

Nicotiana 
tabacum 

Synergism. Alteration in 
the replication of PVX RNA 
due to the expression of 
5'-proximal sequences of 
either TVMV or TEV 

Vance et al., 
1995  

Potato virus X 
(PVX) 
(Potexvirus) 

Potato virus S 
(PVS) 
(Carlavirus) 

Potato (Solanum 
tuberosum) 

Increase of PVS titer and 
disease symptoms. More 
than 30 potato cultivars 
tested 

Nyalugwe et 
al., 2012  

Potato virus X 
(PVX) 
(Potexvirus) 

Potato virus Y 
(PVY) (N–Wi 
strain) 
(Potyvirus) 

Nicotiana 
benthamiana and 
Nicotiana 
tabacum 

Synergism. Quantification 
of symptom expression 
and levels of coat proteins 
and suppressors of 
silencing under different 
temperature conditions 
and during co- or super-
infection 

Senanayake 
and Mandal, 
2014  

Potato virus X 
(PVX) 
(Potexvirus) 

Potato virus A 
(PVA) 
(Potyvirus) 

Nicotiana 
benthamiana 

HCPro from PVA mediates 
reductions on methionine 
and glutathione and has a 
crucial role in the 
synergism observed 

De et al., 2018  

Potato virus Y 
(Potyvirus) 

Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 

Tomato (Solanum 
lycopersicum) 

Increase of both PVY and 
CMV levels. Differences 
with the same mix-
infection in tobacco and 
cucumber 

Mascia et al., 
2010  



 38 

Potato virus Y 
(PVY) (Potyvirus) 

Tobacco etch 
virus (TEV) 
(Potyvirus) 

Pepper (Capsicum 
annuum) 

A non-aphid-transmissible 
strain of TEV depends on 
mixed infection with PVY 
to be aphid-transmitted 

Simons, 1976  

Potato virus Y 
(PVY) (Potyvirus) 

Potato spindle 
tuber viroid 
(PSTVd) 
(Pospiviroid) 

Solanum 
tuberosum 

Synergism only in co-
infection or super-
infection with PSTVd 
infecting prior to PVY. PVY 
levels significantly higher 
in mixed infected plants 

Singh and 
Somerville, 
1987  

Potato virus Y 
(PVY) (Potyvirus) 

Tobacco mosaic 
virus (TMV) 
(Tobamovirus) 
or Potato 
spindle tuber 
viroid (PSTVd) 
(Pospiviroid) or 
Alfafa mosaic 
virus (AMV) 
(Bromoviridae) 
or Potato virus 
M (PVM) 
(Carlavirus) or 
Potato virus S 
(PVS) 
(Carlavirus) or 
Potato virus T 
(PVT) 
(Tepovirus) or 
Potato virus X 
(PVX) 
(Potexvirus) 

Solanum 
brevidens 

Accumulation of PVY in 
mixed infected plants with 
TMV and PSTVd increased 
up to 1000 fold, whereas 
no changes were observed 
in co-infections with the 
other viruses tested. 
Solanum brevidens is 
tolerant to PVY and PVX, 
what explains differences 
with other cases between 
PVX and PVY (usually 
synergistic) 

Valkonen, 1992  

Potato Virus Y 
(PVY) (Potyvirus) 

Potato leaf roll 
virus (PLRV) 
(Luteovirus) 

Solanum 
tuberosum 

Synergism with more 
severe symptoms. Effect of 
the mixed infection on the 
fecundity and preference 
of two aphid vectors of 
PVY and PLRV 

Srinivasan and 
Alvarez, 2007  

Southern 
cowpea mosaic 
virus (SCPMV) 
(Sobemovirus) 

Southern bean 
mosaic virus 
(SBMV) 
(Sobemovirus) 

Cowpea (Vigna 
unguiculata) and 
common bean 
(Phaseolus 
vulgaris) 

In co-infection, the host 
range of SCPMV is 
modified, but not the one 
of SBMV  

Hacker and 
Fowler, 2000  

Southern rice 
black-streaked 
dwarf virus 
(SRBSDV) 
(Reoviridae) 

Rice ragged 
stunt virus 
(RRSV) 
(Reoviridae) 

Rice (Oryza sativa) 

Synergism. Increase in 
replication and movement 
of viruses and inhibition of 
host immunity. Alteration 
on vector selection 
preferences tending to 
enhance mix infection 

Li et al., 2017; 
Wang et al., 
2014  

Soybean mosaic 
virus (SMV) 
(Potyvirus) 

Tobacco 
ringspot virus 
(TRSV) 
(Secoviridae) or 
Peanut mottle 
virus (PMV) 
(Potyvirus) 

Soybean (Glycine 
max) 

Effect of mix infections on 
plant characteristics and 
chemical composition. No 
synergism observed 

Demski and 
Jellu, 1975  
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Soybean mosaic 
virus (SMV) 
(Potyvirus) 

Bean pod 
mottle virus 
(BPMV) 
(Comovirus) 

Soybean (Glycine 
max) 

Synergism with increase of 
BPMV. Localization by 
electron microscopy. 
Reduction in yields both in 
field and greenhouse 

Anjos et al., 
1992; Calvert 
and Ghabrial, 
1983  

Soybean mosaic 
virus (SMV) 
(Potyvirus) 

Cowpea mosaic 
virus (CPMV) 
(Comovirus) 

Soybean (Glycine 
max) 

Synergism with increase of 
CPMV. Localization by 
electron microscopy 

Anjos et al., 
1992 

Strawberry 
pallidosis-
associated virus 
(SPaV) 
(Crinivirus)  

Beet pseudo-
yellows virus  
(BPYV) 
(Crinivirus) 

Fragaria x 
ananassa 

Causing agents of the 
strawberry pallidosis 
disease. Detection in field 
surveys in North America 
and Peru 

Tzanetakis et 
al., 2006; 
Wintermantel 
et al., 2006 

Sweet potato 
chlorotic stunt 
virus (SPCSV) 
(Crinivirus) 

Sweet potato 
feathery mottle 
virus (SPFMV) 
(Potyvirus) 

Sweet potato 
(Ipomoea batatas) 

Together they cause the 
sweet potato virus disease 
(SPVD), a synergistic 
interaction with a 600 fold 
increase of SPFMV and 
severe symptoms 

Karyeija et al., 
2000  

Tobacco etch 
virus (TEV) 

Tobacco mosaic 
virus (TMV) 
(Tobamovirus) 
or Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 
or Potato virus X 
(PVX) 
(Potexvirus) 

Nicotiana 
benthamiana and 
Nicotiana 
tabacum 

Synergism. TEV P1/ HC-Pro 
protein enhances the 
pathogenicity and 
accumulation of both TMV 
and CMV. Transactivation 
of PVX replication 

Pruss et al., 
1997  

Tobacco mosaic 
virus (TMV) 
(Tobamovirus)  

Hibiscus latent 
Singapore virus 
(HLSV) 
(Tobamovirus) 

Nicotiana 
benthamiana 

Evolutionary game theory 
to model the co-infection 
between TMV and HLSV 
and validation by qRT-PCR 

Chen et al., 
2012  

Tomato chlorosis 
virus (ToCV) 
(Crinivirus) 

Tomato spotted 
wilt virus 
(TSWV) 
(Tospovirus) 

Tomato (Solanum 
lycopersicum) 

Synergism increasing ToCV 
while TSWV not change. 
Breakdown of resistance 
against TSWV in plants 
pre-infected with ToCV, 
contrarily to co-infection 

García-Cano et 
al., 2006  

Tomato chlorosis 
virus (ToCV) 
(Crinivirus) 

Tomato 
infectious 
chlorosis virus 
(TICV) 
(Crinivirus) 

Physalis wrightii 
and Nicotiana 
benthamiana 

Effects of co-infection in 
viruses accumulation and 
transmission efficiency are 
host specific 

Wintermantel 
et al., 2008  

Tomato chlorosis 
virus (ToCV) 
(Crinivirus) 

Tomato severe 
rugose virus 
(ToSRV) 
(Begomovirus) 

Tomato (Solanum 
lycopersicum) 

Near 50% of mixed 
infections in field surveys, 
with symptoms of ToSRV 
enhanced in the top part 
of plants, and crini-like 
symptoms at the bottom 

Macedo et al., 
2014  

Tomato leaf curl 
New Delhi virus 
(ToLCNDV) 
(Begomivirus) 

Tomato leaf curl 
Palampur virus 
(ToLCPalV) 
(Begomivirus) 

Tomato (Solanum 
lycopersicum) and 
cucumber 
(Cucumis sativus) 

Genetic reassortment and 
heteroencapsidation. 
Whitefly transmission of 
pseudo-recombinants 

Kanakala et al., 
2013  
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Tomato rugose 
mosaic virus 
(ToRMV) 
(Begomovirus) 

Tomato yellow 
spot virus 
(ToYSV) 
(Begomovirus) 

Nicotiana 
benthamiana and 
Tomato (Solanum 
lycopersicum) 

ToYSV induces a change in  
tissue tropism of ToRMV 
(exits phloem). Both 
positive (synergism) and 
negative (interference) 
interactions are observed 
depending on the infection 
stage 

Alves-Júnior et 
al., 2009  

Turnip mosaic 
virus (TuMV) 
(Potyvirus) 

Cauliflower 
mosaic virus 
(CaMV) 
(Caulimovirus) 

Arabidopsis 
thaliana 

Effect of mixed infection 
on viruses infectivity, 
pathogenicity and 
accumulation. No 
symptom synergism 

Martín and 
Elena, 2009  

Wheat streak 
mosaic virus 
(WSMV)  
(Tritimovirus) 

Triticum mosaic 
virus (TriMV) 
(Poacevirus) 

Wheat (Triticum 
aestivum) 

Cultivar-specific synergism 
and Influence of different 
temperatures. 
Determination of different 
physiological parameters. 
Impact on endogenous 
and viral small RNA 
profiles 

 
Tatineni et al., 
2010, 2014; 
Byamukama et 
al., 2012  

Zucchini yellow 
mosaic virus 
(ZYMV) 
(Potyvirus) 

Cucumber 
mosaic virus 
(CMV) 
(Cucumovirus) 

Zucchini squash 
(Cucurbita pepo) 

Synergism with increase of 
CMV levels Fattouh, 2003  

Zuchini yellow 
mosaic virus 
(ZYMV) (non-
aphid-
transmissible 
isolate ZYMV-
NAT) (Potyvirus) 

Papaya Ring 
Spot Virus 
(PRSV) 
(Potyvirus) 

Melon (Cucumis 
melon L. 
Vedrantais) 

Heteroencapsidation and 
gain of aphid-
transmissibility 

Bourdin, D and 
Lecoq, 1991  

a Viruses listed in alphabetical order, indicating the acronym and their taxonomic adscription (Genus) in 1 
brackets 2 
b When the bibliographical references include data for more than a pair of viruses, the second partner of 3 
every combination are mentioned but separated by “or”.   4 
c Common names and/or scientific names are used to identify hosts. When different plant species were 5 
tested in the same work, their names are listed 6 
 7 

8 
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Table 2. Mixed infections involving more than two viruses in the same plant 1 
Viruses a Host b Comments References 
African cassava mosaic virus (ACMV); 
Cassava mosaic Madagascar virus 
(CMMGV); East African cassava mosaic 
virus (EACMV); East African cassava 
mosaic Kenya virus (EACMKV); East 
African cassava mosaic Malawi virus 
(EACMMV); East African cassava mosaic 
Zanzibar virus (EACMZV); South African 
cassava mosaic virus 
(SACMV) (all Begomovirus) 

Cassava 
(Manihot 
esculenta) 

Causing agents of the 
Cassava Mosaic Disease 
(CMD). Synergism and 
cause of severe pandemics. 
Source of high 
recombination rates 
between DNAs A and B of 
the different virues 
involved in the disease. 

Jacobson et al., 
2018; Rey and 
Vanderschuren, 
2017 

Australian grapevine viroid (AGV) 
(Pospiviroidae); Grapevine leafroll-
associated virus-9 (GLRaVs) 
(Closteroviridae); Grapevine rupestris 
stem pitting-associated virus (GRSPaV) 
(Foveavirus); Grapevine rupestris vein-
feathering virus (GRVFV) (Marafivirus); 
Grapevine Syrah virus-1 (GSyV-1) 
(Marafivirus); Grapevine yellow speckle 
viroid (GYSVd) (Pospiviroidae); Hop 
stunt viroid (HSVd) (Pospiviroidae); 
Potato spindle tuber viroid (PSTVd) 
(Pospiviroid) 

Common 
grapevine 
(Vitis 
vinifera) 

Deep sequencing analysis 
of RNAs from a grapevine 
showing decline symptoms 
revealed the presence of 
seven different viruses and 
viroids 

Al Rwahnih et 
al., 2009 

C-6 virus (Carlavirus); Cucumber mosaic 
virus (CMV) (Cucumovirus); Sweet 
potato chlorotic fleck virus (SPCFV) 
(Carlavirus); Sweet potato chlorotic 
stunt virus (SPCSV) (Crinivirus); Sweet 
potato feathery motle virus (SPFMV); 
Sweet potato latent virus (SPLV) 
(Potyvirus); Sweet potato mild mottle 
virus (SPMMV) (Ipomovirus); Sweet 
potato mild speckling virus (SPMSV) 
(Potyvirus) 

Sweet potato 
(Ipomoea 
batatas) 

Synergism. The presence of 
a third different virus in 
plants affected with SPVD 
(SPCSV + SPFMV) increased 
the severity of symptoms 
of SPVD alone 

Untiveros et 
al., 2007 

Ipomoea vein mosaic virus (IVMV) 
(Portyvirus);  Sweet potato chlorotic 
stunt virus (SPCSV) (Crinivirus); Sweet 
potato feathery mottle virus (SPFMV) 
(Potyvirus);  Sweet potato virus G 
(SPVG) 

Sweet potato 
(Ipomoea 
batatas ) 

Mix infections with 2 or 3 
viruses. Synergism with 
SPCSV increasing the titers 
of potyviruses. No 
synergism observed 
between potyviruses 

Kokkinos and 
Clark, 2006 

Potato leaf roll virus (PLRV) 
(Polerovirus); Potato virus A (PVA) 
(Potyvirus); Potato virus M (PVM) 
(Carlavirus); Potato virus S (PVS); Potato 
virus X (PVX) (Potexvirus); Potato virus 
Y (PVY) 

Potato 
(Solanum 
tuberosum) 

Field survey in Pakistan 
showing synergism for 
almost all the mixed 
infections tested, 
combining 2 or 3 viruses 

Hameed et al., 
2014 

Sweet potato chlorotic stunt virus 
(SPCSV) (Crinivirus); Sweet potato 
feathery mottle virus (SPFMV) 
(Potyvirus); Sweet potato mild mottle 
virus (SPMMV) (Ipomovirus ) 

Sweet potato 
(Ipomoea 
batatas ) 

Synergism between SPCSV 
+ SPFMV or SPMMV, and 
SPCSV +  SPFMV + SPMMV. 
Neutralism between 
SPMMV and SPFMV 

Mukasa et al., 
2006 

a Viruses listed in alphabetical order, indicating the acronym and their taxonomic adscription (Genus) in 2 
brackets 3 
b Common names and scientific names are used to identify hosts.  4 

5 
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Figure legends 1 

 2 

 3 

Fig. 1. Different scenarios of interaction during mixed viral infections of plants. 4 

Responses in terms of virus accumulation and temporal dynamics (left column), degree 5 

of symptoms in the susceptible host (central column) and efficiency of vector 6 

transmission (right column) are schematically represented respectively for the individual 7 

infections by virus 1 or virus 2 in the first and second rows, while the third row proposes 8 

one of the possible outcomes of a mixed infection of 1+2, with increased and faster 9 

accumulation of one of the viruses (represented by number of virions and inclination of 10 

curves), causing more damage to the plant (less growth and severe symptoms), and 11 

altering their vector dissemination (efficiencies proporcional to vector sizes). For each 12 

of the parameters, combined outcomes might differ as shown in the lower part, where 13 

the size of the font represents neutral, synergistic, antagonistic or both types of 14 

responses for each virus. See text for further details.  15 

 16 

 17 

Fig. 2. Schematic representation of interactions occurring at cellular level during co-18 

infection by two unrelated viruses (1 and 2) of a susceptible host plant. Cell entry and 19 

exit processes, either through the action of vector organisms (inoculation and 20 

acquisition), or through movement from and to adjacent cells (cell-to-cell transport 21 

through plasmodesmata, or invasion of distant tissues during long-distance transport), 22 

as well as essential intracellular viral processes such desencapsidation, gene expression, 23 

genome replication and encapsidation of progeny, are represented by arrows of colors 24 

matching the individual viruses. The involvement of host factors and other processes are 25 

omitted for simplicity, as well as presumed differences in localization and timing of 26 

events. Outcomes of the positive and facilitative interactions are represented with 27 

arrows, while negative interactions are indicated by blockage symbols (T-shaped 28 

connectors), and neutral effects are omitted for simplicity. Representative hypothetical 29 

examples of cross-assistance/complementation of movement functions, or 30 

transcapsidations during vector transmission, are represented by question marks. See 31 

text for further details.  32 
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 2 

Fig. 3. Additional levels of interaction during viral mixed infections of plants. A schematic 3 

cross section of a leaf (epidermis, parenquima and vasculature) is shown, together with 4 

the routes of hypothetical spread of infections by a virus capable to invade all tissues 5 

(virus 1, orange arrows), and another restricted to vascular tissues (virus 2, blue arrows). 6 

Mix-infection might lead to interactions like those indicated by question marks: both 7 

facilitative and blocking outcomes of intracellular interactions (see figure 2) could 8 

influence dispersal of the viruses in the plant, and thus condition its affectation (see 9 

figure 1). Furthermore, behavior and performance of vectors responsible of 10 

transmission (here represented as different insects for each virus) might also respond 11 

positively or negatively to manipulative strategies (see figure 1). Arrows and T-shaped 12 

connectors represent positive and negative cross-interactions that can take place during 13 

mixed infections inside the plant and in the relationship with vectors. 14 

15 
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Figure 1 2 
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Figure 2 2 
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