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 Abstract— Balanced lines operating as transmission line 

interconnects are subjected to differential-mode to common-

mode conversion (and vice versa) in situations where 

symmetry imbalances (e.g., caused by line bends) are 

unavoidable. In this paper, a technique to compensate for such 

symmetry imbalances, providing pure differential-mode 

signals at the differential output port of the line, is presented. 

Such technique uses a rat-race balun (to generate the 

differential-mode signal) with the isolated port conveniently 

loaded, and it is based on the modification of the characteristic 

impedance of one of the unbalanced lines. A detailed analysis 

that justifies this compensation technique (valid for any 

arbitrary four-port network) and provides the design 

equations is presented. The approach is validated through 

simulation and experiment, by demonstrating that common-

mode signals are not transmitted to the differential output 

port of a bended (i.e., unbalanced) line pair.     

Index Terms– Balanced lines, Common-mode, Differential-

mode, Microstrip, Rat-race coupler.  

I. INTRODUCTION 

IFFERENTIAL-MODE signals exhibit high immunity 

to electromagnetic interference (EMI), noise and cross-

talk, as compared to single-ended signals. For that reason, 

differential (or balanced) transmission lines and circuits are 

becoming increasingly more common in modern 

communication systems [1]-[3]. A well know phenomenon 

in balanced lines and circuits is mode conversion, caused by 

imperfect symmetry. This may occur, for instance, in 

balanced transmission line interconnects, where line 

bending is sometimes necessary in order to accommodate 

such lines within the considered differential system 

avoiding an extra area.  Thus, the generation of common-

mode noise in imperfectly balanced lines due to cross-mode 

conversion (from the differential-mode signals) is almost 

unavoidable. Such common-mode noise, in turn, may 

produce radiation and EMI problems in the differential 

system, and may cause the degradation of the differential 

signals. 

Many efforts have been dedicated in the last years to the 

design of common-mode filters. Such filters, typically (but 

not exclusively) based on defected ground structures (DGS) 

[4]-[22], must inhibit the propagation of common-mode 

signals in the balanced line, and simultaneously preserve 

the integrity of the differential signals. In high-speed 

differential-mode interconnects, wideband signals are 
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involved, and this justifies the intensive activity towards the 

design of high-rejection level and broad-band common-

mode filters. However, in applications where narrow-band 

differential-mode signals are involved, the need to reject the 

common mode over a wide band is not a strong 

requirement. 

In this paper, an alternative approach to common-mode 

filters, to suppress the common mode in imperfectly 

balanced lines is proposed. The technique uses a rat-race 

balun to generate the differential mode signal from a single-

ended signal, and the load termination at the isolated port of 

the rat race is a design parameter. With the convenient load, 

and an adequate adjustment of the characteristic impedance 

in one of the lines of the imperfectly balanced differential 

line pair, it is found that the common-mode at the output 

differential port is efficiently suppressed. Therefore, the 

proposed structure, including the rat-race balun plus the 

(deliberately) modified unbalanced line, corrects the effects 

of symmetry imbalances in the line pair through mode 

conversion compensation. As long as a rat-race is involved 

in the proposed technique, system functionality is limited to 

narrow-band signals operating in the vicinity of the design 

frequency of the rat-race coupler. The device can be 

considered to be a single-ended to differential-mode 

converter, able to compensate for symmetry imbalances. 

The paper is organized as follows: Section II presents the 

structure under study and an exhaustive analysis focused on 

obtaining the conditions for signal balancing in arbitrary 

four-port networks. In section III, such analysis is 

particularized to the case of a pair of unbalanced lines. It is 

found that by terminating the isolated port of the rat-race 

coupler with an open or shorted stub of adequate length and 

by adjusting the characteristic impedance of one of the 

lines, it is possible to generate balanced signals at the output 

differential port of the line pair. The validation of the 

reported signal balancing approach is carried out in Section 

IV, by considering circuit, electromagnetic simulations and 

experiments. Section V is dedicated to a discussion related 

to return losses, unavoidable in the proposed balancing 

strategy. Finally, the main conclusions of the work are 

highlighted in Section VI. 

II. THE BALANCING STRUCTURE AND ANALYSIS 

The structure under study consists of an arbitrary 

(potentially unbalanced) four-port network preceded by a 

rat-race balun with the isolated port (-port) terminated 

with a load (a design parameter), characterized by a 

reflection coefficient,  (see Fig. 1). If the four-port 

network exhibits perfect symmetry with regard to the 

indicated axial plane (i.e., it is balanced), pure differential-

mode signals are generated at the output composite port 

(A’-B’), regardless of the value of . Note that the input 

port of the whole structure is the -port of the coupler, 

thereby generating out-of-phase signals at ports 3 and 4 of 
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the coupler, which are transmitted through the balanced 

four-port network as a pure differential-mode signal.  

By truncating symmetry, mode conversion in the 

unbalanced four-port network arises, and, in general, 

common-mode signal components at the output composite 

port A’-B’ of the network are expected. However, by 

properly choosing the load termination of the isolated port 

of the coupler (i.e., ), it is possible to compensate for the 

effects of mode conversion in the unbalanced network, and 

thus suppress the common mode at the composite 

port A’-B’ (at least in cases of special interest, to be 

considered later). The net effect is signal balancing in the 

(otherwise) unbalanced four-port network.  

 

Fig. 1. Arbitrary four-port network preceded by a rat-race coupler balun 
with the isolated port terminated with a load impedance. By adequately 

choosing the impedance of such load, signal balancing (i.e., a pure 

differential-mode signal) can be generated at the output composite port.  

To demonstrate the potential of the structure to generate 

(ideally) pure differential-mode signals in unbalanced 

networks, it is necessary to calculate the transmission 

coefficient between the input port (port 2 of the coupler) 

and the output ports (ports A’ and B’ of the unbalanced 

four-port network). For that purpose, ports A’ and B’ must 

be terminated with matched loads, and the corresponding 

normalized amplitudes of the voltage waves at those ports 

(𝑏𝐴′ and 𝑏𝐵′) must be expressed as a function of the 

normalized amplitude of the voltage wave impinging at the 

input port (port 2 of the coupler), 𝑎2. The first step is to 

write 𝑏𝐴′ and 𝑏𝐵′ in terms of the impinging waves at ports 

A and B of the four-port network, that is, 

𝑏𝐴′ = 𝑆𝐴′𝐴𝑎𝐴 + 𝑆𝐴′𝐵𝑎𝐵 = 𝑆𝐴′𝐴𝑏3 + 𝑆𝐴′𝐵𝑏4          (1a)                     

𝑏𝐵′ = 𝑆𝐵′𝐴𝑎𝐴 + 𝑆𝐵′𝐵𝑎𝐵 = 𝑆𝐵′𝐴𝑏3 + 𝑆𝐵′𝐵𝑏4         (1b)                     

where a subset of elements of the single-ended S-parameter 

matrix of the four-port network, given by 

𝐒𝐬𝐞 = (

𝑆𝐴𝐴 𝑆𝐴𝐴′ 𝑆𝐴𝐵 𝑆𝐴𝐵′

𝑆𝐴′𝐴 𝑆𝐴′𝐴′ 𝑆𝐴′𝐵 𝑆𝐴′𝐵′

𝑆𝐵𝐴 𝑆𝐵𝐴′ 𝑆𝐵𝐵 𝑆𝐵𝐵′

𝑆𝐵′𝐴 𝑆𝐵′𝐴′ 𝑆𝐵′𝐵 𝑆𝐵′𝐵′

),               (2) 

 has been used. 

According to the well-known S-parameter matrix of the 

rat-race coupler [23], b3 and b4 can be expressed as 

𝑏3 = −
𝑗

√2
(𝑎1 + 𝑎2) = −

𝑗

√2
(𝑏1 + 𝑎2)           (3a) 

𝑏4 = −
𝑗

√2
(𝑎1 − 𝑎2) = −

𝑗

√2
(𝑏1 − 𝑎2),          (3b) 

and by introducing (3) in (1), the following expressions are 

obtained: 

𝑏𝐴′ = −
𝑗

√2
{(𝑆𝐴′𝐴 + 𝑆𝐴′𝐵)𝑏1 + (𝑆𝐴′𝐴 − 𝑆𝐴′𝐵)𝑎2}     (4a) 

𝑏𝐵′ = −
𝑗

√2
{(𝑆𝐵′𝐴 + 𝑆𝐵′𝐵)𝑏1 + (𝑆𝐵′𝐴 − 𝑆𝐵′𝐵)𝑎2}    (4b) 

On the other hand, the normalized amplitude of the voltage 

wave impinging at the load of port 1, b1, can be expressed 

as 

𝑏1 = −
𝑗

√2
(𝑎3 + 𝑎4) = −

𝑗

√2
(𝑏𝐴 + 𝑏𝐵)           (5) 

where bA and bB are given by                  

𝑏𝐴 = 𝑆𝐴𝐴𝑏3 + 𝑆𝐴𝐵𝑏4                       (6a)                     

𝑏𝐵 = 𝑆𝐵𝐴𝑏3 + 𝑆𝐵𝐵𝑏4                       (6b)                     

Introducing (3) in (6), and the resulting expression in (5), 

the following expression results: 

𝑏1 = −{𝑆11
𝑐𝑐𝑏1 + 𝑆11

𝑐𝑑𝑎2}                      (7) 

where a pair of elements of the mixed-mode S-parameter 

matrix of the four-port network [2],[25],[26] are involved. 

Such matrix can be expressed in the following form                    

𝐒𝐦𝐦 = (
𝐒𝐝𝐝 𝐒𝐝𝐜

𝐒𝐜𝐝 𝐒𝐜𝐜
) =

(

 
 

𝑆11
𝑑𝑑 𝑆12

𝑑𝑑 𝑆11
𝑑𝑐 𝑆12

𝑑𝑐

𝑆21
𝑑𝑑 𝑆22

𝑑𝑑 𝑆21
𝑑𝑐 𝑆22

𝑑𝑐

𝑆11
𝑐𝑑 𝑆12

𝑐𝑑 𝑆11
𝑐𝑐 𝑆12

𝑐𝑐

𝑆21
𝑐𝑑 𝑆22

𝑐𝑑 𝑆21
𝑐𝑐 𝑆22

𝑐𝑐
)

 
 

    (8)                        

with [2] 

𝐒𝐝𝐝 =
1

2
(
𝑆𝐴𝐴 − 𝑆𝐴𝐵 − 𝑆𝐵𝐴 + 𝑆𝐵𝐵 𝑆𝐴𝐴′ − 𝑆𝐴𝐵′ − 𝑆𝐵𝐴′ + 𝑆𝐵𝐵′

𝑆𝐴′𝐴 − 𝑆𝐴′𝐵 − 𝑆𝐵′𝐴 + 𝑆𝐵′𝐵 𝑆𝐴′𝐴′ − 𝑆𝐴′𝐵′ − 𝑆𝐵′𝐴′ + 𝑆𝐵′𝐵′
) (9a) 

𝐒𝐜𝐜 =
1

2
(
𝑆𝐴𝐴 + 𝑆𝐴𝐵 + 𝑆𝐵𝐴 + 𝑆𝐵𝐵 𝑆𝐴𝐴′ + 𝑆𝐴𝐵′ + 𝑆𝐵𝐴′ + 𝑆𝐵𝐵′

𝑆𝐴′𝐴 + 𝑆𝐴′𝐵 + 𝑆𝐵′𝐴 + 𝑆𝐵′𝐵 𝑆𝐴′𝐴′ + 𝑆𝐴′𝐵′ + 𝑆𝐵′𝐴′ + 𝑆𝐵′𝐵′
) (9b) 

𝐒𝐝𝐜 =
1

2
(
𝑆𝐴𝐴 + 𝑆𝐴𝐵 − 𝑆𝐵𝐴 − 𝑆𝐵𝐵 𝑆𝐴𝐴′ + 𝑆𝐴𝐵′ − 𝑆𝐵𝐴′ − 𝑆𝐵𝐵′

𝑆𝐴′𝐴 + 𝑆𝐴′𝐵 − 𝑆𝐵′𝐴 − 𝑆𝐵′𝐵 𝑆𝐴′𝐴′ + 𝑆𝐴′𝐵′ − 𝑆𝐵′𝐴′ − 𝑆𝐵′𝐵′
) (9c) 

𝐒𝐜𝐝 =
1

2
(
𝑆𝐴𝐴 − 𝑆𝐴𝐵 + 𝑆𝐵𝐴 − 𝑆𝐵𝐵 𝑆𝐴𝐴′ − 𝑆𝐴𝐵′ + 𝑆𝐵𝐴′  − 𝑆𝐵𝐵′  
𝑆𝐴′𝐴 − 𝑆𝐴′𝐵 + 𝑆𝐵′𝐴 − 𝑆𝐵′𝐵 𝑆𝐴′𝐴′ − 𝑆𝐴′𝐵′ + 𝑆𝐵′𝐴′ − 𝑆𝐵′𝐵′

) (9d) 

By isolating b1 from (7), the following result is obtained 

𝑏1 = −
𝑆11
𝑐𝑑𝑎2

1+𝑆11
𝑐𝑐

  ,                               (10)                      

and, finally, by introducing (10) in (4), the transmission 

coefficients between port 2 of the coupler (the input port) 

and ports A’ and B’ of the four-port network (the output 

ports) are found to be 

𝑆𝐴′2 =
𝑏𝐴′

𝑎2
|
𝑎
𝐴′
=𝑎

𝐵′
=0

= 

         −
𝑗

√2
{
𝑆
𝐴′𝐴

−𝑆
𝐴′𝐵

+(𝑆
𝐴′𝐴

−𝑆
𝐴′𝐵

)𝑆11
𝑐𝑐−(𝑆

𝐴′𝐴
+𝑆
𝐴′𝐵

)𝑆11
𝑐𝑑

1+𝑆11
𝑐𝑐

}  (11a) 

𝑆𝐵′2 =
𝑏𝐵′  

𝑎2
|
𝑎
𝐴′
=𝑎

𝐵′
=0

= 

        −
𝑗

√2
{
𝑆
𝐵′𝐴

−𝑆
𝐵′𝐵

+(𝑆
𝐵′𝐴

 −𝑆
𝐵′𝐵

)𝑆11
𝑐𝑐−(𝑆

𝐵′𝐴
+𝑆
𝐵′𝐵

)𝑆11
𝑐𝑑

1+𝑆11
𝑐𝑐

}  (11b) 

Note that if the four-port network is balanced, the 

elements of the cross-mode matrices, Scd and Sdc, are null. 

Moreover, SA’B = SB’A and SA’A = SB’B in a balanced network. 

Therefore, according to (11), SA’2 =  SB’2, and the signals 

generated at ports A’ and B’ are out-of phase. Hence, a pure 

differential-mode signal is generated at the composite port 



A’-B’ of a balanced network, regardless of the value  (as 

anticipated before).  

The reflection coefficient at the input port of the structure, 

S22, can be obtained following a similar procedure (which is 

not repeated). The result is 

𝑆22 =
𝑏2

𝑎2
|
𝑎
𝐴′
=𝑎

𝐵′
=0
=

𝑆11
𝑑𝑐𝑆11

𝑐𝑑

1+𝑆11
𝑐𝑐
− 𝑆11

𝑑𝑑               (12)                      

and it coincides with S11
dd (except the sign) in a balanced 

network. It is also interesting to mention that for a balanced 

network, the normalized amplitude of the wave voltage 

impinging at the load of the isolated port of the coupler 

(port 1) is null, as derived from (10). Therefore, no energy 

is dissipated in the system for lossless balanced networks, 

regardless of the load present at port 1 of the coupler.  

Let us now consider that the four-port network is an 

arbitrary (potentially unbalanced) network, and let us force 

SA’2 =  SB’2, in order to obtain a pure differential signal at 

the composite port A’-B’. This balancing condition is 

satisfied if the reflection coefficient of the load at port 1 is 

 =
𝑆21
𝑐𝑑

𝑆11
𝑐𝑑𝑆21

𝑐𝑐−𝑆11
𝑐𝑐𝑆21

𝑐𝑑                         (13) 

From (13), it is not apparent that a solution with a passive 

load (i.e., with   1) always exists. Nevertheless, this 

analysis opens the path to signal balancing in unbalanced 

structures, as it will be corroborated in a specific four-port 

network of practical interest, to be discussed in the next 

section. Although balancing in such network is not always 

possible (as it will be demonstrated), such imbalance is 

restricted to specific cases of limited interest. 

III. BALANCING UNBALANCED TRANSMISSION LINES 

Let us now consider a specific four-port network 

consisting of a pair of uncoupled lines. This case is of 

special interest since line bending, unavoidable in many 

situations involving differential line pairs, generates mode 

conversion. Indeed, a bended line pair exhibits different 

electrical length, or phase shift, in the individual lines, and 

for that reason pure differential signals cannot be 

transmitted along the structure. Therefore, our aim is to 

compensate for the effects of the different phase of the lines 

by terminating port 1 of the coupler according to (13).  

 

Fig. 2. Schematic of the unbalanced transmission line pair under study. 

Let us designate as line A the one between ports 

A and A’, and as line B the one between ports B and B’. 

The corresponding electrical lengths at the operating 

frequency are called A and B, respectively. In an 

uncoupled balanced line pair, the characteristic impedance 

of the individual lines is typically the reference impedance 

of the ports, Z0. Nevertheless, in the present study, the 

characteristic impedance of line B, designated as Z1, is 

considered as a design parameter. This offers higher design 

flexibility, and, indeed, it is not possible to achieve signal 

balancing at the output composite port of a pair of lines 

with unequal phase shift if Z1 = Z0, as it will be shown. 

Hence, considering Z1 as a design parameter is a need for 

our purposes (signal balancing in a bended line pair). Thus, 

the four-port network to be studied is the one depicted in 

Fig. 2. 

Using (9), and taking into account that the considered 

lines are uncoupled (i.e., any single-ended S-parameter 

involving sub-indexes referred to ports of both lines are 

null), expression (13) can be written as 

  =
𝑆𝐴′𝐴−𝑆𝐵′𝐵

𝑆𝐴𝐴𝑆𝐵′𝐵−𝑆𝐵𝐵𝑆𝐴′𝐴
                          (14) 

where SAA = 0 by virtue of the matching condition for line A 

(i.e., ZA = Z0), and 

𝑆𝐴′𝐴 =
1

 cos 𝐴 +𝑗 sin 𝐴 
                          (15a)                      

𝑆𝐵′𝐵 =
2

 2cos 𝐵 +𝑗 (
Z1
Z0
+
Z0
Z1
)sin 𝐵 

                   (15b) 

𝑆𝐵𝐵 =
𝑗 (
Z1
Z0
−
Z0
Z1
)sin 𝐵 

 2cos 𝐵 +𝑗 (
Z1
Z0
+
Z0
Z1
)sin 𝐵 

                   (15c) 

Separating the real and the imaginary parts of , one 

obtains 

𝑅𝑒{} =
2sin 𝐴 −(

Z1
Z0
+
Z0
Z1
)sin 𝐵 

(
Z1
Z0
−
Z0
Z1
)sin 𝐵 

                 (16a) 

𝐼𝑚{} = −
2(cos 𝐴−cos 𝐵)

(
Z1
Z0
−
Z0
Z1
)sin 𝐵 

                   (16b) 

Note that if  is a real number and it satisfies   1, the 

load is a pure resistance (or either an open or a short circuit 

for the extreme cases of  = 1). However, inspection of 

(16) reveals that Im can only be null under very specific 

conditions (cosA = cosB), which are not of interest, as 

long as line bending in a line pair produces imbalances in 

the phase of the lines. In general,  is a complex number, 

but it should satisfy   1 for the validity of the balancing 

approach by means of port termination with a passive load. 

Thus, let us calculate the modulus of , and let us force it to 

satisfy   1. After some tedious calculation,  can be 

expressed as 

|| =
1

|(
Z1
Z0
−
Z0
Z1
)sin 𝐵 |

√(
Z1

Z0
−
Z0

Z1
)
2

sin2 
𝐵 
+ 4𝑅      (17)                

where the residual part of the root, R, is given by 

𝑅 = 2 − cos(𝐴 − 𝐵) [𝑇 + 1] + cos(𝐴 + 𝐵) [𝑇 − 1]   (18)                  

and  

𝑇 =
1

2
(
Z1

Z0
+
Z0

Z1
)                           (19)                

From (17), it is apparent that a passive solution for the load 

of the isolated port of the coupler exists a s long as R  0 

(corresponding to   1). Thus, from the elements 

characterizing the network (i.e., A, B, and Z1), we can 

evaluate R and, from the resulting value, we can discern if 

signal balancing with a passive load is possible or not.  



A. Impedance Imbalance 

Although considering identical phases for the lines A and 

B is not of practical interest (for the reasons explained 

before), in this case (A = B = ), R is found to be  

𝑅 =
(𝑍1−𝑍0)

2

2𝑍1𝑍0
(cos 2 − 1)  0                (20)  

and the solution for the port termination (a passive load) is, 

in general, a pure resistance (since Im = 0 for A = B). 

There are, however, two extreme situations, providing 

R = 0, that require special attention. One corresponds to the 

case of identical line impedances matched to the ports 

(Z1 = Z0). In this case, there is not a mathematical solution 

for , according to (16). However, since Z1 = Z0 and 

A = B, the four-port network is perfectly balanced, and 

any signal at the composite port A’-B’ is a pure differential 

signal, regardless of the load present at port 1 of the 

coupler, as discussed in the previous section. The second 

case corresponds to line lengths of half-wavelength, or 

multiple of it (i.e.,  = n, with n = 0, 1, 2, 3, …). A 

mathematical solution of (16) does not exist either. For such 

line lengths, the matched terminations of ports A’ and B’ 

are translated to ports 3 and 4, respectively, of the coupler, 

regardless of the characteristic impedance of the lines, and a 

pure differential signal is also generated at the composite 

port A’-B’. The influence of any load present at port 1 of 

the coupler on signal balancing is also null in this case.  

Interestingly, for A = B =  with   n and Z1  Z0, 

solution of (16) gives 

 = −
𝑍1−𝑍0

𝑍1+𝑍0
                               (21) 

corresponding to a resistive load (as anticipated before) 

given by 

𝑍 =
𝑍0
2

𝑍1
                                  (22) 

and such resistance does not depend on the phase of the 

lines. To summarize, for a pair of uncoupled lines with 

identical electrical length but different characteristic 

impedance, terminating the isolated port of the coupler (port 

1) with a resistance given by (22), suffices to obtain a pure 

differential signal at the output composite port A’-B’ 

(signal balancing). Moreover, for the particular case of half-

wavelength line lengths (or multiples), signal balancing is 

achieved regardless of port 1 termination. 

B. Phase Imbalance 

Let us now consider the general case of different electrical 

lengths (A  B), such as occurs in bended differential line 

pairs. Inspection of (17) indicates that if Z1 = Z0, then 

 = , since R = 2[1  cos(A  B)] > 0. Therefore, signal 

balancing cannot be achieved unless Z1  Z0. In other 

words, in order to achieve a pure differential-mode signal at 

the output composite port of a pair of bended lines, it is 

necessary to further imbalance the structure by varying the 

characteristic impedance of one of the lines. In this case,  

is, in general, a complex number with a modulus depending 

on the phases of the lines A and B, as well as on the ratio 

of line impedances Z1/Z0.  

In general A and B are not design parameters, but the 

ratio Z1/Z0 (or normalized impedance of line B, �̅�1) can be 

properly adjusted in order to satisfy certain requirements 

(i.e., it can be considered as a design parameter). 

Particularly, a normalized impedance providing exactly 

 = 1 (or R = 0), if it exists, is very convenient, since in 

this case signal balancing can be achieved by means of a 

pure reactive termination at port 1 of the coupler (in 

practice implementable by means of an open or shorted 

stub). Thus, let us force R = 0. From (18), the following 

condition is obtained 

𝑇 = csc 
𝐴
csc 

𝐵
− cot 

𝐴
cot 

𝐵
               (23)                

According to (19), T  1 for any resistive impedance Z1. 

Therefore, the solution of (23) should provide a value of T 

satisfying the previous requirement in order to achieve 

signal balancing with a pure reactive termination of port 1 

of the coupler. The dependence of T with A and B is 

depicted in Fig. 3, where the allowed regions (T  1) are 

visible. For a given pair of phases A and B (corresponding 

to a certain position in the A-B plane) belonging to the 

allowed regions, by choosing the value of T given by (23), 

the solution to achieve signal balancing is a pure reactive 

load ( = 1). If we choose T different from this value and 

such value gives R < 0, then the solution is a complex load. 

 

Fig. 3. Dependence of T with A and B. The allowed regions (T  1) are 

given by those combinations of A and B satisfying n < A < (n+1) and 

m  < B < (m+1), with n,m = 0,1,2,3,... and n + m an even number. 

It is interesting to mention that there are not mathematical 

solutions of (23) for A = n or B = n. In this case, T =  

(and �̅�1=  or 0), unless A = B = n (a particular situation 

analyzed before). It can be also seen that if A = B, then 

T = 1, corresponding to �̅�1= 1 (or Z1 = Z0), as inferred from 

(20) if A = B  n. In most practical cases of bended line 

pairs, the phases of the lines are not expected to differ so 

much (A  B). In other words, the phase combinations are 

expected to lie close to the diagonal line in theA-B plane 

(with T = 1), where solutions of (23) with moderate value 

for T do exist, thereby providing moderate values of �̅�1, as 

well (this is a strong practical requirement as far as the 

impedance of line B cannot take extreme values). 

From (19), the pair of solutions for �̅�1 are 

�̅�1 = 𝑇(1√1 − 𝑇
−2)                         (24)                

and these solutions verify that their product is 1. By 

introducing (23) in (24), and after some simple algebra, it 

has been found that the pair of solutions for the normalized 



impedance of line B can be expressed in the following 

compact form 

�̅�1 ≡
𝑍1

𝑍0
=
(1 cos 𝐴)(1∓cos 𝐵)

sin 𝐴 sin 𝐵
                  (25)                

Using (25), the following terms, necessary for the 

evaluation of  (see expression 16), are obtained: 

Z1

Z0
+
Z0

Z1
= 2𝑇 =

2{1−cos 𝐴 cos 𝐵}

sin 𝐴 sin 𝐵
                (26a)                

Z1

Z0
−
Z0

Z1
=
2{1−cos 𝐴 cos 𝐵}

sin 𝐴 sin 𝐵
−

2sin 𝐴 sin 𝐵

(1 cos 𝐴)(1∓cos 𝐵)
     (26b)                               

By introducing such terms in (16), the two solutions of  

are found to be 

 = ∓ cos 
𝐴
∓ j sin 

𝐴
= ∓𝑒𝑗𝐴              (27)                

and  = 1, as expected. Finally, once the value of  is 

known, the pair of impedances (purely reactive) that must 

be used to terminate port 1 of the coupler for signal 

balancing are found to be 

𝑍 = 𝑍0
1+

1−
= 𝑍0

∓𝑗 sin 𝐴

1 cos 𝐴
                     (28)                               

Note that in (28) the upper/lower sign of the solution 

corresponds to the normalized impedance of line B given by 

the upper/lower sign in (25). The () and (+) solutions of 

(27) correspond to the input reflection coefficients of a 

short-ended and open-ended stub, respectively, with 

electrical length given by stub = n  A/2 (n being an 

integer number such that stub > 0), see Fig. 4. This is 

apparent as far as (27) can be expressed as 

 = ∓𝑒
−2𝑗(𝑛−

𝐴
2
)
                         (29)                

which is the reflection coefficient of a stub with the above-

cited electrical length, terminated with an open circuit 

(+ solution) or with a short circuit ( solution), as it is well 

known [23]. To further confirm this assertion, the input 

impedance of the open- and short-ended stubs of Fig. 4 can 

be written as [23]   

𝑍𝑜.𝑐 = −𝑗𝑍0 cot (𝑛 −
𝐴

2
) = 𝑗𝑍0 cot (

𝐴

2
) = 𝑍0

𝑗 sin 𝐴
1−cos 𝐴

      (30a)                                                   

𝑍𝑠.𝑐 = 𝑗𝑍0 tan (𝑛 −
𝐴

2
) = −𝑗𝑍0 tan (

𝐴

2
) = −𝑍0

𝑗 sin 𝐴
1+cos 𝐴

   (30b)                                                   

and these expressions coincide with (28).  

Thus, from the previous analysis it follows that if two 

uncoupled lines exhibit different electrical length, signal 

balancing at the output composite port (i.e., the generation 

of a pure differential signal at that port) is straightforward.  

It is simply achieved by deliberately varying the 

characteristic impedance of one of the lines (according to 

25) and by terminating the isolated port of the rat-race balun 

(used to feed the lines) by means of a stub with the 

characteristics shown in Fig. 4. Note that the short-ended 

stub of Fig. 4(b) can be alternatively replaced with an open-

ended stub with length (n+1/2)  A/2, hence avoiding the 

use of vias to terminate the stub. Figure 4 considers the two 

balancing solutions with a purely reactive load at the 

isolated port of the rat-race coupler. This is the case of 

foremost interest as far as the implementation of the 

reactive load is carried out by means of open or short-ended 

stubs. For clear understanding, and for design purposes, 

Fig. 4 depicts the values of the electrical length and 

characteristic impedance for the stub and line B for the two 

balancing solutions. 

 

(a) 

 

(b) 

Fig. 4. Stubs providing the reflection coefficients given by expressions 
(27) or (29), necessary at the isolated port of the balun in order to achieve 

signal balancing. (a) (+) solution; (b) (-) solution. The corresponding 

solution for Z1 is also indicated. 

IV. VALIDATION 

Validation of the previous analysis is first carried out 

through circuit simulation (using Keysight ADS) by 

considering ideal lines and coupler, and then through 

electromagnetic simulation (using Keysight Momentum) and 

experiment. 

A. Circuit Simulation 

To verify the validity of the previous analysis we have 

first considered ideal lossless components under different 

cases, pointed out in the previous section. Let us first 

consider identical phases of both lines (A = B =  ), with 

  n and Z1  Z0. Let us set the phase of both lines to 

 = /2 at f0 = 2 GHz, and the characteristic impedance of 

line B to Z1 = √2Z0. According to (22), the required 

termination of port 1 of the coupler in order to achieve 

signal balancing at the output composite port should be 

Z = Z0/√2. This gives Z = 35.35 for Z0 = 50 , the usual 

reference impedance of the ports. This case has been 

simulated by the circuit simulator of Keysight ADS and it is 

verified that SA’2 =  SB’2, corresponding to perfect signal 

balancing. Actually, signal balancing should be achieved 

regardless of the phase of the lines, , as far as Z does not 

depend on . This is verified in Fig. 5, where SA’2 and SB’2 

obtained for different values of  reveal that SA’2 =  SB’2 at 

f0 (the reflection from the ports is also included in the 

figure). 
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(a)

Fig. 5. S-parameters by considering signal balancing with resistive load 

(impedance imbalance). (a) Magnitude of the reflection from the ports; (b) 
magnitude of SA’2 and SB’2; (c) phase balance at the output ports. 

 

Let us now consider signal balancing in a pair of lines 

with different electrical length (A  B) by means of a pure 

reactive load. The phases have been set to A = 450º and 

B = 480º (f0 = 2 GHz). From these phase values and 

Z0 = 50 , the two solutions of (25) for the characteristic 

impedance of line B are found to be Z1,u = 86.6  and 

Z1,l = 28.86 , where the additional sub-index (u or l) 

indicate the solution corresponding to the upper (u) or lower 

(l) signs in (25). For Z1,u = 86.6 , the electrical length of 

the 50  short-ended stub that must be used to terminate 

port 1 of the coupler is 135º. For Z1,l = 28.86 , the same 

electrical length is required, but the stub must be terminated 

by an open circuit. The two combinations of stub length and 

characteristic impedance of line B have been introduced in 

the circuit simulator of Keysight ADS, and it has been 

verified that SA’2 = SB’2 at f0 [Fig. 6(b)]. Then, we have 

analyzed the tolerances of signal balancing against 

variations in both Z1 and stub. Figure 6 depicts SA’2 and SB’2 

that results by slightly varying either Z1 or stub from the 

nominal values. It can be appreciated that perfect signal 

cancelation (balancing) exists when Z1 or stub are set to the 

nominal values, as expected. However, mode coupling 

progressively arises as Z1 or stub are perturbed (as indicated 

by the variation in the magnitude of SA’2 and SB’2 and in the 

phase balance). 

To further illustrate the potential of the proposed signal 

balancing approach, let us consider a different combination 

of line phases, particularly, A = 200º and B = 215º (with 

f0 = 2 GHz). In this case, the two solutions for the 

characteristic impedance of line B are found to be 

Z1,u = 89.41  and Z1,l = 27.96 , whereas the electrical 

length of the short- or open-ended stub is found to be 80º. 

Figure 7 depicts the reflection from the input port, as well 

as the transmission coefficients to the output ports and 

phase balance at these ports. The results, again, reveal that 

signal balancing at the design frequency is achieved.  

1.8 2.0 2.2
-30

-25

-20

-15

-10

 S
22

 (Z
1,l

 = 28.86 )

 S
22

 (Z
1,u

 = 86.6 )

 

 

R
ef

le
ct

io
n

 (
d

B
)

Frecuency (GHz)

(a) 

1.8 2.0 2.2
-7

-6

-5

-4

-3

-2

-1

0

 Z
1,l

 = 28.86  

 Z
1,u

 = 86.6 

 S
A'2

 

 S
B'2

 

 

T
ra

n
sm

is
si

o
n

 (
d

B
)

Frecuency (GHz)

-180

-120

-60

0

60

120

180

240

P
h
as

e 
B

al
an

ce
 (

d
eg

)

 
(b) 

60 70 80 90 100 110
-4.4

-4.2

-4.0

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

 S
A'2

 

 S
B'2

 

 

 

M
ag

n
it

u
d
e 

(d
B

)

Z
1

165

170

175

180

185

190

195

200

205

P
h
as

e 
B

al
an

ce
 (

d
eg

)

 
(c) 

120 125 130 135 140 145 150
-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

 

 

M
ag

n
it

u
d
e 

(d
B

)


stub

 S
A'2

 

 S
B'2

 

179

180

181

182

183

184

185

186
P

h
as

e 
B

al
an

ce
 (

d
eg

)

(d) 

Fig. 6. Balancing with pure reactive load for a phase imbalance of the lines 

of A = 450º and B = 480º. (a) Reflection from the input port; (b) 
Magnitude of SA’2 and SB’2, and phase balance at the output ports; (c) 

effects of perturbation of Z1 from the nominal value and (d) effects of 

perturbation of stub from the nominal value, for Z1,l = 86.6  and short-
ended stub case at the design frequency f0 = 2 GHz.  
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Fig. 7. Balancing with pure reactive load for a phase imbalance of the lines 

of A = 200º and B = 215º. (a) Reflection from the input port; (b) 
Magnitude of SA’2 and SB’2, and phase balance at the output ports. 

B. Electromagnetic Simulation and Experiment 

In this subsection, the cases considered before are 

validated through electromagnetic simulation (using 

Keysight Momentum) and measurement (using the Agilent 

N5221A PNA microwave network analyzer). For the 

unbalanced pair of lines with identical line phases but 

different characteristic impedances (A = B =   n and 

Z1  Z0), the photograph of the whole structure is depicted 

in Fig. 8 (corresponding to  = 200º and Z1 = √2Z0 = 

70.71 , with Z0 = 50 ). Since this type of line imbalance 

(with Z1  Z0) is not the usual one in actual differential-

mode transmission-line interconnects, the design of the 

whole structure has not been subjected to the typical 

requirement of parallel and closely spaced lines. This eases 

the design and implementation as far as the resistive load 

necessary for signal balancing (Z = Z0/√2, see previous 

subsection) is implemented by means of a matched (Z0) 

termination and a quarter-wavelength impedance inverter. 

The required impedance of the inverter is simply Zinv 

= Z0/√2
4

 = 42.045 . The considered substrate is Rogers 

RO4003C with dielectric constant r = 3.55, thickness h = 

0.8128 mm, and dissipation factor tan = 0.0022, and the 

operating frequency has been set to f0 = 2.02 GHz. The 

simulated electromagnetic response of the structure for 

frequencies in the vicinity of f0 is depicted in Fig. 9. From 

this response, it can be concluded that the output signals 

have the same modulus and 180º phase balance at f0, which 

means that perfect balance (i.e, a pure differential signal at 

the output composite port) at that frequency is achieved. 

The structure has been fabricated by means of a milling 

machine LPKF H100. The measured response is also 

included in Fig. 9, where reasonable agreement with the 

simulated response can be appreciated (taking into account 

the presence of the SMD matched load soldered at the 

extreme of the stub). Very good signal balancing at f0 is 

obtained, as it can be appreciated in Figs. 9(b) and (c). 

 

Fig. 8. Photograph of the balancing structure for lines with identical phases 

and different characteristic impedance. Inset dimensions are given in mm 
(millimeters). The length of the 200º lines is 49.86 mm, as obtained from 

the line calculator of Keysight ADS. 
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Fig. 9. Frequency response of the structure of Fig. 8. (a) Modulus of S22, 
(b) modulus of SA’2 and SB’2, and (c) phase balance at the output ports. 

 

For the second case example (line phases set to A = 450º 

and B = 480º), we have generated the layout, and from it 

we have fabricated the structure (Fig. 10). Among the two 

possible solutions for the characteristic impedance of line 

B, we have considered the one corresponding to 

Z1,l = 28.86 , providing a reactive termination of port 1 of 

the coupler that can be implemented by means of a 50  

open-ended stub with an electrical length of 135º. The 

simulated and measured frequency responses in the vicinity 

of f0 can be seen in Fig. 11. Good agreement between both 

responses (simulated and measured), as well as signal 

balancing at f0, can be appreciated. Note that in this case 

line imbalance has been generated by line bending 

(emulating potential imbalance in a real scenario). With the 

results of Fig. 11, signal balancing in unbalanced (bended) 

line pairs is experimentally demonstrated, thereby 

validating the proposed balancing approach. 



    

Fig. 10. Photograph of the balancing structure for bended line pairs with 

unequal electrical length. Inset dimensions are given in mm (millimeters). 

The length of the 450º and 480º lines is 112.14 mm and 116.57 mm, 
respectively, as obtained from the line calculator of Keysight ADS. 
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Fig. 11. Frequency response of the structure of Fig. 10. (a) Modulus of S22, 

(b) Modulus of SA’2 and SB’2, and (c) phase balance at the output ports. 

V. DISCUSSION 

It is important to mention that signal balancing in 

unbalanced uncoupled lines by means of a pure reactive 

load is achieved at the expense of certain level of signal 

reflection back to the source. This return loss is unavoidable 

to the light of the reflection coefficient of the structure 

(expression 12). For the case under study, the reflection 

coefficient can be written as 

𝑆22 = −
𝑆𝐵𝐵

2+𝑆𝐵𝐵
                              (31)                      

and it follows that S22  0 since SBB  0, as required for 

signal balancing (see Section III). Introducing  (given by 

expression 27) and SBB (expression 15c) in (31), and using 

(26), the input reflection coefficient is found to be 

𝑆22 = ∓
cos 𝐴−cos 𝐵

2−cos 𝐴 (cos 𝐴+cos 𝐵)−𝑗 sin 𝐴 (cos 𝐴+cos 𝐵)
    (32)                             

Note that (31), and hence (32), verify that S22  1, as 

required (this can be simply demonstrated from the fact that 

SBB  1 and the modulus of the denominator of expression 

31 is larger or equal to one). The fraction of the incident 

energy that is reflected back to the source is given by S222, 

which is represented in Fig. 12 for different phase 

combinations. As the phase difference of both lines 

decreases, the power reflected back to the source decreases 

as well. This is an expected result since for A = B, it 

follows that Z1 = Z0 (expression 25), the lines are balanced, 

and the input signal is totally transmitted to the output ports 

(out of phase) without reflection, regardless of the 

termination at port 1 of the coupler, as it is well known. 
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Fig. 12. Fraction of the incident energy reflected back to the source, given 

by S22
2, as a function of the electrical length of the line B for different 

electrical lengths of the line A.    
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Fig. 13. Loss level comparison between the reported balancing approach 

(through return loss) and the direct connection of the pair of unbalanced 
(matched) lines to the rat-race balun (through mode conversion). 

The proposed balancing procedure prevents from the 

presence of common mode signals at the output composite 

port of the lines, by reflecting part of the incident energy to 

the source. By contrast, if the balancing procedure reported 

in this paper is not applied, i.e., the two uncoupled matched 

lines with phase imbalance are connected directly to the 

output ports of the coupler, then S22 = 0 since SAA = SBB = 0 

(provided both lines are matched to the reference 

impedance of the ports). However, in this case, part of the 

incident energy is transferred to the common mode at the 

output composite port of the line pair (as far as A  B), 

also representing certain loss for the differential mode. The 

fraction of the energy transferred to the common mode is 

determined by the cross-mode transmission coefficient of 

the uncoupled line pair, given by 

𝑆21
𝑐𝑑 =

1

2
(𝑆𝐴′𝐴 − 𝑆𝐵′𝐵) =

1

2
(𝑒−𝑗𝐴 − 𝑒−𝑗𝐵) = 

=
cos 𝐴−cos 𝐵

2
− 𝑗

sin 𝐴−sin 𝐵

2
                  (33) 

In order to compare the loss level of our balancing 

approach (in the form of return loss) with the loss related to 

mode conversion when the approach is not applied, we have 

represented in Fig. 13 S21
cd2  S222, for the indicated values 

of A, as a function of B. For A = 90º, the result is positive 

regardless of B, which means that the fraction of the 

incident energy transmitted to the differential mode is larger 

when the reported balancing procedure is applied. For other 

values of A, there are values of B where S21
cd2  S222 <0, 



but limited to restrictive regions. It can be seen in Fig. 13 

that if B is in the vicinity of A, the usual situation in a 

practical application, then S21
cd2  S222  0, which means 

that the fraction of the incident energy transmitted to the 

differential mode is comparable in the two considered cases 

(applying the proposed balancing strategy or not). 

Nevertheless, in the regions where S21
cd2  S222 < 0, the 

absolute value is small, and for most values of B, it follows 

that S21
cd2  S222 > 0, resulting in stronger mode 

conversion loss, as compared to return loss. In summary, 

not only the common mode at the output composite port of 

the unbalanced line pair is eliminated with the proposed 

approach, but also the power associated to the differential-

mode signal at that port is, in most cases, higher (as 

compared to the case where the proposed strategy is 

ignored, thereby generating mode conversion). 

It is clear, according to the previous words, that the 

reported method for common-mode suppression in the 

output composite port is not based on the use of common-

mode filters. The method is useful to generate a differential-

mode signal, with common-mode suppression, from a 

single-ended signal, by means of a rat-race coupler with a 

specific termination in the isolated port (as discussed). 

Thus, the method is of special interest in scenarios 

involving moderate and narrow band signals. 

Comparison to traditional common-mode suppression 

approaches based on the use of common-mode filters does 

not provide an advantage to the reported approach in terms 

of bandwidth. Nevertheless, we have estimated the 

fractional bandwidth for the structure of Fig. 10, from the 

experimental results shown in Fig. 11. Note that a pure 

differential signal at the output port is achieved at the 

design frequency, where the phase balance is 180º and the 

modulus of the power splitting transmission coefficients are 

identical, i.e., SA’2 =  SB’2. The bandwidth for phase 

balance has been estimated by considering deviations of 

 5º from the nominal value. The resulting phase balance 

fractional bandwidth has been found to be 10.52 %. 

Figure 14 depicts both (SA’2  SB’2)/2 and (SA’2 + SB’2)/2, 

which are the key parameters providing the equivalent to 

the differential- and common- mode responses, 

respectively, of the structure. Note that the whole structure 

is not a balanced four-port network, but a single-ended to 

differential-mode converter. It can be appreciated that 

bandwidth is limited by the common-mode response (see 

Fig. 14). By considering a common-mode rejection level of 

20 dB, the fractional bandwidth is found to be 7.16 %. 

Nevertheless, the magnitude of the differential-mode 

response is preserved in the considered frequency range, as 

far as soft variations in the vicinity of 4 dB can be 

appreciated. The fractional bandwidth of the input reflection 

coefficient, S22 [Fig. 11(a)], considering variations of less 

than 3 dB with regard to the measured value at f0, is 17.1%. 

In [22], various common-mode filters are compared in 

terms of common-mode suppression bandwidth and 

rejection level. As mentioned, the reported single-ended to 

differential-mode converter device is not as efficient in 

suppressing the common-mode over a wide band as the 

common-mode suppression filters reported in [22] and 

references therein. However, the achieved common-mode 

rejection ratio (CMRR) at the operating frequency is 

CMRR = 60.8 dB, i.e., higher than the CMRR of most 

devices reported in [22]. 
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Fig. 14. Representation of (SA’2  SB’2)/2 (a) and (SA’2 + SB’2)/2 (b) for the 
structure of Fig. 10. 

VI. CONCLUSIONS 

In conclusion, it has been demonstrated that a rat-race 

balun with the isolated port conveniently terminated may be 

useful to generate balanced (i.e., pure differential-mode) 

signals at the output composite port of arbitrary (i.e., 

potentially unbalanced) four port networks. The analysis of 

the structure has provided us the balance condition, that is, 

the reflection coefficient of the isolated port of the rat race 

coupler, necessary to achieve signal balancing. Such 

reflection coefficient has been expressed in terms of the 

mixed mode S-parameters of the four-port network, and it is 

the key design parameter, which in turn determines the 

necessary load of the isolated port of the rat race. The 

general analysis has been then applied to the particular case 

of a pair of uncoupled and unbalanced lines, of interest as 

far as line bends (unavoidable in many situations) generate 

phase imbalances in differential line pairs. From such 

analysis, it has been concluded that signal balancing is only 

possible by modifying the characteristic impedance of one 

of the lines; otherwise, the reflection coefficient (the design 

variable) does not have a finite solution. It has been also 

demonstrated that with the adequate choice of the 

impedance of such line (the second design variable), signal 

balancing is achieved by terminating the isolated port of the 

rat race coupler with a pure reactance, implementable with 

an open or short-ended stub. Analytical expressions 

providing both the characteristic impedance of the line, as 

well as the reactive impedance of the port termination, as a 

function of the phases of both lines, have been derived. 

Finally, the reported balancing approach has been validated 

through circuit, electromagnetic simulations, and 

experimental results, by considering unbalanced lines with 

both phase imbalance (the case of actual interest) and 

impedance imbalance. The reported balancing approach for 

bended line pairs (i.e., with phase imbalance), not only 

suppresses the common mode at the output composite port 

of the line pair. It also represents an efficient solution in 

terms of power loss in most cases. The reason is that the 

return loss, unavoidable in the reported approach and 

related to the fraction of the incident energy reflected back 

to the source, in most cases (combinations of line phases) 

exhibits levels smaller than the loss associated to mode 

conversion in the bended line pair with matched lines. This 

means that the energy transfer from the single-ended signal 

(injected to the input port of the rat-race balun) to the 

differential-mode signal collected at the output composite 

port of the bended line pair is, in general (but not in all the 

cases), more efficient if the reported balancing approach is 

considered. 
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