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LIMIT CYCLES OF PIECEWISE SMOOTH DIFFERENTIAL EQUATIONS

ON TWO DIMENSIONAL TORUS

JAUME LLIBRE1, RICARDO MIRANDA MARTINS2 AND DURVAL JOSÉ TONON3

Abstract. In this paper we study the limit cycles of some classes of piecewise smooth
vector fields defined in the two dimensional torus. The piecewise smooth vector fields that

we consider are composed by linear, Ricatti and perturbations of these two classes. For these

kind of piecewise smooth vector fields we study their global dynamics, their upper bounds for
the maximum number of limit cycles that they can exhibit, and the existence of non-trivial

recurrences and of a continuum of periodic orbits. We also present a family of piecewise

smooth vector fields that possesses a finite number of fold points, and that for any positive
integer k there are values of the parameters of this family for which the piecewise smooth

vector field exhibit k limit cycles,

1. Introduction

The theory of piecewise smooth vector fields (PSVF) has been studied intensively in these
last years, mainly due to its strong relation with branches of applied sciences. These PSVF
are in the boundary between mathematics, physics and engineering, for more details see for
instance the two recent surveys [7] and [13], and the two books [4] and [12] on this subject,
where also models of PSVF from control theory are considered. Roughly speaking the PSVF are
formed by several smooth differential systems defined in different regions of the global domain
of definition of the PSVF. The common frontier between the regions that separate the different
smooth vector fields is called switching manifold (or discontinuity manifold).

Let T be the two dimensional torus. We decomposed T as the union of T+ with T−, where
T+ denotes the closed upper half part of the torus T (homeomorphic to a closed annulus),
and T− the closed bottom half part of this torus (also homeomorphic to a closed annulus).
We denote by Σ = T+ ∩ T− a smooth curve, formed by two circles, which separates T into
two connected components, each one homeomorphic to an open annulus. Let X+ and X− be
smooth vector fields on T+ and T−, respectively. A precise definition of T, T+, T− and Σ is
given at the beginning of Section 2.

In this paper we consider piecewise smooth differential equations of the form

(1) ẋ =





X+(x) if x ∈ T+,

X−(x) if x ∈ T−.

The dynamics over Σ is defined following the Filippov’s convention (see [5]). For simplicity a
differential system (1) will be denoted by (X+, X−), and referred as vector field (1).
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The study of piecewise smooth dynamical systems defined on torus is not new, but as far
as we know it has been restricted to the case of discrete dynamical systems. There are a large
number of results for piecewise maps [1], [2], [3] and [14], but there is a lack of theoretical
results for the case of piecewise dynamical systems where the flow is the solution of a piecewise
differential system.

The research of the number and stability of limit cycles for some classes of vector fields is one
of the most relevant problems of the qualitative theory of the dynamical systems. This kind of
studies started with Poincaré in [11] and [10]. The main objective of this paper is to start this
research first for the PSVF (1) when the smooth vector fields on T+ and T− are either linear,
or Ricatti, or some families of perturbations of them coming from the applications (see (3)),
and after for a family of PSVF presenting a finite number of fold points (see (6)).

This paper is organized as follows. In Section 2 we formalize some basic concepts on the
PSVF, as the first return map in this scenario and present some techniques that we shall use
in the proof of the main results. In Section 3 the main results are presented, in Section 4 we
prove these results, and in Section 5 we end this paper presenting some numerical examples of
PSVF with the maximum number of limit cycles that they can exhibit.

2. Basic Theory

2.1. Filippov’s convention. In this work the two dimensional torus T that we consider is
defined by the following equivalence relation in the square Q = [0, 1]× [0, 1] ⊂ R2:

(2) (x, y) ∼ (z, w)⇔ (x− z, y − w) ∈ Z× Z.

Consider Σ1 = {(x, y) ∈ Q : y = 0} and Σ2 = {(x, y) ∈ Q : y = 1/2}. We denote by
h1(x, y) = y and h2(x, y) = y − 1/2, in this way we can write Σ1 = h−11 (0) and Σ2 = h−12 (0).
Clearly the switching manifold Σ = Σ1 ∪Σ2 is the common boundary between the two regions
T− = {(x, y) ∈ T; 0 ≤ y ≤ 1/2} and T+ = {(x, y) ∈ T; 1/2 ≤ y ≤ 1}.

Designate by Xr the space of Cr-vector fields on T endowed with the Cr-topology with r =∞
or r ≥ 1 large enough for our purposes. Call Ωr the space of PSVF X : T→ T such that

X(x, y) =





X+(x, y) for (x, y) ∈ T+,

X−(x, y) for (x, y) ∈ T−,

where X+ = (X+
1 , X

+
2 ) and X− = (X−1 , X

−
2 ) are in Xr. Let h ∈ {h1, h2}. We denote by

X±h(p) = 〈X±(p),∇h(p)〉 and (X±)nh(p) = 〈X±(p), ∇(X±)n−1h(p)〉 the Lie’s derivatives,
where 〈·, ·〉 denote the Euclidean inner product. We may consider Ωr = Xr ×Xr endowed with
the product topology and denote any element in Ωr by X = (X+, X−), which we will accept
to be multivalued in points of Σ. In this context the basic results on the PSVF were stated by
Filippov in [5]. Related theories can be found in [4, 9, 13] and references therein.

On Σ we generically distinguish three regions: the crossing region Σc = {p ∈ Σ : X+
2 (p)

X−2 (p) > 0}, the stable sliding region Σs = {p ∈ Σ : X+
2 (p) < 0, X−2 (p) > 0}, and the unstable

sliding region Σu = {p ∈ Σ : X+
2 (p) > 0, X−2 (p) < 0}.

Following the Filippov’s convention if q ∈ Σs the sliding vector field associated to X ∈ Ωr is

the vector field X̂s tangent to Σs, expressed in coordinates as

X̂s(q) =
1

(X−2 −X+
2 )(q)

((X+
1 −X−1 )(q), 0),
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which, after a time rescaling, is topologically equivalent to the normalized sliding vector field

Xs(q) = (X+
1 −X−1 )(q).

A point q ∈ Σ such that Xs(q) = 0 is called a pseudo equilibrium of X, and a point p ∈ Σ such
that X+h(p)X−h(p) = 0 is called a tangential singularity of X (i.e. the trajectory through p is
tangent to Σ). We say that a point q ∈ Σ is a regular point if q ∈ Σc or q ∈ Σs and Xs(q) 6= 0.

A tangential singularity q ∈ Σ of X+ is a fold point of X+ if X+h(q) = 0 but (X+)2h(q) 6= 0,
visible tangency if (X+)2h(q) > 0 and invisible tangency if (X+)2h(q) < 0.

The flow φX of X ∈ Ωr is obtained by the concatenation of flows of X+, X− and Xs, denoted
by φX+ , φX− and φXs , respectively.

Let be X = (X+, X−) ∈ Ωr, we say that p ∈ Σ is a fold-regular point of X if p is a fold point
of X+ and X−(p) is transversal to Σ at p.

2.2. Extended Chebyshev systems. Let I be a proper real interval. A ordered set of func-
tions F = {gj : I → R for j = 0, 1, . . . , k} is an extended Chebyshev system on I if and only if
every nontrivial linear combination of functions of F has at most k zeros taking into account
their multiplicities. F is an extended complete Chebyshev system on I if and only if for any s,
0 ≤ s ≤ k, we get that (g0, g1, . . . , gs) is an extended system. For details and proofs see [6].

It is necessary and sufficient for proving that F is an extended Chebyshev system on I that
W (g0, g1, . . . , gs)(t) 6= 0 on I for 0 ≤ s ≤ k, where Ws(t) = W (g0, g1, . . . , gs)(t) is the Wronskian
of the functions (g0, g1, . . . , gs) with respect to t.

In [8] the authors proved that for a family of n+ 1 linearly independent analytical functions
where at least one of that possess constant sign in its domain, there exists a linear combination
of these functions having at least n simple zeros. Precisely, they proved the following result:

Theorem B Let F = {g0, g1, . . . , gn} be an ordered set of real C∞ functions on (a, b) for
which there exists ξ ∈ (a, b) with W (g0, g1, . . . , gn−1)(ξ) = Wn−1(ξ) 6= 0. Then the following
statements hold.

(a) If Wn(ξ) 6= 0 then for each configuration of m ≤ n zeros, taking into account their mul-
tiplicity, there exists a linear combination of the functions of F having this configuration
of zeros.

(b) If Wn(ξ) = 0 and W ′n(ξ) 6= 0 then for each configuration of m ≤ n + 1 zeros, taking
into account their multiplicity, there exists a linear combination of the functions of F
having this configuration of zeros.

3. Main results for PSVF in the two dimensional torus

One of the main objectives of this paper is to study the linear and Ricatti vector fields in T,
that we denote by

Xω
L(x, y) = (aωy + bω, cωy + dω),

Xω
R(x, y) = (1, eω + fωy + gωy2),

respectively, where aω, bω, cω, dω, eω, fω, gω ∈ R and either ω = + or ω = −, if the vector field
is defined either in T+ or in T−. The special case of Xω

L where aω = cω = 0 in Xω
L will be

denoted by Xω
C (constant vector field).
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In the following we shall perturb these PSVF considering the functions defined in T:

(3) F1(x, y) = (−x+ x2, 0), F2(x, y) = (η1y + η2y
2, 0), F3(x, y) = (cos(2πx), 0),

where η1, η2 ∈ R and are small. We denote by XLL the PSVF composed by two linear vector
fields in each half torus, by XLR the PSVF composed by a linear vector field in T− and Ricatti
vector field on T+, and by XRR the PSVF composed by the Ricatti vector fields in each half
torus. Considering the PSVFs XLL, XLR and XRR we perform the following perturbations:

(4)

XLL2+ = XLL + (F2,
−→
0 ), XRR1+ = XRR + ε(F1,

−→
0 ), XRR2+ = XRR + (F2,

−→
0 ),

XRR3+ = XRR + ε(F3,
−→
0 ), XLR1− = XLR + ε(

−→
0 , F1), XLR2+ = XLR + (F2,

−→
0 ),

XLR2− = XLR + (
−→
0 , F2), XLR3− = XLR + ε(

−→
0 , F3),

where
−→
0 denotes the null vector field (0, 0) in T.

Remark 1. We only consider perturbations of XLL and XRR in T+, because due to the sym-
metry of the problem we should obtain the same results if we consider perturbations in T−.

For each of the families presented in (4) we consider the following subfamilies

(5)

Ω1
Lω = {XLω ; cω > 0, dω > − cω2 },

Ω2
Lω = {XLω ; cω < 0,−1 < cω

(cω+2dω) < 0},

Ω3
Lω = {XLω ; cω < 0,−1 < cω

dω < 0},

Ω4
Lω = {XLω ; cω > 0, dω > 0},

Ω5
Lω = {XLω ; aω > 0, bω > 0},

Ω6
Lω = {XLω ; aω < 0,−1 < aω

(2bω) < 0},

Ω1
Rω =

{
XRω ; fω > 0, eωgω >

(
fω

2

)2
, tan−1 (θω1 ) > tan−1 (θω2 )

}
,

Ω2
Rω =

{
XRω ; fω > 0, eωgω >

(
fω

2

)2
, tan−1 (θω2 ) > sec−1 (θω3 )

}
,

Ω3
Rω =

{
XRω ; fω > 0, eωgω >

(
fω

2

)2
, tan−1 (θω1 ) > sec−1 (θω3 )

}
,

where θω1 =
fω + 2gω√

4eωgω − (fω)2
, θω2 =

fω + gω√
4eωgω − (fω)2

and θω3 =
2
√
eωgω√

4eωgω − (fω)2
. Prior to

present the theorem we define the following real numbers

∆LL =
1

2(c−c+)2

(
c−
(
c+(a−c+ + a+c−) + 2c− log

(
c+

c++2d+ + 1
)

(b+c+ − a+d+)
)

+2(c+)2 log
(
c−

2d− + 1
)

(b−c− − a−d−)
)
,



LIMIT CYCLES IN PSVF ON TWO DIMENSIONAL TORUS 5

∆LR =
1

2(c−)2

(
a−c− + (4(c−)2(− tan−1(θ+2 ) + tan−1(θ+1 ))/

√
−(f+)2 + 4e+g+

+2b−c− log(1 + c−/(2d−))− 2a−d− log(1 + c−/(2d−))),

∆RR =
sec−1

(
θ−3
)
− tan−1

(
θ−2
)

√
4e−g− − (f−)2

+
tan−1

(
θ+2
)
− tan−1

(
θ+1
)

√
4e+g+ − (f+)2

,

∆LL2+ =
1

8(c+)3

(
8 log

(
c+

c++2d+ + 1
) (
d+(d+η2 − c+(a+ + η1)) + b+(c+)2

)
+

c+(4c+(a+ + c+ + η1) + η2(3c+ − 4d+))
)
,

∆RR2+ =
1

2(g+)2
√

4e−g− − (f−)2
√

4e+g+ − (f+)2

(√
4e−g− − (f−)2

(tan−1(θ+2 )(4e+η2g
+ − 2(f+)2η2 + 2f+η1g

+ − 4(g+)2)+

2 tan−1
(
θ+1
) (
−g+(2e+η2 + f+η1) + (f+)2η2 + 2(g+)2

)
+

√
4e+g+ − (f+)2(log

(
g+(e++f++g+)
4e+g+−(f+)2

)
(η1g

+ − f+η2)+

log
(
1 + (θ+2 )2

)
(f+η2 − η1g+)− f+η2 log(4) + η1g

+ log(4) + η2g
+))+

4(g+)2
√

4e+g+ − (f+)2
(

tan−1
(
θ−2
)
− sec−1

(
θ−3
) ))

,

∆LR2− =
1

2(c+)2(g−)2
√

4e−g− − (f−)2

(√
4e−g− − (f−)2

(
2(g−)2 log

(
c+

c++2d+ + 1
)

(b+c+ − a+d+) + c+
(
a+(g−)2 + 2c+η1g

− log

(√
4e−g−−(f−)2
√
e−
√
g−

)
−

2c+η1g
− log

(
1√

1+(θ−2 )2

)
− c+

√
e−η2

√
g−
√

(f−)2

e−g−−

2c+f−η2 log

(√
4e−g−−(f−)2

2
√
e−g−

)
+ 2c+f−η2 log

(
1√

1+(θ+2 )2

)
+

c+f−η2 − c+η1g− log(4) + c+η2g
−
))

+
(

2(c+)2
(
− g−(2e−η2 + f−η1)+

(f−)2η2 + 2(g−)2
))(

tan−1
(
θ−2
)
− sec−1

(
θ−3
) ))

,

∆LR2+ =
1

8(c+)3 ((f−)2 − 4e−g−)

( (
(f−)2 − 4e−g−

) (
8 log

(
c+

c++2d+ + 1
)

(
c+(b+c+ − d+(a+ + η1)) + (d+)2η2

)
+ c+(4c+a+ + η1) + η2(3c+ − 4d+)

))
+

16(c+)3
√

4e−g− − (f−)2
(

sec−1
(
θ−3
)
− tan−1

(
θ−2
) ))

.

In Theorem 2 we prove that these subfamilies correspond the piecewise smooth vector fields
where the first return map P : Σ1 → Σ1 is defined.

Theorem 2. Consider the PSVFs defined in (5).

(a) If ∆LL ∈ Q then XLL has a continuum of periodic orbits, and if ∆LL 6∈ Q then all
trajectories of XLL are dense.

(b) If ∆LR ∈ Q then XLR has a continuum of periodic orbits, and if ∆LR 6∈ Q then all
trajectories of XLR are dense.
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(c) If ∆RR ∈ Q then XRR has a continuum of periodic orbits, and if ∆RR 6∈ Q then all
trajectories of XRR are dense.

Considering the perturbations Fωi we have

(d) If ∆LL2+ ∈ Q then XLL2+ has a continuum of periodic orbits, and if ∆LL2+ 6∈ Q then
all trajectories of XLL2+ are dense.

(e) If ε > 0 then the maximum number of limit cycles for XRR1+ is two, and this upper
bound is reached.

(f) If ∆RR2+ ∈ Q then XRR2+ has a continuum of periodic orbits, and if ∆RR2+ 6∈ Q then
all trajectories of XRR2+ are dense.

(g) The maximum number of limit cycles of XRR3+ is two, and this upper bound is reached.

(h) The maximum number of limit cycles of XLR1− is two, and this upper bound is reached

if XLR1− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− , ε < 0, a+c+ > 0 and b+c+ > a+d+.

(i) If ∆LR2− ∈ Q then XLR2− has a continuum of periodic orbits, and if ∆LR2− 6∈ Q then
all trajectories of XLR2− are dense.

(j) The maximum number of limit cycles of XLR3− is two, and this upper bound is reached.

(l) If ∆LR2+ ∈ Q then XLR2+ has a continuum of periodic orbits, and if ∆LR2+ 6∈ Q then
all trajectories of XLR2+ are dense.

In what follows we consider a PSVF XCk = (XC , Xk) in T having a finite number of fold-
regular points in Σ, where

(6) Xk(x, y) = (α, β cos(2kπx)),

is defined in T− and XC(x, y) = (b+, d+) is defined in T+, with b+, d+ ∈ R, k is a positive
integer and α, β ∈ R. For this PSVF there exists a choice of the parameters of XCk such
that XCk exhibits a finite number of limit cycles depending on k. More precisely we have the
following result.

Theorem 3. The PSVF XCk has at most k limit cycles, and this upper bound is reached for
every k ≥ 1.

Remark 4. Note that the vector field in the family XCk can have no limit cycles. In such case
there are sliding regions over the switching manifold and XCk may present a chaotic behavior,
see for instance [15].

4. Proof of main results

4.1. Preliminary results. Before to prove the main results of this paper we need some aux-
iliary results. The next lemma provides the expression of the first return map for the PSVFs
XLL, XRR, XLR and their perturbations.

Lemma 5. Consider the PSVFs defined in (5) and the functions defined in (3).
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(a) If XLL ∈
[
Ω1
L+ ∪Ω2

L+

]
∩
[
Ω1
L− ∪Ω2

L−

]
then the first return map PLL : Σ1 → Σ1 is well

defined and is given by PLL(x0) = x0 + ∆LL.

(b) If XLR ∈
[
Ω1
L− ∪Ω2

L+

]
∩Ω1

R+ then the first return map PLR : Σ1 → Σ1 is well defined

and is given by PLR(x0) = x0 + ∆LR.

(c) If XRR ∈
[
Ω1
R+ ∩Ω2

R−

]
then the first return map PRR : Σ1 → Σ1 is well defined and is

given by PRR(x0) = x0 + ∆RR.

(d) If XLL2+ ∈
[
Ω5
L− ∪Ω6

L−

]
∩
[
Ω1
L+ ∪Ω2

L+

]
then the first return map PLL2+ : Σ1 → Σ1 is

well defined and is given by PLL2+(x0) = x0 + ∆LL2+

(e) If XRR1+ ∈
[
Ω2
R− ∩ Ω3

R+

]
and ε is a small positive number then the first return map

PRR1+ : Σ1 → Σ1 is well defined and is given by

PRR1+(x0) = 1

2
√
−(ε−4)ε

(√
(4− ε)ε+ (4− ε) tan

(√−(ε−4)ε(tan−1(θ+1 )−sec−1(θ+3 ))√
4e+g+−(f+)2

−

tan−1
(

1
√
4−ε
(
((f−)2−4e−g−)

√
ε
(

(2x0 − 1)
((
−(f−)2 + 4e−g−

))
+

4
√

4e−g− − (f−)2 tan−1
(
θ−2
)
− 4
√

4e−g− − (f−)2 sec−1(θ−3 )
)))))

.

(f) If XRR2+ ∈
[
Ω1
R− ∩ Ω2

R+

]
then the first return map PRR2+ : Σ1 → Σ1 is well defined

and is given by PRR2+(x0) = x0 + ∆RR2+

(g) If XRR3+ ∈
[
Ω2
R− ∩ Ω1

R+

]
and ε is a small positive number then the first return map

PRR3+ : Σ1 → Σ1 is well defined and is given by

PRR3+(x0) = − 1
π tan−1

(√
ε+1√
1−ε

(
tan

(
2π
√
1−ε2(tan−1(θ+2 )−tan−1(θ+1 ))√

4e+g+−(f+)2

))
−

tan−1
(

(ε−1)√
1−ε2 tan

(
π

(f−)2−4e−g−
(
− (f−)2 + 2

√
4e−g− − (f−)2

tan−1(θ+2 )− 2
√

4e−g− − (f−)2 sec−1(θ−3 ) + 4e−g−x0 − (f−)2x0

))))

(h) If XLR1− ∈
[
Ω1
L+ ∪Ω2

L+

]
∩Ω2

R− and ε is a small negative number then the first return

map PLR1− : Σ1 → Σ1 is well defined and is given by

PLR1−(x0) = 1
2

(
2 log

(
c+

c++2d+
+1
)
(b+c+−a+d+)+c+(a++c+)

(c+)2 +

tanh

(√
4−ε√−ε(tan−1(θ+2 )−sec−1(θ−3 ))√

4e−g−−(f−)2
+tanh−1((2x0−1)

√
ε
ε−4 )

)

√
ε
ε−4

)
.

(i) If XLR2− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− then the first return map PLR2− : Σ1 → Σ1 is well

defined and is given by PLR2−(x0) = x0 + ∆LR2−.
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(j) If XLR3− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− and ε is a small positive number then the first return

map PLR3− : Σ1 → Σ1 is well defined and is given by

PLR3−(x0) = 1
2π(c+)2

(
π
(

2 log
(

c+

c++2d+ + 1
)

(b+c+ − a+d+) + a+c+
)

+

2(c+)2 tan−1
(√

ε+1√
1−ε tan

(
2π
√
1−ε2(tan−1(θ−2 )−sec−1(θ−3 ))√

4e−g−−(f−)2
−

tan−1
(

(ε−1) tan(πx0)√
1−ε2

))))
.

(l) If XLR2+ ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− then the first return map PLR2+ : Σ1 → Σ1 is well

defined and is given by PLR2+(x0) = x0 + ∆LR2+.

Proof. The flow φX(t) where X is one of the vector fields XLω, XRω, XL2ω, XR1ω, XR2ω, XR3ω

passing through the point p = (x0, y0) when t = 0 is given by

φXLω (t) =
( 1

(cω)2

(
− aωcωdωt+ aωdωec

ωt + aωcωy0e
cωt − aωcωy0 − aωdω+

bω(cω)2t+ (cω)2x0

)
, d

ωec
ωt+cωy0e

cωt−dω
cω

)
,

φXR(t) =
(
t+ x0,

1
2gω

(√
4eωgω − (fω)2 tan

(
1
2 t
√

4eωgω − (fω)2+

tan−1
(

fω+2gωy0√
4eωgω−(fω)2

))
− fω

))
,

φXL2
(t) =

(
ec
ωt(cωy0+d

ω)−dω
cω , 1

2(cω)3

(
− 2aω(cω)2dωt− 2aω(cω)2y0+

2ec
ωt(cωy0 + dω)(cω(aω + η1)− 2dωη2)− 2aωcωdω + 2bω(cω)3t+

2(cω)3x0 − 2(cω)2dωη1t− (cω)2η2y
2
0 − 2(cω)2η1y0 + 2cω(dω)2η2t−

2cωdωη1 + η2e
2cωt(cωy0 + (dω)2 + 2cωdωη2y0 + 3(dω)2η2

))
,

φXR1
(t) =

(
1
2ε

(√
−(ε− 4)ε tan

(
1
2 t
√
−(ε− 4)ε+ tan−1

(
(2x0−1)

√
ε√

4−ε

))
+ ε
)
,

1
2gω

(√
4eωgω − (fω)2 tan

(
1
2 t
√

4eωgω − (fω)2

+ tan−1
(

fω+2gωy0√
4eωgω−(fω)2

))
− fω

))
, φXR2

(t)

=
(

1
2(gω)2

(
− (η1g

ω − fωη2)
(

2 log
(

cos
(

1
2 t
√

4eωgω − (fω)2+

tan−1
(

fω+2gωy0√
4eωgω−(fω)2

)))
+ log

(
1− (fω+2gωy0)

2

(fω)2−4eωgω
))

+

η2
√

4eωgω − (fω)2 tan

(
1
2 t
√

4eωgω − (fω)2 + tan−1
(

fω+2gωy0√
4eωgω−(fω)2

))
−

gω(2η2(eωt+ y0) + fωη1t) + fωη2(fωt− 1) + 2(gω)2(t+ x0)
)
,

1
2gω

(√
4eωgω − (fω)2 tan

(
1
2 t
√

4eωgω − (fω)2+

tan−1
(

fω+2gωy0√
4eωgω−(fω)2

))
− fω

))
,
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φXR3
(t) =

(
1
π tan−1


 (ε+1) tanh

(
πt
√
ε2−1+tanh−1

(
(ε−1) tan(πx0)√

ε2−1

))

√
ε2−1


 ,

1
2gω

(√
4eωgω − (fω)2 tan

(
1
2 t
√

4eωgω − (fω)2+

tan−1
(

fω+2gωy0√
4eωgω−(fω)2

))
− fω

))
,

respectively.

In the following we detail the proof for XLL. In this case considering the flow φXL−(t) =
(x1(t), y1(t)) starting at the point p = (x0, 0) ∈ Σ1, the smallest positive time t1(p) such that
φXL−(t1(p)) ∈ Σ2 is

t1(p) =
log
(
c−

2d− + 1
)

c−
.

In this way we obtain the half first return map P−L : Σ1 → Σ2 given by P−1 (x0, 0) = φXL−(t1(p))
= (x1, 1/2).

Considering now the flow φXL+
(t) = (x2(t), y2(t)) and the initial condition p1 = (x1, 1/2)

the smallest positive time such that φXL+
(t(p1)) ∈ Σ2 is

t2(p1) =
log
(

c+

c++2d+ + 1
)

c+
,

that provides the upper half first return map P+
1 : Σ2 → Σ1 given by P+

L (x1, 1/2) = φXL+
(t2(p1)

= (x2, 0). Note that a sufficient condition in order that t1(p) and t2(p1) are the smallest positive

times is that XLL ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩
[
Ω1
L− ∪ Ω2

L−

]
.

Finally the first return map PLL : Σ1 → Σ1 is given by the composition PLL(x0) = (P+
L ◦

P−L )(x0) = x0 + ∆LL.

Working in a similar way as in the computation of the first return map PLL, we have obtained
for the other first return maps their domains of definition and their expressions. �

4.2. Proof of Theorem 2. Now we are able to perform the proof of Theorem 2. Let PX be
the first return map for each PSVF X consider in this paper. Now we define the displacement
map

dX(x0) = PX(x0)− x0.
The limit cycles of X are given by simple zeros of dX . Lemma 5 provides the first return
map for PSVF. Thus the proof of statements (a), (b), (c), (d), (f), (i) and (l) follows directly
because in each one of these cases the first return map is given by PX(x0) = x0 + ∆X where
∆X is a real number given in function of coefficients of X. Therefore the iterates of PX are
P kX(x0) = x0 + k∆X , or equivalently the k-iterate of the displacement map is dkX(x0) = k∆X ,
where k is an integer number. Considering the equivalence relation (2) that defines the two
dimensional torus, we have that dkX(x0) return to x0 if and only if there exists an integer k0 such
that k0∆X ∈ Z, or equivalently ∆X is a rational number. Otherwise if ∆X is not a rational
number then the trajectory passing through X0 never closes. In other words, P kX is a rotation
on the circle with irrational rotation number, so we conclude that all trajectories are dense in
torus and the proof follows for these cases.
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Jaume, por favor, veja se o argumento usado acima esta bom.

In the following we detail the proofs of statements (e) and (h).

The first return map for XRR1+ is given in statement (e) of Lemma 5, so the displacement
map in this case is

dXRR1+(x0) = 1
2

(√
4−ε tan

(
ξ1−tan−1

(
ξ2+

(1−2x0)
√
ε√

4−ε

))

√
ε

− 2x0 + 1

)
,

where ξ1 =

√
(4−ε)ε(tan−1(θ+1 )−sec−1(θ+3 ))√

4e+g+−(f+)2
and ξ2 =

4
√
ε(sec−1(θ−3 )−tan−1(θ+2 ))
√
4−ε
√

4e−g−−(f−)2
if ε > 0. As

XRR1+ ∈
[
Ω2
R− ∩Ω3

R+

]
then ξ1 > 0 and ξ2 > 0. Solving directly the equation dXRR1+(x0) = 0

we obtain the values

x±0 =
± csc(ξ1)

√
(4− ε)ε sin2(ξ1) (4ξ2 cot(ξ1) + ξ22 − 4) + ξ2

√
(4− ε)ε+ 2ε

4ε
,

recall that ε > 0.

In fact, the radical RRR1+ = (4− ε)ε sin2(ξ1)
(
4ξ2 cot(ξ1) + ξ22 − 4

)
is given in function of ε

and can be written as

RRR1+(ε) =
16ε2

(
(sec−1(θ+3 )−tan−1(θ+1 ))

2

(
4
√

4e+g++(f+)2(tan−1(θ−2 )−sec−1(θ−3 ))√
4e−g−−(f−)2(tan−1(θ+1 )−sec−1(θ+3 ))

−4
))

(f+)2−4e+g+ +O(ε5/2).

Since XRR1+ ∈
[
Ω2
R− ∩ Ω3

R+

]
we have that RRR1+ is positive. Therefore if ε > 0 there exists

two simple zeros of dXRR1+, or equivalently two limit cycles of XRR1+. In Example 6 we show
a PSVF XRR1+ presenting exactly two limit cycles.

For the case (h) the displacement map of XLR1− is

dXLR1−(x0) =
1

2

(
ξ3 − 2x0 +

tanh

(
ξ4+tanh−1((2x0−1)

√
ε
ε−4 )

)

√
ε
ε−4

)
,

where ξ3 =
2 log

(
c+

c++2d+
+1
)
(b+c+−a+d+)+c+(a++c+)

(c+)2 and ξ4 =
√
4−ε√−ε(tan−1(θ−2 )−sec−1(θ−3 ))√

4e−g−−(f−)2
for

XLR1− ∈
[
Ω1
L+∪Ω2

L+

]
∩Ω2

R− and ε < 0. Note that ξ3 > 0. Solving the equation dXLR1−(x0) = 0

we obtain for x0 the values

x±0 = ±

√
ε

(
4(ξ3−1)ε coth(ξ4)√

ε
ε−4

+ ((ξ3 − 2)ξ3 + 5)ε− 16

)
+ ξ3ε+ ε

4ε
.

These values of x0 are real numbers because ε < 0, a+c+ > 0 and b+c+ > a+d+. Moreover,

the radical RLR1− = ε( 4(ξ3−1)ε coth(ξ4)√
ε
ε−4

+ ((ξ3 − 2)ξ3 + 5)ε− 16) in terms of ε can be written as

√
−ε
(√√√√4

√
4e−g− − (f−)2

(
2 log

(
c+

c++2d+ + 1
)

(b+c+ − a+d+) + a+c+
)

(c+)2
(
tan−1

(
θ−2
)
− sec−1

(
θ−3
)) + 16

)
+O(ε3/2).
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So assuming that XLR1− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− , ε < 0, a+c+ > 0 and b+c+ > a+d+, then

RLR1− > 0. A vector field XLR1− with exactly two limit cycle is presented in Example 7.

For the case (g), similarly to the previous cases, the displacement map for XRR3+ is

dXRR3+(x0) = − 1

π

(
tan−1



√
ε+ 1 tan

(
ξ5 + tan−1

(
(ε−1) tan(ξ6+πx0)√

1−ε2
))

√
1− ε



)
− x0,

where ξ5 =
2π
√
1−ε2(tan−1(θ+2 )−tan−1(θ+1 ))√

4e+g+−(f+)2
and ξ6 =

2π(tan−1(θ−2 )−sec−1(θ−3 ))√
4e−g−−(f−)2

. As XRR3+ ∈
[
Ω2
R− ∩ Ω1

R+

]
then ξ5 < 0 and ξ6 > 0. The solutions of equation dXRR3+(x0) = 0 are

x10 =
cos−1

(√
1−ε2 cot(ξ5) sin(ξ6)−cos(ξ6)

ε

)
− ξ6

2π
+ k1,

x20 =
− cos−1

(√
1−ε2 cot(ξ5) sin(ξ6)−cos(ξ6)

ε

)
− ξ6

2π
+ k2,

where k1, k2 are integer numbers. In the torus we obtain only two distinct points and the
integers k1 and k2 are the smallest such that x10, x

2
0 ∈ [0, 1]. In Example 8 we perform a PSVF

with two limit cycles.

Remain to prove the statement (j) when XLR3− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− . In this case the

displacement map is

dXLR3−(x0) =
1

π

(
tan−1



√
ε+ 1 tan

(
ξ7 − tan−1

(
(ε−1) tan(πx0)√

1−ε2
))

√
1− ε



)

+ ξ8 − x0,

where ξ7 =
2π
√
1−ε2(tan−1(θ−2 )−sec−1(θ−3 ))√

4e−g−−(f−)2
and ξ8 =

2 log
(

c+

c++2d+
+1
)
(b+c+−a+d+)+a+c+

2(c+)2 . AsXLR3− ∈
[
Ω1
L+ ∪ Ω2

L+

]
∩ Ω2

R− then ξ7 > 0.

Considering the change of coordinates z = tan(πx0) the map dXLR3− can be written

dXLR3−(z) =
C1z(ε+ 1)

C1ε+ C1 − z
√

1− ε2
+

ε+ 1

C1

√
1− ε2 + z(ε− 1)

− C2z

C2 + z
+

1

C2 + z
,

where we denote by C1 = cot(ξ7) and C2 = cot(ξ8π). Observe that dXLR3−(z) is given as
a linear combination of the functions g0(z) = 1/(C2 + z), g1(z) = z/(C2 + z) and g2(z) =

1/(C1

√
1− ε2 + z(ε − 1)). In fact, it is sufficient to prove that the function g3(z) = z/(C1ε +

C1 − z
√

1− ε2) is given as a linear combination of the functions g0, g1 and g2. By a direct
computation we obtain that the Wronskian W3(g0, g1, g2, g3)(z) is zero. Therefore the set of
functions {g0(z), g1(z), g2(z), g3(z)} is linearly dependent.

Besides than if we consider the ordered set of functions F = {g0(z), g1(z), g2(z)}, the Wron-
skians W1(z) and W2(z) are

W1(z) =
1

(C2 + z)2
,

W2(z) =
2(ε− 1)

(
C2(ε− 1)− C1

√
1− ε2

)

(C2 + z)3
(
C1

√
1− ε2 + z(ε− 1)

)3 .
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So W1(z) 6= 0 and W2(z) 6= 0, because cot(ξ8π) 6= − cot(ξ7)
√

1+ε
1−ε , i.e.

cot

(
π
(
2 log

(
c+

c++2d+
+1
)
(b+c+−a+d+)+a+c+

)

2(c+)2

)
6=

cot

(
2π
√
1−ε2(tan−1(θ−2 )−sec−1(θ−3 ))√

4e−g−−(f−)2

)(√
1+ε
1−ε

)
.

Therefore, by Theorem B we obtain that the upper bound of zeros of any linear combination of
functions in F is two and besides that there exists a linear combination of F presenting exactly
two zeros.

In this way, as the displacement map dXLR3− is given as a specific linear combination of
functions of F we guarantee that the upper bound of zeros of dXLR3− is two (as a function of
z = tan(πx0)). But if z1, z2 are the zeros of dXLR3− then there exists x10 + k1 and x20 + k2 real
numbers where k1, k2 are integer numbers such that tan(π(x10+k1)) = z1 and tan(π(x20+k2)) =
z2. We choose the integers k1 and k2 such that x10, x

2
0 ∈ [0, 1]. Despite the displacement map

dXLR3− is a specific linear combination of g0, g1 and g2 in Example 9 we are able to present
values of the parameters such that XLR3− presents exactly two limit cycles. �

4.3. Proof of Theorem 3. Recall that XCk(x, y) = (XC(x, y), Xk(x, y) is defined on the
torus, with XC(x, y) = X+

C (x, y) = (b+, d+) defined on Σ+ and Xk(x, y) = (α, β cos(2kπx) is
defined on Σ−.

It is straightforward to obtain the expressions of the flows φXk(t) and φXC (t) of Xk and X+
C

respectively, passing through the point p = (x0, y0) when t = 0, namely

φXk(t) =

(
αt+ x0, y0 −

β sin(2πkx0)

2kπα

β sin(2παkt+ 2πkx0)

2kπα

)
,

φX+
C

(t) = (b+t+ x0, d
+t+ y0) .

The fly maps PXk : {(x, y) ∈ Q; y = 0} → {(x, y) ∈ Q; y = 1/2} of φXk and PXC : {(x, y) ∈
Q; y = 1/2} → {(x, y) ∈ Q; y = 1} of φX+

C
are given by

PXk(x0, 0) =




arcsin

(
kπα+ β sin(2πkx0)

β

)

2kπ
,

1

2


 ,

PX+
C

(x0, 1/2) =

(
b+ + 2d+x0

2b
, 1

)
,

where m ∈ {0, . . . , k} is such that x0 ∈ [m/k, (m+ 1)/k].

Thus the Poincaré map PXCk : {(x, y) ∈ Q; y = 0} → {(x, y) ∈ Q; y = 1} is given by
PXCk(x0, 0) = (PXC ◦ PXk)(x0, 0) = (P1(x0), 1), with

P1(x0) =
1

2kπ
arcsin

(
sin(2kπx0) + kαπ/β

)
+

b+

2d+
+
m

k
.

So to find limit cycles we have to find the simple zeros of the displacement map

(7) dXLk(x0) = P1(x0)− x0,
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for x0 ∈ [0, 1]. Now we show that for every m = 0, . . . , k− 1, there are at most one solution for
(7) with x0 ∈ (m/k, (m+ 1)/k), thus there is at most k limit cycles for XLk.

Now we study the solutions of

(8) d+ arcsin

(
kπα+ β sin(2πkx0)

β

)
= 2x0d

+kπ − b+kπ − 2md+π

for x ∈ [0, 1], where m ∈ Z and x ∈ (m/k, (m+ 1)/k).

Fix m = 0 and k = 1 without loss of generality (we can always restrict ourselves to x ∈
[0, 1/k]).

Before we conclude the analysis we discuss the tangency points of XCk. For k = 1, the
tangency points are (1/4, 0), (3/4, 0), (1/4, 1/2) and (3/4, 1/2). According to the signs of b+,
d+, α, and β, the segments between these points vary between (stable or unstable) sliding
segments and crossing segments.

Suppose b+α < 0 and d+β < 0. Then the segments [1/4, 3/4] × {0} and [1/4, 3/4] × {1/2}
are crossing regions. Solutions passing outside these segments cannot be limit cycles.

Note that the function g(x0) = d+ arcsin

(
kπα+ β sin(2πkx0)

β

)
has two critical points, 1/4

and 3/4, so it is monotone on (1/4, 3/4). Therefore the straight line 2x0d
+kπ− b+kπ− 2md+π

meets the graph of g at most in one point. Thus there is at most 1 limit cycles for XCk with
k = 1. It is easy to see that there are at most k limit cycles for XCk. In Example 10 we
provided values of the coefficients α, β, b+ and d+ for which the PSVF XCk presents one limit
cycle for k = 1.

5. Final remarks and some examples

In the present section we exhibit explicit values for the parameters of the PSVFs XRR1+,
XRR3+, XLR1− and XLR3− for which they realize their upper bound on the maximum number
of limit cycles.

Example 6. If e+ = 0.466532, f+ = 0.1, g+ = 0.541227, e− = −0.35481, f− = 0.4, g− =
−0.817339 and ε = 0.02, then the displacement map associated to XRR1+(x, y) given in (4) is

dXRR1+(x0) = 7.05337 tan
(
0.217 − tan−1(0.290888 − 0.141776x0)

)
− x0 + 0.5.

Solving the equation dXRR1+(x0) = 0 we obtain the points x10 = 0.571897 and x20 = 1.97984 =
1 + 0.97984 which represents the points in the torus: y10 = 0.571897 and y20 = 0.97984. In other
words, this means that the trajectory passing through y20 rotates one time before return to y20.

Example 7. If a+ = −4.47442,b+ = 0, c+ = 1, d+ = 1, e− = 0.0355785, f− =
√

3, g− =
28.1069 and ε = −0.08, then the displacement map associated to XLR11(x, y) given in (4) is

dXLR1−(x0) = −x0 + 3.57071 tanh
(
tanh−1(0.140028(2x0 − 1)) + 0.28

)
− 0.45,

and its solutions of dXLR1−(x0) = 0 in the torus are x10 = 0.286257 and x20 = 0.763743.

Example 8. If e+ = 0.584555, f+ = 0.130158, g+ = 0.434921, e− = 0.670355, f− =
√

3,
g− = 1.49175 and ε = 0.06, then the displacement map associated to XRR3+(x, y) given in (4)
is

dXRR3+(x0) =
tan−1

(
1.06191 tan

(
tan−1(0.941697 tan(πx0 + 1.4)) + 1.7

))

π
− x0,

and the solutions of dXRR3+(x0) = 0 in the torus are x10 = 0.15119 and x20 = 0.403176.
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Example 9. If a+ = 1.21371, b+ = 1, c+ = 1, d+ = 0, e− = 0.250971, f− =
√

3, g− = 3.98453
and ε = 0.04, then the displacement map associated to XLR3−(x, y) given in (4) is

dXLR3−(x0) = −x0 + 0.31831 tan−1
(
1.04083 tan

(
tan−1(0.960769 tan(πx0)) + 2.2

))
+ 1.3,

and the solutions of dXLR3−(x0) = 0 in the torus are x10 = 0.397519 and x20 = 0.902481, see
Figure 1.

Figure 1. The two limit cycles presented in Example 9.

Example 10. Finally we provide an example with exactly k limit cycles for XCk (see Theorem
3) for k = 1. Given the vector field Xk(x, y) = (α, β cos(2kπx) with α, β > 0 and k > 0 an
integer, we will construct a vector field XC(x, y) = (b+, d+) with a limit cycle. Note that for
every m = 0, . . . , k − 1 we have

PXk

(
1

8k
+
m

k
,

1

2

)
=

(
1

2kπ
arcsin

(
kπα

β
+

√
2

2

)
+
m

k
,

1

2

)
.

So the first restriction is −1 <
kπα

β
+

√
2

2
< 1. Now we fix m = 0 and prove that we have at

least limit cycles for x ∈ [0, 1/k].

Let ∆Ck =
1

8k
− 1

2kπ
arcsin

(
2kπα+ β

√
2

2β

)
and consider XC(x, y) = (∆Ck, 1/2), i.e. b+ =

∆Ck and d+ = 1/2. By construction, PXCk(1/8k, 0) = (1/8k, 1), so we have a fixed point of the
Poincaré map of XCk, and consequently a limit cycle. The derivative of the Poincaré map on
this fixed point is

P ′1(1/8k) =



√
β2 − 2

√
2παβk − 2π2α2k2

β2



−1

,

that is not zero under generic conditions. So this is an isolated fixed point, providing a limit
cycle, see Figure 2. Thus we have exactly k = 1 limit cycles.
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Figure 2. The only limit cycle for XCk with k = 1 in Example 10.
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