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Abstract: An oscillator such that all motions have the same minimal period is called
isochronous. When the isochronous is forced by a time-dependent perturbation with the
same natural frequency as the oscillator the phenomenon of resonance can appear. This
fact is well understood for the harmonic oscillator and we extend it to the nonlinear
scenario.

1 Introduction

In this communication we present some results from [4] that aim to characterize the class
of periodic forcings producing resonances in nonlinear isochronous oscillators.

A well-known fact from physics and mathematics is that the harmonic oscillator with
period 2π perturbed by a periodic forcing

ẍ+ n2x = p(t), n = 1, 2, . . .

exhibits resonance whenever the Fourier coefficient

p̂n :=
1

2π

∫ 2π

0
p(t)e−intdt

does not vanish. In this context, resonance means that all solutions of the perturbed
equation are unbounded. After this example the question that naturally arises is if there
exists an equivalent condition for general nonlinear isochronous oscillators. As far as we
know this question was first raised by Prof. Roussarie in the Open Problems Session of
the II Symposium on Planar Vector Fields (Lleida, 2000).

In this direction, Ortega [3] proved that if the nonlinear isochronous oscillator sat-
isfies a Lipschitz condition then there exist functions p(t) producing resonance. Also
Bonheure et all [2] give concrete examples of perturbations. Our contribution in [4] may
be interpreted as a nonlinear version of condition p̂n 6= 0.

2 Statement of the results

Consider the oscillator

(1) ẍ+ V ′(x) = 0, x ∈ R

where V ∈ C2(R) is a potential defined on the whole real line satisfying V (0) = 0,
xV ′(x) > 0 if x 6= 0, and such that all its solutions are 2π-periodic. The purpose of the
following results is to identify the class of 2π-periodic perturbations p(t) such that all
the solutions of the non-autonomous equation

(2) ẍ+ V ′(x) = εp(t)
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are unbounded for ε 6= 0 small. More precisely, we say that the equation is resonant if
every solution x(t) of (2) satisfies

lim
|t|→+∞

(|x(t)|+ |ẋ(t)|) = +∞.

Let us denote by C := (R/2πZ) × [0,∞) the cylinder with coordinates (θ, r). The
analogous function that plays the role of the Fourier coefficient p̂n in the nonlinear case
is given by the function Φp : C → C defined by

Φp(θ, r) :=
1

2π

∫ 2π

0
p(t− θ)ψ(t, r)dt,

where ψ(t, r) is the complex-valued solution of the variational equation

ÿ + V ′′(ϕ(t, r))y = 0, y(0) = 1, ẏ(0) = i,

and ϕ(t, r) denotes the solution of system (1) with initial data x(0) = r and ẋ(0) = 0.
[4, Theorem A] states that if V satisfies the previous conditions and V ′′ is bounded

over the reals then equation (2) is resonant for small ε 6= 0 for any p ∈ L1(T) satisfying
the condition

(3) inf
C
|Φp(θ, r)| > 0.

This result is a sufficient condition for resonance, but in fact condition (3) is not too
far from being also necessary. Under the same assumptions on V , [4, Proposition 2.2]
shows that if Φp has a non-degenerate zero (θ∗, r∗) with r∗ > 0 then system (2) has a
2π-periodic solution for small ε 6= 0. In particular, resonance is excluded in this situation.

These two results motivate the choice of condition (3) as the nonlinear version of
p̂n 6= 0 for oscillators defined in the whole real line. Indeed, for the linear oscillator,
V (x) = 1

2n
2x2, n = 1, 2, . . . elementary computations lead to the estimates

1

2πn
|p̂n| ≤ |Φp(θ, r)| ≤

1

2π
|p̂n|,

which show the equivalence between the condition p̂n 6= 0 and (3). However, there
are also isochronous oscillators having a singularity. This is the case of the well-known
isochronous center

ẍ+
1

4

(
x+ 1− 1

(x+ 1)3

)
= 0,

defined for all x ∈ (−1,+∞), solved explicitly by Pinney [5]. Bonheure et all [2] consid-
ered the perturbed equation

(4) ẍ+
1

4

(
x+ 1− 1

(x+ 1)3

)
= ε sin t

and proved that all solutions are unbounded for ε 6= 0 small enough. Our contribution
in this scenario is an analogous version of the sufficient condition theorem for resonance.
In this case, [4, Theorem B] proves that if p ∈ L1(T) satisfies condition (3) then all
solutions of the equation

(5) ẍ+
1

4

(
x+ 1− 1

(x+ 1)3

)
= εp(t)

are unbounded for ε 6= 0 small enough.
Although this result is stated for Pinney equation, the same proof can be extended

to a larger class of potentials V having a singularity. Indeed, Bonheure et all [2] observed
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that usually the existence of a singularity of the potential at x = a, a < 0, determines
the behaviour of V at infinity. This behaviour is precisely the key on the proof of the
Theorem. We refer to [4, Appendix] for more details.

The computation of the resonance condition (3) may be difficult in general. In this
case, thanks to the contribution of Pinney [5], we are able to compute Φp explicitly for
the class of linear trigonometric forcings

p(t) = a0 + a1 cos t+ b1 sin t.

Applying [4, Theorem B] we obtain that equation (5) is resonant if

a21 + b21 > 9a20.

In particular, we recover the result for (4) in [2].
Motivated by mechanical oscillators, all the perturbations taken into account up to

now have been of additive type but in general other kind of perturbations may appear.
Inspired by a problem from geometry, Ai, Chou and Wei [1] studied the equation

(6) ẍ+ x =
R(t)

x3
, x > 0

where R(t) is a T -periodic function, and proved existence of T -periodic solutions when
R is a positive C2-function and T < π. The previous equation with R ≡ 1 turns out to
be isochronous with minimal period π. This fact suggests that condition T < π seems to
be sharp due to the presence of resonance. [4, Theorem C] is in the direction of proving
this fact, showing that the π-periodic function

R(t) =

{
1 if t ∈ [0, π2 ),

c if t ∈ [π2 , π),

with c > 0 produces that all solutions of (6) are unbounded if c 6= 1.

3 Open problems

We end this contribution with some related problems that remain unsolved.
First, both the results concerning the identification of the forcings producing reso-

nance for nonlinear isochronous oscillators defined in the whole plane we have presented
and the construction of examples by Ortega [3] require the oscillator to be Lipschitz-
continuous. However, this requirement seems to be a technicality not intrinsically linked
to the problem itself but to the proof. We expect that no specific regularity proper-
ties of the potential are needed to produce resonance or at least weaker properties than
Lipschitz-continuity.

Second, we give a sufficient condition of resonance for the equation (5) perturbed
by a linear trigonometric function. Based on the fact that the condition (3) seems also
close to be necessary for resonance, it would be interesting to study if equation (5) have
periodic orbits for linear trigonometric forcings satisfying a21 + b21 ≤ 9a20.

Third, the example R(t) we have given subscribes the idea that equation (6) exhibits
resonance if R is π-periodic, but it is discontinuous. We think that smooth examples can
also be constructed but the approach in [4] do not apply in this situation.

Finally, the results presented deal with nonlinear isochoronous oscillators with one
degree of freedom. In more degrees of freedom, the notion of isochronicity is strongly
related with the notion of superintegrability, at least in the Hamiltonian framework.
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It would be interesting to relate properly superintegrable Hamiltonian systems with
isochronicity and to construct resonance of such systems.
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