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ON THE INTEGRABILITY OF HAMILTONIAN SYSTEMS
WITH d DEGREES OF FREEDOM AND HOMOGENOUS
POLYNOMIAL POTENTIAL OF DEGREE n

JAUME LLIBRE' AND CLAUDIA VALLS?

ABSTRACT. We consider Hamiltonian systems with d degrees of freedom
and a Hamiltonian of the form

d
1 2
H = 521p1 + V(q17"'7qd)7
where V' is a homogenous polynomial of degree n > 3. We prove that
such Hamiltonian systems have a Darboux first integral if and only if
they have a polynomial first integral.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Here C?? is a symplectic linear space with canonical variables (¢,p) =
(qis---,9d,p1---,pd), where g; are the positions and p; are the momenta.
We study the Hamiltonian systems with Hamiltonian

d
1
HZQ E p%JFV(Qh--de)»
i=1

where V(q) = V(q1,...,qq) is a homogeneous polynomial of degree n, i.e.
we study the Hamiltonian systems

. . v .
(1) G = pi, pi:—aqi, 1=1,...,d

We write the vector field associated to system (1) as

d d
0 ov o
Xp=3pi -3
. i:1p 9qi = 9q; Op;

During the last thirty years the integrability of these Hamiltonian systems
in the particular case of 2 degrees of freedom have been studied when V' (q)
is a polynomial of degree at most 4, see for instance [1, 2, 9, 10, 11, 12, 18,
19, 20, 21]).
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The functions A = A(p,q) and B = B(p, q) are in involution if {A, B} =

0, where
d
0A0B 0AOB
A, B} = — —
4.5 ; (0%’ Op;  Op; 36]1;)’

and they are independent if their gradients are linearly independent at all
points C?? except perhaps in a zero Lebesgue measure set. A non-constant
function F' = F(q,p) is a first integral for the Hamiltonian system (1) if
{H, F} = 0. The Hamiltonian system (1) is completely integrable if it has d
functionally independent first integrals which are in involution. Note that
one of these integrals can be the Hamiltonian.

We shall use the Darboux theory of integrability in dimension 2d for
studying the existence of first integrals of the Hamiltonian system (1). For
the polynomial differential systems the Darboux theory of integrability is
one of the best theories for studying the existence of first integrals. It uses
the existence of invariant algebraic hypersurfaces, see for instance [4, 5, 16].

A polynomial f € Clp,q|\ C is a Darboux polynomial of system (1) if
d

of ovaf\
2 (pia%‘ O, 31%) -h

=1

for some polynomial K called the cofactor of f, clearly K has degree at
most n — 2. It is obvious that a Darboux polynomial f of system (1) with
cofactor K can be written as Xgf = K f.

Let f be a Darboux polynomial. Then the algebraic hypersurface f = 0
is invariant by the flow of system (1), and if the cofactor of f is zero then it
is a polynomial first integral.

A function of the form F = exp(go/g1) ¢ C with go, 91 € Cl[p, q] coprime
is an ezponential factor of system (1) if it satisfies

d
oOF 0OV OF
i — = LF,
; (p 0¢;  0¢; 31%)

for some polynomial L = L(p, q) with degree at most n—2 called the cofactor
of F.

A first integral of system (1) of the form
M ...f;PFfl...Fé‘q7

where fi,..., fp are Darboux polynomials and F1,...,F, are exponential
factors and A\j,up, € Cfor j=1,...,pand k=1,...,q, is called a Darbouz
first integral.

The main result is the following.
Theorem 1. Hamiltonian systems (1) with d degrees of freedom and a ho-

mogeneous polynomial potential of degree n > 3 have a Darboux first integral
if and only if they have a polynomial first integral.
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In view of Theorem 1, in order to show for systems (1) with n > 3 the
existence of an additional Darboux first integral it is enough to look for an
additional polynomial first integral.

In section 2 we prove Theorem 1. Since the proof for arbitrary d > 2 is
exactly the same than the proof for d = 2, Theorem 1 is proved only for
d = 2, in order to work with shorter expressions. The next result follows
immediately from Theorem 1.

Corollary 2. Hamiltonian systems (1) with 2 degrees of freedom and a
homogeneous polynomial potential of degree n > 3 are completely integrable
with a Darboux first integral if and only if they are completely integrable with
a polynomial first integral.

The particular cases of Corollary 2 for n = 3,4 were proved in [14, 15]
where the authors are also able to compute the cases which are completely
integrable with polynomial first integrals and to provide the explicit expres-
sion of those polynomial first integrals.

Other results on the Darboux integrability of the Hamiltonian systems
(1) can be found in [13].

2. PROOF OF THEOREM 1 FOR d = 2

2.1. Quasi—homogeneous polynomial differential systems. In what
follows we present some results on the quasi-homogeneous polynomial dif-
ferential systems that we shall use.

We study the polynomial integrability of the polynomial differential sys-
tems of the form
d
(2) dit‘:xzp(x), x = (21, - ,24) € CH,
with P(x) = (Pi(x), -+, Pi(x)) and P; € Clxy, -+ ,x4) for i = 1,--- 4.
Here the independent variable ¢ can be real or complex. As usual, we denote
by N, R and C the sets of positive integers, real and complex numbers,
respectively; and by C[x1, - - - , x4] the polynomial ring over C in the variables
Ty, T4

The polynomial differential system (2) is quasi—homogeneous if for i =
1,...,4

B(a81x17 T >a84x4) = aSi_l-i_mR:(xlv T ,1'4),
for somes = (s1,--- ,54) € N*, m € Nand arbitrary « € Rt = {a € R, a > 0}.
Here s = (s1,---,84) is the weight exponent of system (2), and m is the

weight degree with respect to the weight exponent s. If s = (1,---,1) sys-
tem (2) is a homogeneous polynomial differential system of degree m.
Yoshida in [23, 24, 25], see also Furta [7], Goriely [8], Tsygvintsev [22]

and Llibre and Zhang [16], provide some of the best results on the integrable
quasi—-homogeneous polynomial differential systems.
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A function F(zq,...,x4) satisfying
F(a®'zq,...,a%zy) = o F(x1,...,24),

for all € RY is called quasi-homogeneous of weight degree m with respect
to the weight exponent s.

Lemma 3. Let V = V(q1, q2) be a homogeneous polynomial of degree n even.
Then the Hamiltonian system (1) with d = 2 is a quasi-homogeneous poly-
nomial differential system (2) with x = (q1, g2, p1,p2) and weight degree m =
n/2 with respect to the weight exponent s = (s1, s2, 83, 54) = (1,1,n/2,1n/2).

Proof. 1t follows easily by direct computations. (|

Lemma 4. Let V = V(q1,q2) be a homogeneous polynomial of degree n
odd. Then the Hamiltonian system (1) with d = 2 is a quasi-homogeneous
polynomial differential system (2) with x = (q1, g2, p1,p2) and weight degree
m = n—1 with respect to the weight exponent s = (s1, 2, 53,54) = (2,2,n,n).

Proof. 1t follows easily by direct computations. O

2.2. Darboux polynomials with non-zero cofactor. The following re-
sult was proved in [3].

S
Lemma 5. Let f be a polynomial and f = Hfja] its decomposition into
j=1
irreducible factors in Clq1,qo,p1,p2]. Then all the f; are Darboux polyno-
mials if and only if f is a Darboux polynomial. Furthermore, if K and K;

S
are the cofactors of f and f;, then K = ZajKj'
j=1
By Lemma 5 we only need to consider irreducible Darboux polynomials.

Now we recall some properties of our Hamiltonian system (1) with ho-
mogenous potential V' of degree n.

Proposition 6. Assume system (2) is a quasi-homogeneous polynomial dif-
ferential system of weight exponent m. Let F' be a Darboux polynomial of sys-
tem (2) in the variables x1, . .., x, with cofactor K. Let F = Fy+F1+---+F)
and K = Ko+ K1 + -+ - + K}, be the decompositions of F' and K into quasi-
homogeneous polynomials of weight degrees i for i = 0,...,1 and of weight
degree j for j =0,...,k ,with respect to the weight exponent s. Then F is a
Darboux polynomial of the quasihomogeneous polylnomial differential system
(2) if and only if each quasi-homogeneous part F; is a Darbouzx polynomial
with cofactor K1 of weight degree m — 1 of system (2) and K; = 0 for
j#m—1.
The proof of Proposition 6 it is easy and it is given in [15].

Theorem 7. Consider system (1) with homogeneous potential of degree n
even. Let f be an irreducible Darboux polynomial with cofactor K. Then
K =0.
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To prove Theorem 7 we will introduce some preliminary results. We define

Y = 1o+ gy 4 pr 4 Ry
—Q18 QQaq Pla 21? 8p2

Lemma 8. We have Ly Xy = "2 Xp.

Proof. Let f be a polynomial, then we have

Ly (Xu(f)) =Y, Xul(f) =Y (Xu(f)) = Xu(Y(f))
= Y(plfQ1 +p2ff12 - ‘/lllfpl - V;]zfpz)
n n

- Xnu (QIfql +q2fg + §p1fp1 + §P2fp2)

= Q1(p1fQ1Q1 +p2fq1Q2 - ‘/:IIQprl - V;]lffhpl - quzfpz - VQQfQMDQ)
+ ‘D(plfqllp +p2f612(12 - Vz]u]zfpl - VQ1 fQQpl - ‘/;12!]2fp2 - ‘/:12]0!]2;02)

n

+ §p1(fq1 +p1fap +P2feopy — Vo forpr — Vao Fpips)

n
+ §p2(p1fq1172 + foo P2 q2ps — Vau fpips — ‘/;]2fP2P2)

n n
— D1 (fq1 + QIfq1q1 + Q2fq1q2 + *plfqlpl + §p2fq1p2>

2
n n
— D2 <Q1fq1q2 + foo + ©2fgog0 + §p1fq2p1 + §p2fq2p2>

n n n
+ vfh <Q1fq1p1 + Qquzpl + §fp1 + §p1fp1p1 + §p2fp1p2>

n

n n
+ Vg (Q1fq1p2 + @2 qops + §p1fp1p2 + §fpz + §p2fpzpz>’

where we denote by f, the derivative of f with respect to the variable .
Note that since V' is a homogeneous polynomial of degree n we have

(3) OVag T @Vag = (n— 1)Vq1 and  q1Vg,q, + q2Voq, = (n— 1)VQ2

and so we have

n—2
2

n_
2

Ly (Xu(F) = "2 (prfun + P2fas = VaSor — Vaafia) = "5 X (),

which concludes the proof of the lemma. U

Lemma 9. Let f = f(q1,q2,p1,p2) be a weight homogeneous polynomial
with weight degree r with respect to the weight exponents (1,1,n/2,n/2).
Then Ly f =Y (f)=rf.

Proof. We recall that if f = f(q1, g2, p1, p2) is a weight homogeneous polyno-
mial with weight degree r with respect to the weight exponents (1,1,n/2,n/2)
then by definition

Ftq, tqo, t"2p1, 8 2po) = 1" f(q1, g2, p1, P2)-
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Taking the derivative in ¢ we get
(4)
a1 far (tar, taa, "2 p1, " ?pa) + o foo (L, taz, " *p1, ™2 o)
Ny N /o
+ 575"/2 U1 o (tan, tao, "2 pr, £ 2po) + ?571/2 s o (tar, tao, t"/*pr, 1" po)
= rt" f(q1, a2, p1. p2)-

Evaluating (4) at t = 1 we get

n n
Ofg +@fep+ §p1fp1 + §p2fp2 =rf,

and so
of of n Of n Of
Lyf=Y — —— 4+ —p1 = .
vf (f) = Do +Q20q2+2 opr + 2”250, =rf
This concludes the proof of the lemma. O

Proof of Theorem 7. Let f be a Darboux polynomial of system (1) with
homogeneous potential of degree n even and with cofactor K. In view of
Proposition 6 and Lemma 3 we have that K has weight degree m — 1 =
n/2—1, and f can be considered of weight-degree r both with respect to the
weight-exponents (1,1,n/2,n/2). In view of Lemma 8, and the definition of
Darboux polynomial, we have

n—2 n—2
Kf=
2 ! 2

Moreover in view of Lemma 9 we get

Xu(f)=Ly(Xu(f)) = Ly(Kf) = Ly (K)f + KLy(f).

Ly(K)f ="

(/K =rKf,

and so

n— n—2

22Kf:(

Since f # 0 (otherwise we do not have a Darboux polynomial) we get that
r # 0, so we must have K = 0. This concludes the proof of the theorem. [J

—i—r)Kf.

Theorem 10. Consider system (1) with homogeneous potential of degree
n odd. Let f be an irreducible Darboux polynomial with cofactor K. Then
K =0.

To prove Theorem 10 we will introduce some preliminary results. We
define

0 0
Z=2— +2
Q1al+ QQaq

Lemma 11. We have Lz Xy = (n — 2)Xg.

+nprz— +np2—

op1 Op2”
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Proof. Let f be a polynomial and consider
Lz(Xu(f)) =12, Xul(f) = Z(Xu(f)) — Xu(Z(f))
= Z(p1fgr +D2f4s = Vi o = Vo Fo)
- Xu (2¢hfq1 +2q2 fg, + 1p1fp, + np2fp2)
=2q1(p1fqqs T P2faia: = Vara for = Vau S = Varaa oo — Voo faup2)
+22(P1 a2 + P2faoae — Varaofor — VauSaors — Vazao foo — Vao faops)
+np1(fqr + Prfaps + P2fap — Var foipr — Vo Spipn)
+ np2(p1faps + far + P2fazps — Var foipe — Vo fpope)

—p1 <2fq1 +201fqiq0 + 202 fq140 T MPL upy + anfq1p2>
— D2 (2(11fQ1QQ + 2fCI2 + 2QQfQQQ2 + np1f<12p1 + np?fquz)
+ ‘/;11 (2971f¢hp1 + QQquwl + nfpl + nplfplpl + np2fplp2)

+ Vt]z (2(]1fq1p2 + QQquzpz + nplfplpz + nfpz + np?fpzpz)'

Note that since V is a homogeneous polynomial of degree n we have that
(3) holds and so

Lo(Xu () = (0 = 2) (p1fan +P2fae = VarSon = VasJa) = (0 = 2)Xu(f),
which concludes the proof of the lemma. [l

Proceeding as in the proof of Lemma 9 taking Z instead of Y we obtain
the following result.

Lemma 12. Let f = f(q1,q2,p1,p2) be a weight homogeneous polynomial
with weight degree r with respect to the weight exponents (2,2,n,n). Then

Lzf=rf.

Proof of Theorem 10. Let f be a Darboux polynomial of system (1) with
homogeneous potential of degree n odd and with cofactor K. In view of
Proposition 6 and Lemma 4 we have that K has weight degree m—1 =n—2
and f can be considered of weight-degree r both with respect to the weight-
exponents (2,2,n,n). In view of Lemma 11, and the definition of a Darboux
polynomial, we have

(n=2)Kf=n-2)Xu(f)=Lz(Xu(f))=Lz(K)f + KLz(f).
Moreover in view of Lemma 12 we get
Lz(K)f=(n—-2)Kf and Lz(f)K=rK[,
and so
n—2)Kf=(mn-2+4+r)Kf.
As in the end of the proof of Theorem 7 we get K = 0. O
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2.3. Proof of Theorem 1. To prove Theorem 1 we state some preliminary
basic results. The first one is related with the exponential factors. Its proof
and geometrical meaning is given in [3, 17].

Proposition 13. The following statements hold.

(a) If E =exp(go/g) is an exponential factor for the polynomial system
(1) and g is not a constant polynomial, then g = 0 is an invariant
algebraic hypersurface.

(b) Eventually €9 can be an exponential factor, coming from the multi-
plicity of the infinite invariant hyperplane.

Theorem 14. Suppose that a polynomial differential system defined in C*
admits p invariant algebraic hypersurfaces f; = 0 with cofactors K;, for
i =1,...,p and q exponential factors E; = exp(gj/h;) with cofactors Ly,
for j=1,...,q. Then there exists \;, uj € C not all zero such that

P q
Z MK+ Z/Lij =0
i=1 j=1
if and only if the function of Darboux type
A
f\l...prEfl N i
is a first integral of the polynomial differential system.

Theorem 14 is proved in [6].

The following result is well-known.

Lemma 15. Assume that exp(g1/h1),...,exp(gr/hy) are exponential fac-
tors of some polynomial differential system
()

&' = P(x,Y,02:0y), ¥ = QT,Y,D2,0y); Py = R(%,Y,D2,0y), Py = U(2,Y, Drs Py)
with P,Q, R,U € Clz,y, pz, py| with cofactors L; for j =1,...,r. Then

exp(G) = exp(g1/h1 + -+ gr/hs)

is also an exponential factor of system (5) with cofactor L = Z;Zl L;.
Now we proceed with the proof of Theorem 1.

Proof of Theorem 1. It follows from Theorems 7, 10, 14 and Proposition
13 that in order to have a first integral of Darboux type which is not a
polynomial we must have ¢ exponential factors of the form E; = exp(g;)
with cofactors L; such that >39_, u;L; = 0. Let G = >9_, ujgj, then
E = exp(G) is an exponential factor of the Hamiltonian system (1) with
cofactor L = 25:1 piLj =0 (see Lemma 15). So exp(G) is a first integral,
and consequently G is a polynomial first integral of the Hamiltonian system
(1). This completes the proof. i
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