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ALGEBRAIC LIMIT CYCLES BIFURCATING

FROM ALGEBRAIC OVALS OF QUADRATIC CENTERS

JAUME LLIBRE1 AND YUN TIAN2

Abstract. In the integrability of polynomial di�erential systems it
is well known that the invariant algebraic curves play a relevant role.
Here we will see that also can play an important role with respect to
limit cycles.

We show that there exits only one family of quadratic polynomial
systems with an algebraic periodic orbit of degree 4 surrounding a
center satisfying that an algebraic limit cycle of degree 4 can bifurcate
from the period annulus of the mentioned center under quadratic
perturbations.

1. Introduction and statement of results

We consider polynomial di�erential systems in R2 de�ned by

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P , Q are polynomials with real coe�cients such that the maximum
degree of P and Q is at most 2. These di�erential systems are called
simply quadratic systems. The dot denotes derivative with respect to the
independent variable t, which as usual we call the time.

A system (1) has associated the quadratic polynomial vector �eld

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

Sometimes we refer to X as a quadratic system. There are more than
one thousand papers dedicated to study the quadratic systems, see for
instance the surveys of Coppel [7] and of Chicone and Tian [6], and the
book of Ye [24].

A singular point p of a quadratic system is a center if it has a neigh-
borhood U such that every orbit in U \ {p} is periodic. A center of a
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quadratic system is called a quadratic center. The connected set formed
by all periodic orbits surrounding a center p which has as inner boundary
the point p is called the period annulus of the center p.

A periodic orbit isolated in the set of all periodic orbits of a quadratic
system (1) is called a limit cycle. Questions related with the limit cycles,
also for quadratic systems the more easier polynomial di�erential systems
after the linear ones, always are hard to solve, see for instance the book
of Christopher and Li [4].

It is known that quadratic di�erential systems having a center have no
limit cycles (see [21] and/or [20]). But by perturbing the periodic orbits
of a center of a quadratic system inside the class of quadratic systems
some limit cycles could arise.

The sharp upper bound of the number of limit cycles which could
arise from the periodic orbits of a period annulus A of a quadratic center
when it is perturbed within the class of all quadratic systems is called
the cyclicity of the period annulus A. A survey about this cyclicity can
be found in [4] and in the references quoted therein. In general such a
cyclicity is not easy to compute.

Let f = f(x, y) be a real polynomial in the variables x and y. The
algebraic curve f = 0 is invariant for the quadratic system X if X f = kf
for some polynomial k = k(x, y). Since X f =< (P,Q), (fx, fy) >= 0 on
the points (x, y) of f = 0, where < ·, · > denotes the inner product of
R2, the vector �eld X is tangent to the curve f = 0, so the curve f = 0
is formed by orbits of X . This explains the given name of invariant
algebraic curve to f = 0.

If a periodic orbit or a limit cycle is contained in an irreducible in-
variant algebraic curve f = 0 in R[x, y] (the ring of all real polynomials
in the two variables x and y) of degree d, then we say that we have an
algebraic periodic orbit of degree d or an algebraic limit cycle of degree d
respectively.

In 1958 started to be studied the algebraic limit cycles of the quadratic
systems. At this moment for the quadratic systems we know 7 di�erent
families of algebraic limit cycles, 1 of degree 2 (see [19] and [24]), 4 of
degree 4 (see [23], [12], [3] and [1]), 1 of degree 5, and 1 of degree 6
(see [5]). Quadratic systems has no algebraic limit cycles of degree 3,
see Evdokimenco [9, 10, 11], for shorter proofs see [2, 3]. It is an open
question to know if quadratic systems can have algebraic limit cycles
of degree > 6. More information about the algebraic limit cycles of
quadratic systems can be found in [14] and [15].
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Here we are interested in algebraic limit cycles of degree 4 which bifur-
cate from some algebraic periodic orbits of degree 4 contained in a period
annulus of a quadratic center. This problem for algebraic periodic orbits
of degree 2 has been studied in [13].

Yablonskii [23] in 1966 found the �rst class of algebraic limit cycles of
degree 4 within the quadratic systems. Filiptsov [12] in 1973 found the
second class. Two new classes of algebraic limit cycles of degree 4 has
been found in 2001, see [1] and [3]. Moreover, these authors proved that
there are no other classes of quadratic systems with algebraic limit cycles
of degree 4.

Theorem 1. Assume that we have a quadratic center whose period an-
nulus has an algebraic periodic orbit of degree 4, and can further produce
an algebraic limit cycle of degree 4 under proper quadratic perturbations.
Then the following statements hold.

(a) There exists a real a�ne change of variables and a rescaling of
the time such that the quadratic system with such a center can be
written as

(2)
ẋ = −(a+ b)y + 4xy,

ẏ = ab(a+ b)x+ (4ab− 3/2(a+ b)2)x2 + 8y2,

with a 6= b, ab > 0 and (3a− b)(a− 3b) < 0. For such a quadratic
system the algebraic curve x2(x− a)(x− b) + y2 = 0 contains an
algebraic periodic orbit of degree 4. The qualitative phase portraits
in the Poincaré disc of these centers are given in Figure 1.

(b) When we perturb a quadratic center of (2), inside the class of all
quadratic systems there is at least one 1�parameter family of qua-
dratic systems having a limit cycle bifurcating from the algebraic
periodic orbit of the curve x2(x − a)(x − b) + y2 = 0. Moreover
this family is formed by algebraic limit cycles of degree 4.

For more details on the Poincaré disc, canonical regions and separatri-
ces see [8, 16, 17, 18].

From Theorem 1 we shall obtain easily the next result.

Corollary 2. Suppose that we have a quadratic center whose period an-
nulus has an algebraic periodic orbit of degree 4. Then the cyclicity of
that period annulus is at least 1.
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Figure 1. The phase portrait of system (2). It has 3
canonical regions and 16 separatrices. The dash-dot line
represents the algebraic periodic orbit.

2. Proof of Theorem 1

Proof of statement (a) of Theorem 1. In paper [3] it is proved that there
are only 4 families of algebraic limit cycles of degree 4 in quadratic sys-
tems, which are Yablonskii's system, Filiptsov's system and other two
systems given in [3]. Then for any quadratic center producing algebraic
limit cycles under proper quadratic perturbations, the perturbed system
can be transformed into one of these four families by a suitable linear
change of variables and a rescaling of the time. Then we only need to
study whether there exist quadratic centers in the closure of these four
families of systems in the space of all planar quadratic systems.

First we consider Filiptsov's system

ẋ = 6(1 + a)x+ 2y − 6(2 + a)x2 + 12xy,

ẏ = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy + 16y2,
(3)

with 0 < a < 3/13, which has the irreducible invariant algebraic curve

(4) 3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x) = 0.

It is known that inside any limit cycle of a quadratic system there is
always a focus [24]. For system (3) the focus inside the algebraic limit
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cycle contained in the curve (4) is Ef =
(

5(1+a)
2(1−a) ,

15(1+a)2

8(1−a)

)
. Then we need

to �nd whether Ef is a center point when a = 0 or 3/13. The charateristic
equation at Ef is

λ2 − (13a− 3)(1 + a)

2(1− a)
λ+

15(11a+ 9)(1 + a)2

1− a = 0.

If a = 0, the roots of the above equation are −3
4
±i3

4

√
239, where i2 = −1,

which implies that Ef is an elementary focus. If a = 3/13, the equation
has a pair of purely imaginary conjugate roots. Then Ef is the linear
center of the corresponding linearized system of (3). Furthermore, Ef is a
weak focus of system (3) because the �rst order Lyapunov constant V1 =
5/2 is di�erent from zero [22]. Therefore, there do not exist quadratic
centers for system (3).

Similar situation happens to another two families of systems given by

ẋ = 5x+ 6x2 + 4(1 + a)xy + ay2,

ẏ = x+ 2y + 4xy + (2 + 3a)y2,
(5)

with (−71 + 17
√

17)/32 < a < 0, and

ẋ = 2(1 + 2x− 2ax2 + 6xy),

ẏ = 8− 3a− 14ax− 2axy − 8y2,
(6)

with 0 < a < 1/4. System (5) has the algebraic limit cycle represented
by the oval of the curve

x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4 = 0.

The singular point in the region bounded by the algebraic limit cycle is
(

12a2 + 34a+ 5 + (6a+ 5)
√

4a2 + 16a+ 1

6(2− 3a)
,
6a+ 7 + 3

√
4a2 + 16a+ 1

2(3a− 2)

)
.

In order to make this singular point be a linear center, we get a = (−71+
17
√

17)/32, under which this singular point is a weak focus by computing
the �rst-order Lyapunov constant V1 = 171/4(469− 115

√
17)/32.

For system (6), the oval of the invariant algebraic curve

1/4 + x− x2 + ax3 + xy + x2y2 = 0,

is the algebraic limit cycle, and the singular point
(

2+
√
4−7a
7a

, −8+3
√
4−7a

14

)

is the one contained in the interior region bounded by the algebraic limit
cycle. An easy computation shows that this singular point is a weak
focus when a = 1/4 and becomes an elementary focus when a = 0.
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The last system we consider is Yablonskii's system

ẋ =− 4abcx− (a+ b)y + 3(a+ b)cx2 + 4xy,

ẏ = ab(a+ b)x− 4abcy + (4abc2 − 3/2(a+ b)2 + 4ab)x2

+ 8(a+ b)cxy + 8y2,

(7)

with abc 6= 0, a 6= b, ab > 0 and 4(a−b)2c2+(3a−b)(a−3b) < 0. System
(7) has two singular points, the origin and the point

(8) E1 =

(
2ab(a+ b)

3a2 − 2ab+ 3b2
,− 4a2b2c

3a2 − 2ab+ 3b2

)
,

and the irreducible invariant algebraic curve

(9) (y + cx2)2 + x2(x− a)(x− b) = 0.

The singular point E1 is located in the bounded region limited by the
oval of the curve (9). The charateristic polynomial at E1 is

p3(λ) = λ2 + a1λ+ a0, where a1 = − 4ab(a− b)2c
3a2 − 2ab+ 3b2

,

a0 = −ab
(
(3a− b)(a− 3b)(a+ b)2 + 16ab(a− b)2c2

)

3a2 − 2ab+ 3b2
.

(10)

In order to have an elementary center at the singular point E1, p3(λ)
should have a pair of purely imaginary conjugate roots. Then a1 = 0
and a0 > 0. By (10), a1 = 0 implies ab(a− b)c = 0. On the other hand,
ab 6= 0 are obtained from a0 > 0. If a − b = 0, then the algebraic curve
(9) becomes

(y + cx2)2 + x2(x− a)2 = 0,

which does not have any oval. Then a 6= b.

Now it only remains to study the case of c = 0. If c = 0, from (10) we
have

a0 = −ab(3a− b)(a− 3b)(a+ b)2

3a2 − 2ab+ 3b2
> 0,

when we take into account 3a2 − 2ab+ 3b2 > 0 and the conditions given
with system (7). It is easy to �nd that if c = 0, the origin and E1 are
linear center of the corresponding linearized systems of system (7) when
ab > 0 and (3a− b)(a− 3b) < 0.

When c = 0, system (7) becomes into (2), and by (8), the singular
point E1 becomes into

Eo =

(
2ab(a+ b)

3a2 − 2ab+ 3b2
, 0

)
.
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System (2) is integrable with the �rst integral

H =
(a+ b)4 − 16(a+ b)3x+ 32(3a2 − 2ab+ 3b2)x2 − 256y2

(a+ b− 4x)4
.

The existence of the �rst integral de�ned at the origin and Eo forces that
the origin and Eo are centers in (2). The oval Γo of the algebraic curve
x2(x − a)(x − b) + y2 = 0 is an algebraic periodic orbit in the period
annulus around Eo. �

Proof of statement (b) of Theorem 1. We take the following perturbation
for system (2)

ẋ =− 4abεx− (a+ b)y + 3(a+ b)εx2 + 4xy,

ẏ = ab(a+ b)x− 4abεy + (4abε2 − 3/2(a+ b)2 + 4ab)x2

+ 8(a+ b)εxy + 8y2,

(11)

where ε is a nonzero small parameter satisfying 4ε2(a− b)2 +(3a− b)(a−
3b) < 0. If we take ε = c, system (11) concides with Yablonskii's system
(7). Then the perturbed system (11) has an invariant algebraic curve
given by

(y + εx2)2 + x2(x− a)(x− b) = 0,

and one of its components is an oval Γε. Hence, by Theorem 1 in [3], Γε

is a limit cycle in system (11) for ε 6= 0 su�ciently small. Futhermore,
the family of limit cycles Γε tends to the algebraic periodic orbit Γo as
ε→ 0. �

Denote the oval of the curve (9) by Γc. From the above result, we see
that the algebraic limit cycle Γc of Yablonskii's system is born from the
algebraic periodic orbit Γo in the periodic annulus around the center Eo

when c = 0. Solving the algebraic equation (9) in y, we can express Γc

by the following two functions

y±(x, c) = −cx2 ±
√
x2(x− a)(x− b),

where x ∈ [min(a, b),max(a, b)]. Then

y+(x, c)− y−(x, c) = 2
√
x2(x− a)(x− b),

which is constant with respect to c. That means that if a and b are �xed,
the algebraic limit cycle Γc only moves up or down as c becomes smaller
or larger in the range

0 < c2 < c∗, where c∗ = −(3a− b)(a− 3b)

4(a− b)2 ,

but the area of the region bounded by Γc does not change.
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Note that system (7) is invariant under the transformation (x, y, t, c)→
(x,−y,−t,−c). Then we only need to show the phase portrait of system
(7) with 0 < c <

√
c∗. See Figure 2.

Figure 2. The phase portrait of Yablonskii's system (7)
when 0 < c <

√
c∗. It has 4 canonical regions and 19

separatrices. The dash-dot line represents the algebraic
limit cycle.

When c2 = c∗, Yablonskii's system has one more singular point

E2 =

(
−a

2 − 6ab+ b2

2(a+ b)
,−(3a− b)(a− 3b)(a2 − 6ab+ b2)

16(a− b)2c

)
.

Substituting E2 into the equation (9), we can �nd that f(E2) = 0, i.e.
the singular point E2 is on the oval Γc. Then now Γc is not a periodic
orbit in system (7) now, and becomes a homoclinic loop. See Figure 3.

We can further show that E2 is a saddle-node. The charateristic equa-
tion at E2 is

λ2 − (3a− b)(a− 3b)

2c
λ = 0.
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Figure 3. The phase portrait of system (7) when c =
√
c∗.

It has 4 canonical regions and 21 separatrices. The dash-
dot line represents the homoclinic loop.

Then one eigenvalue is zero and the other one is nonzero. If c2 > c∗, in
system (7) two singular points

E±2 =

(
(a+ b)(2c2 + 1)± |c|Sa

4(c2 + 1)
,

−
(
8(a2 + b2)(c2 + 1)− 3(a+ b)2

)
c2 ± (4c2 + 1)(a+ b)|c|Sa

16c(c2 + 1)

)

are bifurcated from E2, where

Sa =
√

4(a− b)2c2 + (3a− b)(a− 3b).

The characteristic equations at E±2 are in the form

(12) λ2 + b±1 λ+ b±0 = 0,
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where

b±1 =
c2
(
12(a− b)2c2 + 11a2 − 26ab+ 11b2

)
± (a+ b)(6c2 + 5)|c|Sa

4(1 + c2)c
,

b±0 =

(
(a+ b)2 + 4(a2 + b2)c2

)
S2
a

4(1 + c2)

± (a+ b)
(
8(a− b)2c2 + (5a2 − 14ab+ 5b2)

)
|c|Sa

4(1 + c2)
.

Then their corresponding discriminants ∆± = b±1
2 − 4b±0 are positive

when Sa = 0, i.e c2 = c∗. Hence equations (12) have real roots when
0 < Sa � 1. Note that b±0 have di�erent signs for sur�ciently small
Sa > 0. So the roots of one of these two equations have the same sign, and
the other one's have di�erent signs. Therefore, one of the singular points
E±2 is a node point and the other one is a saddle point for 0 < c2−c∗ � 1.
By long and tedious computations, E±2 are both also on the oval Γc.
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