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GLOBAL DYNAMICS OF THE BUCKINGHAM’S

TWO-BODY PROBLEM

JAUME LLIBRE1, CLAUDIA VALLS2 AND CLAUDIO VIDAL3

Abstract. The Buckingham systems are the equations of motion of a
two–body problem defined by the Hamiltonian

1

2

(
p2x + p2y

)
+Ae−B

√
x2+y2 − M

(x2 + y2)3
,

where A, B and M are positive constants. This Hamiltonian and its
corresponding angular momentum pθ are two first integrals, independent
and in involution. Let Ih (respectively, Ic) be the set of points of the
phase space on whichH (respectively, pθ) takes the value h (respectively,
c). Since H and pθ are first integrals, the sets Ih and Ihc = Ih ∩ Ic are
invariant under the flow of the Buckingham systems. We characterize
the global flow of these systems describing the foliation of the phase
space by the invariant sets Ih, the foliation of Ih by the invariant subsets
Ihc, and the foliation of Ihc by the flow of the system.

1. Introduction and statement of the main results

A simplification of the classical Lennard-Jones potential (see [6, 9]) for
studying the motion under the attractive or repulsive gravitational and in-
termolecular forces is the Buckingham potential

U(x, y) = Ae−B
√

x2+y2 − M

(x2 + y2)3
,

introduced in 1928 for studying the state equation for gaseous helium, neon
or argon, see [3]. Here A,B and M are positive parameters. More precisely,
this potential describes the van der Waals energy in the interaction of two

atoms at the distance
√
x2 + y2, and the Pauli repulsion energy.

Recently the Buckingham potential has been studied in [10, 11, 12]. In
these papers the authors studied their equilibria and their orbits using the
McGehee coordinates and taking into account when the energy H is nega-
tive, zero or positive.
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In this paper we describe the global dynamics of the Buckingham’s two-
body problem, i.e. of the Hamiltonian

H(x, y, px, py) =
1

2

(
p2x + p2y

)
+Ae−B

√
x2+y2 − M

(x2 + y2)3
.

We change to canonical polar coordinates (see page 154 of [8]) by setting

x = r cos θ, y = r sin θ, px = pr cos θ −
pθ
r
sin θ, py = pr sin θ +

pθ
r
cos θ.

In these new variables the Hamiltonian system is

ṙ =
∂H

∂pr
= pr

θ̇ =
∂H

∂pθ
=

pθ
r2

,

ṗr = −∂H

∂r
= ABe−Br − 6M

r7
+

p2θ
r3

,

ṗθ = −∂H

∂θ
= 0,

(1)

where

H =
1

2

(
p2r +

p2θ
r2

)
+Ae−Br − M

r6
.

The Hamiltonian H and the angular momentum pθ are two first integrals,
independent and in involution. Hence the Hamiltonian system (1) is com-
pletely integrable in the sense of Liouville-Arnold, see for instance [1, 2, 8].

If we denote by R+ the open interval (0,∞), then the phase space of
the Buckingham systems is E = R+ × S1 × R2 where r ∈ R+, θ ∈ S1 and
(pr, pθ) ∈ R2. Since H and pθ are first integrals, the sets

Ih = {(r, θ, pr, pθ) ∈ E : H(r, θ, pr, pθ) = h} ,
Ihc = {(r, θ, pr, pθ) ∈ E : H(r, θ, pr, pθ) = h, pθ = c},

are invariant by the Hamiltonian flow of system (1), i.e. if a solution curve
of system (1) has a point in Ih or in Ihc all the solution curve is contained
into Ih or Ihc, respectively.

The main results of this paper are the descriptions of the foliations of the
phase space E as union of the invariant sets Ih, the invariant sets Ih by the
union of the invariant subsets Ihc, and the subsets Ihc by the flow of the
Hamiltonian system.

These foliations provide a good description of the global dynamics of the
Hamiltonian systems (1) when K varies, where

K =
( 7

eB

)7
− 6M

AB
.

Here e is the number e = 2.718282 · · · .
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The paper is organized as follows. In section 2 we recall Liouville–Arnold’s
theory about integrable Hamiltonian systems applied to the Buckhingham
systems.

The Hill region, Rh, is the region of the position space where takes place
the motion of all orbits having energy h. In section 3 we classify all the Hill
regions for the Buckhingham systems, all the sets Ihc, and how these last
sets foliate Ih.

2. Integrable Hamiltonian systems

In this section we apply the Liouville–Arnold Theorem to the integrable
Hamiltonian systems (1). We recall that a flow defined on a subspace of the
phase space is complete if its solutions are defined for all time.

Theorem 1 (Liouville–Arnold Theorem). The Hamiltonian system (1) with
2 degrees of freedom defined on the phase space E has the Hamiltonian H
and angular momentum pθ as two independent first integrals in involution.
If Ihc 6= ∅ and (h, c) is a regular value of the map (H, pθ), then the following
statements hold.

(a) Ihc is a 2–dimensional submanifold of E invariant under the flow of
(1).

(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc
is diffeomorphic either to the torus S1×S1, or to the cylinder S1×R.
We note that if I∗hc is compact (i.e. I∗hc ≈ S1 × S1), then the flow on
it is always complete.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear
flow either on S1 × S1, or on S1 × R.

For more details about Hamiltonian systems and the proof of the previ-
ous theorem see Abraham and Marsden [1] and Arnold [2, 4]. We remark
that in general, under the assumptions of statement (b), I∗hc can also be
diffeomorphic to the plane R2, but this is not the case for the Buckhingham
systems, because their Hamiltonians do not depend on the variable θ, and
consequently the manifolds Ihc must have a factor S1.

Note that the Liouville–Arnold Theorem for our Buckhingham systems
does not provide information on the topology of the invariant sets Ihc when
(h, c) is not a regular value of the map (H, pθ), and how is the flow on these
invariant sets, or how the invariant sets Ihc foliate the energy sets Ih, or how
the energy levels Ih foliate the phase space E.

In this paper we solve all these questions for the Buckhingham systems.
For a generic study of the invariant sets Ihc for Hamiltonian systems of two
degrees of freedom having a central potential, see [7].
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3. The topology of Ih and Ihc

A point (r, θ, pr, pθ) ∈ E is critical for the map H : E → R if it is an
equilibrium of system (1). A point of E which is not critical is regular. The
value h ∈ R is critical for the map H : E → R if there is some critical point
belonging to H−1(h) = Ih. If h ∈ R is not critical, then h is a regular value.
It is well–known that if h is a regular value of the map H : E → R, then Ih
is a 3–dimensional manifold, see for instance [5].

Since r > 0 the critical points of H must satisfy

g(r) = r7e−Br − 6M

AB
= 0 , pr = pθ = 0 .

So the set of critical points of H is

C = {(r, θ, 0, 0) ∈ E : g(r) = 0 and θ ∈ S1}
≈ {(r, 0, 0) : g(r) = 0} × S1.

We need to study the zeroes of the function g(r). Note that

dg

dr
= −e−Brr6(Br − 7)

and so g has a maximum at r = 7/B and

g
( 7

B

)
=

( 7

eB

)7
.

Note that the set of critical points C of H is equal to

∅ if K < 0,

{(7/B, θ, 0, 0) ∈ E : θ ∈ S1} if K = 0,

{(r1, θ, 0, 0) ∈ E : θ ∈ S1} ∪ {(r2, θ, 0, 0) ∈ E : θ ∈ S1} if K > 0,

where r1 < 7/B < r2. Hence, the critical value is −Ae−7/6 if K = 0, and
the values −M/r61 +Ae−Br1 or −M/r62 +Ae−Br2 if K > 0.

Let π : E → R+ × S1 be the natural projection from the phase space E
to the configuration space R+ × S1. Then for each h ∈ R the Hill region Rh

of Ih is defined by Rh = π(Ih). Therefore, setting

fh(r) = h+
M

r6
−Ae−Br

we have

Rh =
{
(r, θ) ∈ R+ × S1 : fh(r) ≥ 0

}
≈ {r ∈ R+ : fh(r) ≥ 0} × S1,

where as usual ≈ means diffeomorphic to. Note that the Hill region Rh is
the region of the configuration space or position space where takes place the
motion of all orbits having energy h.

Note that
lim

r→+∞
fh(r) = h and lim

r→0
fh(r) = +∞.
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Moreover, when K > 0 we have that fh(r) has a minimum and a maximum
which we denote by f1 and f2, respectively.

We compute the energy levels Ih in two different ways. The first way is
more direct, and the second way allows additionally to deduce the foliation
of Ih by the invariant sets Ihc.

From the definition of Ih we have that

(2) Ih =
⋃

(r,θ)∈Rh

E(r,θ) ,

where

E(r,θ) =

{
(r, θ, pr, pθ) ∈ E : p2r +

p2θ
r2

= 2fh(r)

}
.

Clearly for each (r, θ) given the set E(r,θ) is an ellipse, a point, or the empty
set if the point (r, θ) belongs to the interior of Rh, to the boundary of Rh,
or does not belong to Rh, respectively. Therefore, from (2), it follows easily
the topology of Ih according with the different values of h and K.

Another way of computing again the invariant energy levels Ih is using

(3) Ih = {(r, θ, pr, pθ) ∈ E : H(r, θ, pr, pθ) = h} ≈ g−1(h) × S1 ,

where g(r, pr , pθ) = H(r, θ, pr, pθ).

If h ∈ R is a regular value of the map g : R+ × R2 → R and g−1(h) 6= ∅,
then g−1(h) is a surface of R+×R2. It is easy to verify that the intersection
of g−1(h) with {r = r0 = constant}, is an ellipse, a point, or the empty
set according to fh(r0) is positive, zero, or negative, respectively. So by
studying the union of the ellipses or points of the form g−1(h) ∩ {r = r0}
moving r0 > 0, we obtain the sets g−1(h). Therefore, from (3), we calculate
in a different way the topology of the energy levels Ih.

We note that knowing the sets g−1(h), from

Ihc = Ih ∩ {pθ = c}

=

{
(r, pr) : pr = ±

√
2fh(r)−

c2

r2

}
× S1

≈ g−1(h)× S1,

(4)

we can compute the invariant sets Ihc. Consequently, we can describe the
foliation of Ih by Ihc when c varies.

We note that a point (r∗, θ∗, p∗r, p
∗
θ) is regular for the map (H, pθ) if the

rank of the matrix

∂H

∂r

∂H

∂θ

∂H

∂pr

∂H

∂pθ
0 0 0 1



∣∣∣∣∣∣
(r,θ,pr,pθ)=(r∗,θ∗,p∗r ,p

∗
θ)
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is 2, and a point which is not regular is critical. A value (h, c) ∈ R2 is regular
if the set (H, pθ)

−1(h, c) does not contain any critical point, otherwise it is
a critical value.

We consider different cases.

Case 1: K ≤ 0 and h > 0. In Figure 1(a) if K < 0 the graphic of
fh(r) decreases monotonically from +∞ to h, while for K = 0 the graphic
decreases having an inflexion point at r = 7/B. It follows from Figure 1(a)
that under these assumptions the zero velocity curve is empty and so the Hill
region is Rh = R2\{(0, 0)}. Moreover Ih is diffeomorphic to (R2 \{(0, 0)})×
S1 because for each point of Rh we have a topological circle of velocities.
The boundary of Ih with r = 0 corresponds to the collision manifold and
the boundary with r = +∞ to the infinity manifold.

(a) (b)

Figure 1. The graph of the function fh(r): (a) For K ≤ 0 and
h ≥ 0. (b) For K ≤ 0 and h < 0.

Note that g−1(h) is the topological cylinder of Figure 2.

When we consider the curves γhc = g−1(h) ∩ {pθ = c} for each c ∈ R,
we need to distinguish three subcases. There exist two values of c, ±c1, for
which the curve Ihc is not a manifold, and for these two values the curve γhc
is homeomorphic to the shape of the letter X. Since Ih,±c1 is not a manifold,
then the value (h,±c1) is not regular for the function (H, pθ).

If |c| > c1, the curve γhc has two components homeomorphic to R, one
defined in 0 < r ≤ r1 and the other defined in r2 ≤ r < ∞ with r1 < r2, see
Figure 3(a).

If |c| = c1, the curve γhc has only one component topologically homeo-
morphic to the shape of the letter X, which can be obtained as a limiting
case of Figure 2 when |c| → c1 and r1 and r2 tend to the same value, see
Figure 3(b).
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Figure 2. The surface g−1(h) for K ≤ 0 and h > 0.

(a) (b) (c)

Figure 3. Graphs of the curves γhc when K ≤ 0 and h ≥ 0:
(a) For |c| > c1. (b) For |c| = c1. (c) For |c| < c1.

If |c| < c1, the curve γhc has two components, each one defined for all
r > 0 and homeomorphic to R, see Figure 3(c).

Clearly the manifold Ih is diffeomorphic to a solid torus of dimension
three without the boundary and without the central circular axis. Using
topology techniques we have that a solid torus of dimension three without
the boundary and without the central circular axis is homeomorphic to S3 \
{S1 ∪ S1}. We claim that the foliation of Ih by the subsets Ihc varying c
can be obtained by rotating Figure 4 around the u axis. Now we prove the
claim.

Assume that |c| > c1. From Figure 3(a) the manifold Ihc is formed by two
cylinders. In the cylinder for which r ∈ (0, r1] the orbits start in ejection
and end in collision. On the cylinder for which r ∈ [r2,∞) the orbits start
and end at infinity hyperbolically, i.e. with radial velocity |ṙ| 6= 0.
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Assume that c = c1 (respectively, c = −c1). From Figure 3(a) the invari-
ant set Ihc is formed by a periodic orbit α (respectively, β) and four cylinders
Ci, i = 1, 2, 3, 4, having a common boundary formed by the periodic orbit
α (respectively, β). The cylinders C1 and C4 are the stable manifold of α
(respectively, β), and the cylinders C2 and C3 are the unstable manifold of α
(respectively, β). On the cylinder C1 the orbits start at ejection and end in
α (respectively, β), on the cylinders C2 the orbits start in α (respectively, β)
and ends in collision, on the cylinder C3 the orbits start in α (respectively,
β) and end at infinity hyperbolically, and finally the orbits on the cylinder
C4 start at infinity hyperbolically and end in α (respectively, β).

Assume |c| < c1. From Figure 3(c) the manifold Ihc is formed by two
cylinders. On one of the cylinders the orbits start in ejection and end at
infinity hyperbolically and on the other cylinder the orbits start at infinity
hyperbolically and end in collision.

Figure 4. Manifold Ih/S
1 for K ≤ 0 and h > 0.

Case 2: K ≤ 0 and h = 0. It follows from Figure 1(b) that the Hill region
is again Rh = R2 \ {(0, 0)}, and so Ih is homeomorphic to S3 \ {S1 ∪ S1} as
in Case 1. In Figure 5 we have the surface g−1(h) for K ≤ 0 and h = 0.

If c ∈ R \ {0} the curve γhc has one component homeomorphic to R, see
Figure 6(a).

If c = 0 the curve γhc has two components homeomorphic to R, see
Figure 6(b).

We claim that the foliation of Ih by the subsets Ihc varying c can be
obtained by rotating Figure 7 around the u axis. Now we prove the claim.
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Figure 5. The surface g−1(h) for K ≤ 0 and h = 0.

(a) (b)

Figure 6. Graphs of the curves γhc when K ≤ 0 and h = 0:
(a) For c ∈ R \ {0}. (b) For c = 0.

Assume that c ∈ R \ {0}. From Figure 8 we have that the manifold Ihc is
formed by one cylinder. In this cylinder the orbits start in ejection and end
in collision.

Assume that c = 0. From Figure 6(b) the invariant set Ihc is formed by
two cylinders. The orbits in the cylinder pr > 0 start in ejection and end at
infinity parabolically, i.e. they reach the infinity with zero radial velocity.
In the cylinder pr < 0 the orbits start at infinity parabolically and end at
collision.
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Figure 7. Manifold Ih/S
1 for K ≤ 0 and h = 0.

Case 3: K ≤ 0 and h < 0. It follows from Figure 1(b) that the zero
velocity curve is a circle centered at the origin of coordinates. Then the
Hill region π(Ih) is a punctured closed disc centered at the origin whose
boundary is the zero velocity curve, that is, Rh is diffeomorphic to (0, a]×S1
where a > 0. So Ih is diffeomorphic to an open solid torus whose boundary
corresponds to the collision manifold, the central axis of this solid torus is
the zero velocity curve. Indeed, Rh ≈ {(r, θ) ∈ (0, a]× S1}. The circle r = a
is the zero velocity curve. So for each ray (0, a]×{θ = θ0} we have a circle of
velocities for each point (r, θ0) with r ∈ (0, a). The radius of this circle varies
continuously with r and becomes zero at r = a. Taking into account all these
circles together and varying θ0 ∈ S1 we obtain the solid torus without the
boundary with a “central axis” formed by the zero velocity circle, and the
boundary of this solid torus corresponds to the collision manifold. Applying
topology arguments we have that a solid torus without the boundary is
homeomorphic to S3 \ S1, so Ih ≈ S3 \ S1.

On the other hand the surface g−1(h) is the topological plane of Figure 8.

The curves γhc = g−1(h) ∩ {pθ = c} for each c ∈ R are defined for all
r in 0 < r < r(c) and are homeomorphic to R. The manifold Ih can be
obtained by rotating Figure 9 around the u axis. In this picture we can see
one cylinder Ihc for every c ∈ R foliating Ih. The orbits on this cylinder
start in ejection and end in collision. We note that only the orbits on the
cylinder Ih0 pass through the zero velocity curve.

Case 4: K > 0 and 2h < f1 < f2. We consider different subcases, see
Figure 10(a).

Subcase 4.1: f1 > 0. The dynamics of this case with h > 0 is the same as
the one of Case 1 and with h = 0 is the same as the one of Case 2, while
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Figure 8. The surface g−1(h) for K ≤ 0 and h < 0.

Figure 9. Manifold Ih/S
1 for K ≤ 0 and h < 0.

the dynamics in this case with h < 0 < f1 is dynamically the same as the
one of Case 3.

Subcase 4.2: f1 = 0. From Figure 10(a) we see that the zero velocity
curve is formed by two circles centered at the origin of coordinates. The Hill
region is formed by a closed disc of radius d centered at the origin without
the origin, the external boundary of this disc is the biggest circle r = d of
the zero velocity curve and additionally there is a circle r = a < d of the
zero velocity curve contained in the interior of this disc.
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(a) (b) (c)

Figure 10. Graph of the function fh(r) when K > 0: (a)
For 2h < f1. (b) For 2h = f1. (c) For 2h > f1.

The part of the Hill region {(r, θ) : r ∈ (0, a], θ ∈ S1} corresponds to
the projection of an open solid torus contained in Ih whose boundary is the
collision manifold. This open solid torus is similar to the one of Case 3. We
claim that the part of the Hill region {(r, θ) : r ∈ [a, d], θ ∈ S1} corresponds
to the projection of a set homeomorphic to S2 × S1 contained in Ih. Indeed,
for each θ0 ∈ S1 and for each point of the segment {(r, θ0) : r ∈ (a, d)} we
have a circle of velocity which reduces to a point at r = a and r = d. So a
sphere S2 of velocities of Ih projects onto the segment {(r, θ0) : r ∈ [a, d]}
for all θ0 ∈ S1. Hence the claim is proved.

In short, Ih is formed by the union of an open solid torus and S2×S1 but
the central axis of the solid torus formed by the circle of zero velocity r = a
is identified with a circle of S2 × S1.

The set Ih also can be obtained rotating Figure 11 with respect to the
u-axis. In Figure 11 we have drawn the surface g−1(h) for K > 0 and h = 0.

Figure 11. The surface g−1(h) for K > 0 and 0 = f1 < 2h.
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The invariant sets Ihc in this case are not manifolds of dimension two at
three values of c, namely −c1, 0 and c1. Consequently the values (h,±c1)
and (h, 0) are not regular for the function (H, pθ).

If |c| > c1 from Figure 12(a) we have that Ihc is a cylinder. The orbits on
this cyclinder are of ejection-collision.

If |c| = c1 from Figure 12(b) we obtain that Ihc is the union of a cylin-
der with a periodic orbit. Again the orbits of the cylinder are of ejection-
collision.

If 0 < |c| < c1 from Figure 12(c) we get that Ihc is the union of a cylinder
with a torus. Again the orbits on the cylinder are of ejection-collision. The
orbits on the torus can be either quasiperiodic and consequently dense in
the torus, or periodic.

If c = 0 from Figure 12(d) we have that Ihc has only one component
formed by three cylinders which share the circle of singular points r = a.
The cylinder C1 is formed by orbits of ejection which end in the circle r = a.
The orbits on the cylinder C3 start at the circle r = a and end at collision,
and the orbits on the cylinder C2 start and end at r = a.

In summary the foliation of Ih but the sets Ihc varying c can be obtained
by rotating Figure 13(a) around the u axis, with the union of S2 × S1 of
Figure 13(b), and identifying the zero velocity circle r = a contained in
both figures. In Figure 13(b) appears the foliation of S2×S1 by the invariant
sets Ihc. This foliation corresponds to the Hopf foliation of S3 ≈ S2 × S1.
We must identify the points (of the two surfaces of the cones glued by their
bases) which are symmetric with respect to the plane containing the common
bases.

Subcase 4.3: f1 < 0 < f2. It follows from Figure 10(a) that the zero ve-
locity curve is formed by three circles centered at the origin of coordinates.
The Hill region π(Ih) has two connected components, one is formed by a
closed disc centered at the origin without the origin, the external boundary
of this disc is the smallest circle of the zero velocity curve, and the other
component is a closed crown whose two boundaries are the other two circles
of the zero velocity curve. The manifold Ih has two connected components,
one is homeomorphic to a solid torus having its central axis formed by the
smallest circle of the zero velocity curve and its boundary corresponds to
the collision manifold (see for more details Case 3), and the other compo-
nent is homeomorphic to S2 × S1 containing the two biggest circles of the
zero velocity curve (see for more details Subcase 4.2). The set Ih which is
homeomorphic to the union of an open solid torus with S2 × S1 can also
be obtained rotating Figure 14(a) with respect to the u-axis and adding
to it the Figure 14(b). In this last figure it is presented the foliation of
the sphere S3 identifying the points (of the surfaces of the cones glued by
their bases) which are symmetric with respect to the plane containing the
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(a)

(c)

(b)

(d)

Figure 12. Graph of the curves γhc when K > 0 and 2h <
f1 = 0: (a) For |c| > c1. (b) For |c| = c1. (c) For 0 < |c| < c1.
(d) For c = 0.

common bases. In Figure 14(b) we also can see how the flow moves on the
tori Ihc. In Figure 14 we have drawn the surface g−1(h) for K > 0 and
f1 < 0 < f2.

There exist two values of c, ±c1 6= 0 for which the set Ihc is not a manifold
of dimension two, so the values (h,±c1) are not regular for the function
(H, pθ).

If |c| > c1, from Figure 15(a) we have that Ihc is a cylinder whose orbits
are of ejection-collision.

If |c| = c1 from Figure 12(b) we obtain that Ihc is the union of a cylinder
with a periodic orbit and the orbits in the cylinder are of ejection-collision.

Finally, if |c| < c1, from Figure 15(c) we have that Ihc is the union of
a cylinder with a torus. Again the orbits on the cylinder are of ejection-
collision, and the orbits on the torus can be either quasiperiodic, or periodic.
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(a)

(b)

Figure 13. Manifold Ih/S
1 for K > 0 and f1 = 0 > 2h.

This manifold has two components (a) and (b).

Figure 14. The surface g−1(h) for K > 0 and h < f1 < 0 < f2.

In short, the foliation of Ih by the sets Ihc varying c can be obtained
by rotating Figure 13(a) around the u-axis, with the union of S2 × S1 of
Figure 13(b).

Subcase 4.4: f2 = 0. It follows from Figure 10(a) that the zero velocity
curve is formed by two circles centered at the origin of coordinates. The Hill
region π(Ih) has two connected components, one is formed by a closed disc
centered at the origin without the origin, the external boundary of this disc

15



is the smallest circle of the zero velocity curve, and the other component
is the biggest circle of the zero velocity curve. So Ih has two connected
components, one homeomorphic to a solid torus having as central axis the
smallest circle of the zero velocity curve. whose boundary corresponds to
the collision manifold (see Case 3), and the other is the biggest circle of the
zero velocity curve, i.e. a circle of equilibria. Here the surface g−1(h) is the
one given in Figure 8 with an additional isolated point. The foliation of Ih
by the invariant sets Ihc is a cylinder if c ∈ R\{0}, and the union of cylinder
with a circle of equilibria if c = 0.

Subcase 4.5: f2 < 0. The dynamics of this case is the same as the one of
Case 3.

Case 5: If K > 0 and f1 = 2h < f2. We consider different subcases, see
Figure 10(b).

Subcase 5.1: 0 < f1, or f1 < 0 < f2, or f2 = 0, or f2 < 0. The dynamics
of case 0 < f1 is the same as the one of Case 1. The dynamics of case
f1 < 0 < f2 is the same as the one of Subcase 4.3. The dynamics of case
f2 = 0 is the same as the one of Subcase 4.4, and the dynamics of case
f2 < 0 is the same as the one of Case 3.

Subcase 5.2: f1 = 2h = 0. It follows from Figure 10(b) that the zero
velocity curve is formed by a circle centered at the origin of coordinates, the
Hill region π(I0) is R2\{(0, 0)}, but it contains in its interior the zero velocity
curve, and Ih is homeomorphic to two solid tori without the boundary which
have identified their “central axis” with the zero velocity curve, the boundary
of one of the solid tori is the collision manifold and the boundary of the other
solid tori is the infinity manifold.

From Figure 15 the surface g−1(0) topologically is formed by two planes
with a common point identified. The curves γ0c = g−1(0) ∩ {pθ = c} for
c ∈ R \ {0} are topologically the ones of Figure 3(a), and for c = 0 are
topologically the ones of Figure 3(b). The foliation of Ih by the invariant
sets Ihc varying c can be obtained by rotating Figure 9 with an additional
circle S1 of equilibria.

If c ∈ R \ {0} then I0c is formed by two cylinders. In one cylinder the
orbits are of ejection-collision, and in the other cylinder the orbits start and
end at infinity parabolically.

If c = 0 the topology of I00 and the dynamics on it is the same as for the
sets Ih,±c1 of Case 1, with the difference that the periodic orbit α in Ih,±c1
now becomes a circle of equilibria.

The foliation of I0 by the sets I0c varying c can be obtained by rotating
Figure 16 around the u-axis. After the rotation with respect to the u-axis
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Figure 15. The surface g−1(h) for K > 0 and 2h = f1 = 0.

Ih g−1 (h) Ihc Ih/S1⋃

2

S1 × R if |c| > c1

h > 0 S3 \ {S1 ∪ S1} 2

S1⋃

4

S1 × R if |c| = c1 4

⋃

2

S1 × R if |c| < c1

S1 × R if c ∈ R \ {0}
h = 0 S3 \ {S1 ∪ S1} 5 7⋃

2

S1 × R if c = 0

h < 0 S3 \ S1 8 S1 × R if c ∈ R 9

Table 1. The invariant set Ih and its foliation by Ihc for
K ≤ 0. In the column g−1(h) we indicate the number of
the figure where the surface g−1(h) is drawn, and in the col-
umn Ih/S1 we indicate the number of the figure where it is
described the foliation of Ih by the invariant sets Ihc.

the two central axes of both open solid tori in the zero velocity curve must
be identified.
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Ih g−1 (h) Ihc Ih/S1⋃

2

S1 × R if |c| > c1

f1 > 0, h > 0 S3 \ {S1 ∪ S1} 2

S1⋃

4

S1 × R if |c| = c1 4

⋃

2

S1 × R if |c| < c1

S1 × R if c ∈ R \ {0}
h = 0 S3 \ {S1 ∪ S1} 5 7⋃

2

S1 × R if c = 0

h < 0 < f1 S3 \ S1 8 S1 × R if c ∈ R 9
S1 × R if |c| > c1

S1
⋃

S1 × R if |c| = c1

f1 = 0 (S3 \ S1)
S1⋃

S2 × S1 11 13

S1 × R
⋃

S1 × S1 if 0 < |c| < c1

S1⋃

3

S1 × R if c = 0

S1 × R if |c| > c1

f1 < 0 < f2 (S3 \ S1)⋃ S2 × S1 14 S1
⋃

S1 × R if |c| = c1 13

S1 × R
⋃

S1 × S1 if |c| < c1
S1 × R if c ∈ R \ {0}

f2 = 0 (S3 \ S1)
⋃

S1 8∗ 9∗

S1 × R
⋃
S1 if c = 0

f2 < 0 S3 \ S1 8 S1 × R ifc ∈ R 9

Table 2. The invariant set Ih and its foliation by Ihc for
K > 0 and 2h < f1 < f2. The 8∗ in the column g−1(h)
indicates that the surface g−1(h) is the one of Figure 8 with
an additional isolated point. The 9∗ in the column of Ih/S1
indicates that the foliation of Ih by the invariant sets Ihc is
the same as the one in Figure 9 with an additional circle S1
of equilibria.
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Figure 16. Manifold Ih/S
1 for K > 0 and f1 = 0 = 2h < f2.

Case 6: If K > 0 and f1 < 2h < f2. We consider different subcases, see
Figure 10(c)

Subcase 6.1: 0 < f1, or f1 = 0, or 2h < 0 < f2, or f2 = 0, or f2 < 0.
The dynamics in the case 0 < f1 is the same as the one of Case 1. The
dynamics in the case f1 = 0 is the same as the one of Subcase 5.2 but the
orbits starting and ending at infinity are now hyperbolic instead of parabolic.
The dynamics in the case 2h < 0 < f2 is the same as the one of Subcase
4.3. Moreover, the dynamics in the case f2 = 0 is the same as the one of
Subcase 4.4, and finally the dynamics of the last case f2 < 0 is the same as
the one of Case 3.

Subcase 6.2: f1 < 0 ≤ 2h. It follows from Figure 13(c) that the zero
velocity curve is formed by two circles centered at the origin. TheHill region
π(Ih) is formed by two topological discs, one is a closed disc centered at the
origin without the origin whose external boundary is the smallest circle of
the zero velocity curve, the other topological disc is of the form [r1,∞)× S1
and the circle r = r1 is the biggest circle of the zero velocity curve.
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Ih g−1 (h) Ihc Ih/S1⋃

2

S1 × R if |c| > c1

f1 > 0 S3 \ {S1 ∪ S1} 2

S1⋃

4

S1 × R if |c| = c1 4

⋃

2

S1 × R if |c| < c1
⋃

2

S1 × R if c ∈ R \ {0}

f1 = 2h = 0
S1⋃

2

(S3 \ S1) 15 16

S1⋃

4

S1 × R if c = 0

S1 × R if |c| > c1

f1 < 0 < f2 (S3 \ S1)⋃ S2 × S1 14 S1
⋃

S1 × R if |c| = c1 13

S1 × R
⋃

S1 × S1 if |c| < c1
S1 × R if c ∈ R \ {0}

f2 = 0 (S3 \ S1)
⋃

S1 8∗ 9∗

S1 × R
⋃
S1 if c = 0

f2 < 0 S3 \ S1 8 S1 × R if c ∈ R 9

Table 3. The invariant set Ih and its foliation by Ihc for
K > 0 and f1 = 2h < f2.

The manifold Ih is homeomorphic to the union of two open solid tori,
each solid torus has its central axis formed by one of the circles of the zero
velocity curve, and the boundary of the solid tori having as central axis the
smallest circle of the zero velocity is the collision manifold and the boundary
of the other solid torus is the infinity manifold. Hence, Ih is diffeomorphic
to (S3 \ S1) ∪ (S3 \ S1). The surface g−1(h) is the one of Figure 15 but now
the two surfaces of that figure do not share a common point.

The foliation of Ih by the sets Ihc and the dynamics on each Ihc is de-
scribed in Figure 16 without identifying the two central axes of both tori,
because now the zero velocity curve is formed by two distinct circles.

In tables 1–4, we summarize the foliation of Ih by Ihc for all the values of
K and h.
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Ih g−1 (h) Ihc Ih/S1⋃

2

S1 × R if |c| > c1

f1 > 0 S3 \ {S1 ∪ S1} 2

S1⋃

4

S1 × R if |c| = c1 4

⋃

2

S1 × R if |c| < c1
⋃

2

S1 × R if c ∈ R \ {0}

f1 = 0
S1⋃

2

(S3 \ S1) 15 16

S1⋃

4

S1 × R if c = 0

⋃

2

S1 × R if c ∈ R \ {0}

f1 < 0 ≤ 2h
⋃

2

(S3 \ S1) 15∗ 16∗

⋃

4

S1 × R if c = 0

S1 × R if |c| > c1

2h < 0 < f2 (S3 \ S1)⋃ S2 × S1 14 S1
⋃

S1 × R if |c| = c1 13

S1 × R
⋃

S1 × S1 if |c| < c1
S1 × R if c ∈ R \ {0}

f2 = 0 (S3 \ S1)
⋃

S1 8∗ 9∗

S1 × R
⋃
S1 if c = 0

f2 < 0 S3 \ S1 8 S1 × R if c ∈ R 9

Table 4. The invariant set Ih and its foliation by Ihc for
K > 0 and f1 < 2h < f2. The 15∗ in the column g−1(h)
indicates that the surface g−1(h) is the one of Figure 15 but
now the two surfaces of Figure 15 do not share a common
point. The 16∗ in the column Ih/S1 indicates that the folia-
tion of Ih by the invariant sets Ihc is the same as the foliation
in Figure 16 without identifying the two central axes of both
solid tori.
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Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat
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