
On the limit cycles of planar discontinuous piecewise
linear differential systems with a unique equilibrium

Shimin Li · Jaume Llibre

Abstract This paper deals with planar discontinuous piecewise linear differ-
ential systems with two zones separated by a vertical straight line x = k. We
assume that the left linear differential systems (x < k) and the right linear
differential systems (x > k) sharing the same equilibrium, which is located at
the origin O(0, 0) without loss of generality.

Our results show that if k = 0, that is when the unique equilibrium O(0, 0)
is located in the separating line, then the planar discontinuous piecewise linear
differential systems have no limit cycles. While for the case k ̸= 0, we bound the
number of limit cycles of these planar discontinuous piecewise linear differential
systems, see Table 2.

Keywords Limit cycle · piecewise discontinuous linear systems

1 Introduction and statement of the main results

Planar piecewise linear differential systems are the natural extension of linear
differential systems in order to investigate nonlinear dynamic. It is obvious
that this class of piecewise linear differential systems with two zones separated
by a straight line is the simplest class of these piecewise differential systems.
Without loss of generality we can assume that the separating straight line is
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x = k, then we have
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ẏ

)
=





(
a−
1,1 a−

1,2

a−
2,1 a−

2,2

)(
x
y

)
+

(
b−
1

b−
2

)
if x < k,

(
a+
1,1 a+

1,2

a+
2,1 a+

2,2

)(
x
y

)
+

(
b+
1

b+
2

)
if x > k,

(1)

where the dot denote the derivative with respect to t. We call systems (1) with
x < k (resp. x > k) the left (resp. right) linear differential systems.

In 1990 Lum and Chua [20] conjectured that a continuous piecewise linear
differential systems (1) has at most one limit cycle. This conjecture has been
solved by Freire et al [4] in 1998, for a shorter proof see [15]. While for the
discontinuous piecewise linear differential systems (1) the situation becomes
more complicate because such systems have twelve parameters in general.

We denote

ΣC = {(k, y)|(a−
1,1k + a−

1,2y + b−
1 )(a+

1,1k + a+
1,2y + b+

1 ) > 0},

ΣS = {(k, y)|(a−
1,1k + a−

1,2y + b−
1 )(a+

1,1k + a+
1,2y + b+

1 ) 6 0}.
(2)

The sets ΣC and ΣS are called the crossing set and sliding set of systems (1),
respectively. If an isolated periodic orbit of systems (1) have sliding points,
then it will be called a sliding limit cycle. Otherwise it will be called a crossing
limit cycle.

In order to simplify the analysis of the crossing limit cycles of discontin-
uous piecewise linear differential systems (1), Freire, Ponce and Torres in [6]
reduced the study of systems (1) to study the following Liénard piecewise
linear differential systems with seven parameters.

(
ẋ
ẏ

)
=





(
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D− 0

)(
x
y

)
−

(
0
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)
if x < 0,

(
T+ −1
D+ 0

)(
x
y

)
−

(
−b
a+

)
if x > 0,

(3)

where T± and D± denote the traces and determinants of the right and left
linear differential systems of (1), respectively.

Later on Freire, Ponce and Torres in [7] obtain a more simple canonical
form with just five parameters as follows

(
ẋ
ẏ

)
=





(
2γL −1

γ2
L − α2 0

)(
x
y

)
−

(
0
aL

)
if x < 0,

(
2γR −1

γ2
R − β2 0

) (
x
y

)
−

(
−b
aR

)
if x > 0,

(4)

where the parameters α =
√

sign(∆−) ∈ {i, 0, 1}, β =
√

sign(∆+) ∈ {i, 0, 1}
with ∆± = (T±)2 − 4D±.

Applying the canonical forms (3) or (4), the number of crossing limit cycles
for planar discontinuous piecewise linear differential systems (1) have been
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Table 1 Lower bounds for the maximum number of limit cycles of discontinuous piecewise
linear differential systems (3) known up to now. F , S and N denote a linear differential
systems having a focus or a center, a saddle and a node, respectively. In the column there
is the linear differential systems on x > k, and on the row the linear differential systems in
x < k.

F S N
F 3 3 3
S 3 2 2
N 3 2 2

studied in several papers, see for instance [1,7,9,10,12,18]. In summary, the
maximum known number of limit cycles of planar discontinuous piecewise
linear differential systems (3) up to now are given in Table 1. In this table F, S
and N denotes linear differential systems with a focus or center, a saddle and a
node, respectively. And for instance, when in the table we intersect the column
S with the row N, and we obtain the number 2, this means that systems (3)
having in x < 0 a linear saddle and in x > 0 a node the maximum number of
limit cycles that we know for such systems is 2.

From Table 1 a natural open question arise: Is 3 the upper bound for the
maximum number of limit cycles that a discontinuous piecewise linear differ-
ential systems (3) with a straight line of separation can have?

There are several papers [2,3,6,13,14,19] which investigate the upper bound-
s of limit cycles of systems (3) under some special conditions. Euzébio and
Llibre [2] proved that if one of the linear differential systems of (3) has its
equilibrium point on the line of discontinuity, that is a−a+ = 0, then systems
(3) have at most four limit cycles. Later on, Llibre, Novaes and Teixeira [13,
14] reduced these upper bounds of [2] to two limit cycles and proved that this
upper bound is reached. Giannakopoulos and Pliete [3] showed that systems
(3) with Z2 symmetry have at most two crossing limit cycles. In [14], and later
on in [19] it is proved that if one of the two linear differential systems (3) is
a center, the maximum number of crossing limit cycles is two, and that this
upper bound is reached. Freire, Ponce and Torres [6] investigated systems (3)
with a maximal crossing set (that is, b = 0), and with a focus-focus dynamics,
they proved that if either a+ 6 0 6 a− or a−a+ > 0, then systems (3) have at
most one limit cycle. Recently Ponce, Ros and Vela [21] showed that systems
(3) of the focus-saddle type with b = 0 have at most one limit cycle.

In the present paper we consider the number of crossing limit cycles for
discontinuous piecewise linear differential systems (1) sharing a unique non-
degenerate equilibrium. Without loss of generality we assume that the unique
equilibrium is located at the origin O(0, 0) and k > 0. In order to suppose that
the orientation of limit cycles are counter clockwise, we impose that a−

1,2 = −1
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and a+
1,2 < 0. Thus systems (1) become

(
ẋ
ẏ

)
=





(
a−
1,1 −1

a−
2,1 a−

2,2
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y

)
if x < k,

(
a+
1,1 a+

1,2

a+
2,1 a+

2,2

)(
x
y

)
if x > k,

(5)

with D± ̸= 0.

According to the orientation of the flows of systems (5), it is easy to check
that if the left linear differential systems of (5) is one type of nodes, including
diagonal node with distinct eigenvalues (N), non-diagonal node (N

′
) or diago-

nal node with equal eigenvalues (N∗), or if the right linear differential systems
of (5) is a saddle (S) or a diagonal node with equal eigenvalues (N∗), then the
crossing limit cycles can not exist. So we just need to study the cases that the
left linear differential systems of (5) is a focus (F), a center (C) and a saddle
(S), and the right linear differential systems of (5) is a focus (F), a center (C),
a diagonal node (N) or a non-diagonal node (N

′
), see Table 2.

Our first result is concerned with the maximum number of limit cycles of
systems (5) whose unique equilibrium O(0, 0) located in the separating line,
that is k = 0.

Theorem 1 Planar discontinuous piecewise linear differential systems (5)
with k = 0 have no limit cycles.

It is worth to remark that from [14] we can conclude that systems (3) have
at most one limit cycle when the equilibrium of both the left and the right
linear differential systems are located in the separating line x = 0. Thus we
reduce the upper bounds of limit cycles of systems (3) when both the left and
the right linear differential systems share a unique equilibrium which is located
at the origin O(0, 0). The proof of Theorem 1 will be given in section 2.

We denote by N (L,R) the maximum number of crossing limit cycles that
systems (5) with L and R dynamics in x < k and x > k respectively. Note
that a system (5) is not symmetry with respect to separating line x = k > 0,
because the unique equilibrium is located in the left zone x < k, thus in general
N (L,R) ̸= N (R, L), see Table 2.

Our second main result is study the number of limit cycles of systems (5)
with k > 0.

Theorem 2 The following statements hold for a planar discontinuous piece-
wise linear differential systems (5) with k > 0.

(i) N (F, F) > 3, N (F, C) > 2, N (F,N) > 1, N (F, N
′
) > 1;

(ii) N (C,F) 6 1, N (C, C) 6 0, N (C, N) 6 1, N (C, N
′
) 6 1;

(iii) N (S,F) > 1, N (S,C) > 1, N (S, N) > 1, N (S, N
′
) > 1.

These results are summarized in Table 2.
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Table 2 The lower bounds for the maximum number of limit cycles of discontinuous piece-
wise linear differential systems (5) with k > 0. See Theorem 2.

F C N N
′

F 3 2 1 1
C 1 0 1 1
S 1 1 1 1

The proof of Theorem 2 will be given in section 3.
From statement (ii) of Theorem 2, we know that systems (5) with k > 0

have at most one crossing limit cycle when the left linear differential systems
of (5) is a center. While for the other cases we only give examples to show the
lower bounds of limit cycles of systems (5) with k > 0.

Huan and Yang [8] investigated the number of limit cycles of systems (5)
with k = 1 and of focus-focus type. They provided strong numerical evidence
that those systems can have three limit cycles. Later on Llibre and Ponce in
[16] gave an analytic proof that the following discontinuous piecewise linear
differential systems

(
ẋ
ẏ

)
=





(
4/3 −20/3

377/750 −26/15

)(
x
y

)
if x < 1,

(
19/50 −1

1 19/50

)(
x
y

)
if x > 1,

(6)

of focus-focus type sharing the same equilibrium point has three limit cycles.
The organization of the rest paper is as follows. In section 2 we prove

Theorem 1. In section 3 we divide the proof of Theorem 2 into three parts
according if the left linear differential systems of (5) is a focus, a center or a
saddle.

2 Proof of Theorem 1

In this section we consider the number of crossing limit cycles for systems
(5) with k = 0. Thus we consider the planar piecewise discontinuous linear
differential systems (5). It is obvious that the unique equilibrium is located in
the separating line x = 0. In order to have the possibility of existence of limit
cycles we need only to study the cases for focus or center, that is, D± > 0 and
(T±)2 − 4D± < 0.

We give a well known result on the necessary condition for the existence
of crossing limit cycles of systems (5).

Proposition 1 If a planar discontinuous piecewise linear differential system
(5) has a crossing limit cycle Γ = Γ+ ∪ Γ− that intersects the separating line
x = 0 at the two points (0, y0) and (0, y1), then

T−σ− + T+σ+ = 0, (7)
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Fig 1.1 Fig 1.2

x x

y y

y0

y1

Γ − Γ+

Ω− Ω+

y0

y1

y2

x = 1

Fig. 1 Fig 1.1. A limit cycle of systems (5). Fig 1.2. Poincaré map of systems (5).

where σ± are denote the areas of Ω± respectively, see Figure 1.1

The proof of Proposition 1 is deduced from the Green’s formula, see for
instance [5]. According to Proposition 1 a necessary condition for the existence
of a crossing limit cycle for a system (5) is either T+T− < 0 or T+ = T− = 0.

Proof of Theorem 1. Let X = x, Y = a−
2,2x + y when x ≤ 0 and X =

−1

a+
1,2

x, Y = −
a+
2,2

a+
1,2

x + y when x ≥ 0. Note that both changes of variables

coincide on x = 0, and that the straight line x = 0 remains invariant by this
change of variables. Then in the new variables systems (5) becomes

(
Ẋ

Ẏ

)
=





(
T− −1
D− 0

)(
X
Y

)
if X < 0,

(
T+ −1
D+ 0

)(
X
Y

)
if X > 0.

(8)

First we consider the focus-center type. It is obvious that T+ = 0 and
T− ̸= 0. By Proposition 1 we obtain that systems (5) have no limit cycles for
the focus-center type. The proof of the center-focus is similar to the one of the
focus-center.

Second we study the focus-focus type. Applying the change of variables
given in Proposition 4.1 of [5], we can write systems (8) into the canonical
form (4) with aL = aR = b = 0. According with Theorem 4.3 of [5] we know
that systems (8) and consequently systems (5) have no limit cycles.

Finally we consider the center-center type, that is T± = 0, thus we cannot
use Proposition 1, but from Theorem 3 of [17] or Theorem 1 of [19] it follows
that such systems have no limit cycles. This completes the proof of Theorem
1.
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3 Proof of Theorem 2

For systems (5) with k > 0 we take k = 1 without loss of generality.
In order to investigate the crossing limit cycles of systems (5), we construct

the left Poincaré map and the right Poincaré map of systems (5) as follows.
Assume that the orbits starting at the point (1, y0) with y0 > 0 go into the
left zone x < 1 under the flow of the left linear differential systems. If these
orbits can reach x = 1 again at some point (1, y1) with y1 < 0 after some time
t− > 0, then we can define a left Poincaré map

y1 = PL(y0), y0 > 0. (9)

Similarly the orbits of systems (5) starting at the point (1, y1) with y1 < 0
will go into the right zone x > 1 under the flow of the right linear differential
systems. If the orbits can go back to x = 1 again after some time t+ > 0
and intersect the line x = 1 at (1, y2) with y2 > 0, then we can define a right
Poincaré map

y2 = PR(y1), y1 < 0. (10)

Composite the left Poincaré map PL and the right Poincaré map PR, we obtain
the full Poincaré map

y2 = P (y0) = PR ◦ PL(y0), y0 > 0. (11)

It is obvious that the zeros of

F (y0) , P (y0) − y0 = PR ◦ PL(y0) − y0, y0 > 0, (12)

correspondence to the limit cycles of the discontinuous piecewise linear differ-
ential systems (5), see Figure 1.2.

Since systems (5) have a vertical separating line x = 1 we need to use
linear change of variables which preserve the vertical line x = 1, for obtaining
the canonical forms of a piecewise linear differential systems (5).

Proposition 2 Consider the following planar linear differential systems

(
ẋ
ẏ

)
=

(
a1,1 a1,2

a2,1 a2,2

) (
x
y

)
. (13)

After a vertical line-preserving linear change of variables and a time-rescaling,
then systems (13) becomes one of the following three linear differential systems:

(i) either a focus (resp. a center) of the form

(
ẋ
ẏ

)
=

(
A −1
1 A

) (
x
y

)
, (14)

with A ̸= 0 (resp. A=0);
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(ii) or a saddle (resp. a diagonal node) of the form

(
ẋ
ẏ

)
=

(
A −1
−1 A

)(
x
y

)
, (15)

with |A| < 1 (resp. |A| > 1);
(iii) or a non-diagonal node of the form

(
ẋ
ẏ

)
=

(
−1 −1
0 −1

)(
x
y

)
. (16)

For a proof of Proposition 2 see Proposition 4.3.1 of [14].
We divide the proof of Theorem 2 into three cases according if the left

linear differential systems of (5) is a center, a saddle or a focus.

3.1 The left linear differential systems of (5) is of center type

In this subsection we assume that the left linear differential systems of (5) is
of center type. Using the canonical form of (14), we have

(
ẋ
ẏ

)
=





(
0 −1
1 0

)(
x
y

)
if x < 1.

(
a+
1,1 a+

1,2

a+
2,1 a+

2,2

)(
x
y

)
if x > 1,

(17)

with a+
1,2 < 0.

When we analyze the crossing limit cycles of discontinuous piecewise linear
systems (5), we cannot choose the canonical forms given in Proposition 2 in
both the left zone and the right zone. Thus we need to assume that the right
zone with a general canonical form as follows.

Proposition 3 The origin of a planar linear differential systems (13) in the
right zone is

(i) a general focus (resp. a general center) when

(
ẋ
ẏ

)
=




a b
−(a − c)2 − d2

b
2c − a




(
x
y

)
if x > 1, (18)

with b < 0 and c ̸= 0 (resp. b < 0 and c = 0);
(ii) a general diagonal node (resp. a general non-diagonal node) when

(
ẋ
ẏ

)
=




a b
−(a − c)2 + d2

b
2c − a




(
x
y

)
if x > 1, (19)

with c2 > d2 > 0 and b < 0 (resp. d = 0 and b < 0).
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Proof The eigenvalues of systems (13) with respect to the origin O(0, 0) are

λ± =
a1,1 + a2,2 ±

√
(a1,1 − a2,2)2 + 4a1,2a2,1

2
. (20)

(i) If we impose a1,1 +a2,2 = 2c and (a1,1 −a2,2)
2 +4a1,2a2,1 = −4d2, then the

origin is a general focus (resp. center) with eigenvalues c±id when c ̸= 0 (resp.

c = 0). From the above two equations we have a2,1 =
−(a1,1 − c)2 − d2

a1,2
and

a2,2 = 2c − a1,1. Replace a1,1 = a, a1,2 = b into (13) then we obtain systems
(18).

(ii) We assume that a1,1+a2,2 = 2c and (a1,1−a2,2)
2+4a1,2a2,1 = 4d2, then

the origin is a general diagonal node (resp. non-diagonal node) with eigenvalues

c±d when d ̸= 0 (resp. d = 0). It is easy to know that a2,1 =
−(a1,1 − c)2 + d2

a1,2

and a2,2 = 2c−a1,1. Replace a1,1 = a, a1,2 = b into (13) then we obtain systems
(19).

With the help of Proposition 2 and Proposition 3, we can prove the state-
ment (ii) of Theorem 2.

Proof of statement (ii) of Theorem 2. From the left linear differential systems
of (17) we obtain the left Poincaré map

PL(y0) = −y0, y0 > 0. (21)

In the following we need to study the right Poincaré map, we distinguish
four cases.
Case (i): First we consider the center-focus case of systems (17) satisfying
(18)|c̸=0.

From elementary calculations we obtain the solution of systems (18)|c̸=0

starting at the point (1, y1) when t+ = 0:

(
x(t+)
y(t+)

)
=

ect+

d




d cos(dt+) + (a − c + by1) sin(dt+)

dy1 cos(dt+) − d2 + (a − c)(a − c + by1)

b
sin(dt+)


 . (22)

If x(t+) = 1 then from (22) we get the parametric representation of the right
Poincaré map

y2(t+) =
−a + c + d cot(dt+) − dect+ csc(dt+)

b
. (23)

Note that

y1(t+) = −a + c − d cot(dt+) + de−ct+ csc(dt+).

Recall that y1 = −y0 from (21), the zeros of F (y0) is equivalent to the zeros
of

G(t+) , y2(t+) − y0 = y2(t+) + y1(t+)

=
−2

b sin(dt+)
((a − c)g0(t+) + dg1(t+)),

(24)
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where t+ ∈ (0, π/d) in order that the function G(t+) be well defined, and

g0(t+) = sin(dt+), g1(t+) = sinh(ct+). (25)

In the following we will show that

(a − c)g0(t+) + dg1(t+) = 0, (26)

with t+ ∈ (0, π/d) has at most one zero.
It is obvious that the coefficients a−c and d can be chosen arbitrarily. The

Wronskian of the functions g0(t+) and g1(t+) is

W (t+) ,
∣∣∣∣
g0(t+) g1(t+)

g
′
0(t+) g

′
1(t+)

∣∣∣∣ = c cosh(ct+) sin(dt+) − d cos(dt+) sinh(ct+). (27)

Since W (0) = 0 and W
′
(t+) = (c2 +d2) sin(dt+) sinh(ct+) ̸= 0 if t+ ∈ (0, π/d),

the Wronskian W (t+) ̸= 0. Thus G(t+) has at most one zero when t+ ∈
(0, π/d), and then, using Theorem 3 of the appendix, we can conclude that a
system (17) satisfying (18)|c̸=0 has at most one crossing limit cycle.
Case (ii): Second we consider the center-center case of systems (17) satisfying
(18)|c=0. Taking into account that c = 0 in (18) we have PR(y1) = −2a/b−y1.
Then we can obtain P (y0) = −2a/b + y0 because y1 = −y0. Thus F (y0) =
−2a/b and then a system (17)+(18)|c=0 has no crossing limit cycles. In fact,
this result also follows from Theorem 3 of [17] or Theorem 1 of [19].
Case (iii): Now we consider the center-diagonal node case of systems (17)+(19)|d̸=0.

Similar to the case (i) we get the parametric representation of the right
Poincaré map of systems (19)|d ̸=0 as

y1(t+) =
−a + c − d coth(dt+) + de−ct+csch(dt+)

b
,

y2(t+) =
−a + c + d coth(dt+) − dect+csch(dt+)

b
,

(28)

and then we obtain

G(t+) , y1(t+) + y2(t+) = −2

b
(a − c + dcsch(dt+) sinh(ct+)), t+ > 0. (29)

In the following we will prove that G(t+) has at most one zero in t+ > 0. It is
obvious that

G
′
(t+) =

2d

b sinh(ct+) sinh(dt+)
(d coth(dt+) − c coth(ct+)) . (30)

Since c2 > d2 we need to consider two cases c > d > 0 and c < d < 0. If
c > d > 0, then c coth(ct+) > d coth(dt+) because coth(t+) is an increasing
function with respect to t+. If c < d < 0, then we have −c > −d > 0.
From −c coth(−ct+) > −d coth(−dt+), we can deduce that c coth(ct+) >
d coth(dt+) because coth(t) is an odd function with respect to t. Thus we
obtain that G

′
(t+) ̸= 0, and then we can conclude that a system (17) satisfy-

ing (19)|d ̸=0 has at most one crossing limit cycle.
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Case (iv): Finally we consider the center-nondiagonal node case of systems
(17)+(18)|d=0. From direct computations we obtain the parametric represen-
tation of the right Poincaré map of systems (19)|d=0 as

y1(t+) =
(c − a)t+ + e−ct+ − 1

bt+
, y2(t+) =

(c − a)t+ + 1 − ect+

bt+
, t+ > 0.

(31)
Take G(t+) , y1(t+) + y2(t+) derivative with respect to t+ we have

G
′
(t+) = 2

sinh(ct+) − ct+ cosh(ct+)

bt2+
, t+ > 0. (32)

It is obvious that G1(t+) = sinh(ct+) − ct+ cosh(ct+) ̸= 0 because G
′
1(t+) =

−c2t+ sinh(ct+) ̸= 0 and G1(0) = 0. From (32) we have G
′
(t+) ̸= 0. From the

above analysis, we can conclude that a system (17) satisfying (19)|d=0 has at
most one crossing limit cycle.

At the end of this subsection we give three discontinuous piecewise linear
differential systems (5) having one crossing limit cycle of the type center-focus,
center-node and center non-diagonal node.

Example 1 Consider a system (17) with a+
1,1 = 1, a+

1,2 = −1, a+
2,1 = 5, a+

2,2 =
−3, then this system is of center-focus type. It has exactly one limit cycle,
which intersects the switching line x = 1 at the two points

y0 ≈ 2.104005385670952, y1 = −y0,

with the times

t− ≈ 4.028952638215224, t+ ≈ 1.4354222030070583,

respectively, see Figure 2.1.

Example 2 Consider a system (17) with a+
1,1 = a+

1,2 = −1, a+
2,1 = 15, a+

2,2 = 7,
then this system is of center-node (diagonal) type. It has exactly one limit
cycle, which intersects the switching line x = 1 at the two points

y0 ≈ 2.2360679774997894, y1 = −y0,

with the times

t− ≈ 3.9826613241577236, t+ ≈ 0.4812118250596032,

respectively, see Figure 2.2.

Example 3 Consider a system (17) with a+
1,1 = a+

1,2 = −1, a+
2,1 = 4, a+

2,2 = 3,
then this system is of center-node (non-diagonal) type. It has exactly one limit
cycle, which intersects the switching line x = 1 at the two points

y0 ≈ 1.5927767117205982, y1 = −y0,

with the times

t− ≈ 4.262862522751957, t+ ≈ 2.1773189849653076,

respectively, see Figure 2.3.
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Fig 2.1 Fig 2.2

Fig. 2 The unique limit cycle of some systems (17). Fig 2.1. Center-Focus type. Fig 2.2.
Center-Node (diagonal) type. Fig 2.3. Center-Node (non-diagonal) type.

3.2 The left linear differential systems of (5) is of saddle type

In this section we study the number of limit cycles of systems (5) with a saddle
dynamics in the left zone.

Using the canonical form of (15) we need to consider the following differ-
ential systems

(
ẋ
ẏ

)
=





(
A −1
−1 A

)(
x
y

)
if x < 1,

(
a+
1,1 a+

1,2

a+
2,1 a+

2,2

)(
x
y

)
if x > 1,

(33)

where |A| < 1 and a+
1,2 < 0.

Example 4 Consider a system (33) with A =
2

5
and a+

1,1 = 0, a+
1,2 = −1, a+

2,1 =

5

4
, a+

2,2 = 1, then this system is of saddle-focus type. It has exactly one limit
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cycle, which intersects the switching line x = 1 at the two points

y0 ≈ 0.9718001266500934, y1 ≈ −0.6557898066657364,

with the times

t− ≈ 2.9090827941080404, t+ ≈ 1.128550128416395,

respectively, see Figure 3.1.

Fig 3.3 Fig 3.4

Fig 3.2Fig 3.1

Fig. 3 Limit cycles of some systems (33). Fig 3.1. Saddle-Focus type. Fig 3.2. Saddle-Center
type. Fig 3.3. Saddle-Node (diagonal) type. Fig 3.4. Saddle-Node (non-diagonal) type.

Example 5 Consider a system (33) with A = −1

2
and a+

1,1 = −1

4
, a+

1,2 =

−1, a+
2,1 =

17

16
, a+

2,2 =
1

4
, then this system is of saddle-center type. It has
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exactly one limit cycle, which intersects the switching line x = 1 at the two
points

y0 ≈ 0.4716878364870325, y1 ≈ −0.9716878364870325,

with the times

t− ≈ 2.633915793849635, t+ ≈ 1.250267504826089,

respectively, see Figure 3.2.

Example 6 Consider a system (33) with A =
2

5
and a+

1,1 =
1

2
, a+

1,2 = −1, a+
2,1 =

2, a+
2,2 = −5

2
, then this system is of saddle-node type. It has exactly one limit

cycle, which intersects the switching line x = 1 at the two points

y0 ≈ 0.7998728207036497, y1 ≈ −0.14894096273908286,

with the times

t− ≈ 1.2483163101194772, t+ ≈ 1.1650952227781781,

respectively, see Figure 3.3.

Example 7 Consider a system (33) with A = −3

5
and a+

1,1 = a+
1,2 = −1, a+

2,1 =

9

4
, a+

2,2 = −3, then this system is of saddle-node (non-diagonal) type. It has

exactly one limit cycle, which intersects the switching line x = 1 at the two
points

y0 ≈ 0.5292900080573865, y1 ≈ −0.9952630050743477,

with the times

t− ≈ 3.6107224418352737, t+ ≈ 0.6294144408512573,

respectively, see Figure 3.4.

3.3 The left linear differential systems of (5) of focus type

In this subsection we consider the limit cycles of systems (5) with a focus
dynamics in the left zone.

We assume that the left linear differential systems of (5) is a general focus,
then systems (5) become

(
ẋ
ẏ

)
=








a b
−(a − c)2 − d2

b
2c − a




(
x
y

)
if x < 1,

(
a+
1,1 a+

1,2

a+
2,1 a+

2,2

)(
x
y

)
if x > 1,

(34)

with b < 0 and a+
1,2 < 0.
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Example 8 The discontinuous piecewise linear differential system (6) is of
focus-focus type, it is the systems studied in [16]. It has exactly three lim-
it cycles Γi, i = 1, 2, 3. The smallest one Γ1 intersects the switching line x = 1
at the two points

y0 ≈ 0.6188541651825252, y1 ≈ 0.1638262276270832,

with the times

t− ≈ 6.220096927394248, t+ ≈ 3.9178388598443292,

respectively. The middle limit cycle Γ2 intersects the switching line x = 1 at
the two points

ỹ0 ≈ 0.9657998558466794, ỹ1 ≈ −0.08891408094287911,

with the times

t− ≈ 5.043121491547688, t+ ≈ 8.566832229211103,

respectively. The biggest limit cycle Γ3 intersects the switching line x = 1 at
the two points

ȳ0 ≈ 1.6811945105189345, ȳ1 ≈ −0.48606164912659217,

with the times

t− ≈ 4.601444430614628, t+ ≈ 14.866328036550136,

respectively, see Figure 4.1.

Example 9 Consider a system (34) with a = 1, b = −1, c =
1

10
, d = 8,

a+
1,1 = a+

2,2 = 0, a+
1,2 = −1 and a+

2,1 = 1, then this system is of focus-center
type. It has exactly two limit cycles Γ1 and Γ2. The smallest one Γ1 intersects
the switching line x = 1 at the two points

y0 ≈ 2.8326371864989257, y1 = −y0,

with the times

t− ≈ 0.7011989432509553, t+ ≈ 2.462853167680777,

respectively. The largest limit cycle Γ2 intersects the switching line x = 1 at
the two points

ỹ0 ≈ 38.96308262220769, ỹ1 = −ỹ0,

with the times

t− ≈ 0.4433513431734112, t+ ≈ 3.0902732789460954,

respectively, see Figure 4.2.
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Fig 4.2Fig 4.1

Fig. 4 Limit cycles of some systems (33). Fig 4.1. Focus-Focus type. Fig 4.2. Focus-Center
type. Fig 4.3. Focus-Node (diagonal) type. Fig 4.4. Focus-Node (non-diagonal) type.

Example 10 Consider a system (34) with a = 2, b = c = −1, d = 5, a+
1,1 =

a+
2,2 = 3 and a+

1,2 = a+
2,1 = −1, then this system is of focus-node type. It ha

exactly one limit cycle, which intersects the switching line x = 1 at the two
points

y0 ≈ 15.74300241360837, y1 ≈ 1.2713151560165141,

with the times

t− ≈ 0.9506860894050889, t+ ≈ 0.9988106885099418,

respectively, see Figure 4.3.

Example 11 Consider a system (34) with a = c = 1, b = −1, d = 20, a+
1,1 =

a+
2,2 = −1, a+

1,2 = −1 and a+
2,1 = 0, then this system is of focus-node (no-

diagonal) type. It has exactly one limit cycle, which intersects the switching
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line x = 1 at the two points

y0 ≈ −0.227958611935782, y1 ≈ −17.293759360246668,

with the times

t− ≈ 0.27908115601573263, t+ ≈ 4.328936898906302,

respectively, see Figure 4.4.

These examples complete the result presented in Table 2, and consequently
prove Theorem 2.

Appendix: Extended Complete Chebyshev systems

The set ot functions (f0, . . . , fn) defined on the interval I form an Extended
Chebyshev systems on I if and only if any nontrivial linear combination of these
functions has at most n zeros counting their multiplicities and this number is
reached.

The functions (f0, . . . , fn) form an Extended Complete Chebyshev systems
on I if and only if for any k ∈ {0, 1, . . . , n}, (f0, . . . , fk) form an Extended
Chebyshev systems.

Theorem 3 Let f0, . . . , fn be analytic functions defined on an open interval
I ⊂ R. Then the set of functions (f0, . . . , fn) form an Extended Complete
Chebyshev systems on I if and only if for each k ∈ {0, 1, . . . , n} and all y ∈ I
the Wronskian

W (f0, . . . , fk)(y) =

∣∣∣∣∣∣∣∣∣

f0(y) f1(y) · · · fk(y)
f ′
0(y) f ′

1(y) · · · f ′
k(y)

...
...

. . .
...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣
̸= 0.

See the book [11] for a proof of the previous theorem.
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