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Abstract 

A compact coplanar waveguide (CPW) power splitter with filtering capability is 

presented in this paper. The splitter consists of a pair of 70.71  impedance inverters 

implemented by means of inductively and capacitively loaded slow-wave structures. 

Such slow-wave structures efficiently shorten the length of the inverters, thereby 

providing substantial size reduction to the power splitter. The filtering functionality is 

due to the Bragg effect, related to periodicity. The proposed splitter, designed to be 

functional at 1 GHz, exhibits good performance at that frequency, with measured return 

loss of 20.6 dB and insertion loss of 3.15 dB and 3.23 dB at the output ports. Moreover, 

the suppression level (at the output ports) at the first (3 GHz), second (5 GHz) and third 

(7 GHz) harmonic frequency is better than 12.4 dB, 34.6 dB and 24.7 dB, respectively. 

As compared to the length of the ordinary inverters, the length of the constitutive slow-

wave impedance inverters of the designed power splitter is reduced by a factor of two.  
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1. Introduction 

Slow-wave transmission lines are artificial lines typically consisting of a host line 

periodically loaded with reactive elements [1,2]. The presence of reactive elements, e.g., 

shunt-connected capacitances [3-17], series-connected inductances [18-22], or a 

combination of both reactive elements [23-27], decreases the phase velocity of the line 

(slow-wave effect), thereby shortening the wavelength of the propagating signals. 

Therefore, these slow-wave artificial lines are useful for device miniaturization, since, 

for a required electrical length (dictated by design specifications), the physical length of 

such lines is shorter than the one of their ordinary counterparts. An additional property 

of such lines is the filtering capability, related to periodicity (Bragg effect) [2,28,29]. 

Namely, reactively loaded periodic lines exhibit pass bands and stop bands [30]. By 

properly designing the slow-wave transmission lines, it is possible to generate the 

rejection bands in frequency regions useful for harmonic or spurious suppression, and 

simultaneously obtain a behavior similar to the one of ordinary lines at lower 

frequencies (i.e., dispersion-less and all-pass functionality). Within these context, 



several works report compact microwave components with harmonic or spurious 

suppression capability [3-27,31-38].  

Most slow-wave artificial lines and the corresponding (compact and eventually 

harmonic suppressed) microwave circuits have been implemented in microstrip 

technology [8,9,11,14,16,17,18,22,26,33,34], and only few of them have been designed 

and fabricated in coplanar waveguide (CPW) technology [1,20,25]. In [25], slow-wave 

CPW transmission lines based on simultaneous capacitive and inductive loading were 

reported. Such lines, applied to the design and fabrication of a compact and harmonic 

suppressed power splitter based on a single 35.35 Ω impedance inverter in [25], consist 

of a CPW line where the series inductances and shunt capacitances are implemented by 

means of slots in the ground plane and backside patches, respectively. In this paper, the 

main aim is to apply such slow-wave CPW transmission lines to the design of a power 

splitter with compact dimensions and filtering functionality, but alternatively to [25], 

based on a scheme where a pair of 70.71  impedance inverters is considered. 

Consequently, the constitutive 90º (as corresponds to a quart-wavelength impedance 

inverter) and 70.71  slow-wave lines are first designed, and then they are applied to 

the implementation of the power splitter. The fabrication and characterization results are 

presented in the last part of the paper. 

2. Design of the slow-wave transmission lines 

The topology and equivalent circuit model of the slow-wave transmission line (unit cell) 

are depicted in Fig. 1. The host line (a CPW) is loaded with a series inductance, Lls,  

implemented by means of a pair of symmetric slots etched in the ground plane, and with 

a pair of shunt capacitances, Cls/2, achieved by means of two patches etched in the back 

substrate side and connected to the central strip by means of a via. The host line is 

described by the characteristic impedance Z0, and by the electrical length (kl), where k is 

the phase constant and l is the total (physical) length of the unit cell. Losses are 

excluded in the circuit model. As it was demonstrated in [25], the electrical length, l, 

and the characteristic impedance, ZB, of the loaded line, the two fundamental design 

parameters, are given by: 
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 being the angular frequency. Note that from the previous two equations, the four 

unknowns (Z0, kl, Lls and Cls) cannot be unequivocally determined. Indeed, an additional 

condition comes from the required size reduction of the slow-wave transmission line, 

determined by the so-called slow wave ratio, swr, defined by 
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where vpl and vpo are the phase velocities of the loaded and unloaded lines, respectively. 

As it was pointed out in [25], the physical length of the slow wave transmission line, as 

compared to the one of the ordinary line, is dictated by the swr. Nevertheless, due to the 

finite size of the reactive elements loading the line, the actual length of the slow-wave 

transmission line is not as small as the value predicted by the swr. 

 From expression (3), once l is set to a given value (dictated by design 

specifications), kl is directly obtained. The remaining parameters of the slow-wave 

transmission line, Z0, Lls, and Cls, cannot be unequivocally determined from equations 

(1) and (2). However, extreme values of Lls, and Cls, that may prevent the 

implementation of such reactive components, must be avoided. In this regard, a trial-

error approach is reasonable, where a guess value of Z0 is provided and then Lls and Cls 

are isolated from (1) and (2). If such values are implementable, the value of Z0 is 

considered to be the one to be synthesized (note, however, that Z0 may be swept over a 

certain finite interval, yet providing implementable Lls and Cls values). 

Another important aspect is the number of cells, N, of the considered slow-wave 

transmission line section. Obviously, it is intimately related to the electrical length of 

the unit cell, l, which must be a submultiple of the total electrical length of the 

transmission line, designated as . In other words,  = Nl. Actually, the design 

parameter is  (e.g.,  = /2 for an impedance or admittance inverter), rather than l, but 

once N is set to a certain value, then l is automatically determined. It was demonstrated 

in [25], and in other papers by the authors [14,26], that the preferred option to 

simultaneously leave the passband of interest unaltered and suppress the first harmonic 

bands in circuits based on transmission line impedance inverters, is to set N = 2. 

Therefore, this is the value adopted in this paper, as long as a harmonic suppressed 

power splitter based on a 70.71 Ω impedance inverter is pursued. 

3. Synthesis of the slow-wave impedance inverter 

The slow-wave transmission line to be synthesized is an impedance inverter with  = 

/2, ZB = 70.71  (the considered operating frequency has been set to f0 = 1 GHz). 

Since N = 2 (see previous section), it follows that l = 45º. The slow wave ratio has 

been set to swr = 0.5, and, therefore, kl = 22.5º. In regard to the remaining unknowns, 

Z0, Cls and Lls, the characteristic impedance of the host line has been tentatively set to Z0 

= 70 , providing the following reactive values: Cls = 0.93 pF and Lls = 3.96 nH. It has 

been found that such values can be easily implemented in CPW technology by means of 

the aforementioned backside patches and ground plane slots, respectively (hence these 

values of Z0, Cls and Lls have been considered to be definitive). 

 In order to generate the unit cell layout, the slot dimensions providing the 

required inductance value, as well as the dimensions of the transverse backside patches 



necessary to achieve the shunt capacitance, have been independently determined. 

Nevertheless, some post-optimization has been necessary in order to adjust the 

characteristic impedance and electrical length to the design values at the operating 

frequency. The resulting layout of the unit cell is the one depicted in Fig. 1. The 

characteristic impedance and the electrical length of the unit cell, inferred by 

electromagnetic simulation of the layout by means of Keysight Momentum, are depicted 

in Fig. 2, where it is apparent that the required values at f0 (i.e., ZB = 70.71  and l = 

45º) are achieved. By concatenating two cells, we do expect that  = 90º at f0, as Fig. 3 

corroborates. In such figure, the transmission and reflection coefficients, referred to a 50 

Ω port impedance, are also depicted. Moreover, we have included in Fig. 3 (and in Fig. 

2) the corresponding curves obtained through circuit simulation of the equivalent circuit 

model, and the agreement is excellent up to roughly 4.5 GHz, i.e., clearly above f0. At 

higher frequencies, the disagreement is because the patch capacitance and inductive 

slots can no longer be considered semi-lumped components. In the previous 

electromagnetic simulations, the considered substrate is Rogers RO3010 with thickness 

h = 1.27 mm, dielectric constant r = 10.2 and loss tangent tan = 0.0023. 

4. Fabrication of the power splitter and experimental results 

The layout and the photograph of the designed slow-wave power splitter are depicted in 

Fig. 4 (notice that air-bridges, implemented by means of backside strips and vias, have 

been used in order to suppress the parasitic CPW slot mode). Fig. 5 depicts the return 

loss (S11) and power splitting (S21 and S31) of the divider, inferred from circuit, 

electromagnetic simulation (with and without losses) and measurement. The designed 

slow-wave power splitter has been fabricated by means of a LPKF-H100 drilling 

machine, and the measured response has been obtained by means of the Keysight PNA 

5221A vector network analyzer. The response of the slow-wave power splitter is 

roughly the same than the one of the ordinary splitter in the region of interest (vicinity 

of f0), also included in Fig. 5(a). Particularly, S21 = 3.15 dB, S31 = 3.23 dB and S11 = 

20.6 dB at f0 (measured values). However, the first (at 3f0), second (at 5f0), and third 

(at 7f0) harmonic bands of the conventional splitter are significantly suppressed in the 

slow-wave implementation, i.e., the measured suppression levels for port 2 have been 

found to be 12.4 dB, 34.6 dB and 34.3 dB, respectively, and 12.7 dB, 42.6 dB and 24.7 

dB, respectively, for port 3. With these results, it is clearly demonstrated that the 

proposed strategy, based on replacing the ordinary inverter of the splitter with a slow-

wave transmission line, is useful to achieve power splitting and filtering simultaneously. 

Moreover, the filtering action provides significant levels of harmonic suppression. 

Indeed, the achieved stopband region (considering a suppression level of at least 10 dB) 

extends up to at least 7f0, superior than in the splitter reported in [25]. 

Concerning splitter dimensions, these are mainly determined by the length of the 

synthesized slow-wave impedance inverter. The actual ratio between the length of the 

designed inverter and the ordinary counterpart (implemented by means of a 

conventional 90º line) is 0.505, i.e., slightly superior that the theoretical value given by 

the considered swr (for the reasons explained above). However, the achieved size 



reduction of the inverter is very close to the nominal value, hence providing a small size 

to the fabricated splitter. 

5. Conclusions 

In conclusion, a compact and harmonic suppressed CPW power splitter based on a pair 

of slow-wave transmission line 70.71 Ω impedance inverters has been designed and 

fabricated. Roughly 50% length reduction in the inverters has been achieved (as 

compared to the length of the ordinary CPW inverters), and the fabricated splitter has 

been demonstrated to efficiently reject at least the first three harmonic bands, leaving 

the response in the region of interest unaltered. It has been shown that the proposed 

circuit model of the slow-wave transmission line inverter, useful for design purposes, 

provides a good description of the behavior of the splitter in the region of interest, and 

such good agreement between the circuit and the electromagnetic responses extends up 

to 4.5f0.  
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Fig. 1. Topology (unit cell) (a) and circuit schematic (b) of the slow wave CPW transmission line. 
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Fig. 2. Electrical length (a) and characteristic impedance (b) of the inverter unit cell. Dimensions are (in 

reference to Fig. 1): Lw = 7.00 mm, Ww = 5.00 mm, LT = 1.30 mm, WT = 1.63 mm, LC = 4.55 mm, WC = 

0.50 mm, w = 0.38 mm, s = 0.40 mm. 
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Fig. 3. Layout of the whole inverter, including two cells (a), transmission and reflection coefficients (b), 

and electrical length (c). 

 

  

P1 P2

1 2 3 4 5 6 7
-40

-35

-30

-25

-20

-15

-10

-5

0

S
11

 eq. circuit Sim.

 EM Sim.

 

 

|S
1

1
|, 

|S
2

1
| (

d
B

)

Frequency (GHz)

S
21

1 2 3 4 5
0

45

90

135

180

 eq. circuit Sim.

 EM Sim.

 

 


 l

 (
d
eg

re
e)

Frequency (GHz)

(a) 

(b) 

(c) 



 

 

 

 

Fig. 4. Layout (a) and photograph (b) of the designed and fabricated power splitter. 
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Fig. 5. Response of the splitter, including matching (S11) and power splitting (S21 and S31). (a) Circuit and 

lossless electromagnetic simulation; (b) lossy electromagnetic simulation and measurements. The lossless 

electromagnetic simulation of the conventional power splitter is also included in (a). 
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