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Abstract

Motivation: Transposable elements (TEs) constitute a significant proportion of the majority of genomes sequenced
to date. TEs are responsible for a considerable fraction of the genetic variation within and among species. Accurate
genotyping of TEs in genomes is therefore crucial for a complete identification of the genetic differences among
individuals, populations and species.

Results: In this work, we present a new version of T-lex, a computational pipeline that accurately genotypes and esti-
mates the population frequencies of reference TE insertions using short-read high-throughput sequencing data. In
this new version, we have re-designed the T-lex algorithm to integrate the BWA-MEM short-read aligner, which is
one of the most accurate short-read mappers and can be launched on longer short-reads (e.g. reads >150 bp). We
have added new filtering steps to increase the accuracy of the genotyping, and new parameters that allow the user
to control both the minimum and maximum number of reads, and the minimum number of strains to genotype a TE
insertion. We also showed for the first time that T-lex3 provides accurate TE calls in a plant genome.
Availability and implementation: To test the accuracy of T-lex3, we called 1630 individual TE insertions in
Drosophila melanogaster, 1600 individual TE insertions in humans, and 3067 individual TE insertions in the rice gen-
ome. We showed that this new version of T-lex is a broadly applicable and accurate tool for genotyping and estimat-
ing TE frequencies in organisms with different genome sizes and different TE contents. T-lex3 is available at Github:
https://github.com/GonzalezLab/T-lex3.
Contact: josefa.gonzalez@ibe.upf-csic.es
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structural variants, such as insertions, deletions and inversions, are often
ignored when analyzing genomic variation due to the technical limita-
tions associated with short-read high-throughput sequencing (Hoban
et al., 2016; Villanueva-Ca~nas et al., 2017). However, it has become ap-
parent that structural variants are a considerable source of genomic vari-
ation. For example, in the human genome structural variants outnumber
single-base-pair differences (Alkan et al., 2011). Transposable elements
(TEs) are a type of structural variant that are present in virtually all
genomes sequenced to date, where they represent a substantial propor-
tion of the genome content—ranging from �3% in yeast to �80% in

maize and wheat (Bleykasten-Grosshans and Neuvéglise, 2011; Mascher
et al., 2017; Schnable et al., 2009). Species differ not only in the total TE
genome content, but also in the diversity of TEs, and in the proportion
of active and inactive TE copies (Guio and González, 2019). The trans-
position activity of TEs can generate a significant amount of genetic vari-
ation. TEs can alter fitness-related traits or cause diseases when they
disrupt genes or affect their level of expression (Chuong et al., 2017;
Elbarbary et al., 2016). TEs can also generate mutations after they have
lost the capacity to transpose by acting as substrates for ectopic recom-
bination or by facilitating template switching during repair of replication
errors (Campbell et al., 2014; Lee et al., 2007; Startek et al., 2015). All
these TE-induced mutations contribute to the genetic variation within
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and among species. Thus, accurate genotyping of TEs in genomes is cru-
cial for complete identification of the genetic differences among individu-
als, populations and species.

There are many different computational tools that take advan-
tage of the wealth of short-read high-throughput sequencing data
available to discover and estimate population frequencies of TE
insertions (Goerner-Potvin and Bourque, 2018; Rishishwar et al.,
2017). A non-exhaustive list of tools that identify non-reference and
reference insertions shows that some characteristics are commonly
shared among tools, such as the ability to detect polymorphic inser-
tions (Table 1). However, other characteristics are more specific,
such as the detection of the target site duplications (TSD), which
helps to reconstruct the pre-integration site and thus identify mis-
annotated TE insertions (Table 1).

In 2011, we developed a tool for fast and accurate frequency es-
timation of reference TE insertions called T-lex (Fiston-Lavier et al.,
2011). The first update of this software, T-lex2 (Fiston-Lavier et al.,
2015), allowed the user to work with individual strain and pooled
whole genome sequencing data. In addition, we added a TE-TSD
detection module that allowed us to correct the genome annotations
for 65 Drosophila melanogaster reference TE insertions. We also
showed that T-lex2 provides accurate TE calls in D.melanogaster,
with 99.14% specificity and 89.58% sensitivity, and in the human
genome, with 97.65% specificity and 93.26% sensitivity.

In this work, we implemented a new version of this broadly ap-
plicable and flexible tool, which can now be used with the latest
short-read high-throughput sequencing technologies. We have re-
designed the T-lex algorithm to integrate the BWA-MEM short-read
aligner: one of the most accurate short-read mappers available (Li
and Durbin, 2009). This aligner has no read length limitation, is cur-
rently being maintained by its developers, and it is easy to install as
the package is available for most Linux distributions and OSX. In
addition, we have added extra filtering steps and parameters, and
fixed some bugs present in T-lex2. We demonstrate that T-lex3, now
available at Github (https://github.com/GonzalezLab/T-lex3), can
provide accurate TE genotyping and frequency estimation using
D.melanogaster, human and Oryza sativa datasets.

2 Materials and methods

T-lex3, as its previous version, is composed of five modules. Briefly,
the TE-analysis module analyses whether the sequences flanking
each reference TE insertion are part of a segmental duplication, or
whether they contain repetitive regions, as both features are known
to affect the accuracy of TE calls. The TE-presence detection module
and the TE-absence detection module are two independent modules
that detect both the presence and the absence of the reference TE
based on the analysis of the junction sequences of the TE insertion.
When the requirements to call a TE as present or absent are not met,

these modules return a no data call. The TE-combine module com-
bines the results of the two detection modules to determine whether
the TE insertion is present, absent, polymorphic or no data. Finally,
the TE-TSD detection module analyzes the read alignments of the TE-
absence detection module to identify the Target Site Duplication
(TSD) of the TE insertion. In the new version of T-lex described here,
T-lex3, we have updated and improved three of these modules (Fig. 1),
and we have also implemented other more general changes as
described below. All these changes have been summarized in Table 2.

2.1 TE-presence detection module
We have changed the mapper used in the TE-presence detection
module: while T-lex2 used MAQ (Li et al., 2008), T-lex3 uses BWA-
MEM (Li and Durbin, 2009) (Table 2). MAQ has two main limita-
tions: (i) it cannot process reads > 127 bp, while the newest Illumina
technology produces longer reads (150 and 300 bp) and (ii) it is no
longer updated by the developers. We chose BWA-MEM as the new
mapper because it accepts reads > 127 bp and it performs mapping
with high accuracy (Hatem et al., 2013). In addition, the bam files
generated by BWA-MEM can be visualized using tools such as IGV
that are extensively used in the community (Robinson et al., 2017).
Because T-lex2 used many of the output files of MAQ to call a TE as
present or absent, we have implemented in T-lex3 pipeline several
Perl and AWK scripts, and included other tools such as SAMtools
(Li et al., 2009) to generate these files. Furthermore, we have added
an extra filtering step: T-lex3 now filters using the CIGAR string in-
formation all the reads with an alignment match < 95% compared
with the reference genome. Because this percentage is calculated
based on the read length specified by the user, this filter also allows
to remove shorter reads in those cases in which reads of different
lengths are available for a given strain or pool. This allows fixing a
bug in T-lex2 code, which previously considered all reads to be of
the size specified by the user leading to incorrect TE calls.

After the mapping is completed, the TE-presence detection mod-
ule analyzes the junction regions to call the TE as present or absent.
The size of the junction region is based on the –limp and –buffer
parameters (by default 15 and 60, respectively). To consider a TE as
present, three conditions had to be met in at least one of the two
junction regions: (i) at least one read mapped in the junction, (ii) >
15 bp mapped inside the TE (-limp parameter) and (iii) 95% identity
of the sequence inside the TE. There was a bug in T-lex2: if two con-
ditions were fulfilled in one of the junction regions and the other
condition was fulfilled in the other junction region, the TE was con-
sidered as present. T-lex3 now requires that all three conditions are
met in at least one of the junction regions (Fig. 2A, Table 2).

For the TE-presence detection module to call a TE insertion
as absent, T-lex2 required < 65 Ns (missing data) in the se-
quence mapped to the junction, otherwise the TE call was no
data. In T-lex3, we have modified this step and introduced a

Table 1. Characteristics of computational tools used to annotate and detect transposable element insertions

Software Reference/

Non-reference

Polymorphic

TE detection

TE classes

tested

Runs with

pooled data

TSD

detection

Species tested Reference

RelocaTE and

CharacTErizer

Non-reference

and reference

Yes, but only for

non-reference

mPing No No Oryza sativa Robb et al. (2013)

STEAK Non-reference

and reference

Yes HK2 No No Human Santander et al. (2017)

MELT Non-reference

and reference

Yes Alu, L1

and SVA

Yes Yes Human,

D.melanogaster

Gardner et al. (2017)

TEMP Non-reference

and reference

Yes All Yes No D.melanogaster Zhuang et al. (2014)

PoPoolationTE2 Non-reference

and reference

Yes All Yes No D.melanogaster Kofler et al. (2016)

TIDAL Non-reference

and reference

No All Yes No D.melanogaster Rahman et al. (2015)

T-lex3 Reference Yes All Yes Yes D.melanogaster,

human, Oryza sativa

This study
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new one before calling a TE insertion as either absent or no data
(Fig. 2B). To call a TE insertion as absent, T-lex3 now requires
< 70 Ns (missing data) in the sequence mapping to the junction, and
20 of the other nucleotides in that sequence must map to the flanking
region with � 95% identity. If this step is not fulfilled, an additional
step requires that 10 nucleotides in the junction region (five nucleotides
inside and five outside the TE sequence) are not Ns (missing data) to
consider the TE insertion as absent. If this condition is not met, the TE
call is no data (Fig. 2C). This extra step is necessary because we
detected some cases in which there was a read mapping to the junction
that only had sequence identity within the TE leading to incorrect ab-
sent calls.

2.2 TE-absence detection module
Minor changes affecting the default parameters were made within this
module to adapt it to longer size reads. The parameter –lima, defines
the minimum number of non-repeated nucleotides in each side of the
insertion site in the junction region. In T-lex3, this parameter is 10 by
default instead of five. The parameter -v defines the minimum read
length mapping in each side of the insertion site in the junction
regions. In T-lex3 this parameter is 20 instead of 15 (Table 2).

2.3 TE-combine module
We have implemented several changes in the TE-combine module.
The first step of this module is the combination of the results from

the TE-presence and TE-absence detection modules to generate a
Tresults file that is used to estimate the TE frequencies (Fig. 1).
T-lex2 considered a TE insertion to be absent/polymorphic when
the TE-presence detection module gave a no data call and the
TE-absence detection module gave an absent call. Similarly, T-lex2
considered a TE to be present/polymorphic when the TE-presence
detection module gave a present call and the TE-absence detection
module gave a no data call. Manual curation of several of these calls
revealed that most of these cases should be considered as no data.
Thus, in T-lex3 we considered that when we have a call from only
one of the two modules, the combination of the results from the two
approaches is no data (Table 3).

The TE-combine module takes into account whether the data
comes from pooled or from individual strains to estimate the TE fre-
quencies. When the TE frequency is estimated from pool-seq data, we
have added two new parameters and we have fixed two bugs
(Table 2). The new parameters –minR and -maxR allow the user to
define the minimum and the maximum number of reads needed to es-
timate the TE frequency. Requiring a minimum and maximum num-
ber of reads allows false positives to be discarded (very low number of
reads to make an accurate TE call), and to discard regions with an ex-
cess of coverage due to non-unique mapping or spurious reads (very
high number of reads to make an accurate TE call).

There was a bug in the formula for the TE frequency estimation
in T-lex2: TE frequency ¼ (NP)/(NPþNA), where NP is the total
number of reads supporting the presence and NA is the total number

Fig. 1. T-lex3 pipeline. T-lex3 modules re-designed or improved are highlighted in darker colour. The vertical box indicates the modules that are run by default when T-lex3 is

launched. To run the TE-TSD detection module the TE-absence detection module results are required. For individually sequenced strains, the individual Tresults files for each strain

are needed before running the combination of the TE calls from different high-throughput sequencing samples. The discontinuous lines in grey indicate the recommended path

when the program is run for the first time with a given reference genome. For subsequent runs, we recommend running the pipeline with the filtered list of selected TEs
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of reads supporting the absence. This formula did not take into ac-
count whether there were reads providing evidence for the presence
for only one or for the two flanking regions. In T-lex3 this formula is
only used if there is information for only one of the flanking regions. If
there are reads mapping on each of the two flanking regions, the for-
mula is: TE frequency ¼ [(NPRþNPL)/2]/(NPRþNPLþNA), where
NPR and NPL are the total number of reads supporting the presence
at the right and left flanking regions, respectively.

The other bug was in the estimation of the frequency of pooled
samples: T-lex2 considered the reads that the presence module maps
in the flanking region before the calling steps. As such, there could
be reads that mapped to the flanking regions even if the TE was fi-
nally called as absent. In T-lex3, these reads are not considered to es-
timate the frequency.

For the TE frequency estimation from individual strains data, we
have added one new parameter and we have fixed one bug. The new
parameter –minP allows the user to define a minimum number of
strains with a present, absent or polymorphic result required to estimate
the frequency of a given TE. Thus, it allows the user to discard TE fre-
quencies estimates based on a low number of strains, as this result

Table 2. Summary of changes introduced in the new T-lex version

Module Steps Features/parameters T-lex2 T-lex3

TE-presence

detection

Mapping Mapper (read length limit) MAQ (127bp) BWA-MEM (70bp to 1Mb)

Filtering of

mapping output

Read identity No filter Filters reads with < 95 % alignment

match

Read length No filter Filters reads shorter than read length

specified by the user

TE call Present call At least one condition must

be fulfilled in one flanking

region

All conditions must be fulfilled for

the same flanking region

Absent call <65 Ns (missing data) in the

junction region

<70 Ns (missing data) in the junc-

tion region, and � 95% identity in

at least 20 bp of the flanking

region

Absent call No filter <10 Ns (missing data) in the junc-

tion region

TE-absence

detection

TE call –lima parameter 5 10

-v parameter 15 20

TE-combine TE call Combination of the TE calls from

the absence and presence modules

Absent/polymorphic No data

Present/polymorphic

Pool Frequency

Estimation

–minR parameter No Yes

-maxR parameter No Yes

Frequency estimate takes into ac-

count whether information is

available for one or for the two

junction regions

No Yes

Considers reads before the calling

steps

Yes No

Individual strains

TE frequency estimates

–minP parameter No Yes

File name for the combination of

different individual strains

Tlex_output Tfreqs_output

General Warnings about running process No Yes

Available test dataset No Yes

Available in Github No Yes

Fig. 2. TE calling steps of the T-lex3 TE-presence detection module. Example of the

three steps of T-lex3 TE-presence detection module to call a TE present, absent or

no data for 100 bp reads with default parameters

Table 3. Changes in final TE calls between T-lex2 and T-lex3

according to the individual TE-presence and TE-absence detection

modules

TE-presence

module

TE-absence

module

T-lex2 T-lex3

Present present present present

Present absent polymorphic polymorphic

Present no data present/poly no data

Absent present no data no data

Absent absent absent absent

Absent no data no data no data

no data present no data no data

no data absent absent/poly no data

no data no data no data no data
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might not be representative of the frequency of that TE in the popula-
tion. Finally, we have changed the name of the folder where the com-
bination of the individual strains results (Tresults) and the file with the
frequencies (Tfreqs) are saved. T-lex2 named this folder Tlex_output,
which was problematic due to the similarity with the individual strains
folder name. In T-lex3, this file is now called Tfreqs_output.

Besides the changes in the three modules described above, T-lex3
now provides more detailed standard output that informs the user about
the running process. For example, in the TE-presence detection module
the program now informs the user when each step of the mapping pro-
cess starts, and whether any of the mapping steps has failed. If a map-
ping step fails, the program stops. We have uploaded the pipeline to
Github along with a test dataset that allows the user to check whether
the program is properly installed. An updated user manual that provides
all the information required to run and interpret T-lex3 results can also
be found at Github (https://github.com/GonzalezLab/T-lex3).

2.4 Datasets
To compare the performance between T-lex2 and T-lex3 we ran sev-
eral datasets with both versions. For D.melanogaster, we selected 10
pool-seq datasets from the DrosEU consortium (Kapun et al., 2018),
and 30 individual strains: 19 from the DGRP dataset (Huang et al.,
2014) and 11 from the DPGP2 dataset (Pool et al., 2012;
Supplementary Additional File S1). We also ran T-lex3 for several
datasets that failed to give results with T-lex2: three pooled datasets
from Italy, Austria (Bastide et al., 2013), and Portugal (Kofler et al.,
2012), 86 individual strains from Lyon, France (Lack et al., 2016),
and 32 strains from Winters, CA (Campo et al., 2013;
Supplementary Additional File S4). For all runs, we used a dataset of
1630 reference TE insertions as described in Rech et al. (2019).

For humans, we used the same dataset as in T-lex2: the child gen-
ome of the trio human dataset NA12878 (SRR622457) with the ref-
erence genome NCBI36/hg18 (http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/bigZips/chromFa.zip) (Stewart et al., 2011). We
analyzed 1600 insertions out of the 2010 that (i) have genomic coor-
dinates with confidence intervals smaller or equal to 1, and (ii) have
been analyzed in the CEU trio dataset.

In this work, we also run for the first time T-lex3 with a rice gen-
ome (MH63) (Zhang et al., 2016). We first annotated in the Oryza
sativa Nipponbare assembly (Sasaki and International Rice Genome
Sequencing, 2005) 1600 MITE and 1553 LTR insertions. To detect
MITE families, we run MITE-hunter (Han and Wessler, 2010) and
combined the results with the high-quality predictions available in
the PMITE database (Chen et al., 2014). Only families with TSDs
were considered. Clustering at 90% was performed to remove re-
dundancy using cd-hit (Fu et al., 2012) to produce a final library.
RepeatMasker (http://www.repeatmasker.org/) was run to annotate
all regions having significant homology with any of the MITE fami-
lies. Only the annotations corresponding to full-length elements
(length equal to consensus length 6 20%) were considered.

LTR insertions were identified with LTRharvest (Ellinghaus
et al., 2008) on the Nipponbare assembly (Sasaki and International
Rice Genome Sequencing, 2005) using default parameters. The po-
tential to encode for proteins was investigated using hmmscan
(Eddy, 2011), and only elements potentially coding for proteins con-
taining typical retrotransposon conserved domains (e.g. reverse tran-
scriptase and integrase) were retained for further analyses.

2.5 Sensitivity, specificity and accuracy estimations
T-lex3 sensitivity, specificity and accuracy in the three datasets ana-
lyzed were estimated as: (i) sensitivity ¼ number of correct presence
calls/total number of presence calls in the validation dataset; (ii) spe-
cificity ¼ number of correct absence calls/total number of absence
calls in the validation dataset; and (iii) accuracy ¼ (number of cor-
rect presence calls þ number of correct absence calls)/(total number
of presence calls þ total number of absence calls in the validation
dataset). These calculations were performed using a Python script.

For D.melanogaster, we used the same individual PCR frequen-
cies used in T-lex2 (Fiston-Lavier et al., 2015), except those for one
strain (RAL-730) for which the raw reads were no longer available.

For humans, we used the information based on PCRs and/or map-
ping algorithms for 1600 insertions available in Stewart et al. (2011).

For rice, validation was done as follows: we annotated LTRs and
MITE insertions in the MH63 genome (Zhang et al., 2016) follow-
ing the strategy described above for the Nipponbare genome. We
compared the orthologous loci containing LTR and MITEs to deter-
mine if they were present in both genomes (orthologous insertions),
or only in Nipponbare (Nipponbare-specific). To this end, the
500 bp flanking regions of every LTR and MITE insertions in
Nipponbare were mapped onto the rice MH63 assembly using
BBmap (https://sourceforge.net/projects/bbmap/). The distribution
of the distances between the MH63 regions aligning to the two
Nipponbare flanks (D) followed closely that of the length of the
MITEs and LTR insertions in Nipponbare (L) (Supplementary
Additional File S2), which is to be expected if the insertions are pre-
sent in both genomes (orthologous), except for an additional peak
centered at distance 0, which should correspond to Nipponbare spe-
cific insertions. The manual inspection of some of these loci con-
firmed this assumption. The insertions were then classified based on
the comparison of the distance between the two aligned flanks (D)
and the length of the original Nipponbare element (L), as follows:
when 1.33xL > D<0.66xL the insertion was considered as being
present in both genomes (orthologous insertion); when D<50 bp
(LTRs) or D<15 bp (MITEs), the insertion was considered as
Nipponbare specific.

2.6 T-lex3 processing times
For an individual D.melanogaster genome of 134 Mb, using a 18.6x
sequencing dataset of 73 bp reads, T-lex3 processing time was
� 10.5 hours, while for T-lex2 processing time was 14 hours. Both
runs were performed on a standard computer with a 2.8 GHz Intel
Core i5 with 16 GB RAM memory, and both versions were executed
with a single thread.

In humans (genome size 3 Gb), T-lex3 processing time was
72.5 hours for a 3.1� sequencing dataset of 101 bp reads, for a data-
set of 1600 TEs. In rice (genome size 362 Mb), T-lex3 processing
time was 38 hours for a 23.7� sequencing dataset of 100 bp read
length, for a dataset of 1584 TEs. Both runs with human and rice
genomes were performed with a single thread on a Linux Cluster using
two different nodes: one with 16 cores (126 Gb of RAM) IntelV

R

XeonVR

CPU ES-2630 v3 with 2.40 GHz and one node with 48 cores (512 GB
of RAM) IntelV

R

XeonVR CPU E5-4640(4660) v4 with 2.10 Ghz.

3 Results

We have improved and updated T-lex, a pipeline that genotypes and
estimates reference TE insertion frequencies using individually or
pooled short-read high-throughput sequencing data. Briefly, T-lex3
now uses BWA-MEM instead of MAQ as the mapping algorithm to
detect the presence of insertions. We have added several extra filter-
ing steps and parameters, we have fixed bugs in the pipeline, and we
have also introduced some more general changes that overall
improves the user experience (Table 2).

3.1 T-lex3 genotypes and estimates TE population

frequencies in datasets that could not be analyzed with

T-lex2 in D.melanogaster
We have run T-lex3 in three datasets that gave good results with T-lex2
(>60% of present, polymorphic or absent calls): 19 individual strains
from the DGRP dataset (Huang et al., 2014), 11 individual strains
from the DPGP dataset (Pool et al., 2012), and 10 pooled datasets
(Kapun et al., 2018) (Supplementary Additional File S1). The 19 indi-
vidual strains from the DGRP dataset had a variable number of no
data calls: from 146 in RAL-757 to 585 in RAL-399 (Supplementary
Additional File S1A and B). T-lex3 substantially reduced the number of
no data calls. The maximum number of no data calls is now 374 in
RAL-399 with some strains having as few as 83 (RAL-738, Fig. 3A
and Supplementary Additional File S1A and B). The number of no data
calls according to T-lex2 in Zambia strains was smaller, ranging from
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156 to 344, and this number was also substantially reduced in T-lex3:
128 to 181 (Fig. 3B, Supplementary Additional File S1C and D). For
pool-seq datasets, we found that the correlation between the frequency
estimates obtained using the two versions of T-lex was very high
(Pearson correlation r2 ¼ 0.92–0.97, Fig. 3C and Supplementary
Additional File S1E and F), as expected since the number of no data
calls was similar between the two versions.

To estimate the sensitivity, specificity and accuracy of T-lex3, we
used the same DGRP strains previously used to estimate these
parameters for T-lex2 (see Section 2). We found that both sensitiv-
ity, specificity and accuracy are high: 100, 93.33 and 97.14%, re-
spectively (Table 4, Supplementary Additional File S3A), with
similar results among different TE classes (Supplementary
Additional File S3B). Thus, T-lex3 increases the number of present,
polymorphic and absent calls with a very similar sensitivity and
slightly higher specificity compared with T-lex2. As this DGRP data-
set contains strains with different read lengths, we also estimated
sensitivity and specificity using different T-lex3 parameters. We
found that specificity decreased and the number of no data calls
increased when sub-optimal parameters are used (Supplementary
Additional File S3C). We then estimated the specificity for this same
dataset using TIDAL, a method that identifies the absence of refer-
ence TE insertions and also discovers non-reference TE insertions
(Rahman et al., 2015). The specificity of TIDAL was 64.36%.

Finally, we ran T-lex3 with five datasets that previously failed to
give results: two individual strains datasets and three pooled data-
sets. For all five datasets, T-lex3 is able to estimate population fre-
quencies for the majority of TE insertions tested (Supplementary
Additional File S4). As an example, for 78 of the 86 strains collected
in Lyon, the number of no data calls with T-lex2 was >40%. For
this same dataset, T-lex3 only returns >40% of no data calls for 1
of the 86 strains (Fig. 4, Supplementary Additional File S4A).

3.2 T-lex3 provides accurate TE genotyping and

frequency estimations in humans
We also tested the performance of T-lex3 in a human dataset: the
child genome of the trio human dataset in Stewart et al. (2011)
(Supplementary Additional File S5A). Out of the 1600 insertions
tested, T-lex3 returns present, absent or polymorphic calls for the
majority of them (82.5%: 1320/1600). Sensitivity and specificity
were high: 99.35% and 87.78%, respectively, and accuracy was
91.81% (Table 4, Supplementary Additional File S5B), with similar
results for the different families tested (Supplementary Additional
File S5C). We estimated the specificity in this same dataset using the
two algorithms described in Stewart et al. (2011): the read-pair (RP)
algorithm and the split-read (SR) algorithm. The specificity using
RP was 99.27% and using SR was 88.89%.

3.3 T-lex3 accurately genotypes and estimates TE

population frequencies in the rice genome
We tested T-lex3 in a rice genome using our own annotated insertions
(see Materials and Methods). Out of the 3067 insertions in our dataset,
T-lex3 returns present, absent or polymorphic calls for 2878 (93.84%)
(Supplementary Additional File S6A). According to our validation
dataset, sensitivity and specificity were 99.96% and 92.09% respect-
ively while accuracy was 99.2% (Table 4, Supplementary Additional
File S6B), with similar results for the different TE classes tested
(Supplementary Additional File S6C). These results demonstrated that
the T-lex3 pipeline performance is also robust with rice genomes.

4 Discussion

Genome-wide genotyping of TE insertions is crucial in developing a
complete catalog of genetic variants that can then be investigated for
their potential role in adaptive evolution and/or disease. The repetitive
nature of TEs complicates the correct genotyping of these variants and
several computational pipelines have been designed to tackle this prob-
lem (Table 1). Ideally, these computational pipelines should be able to
handle (i) different types of datasets, such as individual and pooled
whole genome sequencing datasets; (ii) different lengths of short-reads;
and (iii) a variety of TE insertions in diverse genomes (Table 1). In this
work, we have improved and updated T-lex, a flexible and broadly ap-
plicable tool that provides accurate TE genotyping and frequency esti-
mations for the different TE families present in a reference genome
using both individual and pooled datasets. Compared to the previous
T-lex version available, T-lex3 is a more robust and stable tool, easier
to install, and that runs with all the short-reads available, independent
of their length. We showed that this new version of T-lex provides TE
genotyping with higher sensitivity, specificity and accuracy than its pre-
vious versions, and similar or higher compared with other tools, while
substantially increasing the number of TE reference insertions that can
be analyzed. We also showed that T-lex3 provides accurate calls not
only in the D.melanogaster and human genomes as previous versions,
but also in a plant genome: Oryza sativa. As such, T-lex3 is one of the
tools that is most broadly applicable to genomes differing not only in
size but also in TE content (Table 1).

Being able to genotype and estimate population frequencies for the
majority of TE insertions present in a genome is necessary to generate a

Fig. 3. Comparison between T-lex2 and T-lex3 results. Each column represents

results for one strain. (A) Three different DGRP individually sequenced strains:

RAL-757, RAL-399 and RAL-738; (B) one Zambian individually sequenced strain:

ZI10 and (C) one pool-seq European sample: GS_Des_15_1

Table 4 T-lex3 sensitivity, specificity and accuracy in

D.melanogaster, humans and rice genomes

D.melanogaster Humans Rice

Sensitivity 100% 99.35%

(458/461)

99.96%

(2649/2650)(120/120)

Specificity 93.33% 87.78%

(754/859)

92.11%

(257/279)(84/90)

Accuracy 97.14% 91.81%

(1, 212/1, 320)

99.2%

(2, 855/2, 878)(204/210)

Notes: In parenthesis, number of calls used to estimate the three parameters.

Fig. 4. T-lex2 (A) and T-lex3 (B) results comparison for 86 individual strains from

Lyon (France). Each column represents results of one strain. Strains are placed in

the same order as in Supplementary Additional File S4A
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more complete picture of the existing genomic variation within and
among individuals, populations and species. Although there are several
available tools that identify non-reference TE insertions, they have a
high rate of false positives (Rahman et al., 2015; Rishishwar et al.,
2017). Thus, we are still limited to analyzing the TE insertions that
have been annotated in the available reference genomes. Long-read
sequencing technologies should allow the generation of new reference
genomes and better de novo annotations of TE insertions (van Dijk
et al., 2018). These new long-read sequencing technologies are already
being applied to model and non-model species (Miller et al., 2018;
Solares et al., 2018). However, the number of new genome assemblies
is still small as the cost of these technologies remains higher compared
with short-read ones. Thus, once the coordinates of new TE insertions
are defined based on the new genome-assemblies, T-lex3 would be use-
ful to estimate the frequencies of these new insertions in all the short-
read datasets already available (Auton et al., 2015; Guirao-Rico and
González, 2019).
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