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of these vector fields.

Keywords: Quadratic and cubic vector fields; invariant algebraic curves; limit cycles;
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1. Introduction and statement of the main result

In this work we deal with the following planar polynomial differential systems

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P andQ are polynomials in the real variables x and y with degree d = max{deg(P ),
deg(Q)}, where deg(P ) and deg(Q) are the degrees of P and Q, respectively. In system
(1) the dot denotes derivative with respect to the time t. When d = 3 we say that
system (1) is cubic and when d = 2 we say that it is quadratic. Here we consider d ≤ 3.
We can associate to system (1) the vector field X = (P,Q) defined on R2. Beyond its
theoretical importance, systems like (1) appear frequently in many branches of applied
mathematics, as for example in modeling physical and biological problems. An important
question about system (1) is the determination and localization of its limit cycles, which
is related to the well-known Hilbert 16th problem [4].

As the whole class of systems (1) is very difficult to be studied, even
in the quadratic case, one of the strategies to study them is to consider
subclasses of these systems, satisfying some properties, as for instance the
subclasses studied in [1, 5, 6] and references therein. In order to establish
certain properties to system (1), we introduce some definitions of Darboux theory of
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integrability. This kind of integrability provides a link between the integrability of vector
fields and their invariant algebraic curves. More details about this theory can be found
in Chapter 2 of [2] and in Chapter 8 of [3]. Denote by R[x, y] the ring of polynomials
in the real variables x and y and coeficients in R and let f ∈ R[x, y] \ R, that is f is a
nonconstant polynomial. The algebraic curve f(x, y) = 0 is an invariant algebraic curve
of system (1) if for some polynomial K ∈ R[x, y] we have

X(f) = P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.

In Theorem 2.1 of section 2 we shall prove that the most general normal
form of planar polynomial vector fields having two invariant algebraic curves
f1 = 0 and f2 = 0, is

X = λ1f1Hf2 + λ2f2Hf1 + f1f2X̃, (2)

where Hfi denotes the Hamiltonian vector field (−∂fi/∂y, ∂fi/∂x), λi are arbi-

trary rational functions, for i = 1, 2, and X̃ is an arbitrary polynomial vector
field. As an example, consider the polynomial vector field

X0 =
(
3y (3x2 + 2xy + y2 − 9x− 3y + 8),−6x3 − 3x2y + 3y3 + 27x2 + 9xy − 27x− 3y

)

of degree 3 obtained from (2) taking

f1(x, y) = x2 + y2 − 1 = 0,
f2(x, y) = (x− 3)2 + y2 − 1 = 0,
α = −(x+ y)/2,
β = −(α+ 3/2),

X̃ = 0.

It is not difficult to show that the cubic polynomial vector field X0 has the circles f1 = 0
and f2 = 0 as limit cycles, i.e. these two circles are periodic orbits isolated in the set
of all periodic orbits of vector field (2). The phase portrait of X0 in the Poincaré disc
is given in Figure 1. Note that X0 is an example of a cubic non-integrable vector field
having two nonconcentric circles as invariant algebraic curves. This kind of vector fields
may have a complicated behavior.

Since this is a first work on quadratic and cubic vector fields having two
nonconcentric invariant circles C1 and C2, then we will restrict our goal to
study the integrable ones, whose first integral is constructed uniquely using
the nonconcentric invariant circles, that is the first integral is the function

H = Cβ
1C

α
2 , with α and β real values. After an appropriate change of coordinates we

can suppose without loss of generality that the invariant circles C1 and C2 are given by

C1(x, y) = x2 + y2 − 1 = 0 and C2(x, y) = (x− a)2 + y2 − r2 = 0, (3)

with a > 0 and r > 0.

In Proposition 2.3 of section 2 we shall prove that the normal form of
all planar polynomial vector fields of degree d ≤ 3 having two nonconcentric

invariant circles C1 and C2, given by (3), and a first integral given by H = Cβ
1C

α
2 ,
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Figure 1. Phase portrait having two non-nested invariant circles which are limit cycles.

with α and β real values, is

X = λ1C1HC2
+ λ2C2HC1

, (4)

where HCi
denotes the Hamiltonian vector field (−∂Ci/∂y, ∂Ci/∂x), for i = 1, 2,

and λ1 and λ2 are arbitrary rational functions such that βλ1 = αλ2. Finally we
do a study of the global phase portraits of the vector fields

X = αC1HC2
+ βC2HC1

, (5)

obtained as a subclass of vector fields (4) taking λ1 = α and λ2 = β. As we shall
see in Proposition 2.4 these vector fields have no limit cycles.

Here all the phase portraits of vector field (5) presented in this note are drawn on
the Poincaré disc. More precisely, the Poincaré compactification extends a polynomial
vector field X = (P,Q) to a vector field π(X) defined on the compact manifold S2 (the
unit sphere of R3 centered at the origin), giving two copies of the vector fieldX, one in the
open northern hemisphere of S2 and the other on the open southern hemisphere, in such
a way that the flow on the equator corresponds to the flow at infinity of the vector field
X. Using this technique, the global phase portrait of X become completely determined
whenever we consider only the phase portraits of π(X) restricted to the northern closed
hemisphere and we project it on the closed unit disc on R2, called the Poincaré disc. For
more details and definition on the Poincaré disc see Chapter 5 of [3].

Aiming to determine the global phase portraits of vector field (5) it is important to
consider the possible relative positions between the circles C1 and C2 given in (3) (see
Figure 2), since the dynamical behavior of the solutions are directly related to their
relative position.

Let X and Y be two polynomial vector fields of R2. We say that these vector fields are
topologically equivalent if there exists a homeomorphism h : R2 → R2 such that h carries
orbits under the flow of X onto orbits under the flow of Y , preserving or reversing the
sense of all orbits.

We state below one of the main results of this paper, which give all the
possible phase portraits on the Poincaré disc of vector fields (5), under topo-
logical equivalence.

Theorem 1.1: The phase portrait on the Poincaré disc of vector fields (5) is
topologically equivalent to one of the 22 phase portraits described in Figure
3.
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0<r<|1-a| 

or  r>1+a

r = |1-a|  

or  r = 1+a
|1-a| < r < 1+a

Figure 2. Possible relative positions between the circles C1 and C2 given in (3).

This paper is devoted to prove Theorem 1.1. The phase portraits 1, 2 and 3 of Figure
3 correspond to quadratic systems and all the others correspond to cubic systems.

In the rest of this paper we present a global study of vector field (5) as follows. In
section 2 we derive the normal form (5), as a subclass of vector fields (4), and, as a
consequence, we prove that vector field (5) has no limit cycles. In section 3 we consider
quadratic vector fields (5), obtained by taking α = −β, and we describe all the
possible global phase portraits for this subclass. In section 4 we do a global analysis of
vector field (5), with α 6= −β, considering three cases: α = 0 and β 6= 0; β = 0 and
α 6= 0; and αβ 6= 0.

2. Normal forms

Let h1 and h2 be functions defined in an open subset U of R2. We define the Jacobian
matrix of h1 and h2 as

J =

(
∂h1/∂x ∂h1/∂y

∂h2/∂x ∂h2/∂y

)
.

The Jacobian of J , i.e. the determinant of J , is denoted here by

|J | := {h1, h2}.

The next result is inspired in Theorem 1 of [7], which characterizes all vector fields
having fi = 0, for i = 1, ..., n, as invariant algebraic curves such that {f1, ..., fn} 6≡ 0.
Here we present a shorter and a direct proof for the particular case of planar polynomial
vector fields having two invariant algebraic curves.

Theorem 2.1: Let f1 and f2 be irreducible polynomials on R[x, y] such that the
Jacobian {f1, f2} 6≡ 0. Then any planar polynomial vector field which admits
f1 = 0 and f2 = 0 as invariant algebraic curves can be written in the form (2).

Proof. Suppose that X = (P,Q) is a polynomial vector field which admits f1 = 0
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Figure 3. Possible phase portraits of vector field (5) on the Poincaré disc.5



and f2 = 0 as invariant algebraic curves. Then by definition

X(f1) = P
∂f1
∂x

+Q
∂f1
∂y

= K1f1 (6)

X(f2) = P
∂f2
∂x

+Q
∂f2
∂y

= K2f2, (7)

where K1 and K2 are the cofactors of f1 = 0 and f2 = 0, respectively. Hence
multiplying equation (7) by ∂f1/∂y and substituting Q ∂f1/∂y from (6) into (7)
we obtain

P =
−K1

{f1, f2}
f1

(
−∂f2

∂y

)
+

K2

{f1, f2}
f2

(
−∂f1

∂y

)
.

Now multiplying equation (7) by ∂f1/∂x and substituting P ∂f1/∂x from (6)
into (7) we obtain

Q =
−K1

{f1, f2}
f1

∂f2
∂x

+
K2

{f1, f2}
f2

∂f1
∂x

.

By hypothesis P and Q are polynomials and f1 and f2 are irreducible polyno-
mials, then we can consider K1 = −{f1, f2} λ1 and K2 = {f1, f2} λ2, with λ1 and
λ2 arbitrary rational functions. So we obtain X = λ1f1Hf2 +λ2f2Hf1. Note that
even λ1 and λ2 as rational functions we can choose them such a way that X
is a polynomial vector field.

However this is not the most general form of vector field X. Indeed, since
the flow of X preserves f1 = 0 and f2 = 0, we can add f1f2X̃, where X̃ is an
arbitrary planar polynomial vector field, into the expression of X. Then the
most general form of X is (2).

Before introducing the normal form (4), we present the next result which
give us a way to construct first integrals using invariant algebraic curves and
we can find a proof for it in [3] (see statement (i) of Theorem 8.7).

Proposition 2.2: Suppose that a polynomial differential system (1) of degree
d admits p invariant algebraic curves fi = 0 with cofactors Ki, for i = 1, ..., p.
There exist µi ∈ R not all zero such that

p∑

i=1

µiKi = 0

if and only if the function H = fµ1

1 + ...+ f
µp
p is a first integral of X.

Proposition 2.3: Any planar polynomial vector field X of degree d ≤ 3 having
two nonconcentric circles C1 and C2 as invariant algebraic curves and the

function H = Cβ
1C

α
2 , with α and β real values, as first integral, after a change

of coordinates, can be written as (4).

Proof. After an adequate change of coordinates, we can suppose that the
equations of the two nonconcentric invariant circles C1 and C2 are given by
(3). By Theorem 2.1 we can write vector field X as (2) taking fi = Ci, for
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i = 1, 2 (remember that a 6= 0 so the Jacobian {C1, C2} 6≡ 0). Since H = Cβ
1C

α
2 ,

with α and β real values, is a first integral of X, by Proposition 2.2, we obtain
equation

βK1 + αK2 = 0, (8)

where K1 = −4ayλ1 + 2C2(xP̃ + yQ̃) and K2 = 4ayλ2 + 2C1((x − a)P̃ + yQ̃), with
X̃ = (P̃ , Q̃) into (2), are the cofactors of C1 = 0 and C2 = 0, respectively. From
(8) we obtain that P̃ ≡ Q̃ ≡ 0 and βλ1 = αλ2. Therefore X can be written as
(4).

Proposition 2.3 gives us the normal form of all planar polynomial vector
fields of degree d ≤ 3 having two nonconcentric circles C1 and C2 as invariant

algebraic curves and the function H = Cβ
1C

α
2 , with α and β real values, as first

integral. Now we do a study of the global phase portraits of vector fields (4)
when λ1 = α and λ2 = β, that is the subclass (5). Our first result claims that
vector fields (5) have no limit cycles.

Proposition 2.4: The vector fields (5) have no limit cycles.

Proof. We have that H = Cβ
1C

α
2 is first integral of vector fields (5). More precisely, note

that the function Cβ−1
1 Cα−1

2 , is an integrating factor of the vector field (5), and that this
vector field multiplied by that integrating factor becomes a Hamiltonian system with

Hamiltonian H = Cβ
1C

α
2 . Since a Hamiltonian vector field cannot have limit cycles, the

proposition follows.

3. “Quadratic case”

In this section we characterize all the phase portraits on the Poincaré disc
of vector fields (5) of degree 2, that is the quadratic ones. These vector fields
appear when we consider α = −β into (5).

Proposition 3.1: If vector field (5) is quadratic, that is d = 2, then it can be
written as

X = −C1HC2
+ C2HC1

(9)

where Ci = Ci(x, y) are given by (3) and HCi
denotes the Hamiltonian vector field

(−∂Ci/∂y, ∂Ci/∂x), for i = 1, 2.

Proof. Considering an adequate change of coordinates, we can suppose that
the equations of the two nonconcentric invariant circles are given by (3).
Taking α = −β into vector field (5), it becomes quadratic, otherwise it is
cubic, and after the rescaling of time T = βt, where T is the new time, we
obtain vector field (9).

Note that function H = C1/C2 is a first integral of vector fields (9). So the
phase portrait of them are arcs of circles. Indeed, H = c is almost equivalent
to C1 − c C2 = 0, which is an equation of a circle. This shows that bifurcation
diagram of vector fields (9) (Figure 5) is given by whether the two circles
C1 and C2 intersect or not: if they do, the phase portrait are circles passing
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through the intersection point, if they do not, the plane is foliated by such
circles (Figure 6). An analytic proof for this is given by Proposition 3.2.

Proposition 3.2: Let A = A(a, r) = (a + 1 − r)(a + 1 + r)(a − 1 − r)(a − 1 + r). The
following statements hold for vector field (9).

(i) If A < 0, then vector field (9) has two singular points, which are an unstable and a
stable node, symmetric with respect to the x–axis. Moreover, these singular points
belong to the intersection of the invariant circles C1 and C2.

(ii) If A = 0, then vector field (9) has only one singular point, which is on the x–axis
and it is a nonelementary singular point, formed by the union of two elliptic sectors,
see Figure 4. Moreover, it belongs to the tangency point between the invariant circles
C1 and C2.

(iii) If A > 0, then vector field (9) has two singular points, which are centers belonging
to the x–axis.

Proof. Computing the singular points of vector field (9) we obtain

M1 =

(
1 + a2 − r2

2a
,

√
−A

2a

)
, N1 =

(
1 + a2 − r2

2a
,−

√
−A

2a

)
,

P1 =

(
1 + a2 − r2 +

√
A

2a
, 0

)
, Q1 =

(
1 + a2 − r2 −

√
A

2a
, 0

)
,

(10)

where A = A(a, r) = (a+1− r)(a+1+ r)(a− 1− r)(a− 1+ r). So, we have three cases
to consider: A < 0, A = 0 and A > 0.

(i) If A < 0, then from (10) only M1 and N1 are singular points of vector field (9).
Note that M1 and N1 are symmetric with respect to the x–axis. The eigenvalues of the
Jacobian matrix of vector field (9) at the point M1 are λ1 = λ2 =

√
−A, while the

eigenvalues at the point N1 are λ1 = λ2 = −
√
−A. Thus M1 is an unstable node and

N1 is a stable node. Furthermore, taking x = (1 + a2 − r2)/(2a) and y =
√
−A/(2a),

i.e. x and y are given by the coordinates of M1 then x and y satisfy simultaneously the
equations x2 + y2 − 1 = 0 and (x− a)2 + y2 − r2 = 0. So M1 ∈ C1 ∩C2. Analogously, we
obtain that N1 ∈ C1 ∩ C2.

(ii) If A = 0, then from (10) the unique singular point of vector field (9) is

R1 =

(
1 + a2 − r2

2a
, 0

)
,

which is on the x–axis. The Jacobian matrix of vector field (9) at the point R1 is the
null matrix. So R1 is a nonelementary singular point. In order to study this singularity
we use a polar blowing-up, considering the change of coordinates

x = ρ cos θ +
1 + a2 − r2

2a
, y = ρ sin θ

into vector field (9) and doing the rescaling T = ρt, where T is the new time, from which
we obtain

ρ̇ = ρa sin θ, θ̇ = −a cos θ. (11)

The zeros of system (11) on {ρ = 0} are located at θ = π/2, θ = 3π/2. It is easy to

8



Blowing

down

Figure 4. Polar blow-up of the singular point R1.

verify that θ = π/2 is an unstable node and θ = 3π/2 is a stable node. Lastly doing a
blowing down we obtain the behavior of solutions near the singular point R1. Figure 4
ilustrates this process. Moreover, R1 belongs to the intersection of the invariant circles
C1 and C2. Indeed if we take x = (1+ a2 − r2)/(2a) and y = 0, then x2 + y2 − 1 = 0 and
(x− a)2 + y2 − r2 = 0.

(iii) If A > 0, then from (10) only P1 and Q1 are singular points of vector field (9). Note
that P1 and Q1 are on the x–axis. The eigenvalues of the Jacobian matrix of vector field
(9) at P1 are λ1,2 = ±i

√
A, and the eigenvalues at the point Q1 are also λ1,2 = ±i

√
A.

So these points can be centers or weak foci of vector field (9). As the function

H =
(x− a)2 + y2 − r2

x2 + y2 − 1

is a first integral of vector field (9), so it is integrable, hence we can conclude that P1

and Q1 are centers.

Note that the symmetry y → −y with respect to the x–axis reverses the time
of the flow of vector fields (5), this, in particular, explains why in Proposition
3.2 the nodes are symmetric with respect to the x–axis and they are of
opposite types. The same remark can be done to Proposition 4.2.

Proposition 3.3: Vector field (9) has two infinite singular points, which are saddles.

Proof. In order to study the infinite singular points of vector field (9), we consider the
change of coordinates

x =
1

ρ
cos θ, y =

1

ρ
sin θ, (12)

and doing the rescaling T = (1/ρ)t, where T is the new time, we obtain the system

ρ̇ = f0(θ)ρ+ f1(θ)ρ
3, θ̇ = g0(θ) + g1(θ)ρ+ g2(θ)ρ

2, (13)

where fi (i = 0, 1) and gj (j = 0, 1, 2) are polynomials in cos θ and sin θ. The singular
points at infinity are given by ρ = 0 and g0(θ) = 0, where g0(θ) = a cos θ, hence we
obtain the pair of singular points θ = π/2 and θ = 3π/2. The eigenvalues of the Jacobian
matrix of system (13) at θ = π/2 and at θ = 3π/2 are λ1,2 = ±a. Thus, these infinite
singular points are saddles.

The results obtained about vector field (9) are summarized in Figures 5 and 6, which
show respectively the bifurcation diagram and the phase portraits on the Poincaré disc
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Figure 5. Bifurcation diagram of vector field (9).

(a)

(b)

(c)

1

2

3

Figure 6. Phase portraits of vector field (9) on the Poincaré disc related to each region described in Figure 5,
corresponding to the phase portraits 1, 2 and 3 of Figure 3. The bold curves represent the circles C1 = 0 and

C2 = 0.

related to each region of the bifurcation diagram. In short, this proves Theorem 1.1 when
d = 2 providing in this cases the phase portraits 1, 2 and 3 of Figure 3.

4. “Cubic case”

In this section we consider the case of vector fields (5) of degree 3, that is the
cubic ones. We shall consider three cases: case (i) α = 0 and β 6= 0; case (ii)
β = 0 and α 6= 0; and case (iii) αβ 6= 0 and α 6= −β, since the case α = −β was
studied in section 3.
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4

5

6

Figure 7. Phase portraits of vector field (14) on the Poincaré disc. The dotted curve represents the circle C2,

which is filled by singular points.

4.1. Case (i)

Let α = 0 and β 6= 0 into (5). After the rescaling of time T = βt, where T is the new
time, vector field (5) reduces to

X = C2HC1
(14)

which has the origin as an isolated singular point and the invariant circle C2 is filled by
singular points. Note that vector field (14) is obtained from Hamiltonian vector
field HC1

= (−2y, 2x) by “slowing down” the multiplication by C2 and hence
its trajectories are the same as those of HC1

or their pieces to which they are
cut by {C2 = 0}. The phase portrait of vector field (14) on the Poincaré disc is one of
those shown in Figure 7, providing the phase portraits 4, 5 and 6 of Figure 3. Therefore
this part of Theorem 1.1 is proved.

4.2. Case (ii)

Let β = 0 and α 6= 0 into (5). After the rescaling of time T = αt, where T is the new
time, vector field (5) reduces to

X = C1HC2
(15)

which has the point (a, 0) as an isolated singular point and the invariant circle C1 is filled
by singular points. The phase portrait of vector field (15) on the Poincaré disc
is topologically equivalent to one of those shown in Figure 7, changing the
dotted curve with the bold one.

4.3. Case (iii)

Let αβ 6= 0 and α 6= −β into (5). After the rescaling of time T = αt, where T is the new
time, vector field (5) can be written as

X = C1HC2
+ γC2HC1

(16)

11



where γ = β/α is a real parameter, with γ 6= 0 and γ 6= −1. In what follows we state
the following results about vector field (16): Proposition 4.1 ensures that vector field
(16) has at least one and at most five singular points; Propositions 4.2 and 4.3 provide a
classification for these singular points; Proposition 4.4 ensures that vector field (16) has
no infinite singular points.

Proposition 4.1: Vector field (16) has at least one and at most five singular points. At
least one and at most three of them are on the x–axis and the other two, when they exist,
are symmetric with respect to the x–axis.

Proof. From vector field (16), we obtain the differential system

ẋ = −2y(C1 + γC2),

ẏ = 2x(C1 + γC2)− 2aC1.
(17)

Note that ẋ = −y · f(x, y). So, if ẋ = 0, then either y = 0 or f(x, y) = 0.

If we consider f(x, y) = 0, then system (17) has the singular points

M2 =

(
a2 − r2 + 1

2a
,

√
−A

2a

)
, N2 =

(
a2 − r2 + 1

2a
,−

√
−A

2a

)
, (18)

where A = A(a, r) = (a+ 1− r)(a+ 1 + r)(a− 1− r)(a− 1 + r). Note that M2 and N2

are symmetric with respect to the x–axis. We must consider three cases:

(a) if A < 0, then M2 and N2 are distinct singular points;

(b) if A = 0, then M2 and N2 are coincident singular points;

(c) if A > 0, then M2 and N2 are not singular points.

If we take y = 0 into system (17), as

ẏ = Q(x, y) = x[x2 + y2 − 1 + γ((x− a)2 + y2 − r2)]− a(x2 + y2 − 1),

then

Q(x, 0) = Q(x) = (1 + γ)x3 − a(2γ + 1)x2 + (γ(a2 − r2)− 1)x+ a.

Doing Q(x) = 0 we get a third degree equation, whose discriminant is given by the
function

D = D(a, r, γ) =
1

4

(
a

1 + γ
+

a(2γ + 1)(γ(a2 − r2)− 1)

3(1 + γ)2
− 2a3(2γ + 1)3

27(1 + γ3)

)2

+
1

27

(
γ(a2 − r2)− 1

1 + γ
− a2(2γ + 1)2

3(1 + γ)2

)3

.

So we must consider three cases:

(d) if D < 0, then equation Q(x) = 0 has three real roots, so system (17) has three
singular points on the x–axis;

(e) if D = 0, then equation Q(x) = 0 has two real roots, so system (17) has two singular
points on the x–axis;

(f) if D > 0, then equation Q(x) = 0 has one real root, so system (17) has only one
singular point on the x–axis.
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In the next result we give a classification for the singular points of vector field (16)
symmetric with respect to the x–axis, that is the singular points M2 and N2 given in
(18). For the definitions of hyperbolic and semi-hyperbolic singular points, see for instance
chapter 2 of [3].

Proposition 4.2: Let A = A(a, r) = (a + 1 − r)(a + 1 + r)(a − 1 − r)(a − 1 + r). The
following statements hold for vector field (16).

(i) If A < 0, then the singular points M2 and N2 are both either saddles or nodes, in
this last case they have opposite stability.

(ii) If A = 0, then M2 and N2 are coincident and it is a nonelementary singular point,
formed by the union of two elliptic sectors, as shown in Figure 4.

(iii) If A > 0, then M2 and N2 are not singular points.

Moreover when M2 and N2 are singular points they are on the intersection of the invari-
ant circles C1 and C2.

Proof. According to the proof of Proposition 4.1, we have that the singular points of
vector field (16) M2 and N2 are given by (18). Calculating the Jacobian matrix of vector
field (16) at M2 we obtain that its eigenvalues are λ1 = −

√
−A and λ2 = γ

√
−A.

Analogously, calculating the Jacobian matrix of vector field (16) at N2 we have that its
eigenvalues are λ1 =

√
−A and λ2 = −γ

√
−A.

(i) If A < 0, then M2 and N2 are distinct singular points and in this case we have that
λ1 and λ2 are real eigenvalues. Hence, if γ < 0, then M2 is a stable node and N2 is an
unstable node; while for γ > 0, M2 and N2 are both saddles.

(ii) If A = 0, then M2 and N2 are coincident singular points and λ1 = λ2 = 0. So M2

and N2 reduce to a nonelementary singular point, which is given by

R1 =

(
1 + a2 − r2

2a
, 0

)
.

Note that R1 is the same singular point of the proof of item (ii) of Proposition 3.2, hence
with a polar blow-up we show that R1 is formed by the union of two elliptic sectores, as
in the proof of Proposition 3.2 (see Figure 4).

(iii) If A > 0, then by Proposition 4.1, M2 and N2 are not singular points.

Finally, if we consider x and y given by the coordinates of M2 and N2, that is x =
(a2 − r2 + 1)/(2a) and y = ±

√
−A/(2a), we have that they satisfy simultaneously the

equations x2 + y2 − 1 = 0 and (x− a)2 + y2 − r2 = 0. So M2, N2 ∈ C1 ∩ C2.

Proposition 4.3: The singular points of vector field (16) on the x–axis are saddles,
centers or nonelementary singular points, whose local phase portraits are described in
Figure 8.

Proof. By Proposition 4.1, we know that vector field (16) has at least one and at most
three singular points on the x–axis. If we consider the change of coordinates x = ρ cos θ,
y = ρ sin θ into (16), then we obtain the system

ρ̇ = −a(ρ2 − 1) sin θ,

θ̇ = (1 + γ)ρ2 + a cos θ(2γ − 1)ρ+ γ(a2 − r2) + 1 +
1

ρ
cos θ.

(19)

In order to study the behavior of the solutions near the singular points of vector field
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A = 0

D = 0

Figure 8. Nonelementary singular points of vector field (16).

(16) on the x–axis, we calculate the Jacobian matrix of system (19) and take θ = 0,
which have the eingenvalues λ1,2 = ±

√
B/ρ, where B = B(a, γ, ρ) = a(ρ2 − 1)(−2(1 +

γ)ρ3 + a(2γ + 1)ρ2 + a). So we have.
If B < 0, then the singular point on the x–axis can be a center or a weak focus. As

the function H(x, y) = Cγ
1C2 is a first integral of vector field (16), then it is integrable

and these singular points are centers.
If B = 0, then the singular point on the x–axis is a nonelementary singular point, since

the eigenvalues are both zero. After the desingularization of this singular point using
the tools of Chapter 2 and 3 of [3], we have that its local phase portrait is topologically
equivalent to one of those described in 8.
If B > 0, then the singular point on the x–axis is a saddle.
Therefore, the singular points of vector field (16) on the x–axis are saddles, centers or

nonelementary singular points (see Figure 8), depending on the value of B.

Proposition 4.4: Vector field (16) has no infinite singular points.

Proof. In order to study the infinite singular points of vector field (16) we consider the
change of coordinates (12) and the rescaling of time T = (1/ρ2)t, where T is the new
time, from what we obtain the system

ρ̇ = f0(θ)ρ
2 + f1(θ)ρ

4, θ̇ = g0(θ) + g1(θ)ρ+ g2(θ)ρ
2 + g3(θ)ρ

3.

The infinite singular points are given by ρ = 0 and g0(θ) = 0. Since g0(θ) = 1, for all
θ ∈ R, then vector field (16) has no infinite singular points.

We can summarize the results about Case (iii) and classify the phase portraits of
vector field (16) as follows. First we present in Figure 9 the cases in which vector field
(16) has only elementary singular points, which correspond to the phase portraits 7 to
13 of Figure 3. Then we present in Figures 10, 11 and 12 the other cases, when vector
field (16) has nonelementary singular points, which correspond to the phase portraits 14
to 22 of Figure 3. In short Figures 9, 10, 11 and 12 provide the phase portraits 7 to 22
of Figure 3, which end the proof of Theorem 1.1.
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A > 0

D > 0

D < 0

A < 0

D > 0 D < 0

7 8 9 10

11

12

13

Figure 9. Phase portraits of vector field (16) on the Poincaré disc having only elementary singular points.

D = 0

20 21

Figure 10. Phase portraits of vector field (16) on the Poincaré disc having nonelementary singular points (D = 0

and A 6= 0).
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D > 0 D < 0
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18 19

Figure 11. Phase portraits of vector field (16) on the Poincaré disc having nonelementary singular points (A = 0

and D 6= 0).

A = 0  and  D = 0

22

Figure 12. Phase portraits of vector field (16) on the Poincaré disc having nonelementary singular points (A = 0

and D = 0).
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