
This is the accepted version of the article:

Garcia-Guerrero M.C., Garcia-Pardo J., Berenguer E.,
Fernandez-Alvarez R., Barfi G.B., Lyons P.J., Aviles F.X.,
Huber R., Lorenzo J., Reverter D.. Crystal structure and
mechanism of human carboxypeptidase O: Insights into its
specific activity for acidic residues. Proceedings of the National
Academy of Sciences of the United States of America, (2018).
115. : E3932 - . 10.1073/pnas.1803685115.

Available at: https://dx.doi.org/10.1073/pnas.1803685115

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/322912485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Crystal structure and mechanism of human 

carboxypeptidase O: Insights into its specific 

activity for acidic residues 

Maria C. Garcia-Guerrero a,b,1, Javier Garcia-Pardoa,b,c,1, Esther Berenguera,b, Roberto Fernandez-

Alvareza,b, Gifty B. Barfid , Peter J. Lyonsd , Francesc X. Avilesa,b, Robert Hubere,f,g,2, Julia Lorenzoa,b,2, 

and David Revertera,b,2  

a Institute for Biotechnology and Biomedicine, Universitat Autonoma de Barcelona, 08193 

Bellaterra, Barcelona, Spain; b Department of Biochemistry and Molecular Biology, Universitat 

Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; c Catalan Institute of Nanoscience and 

Nanotechnology, Consejo Superior de Investigaciones Cientificas, The Barcelona Institute of Science 

and Technology, 08193 Bellaterra, Barcelona, Spain; d Department of Biology, Andrews University, 

Berrien Springs, MI 49104; e Max Planck Institut für Biochemie, D-82152 Martinsried, Germany; f 

Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, D-45117 Essen, Germany; and 

g Fakultät für Chemie, Technische Universität München, D-85747 Garching, Germany 

 

Significance 

Carboxypeptidase O (CPO) is a membrane-anchored brush-border enzyme 

associated with the small intestinal phase of protein digestion with distinctive 

specificity toward acidic C-terminal (C-t) amino acids. The combined activity of 

human CPO (hCPO) and pancreatic carboxypeptidases enables the C-t proteolysis 

of the great majority of amino acids present in dietary proteins. Here we disclose 

mechanism and structures of hCPO, both ligand-free and -bound with a natural 

peptidic inhibitor ascribing the exquisite specificity toward C-t acidic residues to a 

single amino acid, Arg275, in the substrate-binding pocket. Mutations of this residue 

to Asp and Ala suffices to reverse the specificity to C-t basic and hydrophobic 

residues, respectively, and faithfully mirror the specificity variants (hCPB, hCPA1, 

hCPA2) in enzyme kinetic assays. 

 



Abstract 

Human metallocarboxypeptidase O (hCPO) is a recently discovered digestive 

enzyme localized to the apical membrane of intestinal epithelial cells. Unlike 

pancreatic metallocarboxypeptidases, hCPO is glycosylated and produced as an 

active enzyme with distinctive substrate specificity toward C-terminal (C-t) acidic 

residues. Here we present the crystal structure of hCPO at 1.85-Å resolution, both 

alone and in complex with a carboxypeptidase inhibitor (NvCI) from the marine 

snail Nerita versicolor. The structure provides detailed information regarding 

determinants of enzyme specificity, in particular Arg275, placed at the bottom of the 

substrate-binding pocket. This residue, located at “canonical” position 255, where it 

is Ile in human pancreatic carboxypeptidases A1 (hCPA1) and A2 (hCPA2) and Asp 

in B (hCPB), plays a dominant role in determining the preference of hCPO for acidic 

C-t residues. Site-directed mutagenesis to Asp and Ala changes the specificity to C-t 

basic and hydrophobic residues, respectively. The single-site mutants thus faithfully 

mimic the enzymatic properties of CPB and CPA, respectively. hCPO also shows a 

preference for Glu over Asp, probably as a consequence of a tighter fitting of the Glu 

side chain in its S1′ substrate-binding pocket. This unique preference of hCPO, 

together with hCPA1, hCPA2, and hCPB, completes the array of C-t cleavages 

enabling the digestion of the dietary proteins within the intestine. Finally, in addition 

to activity toward small synthetic substrates and peptides, hCPO can also trim C-t 

extensions of proteins, such as epidermal growth factor, suggesting a role in the 

maturation and degradation of growth factors and bioactive peptides. 

 



Metallocarboxypeptidases (MCPs) are important zinc-dependent enzymes that 

cleave single amino acids from the C termini (C-t) of peptides and proteins, and 

participate in a wide range of physiological processes in humans, ranging from 

digestion of dietary proteins to the regulation of blood fibrinolysis and the maturation 

of neuropeptides and hormones, among others (1–3). According to the MEROPS 

database, the most thoroughly studied group of MCPs is the M14 family of proteases 

(4). Based on sequence homologies and structural features, members of this large 

family (about 25 members in humans) can be grouped into A, B, C, and D 

subfamilies. M14-A is the largest of these subfamilies and includes the human 

pancreatic digestive enzymes carboxypeptidase A1 (hCPA1), carboxypeptidase A2 

(hCPA2), and carboxypeptidase B (hCPB). These three enzymes are ∼35-kDa 

nonglycosylated proteins synthesized with a signal peptide and secreted as stable 

and inactive zymogens by the exocrine pancreas. A distinctive feature of these 

inactive zymogens is the presence of an extra ∼100 residue prosegment or 

prodomain that partially blocks their catalytic activity (5–9). After their secretion into 

the intestinal lumen, trypsin-promoted limited proteolysis generates active enzymes 

with ∼300 residues (10–12), which actively contribute to digestion of dietary proteins 

through the hydrolysis of C-t amino acids from peptides that are end products of 

digestive endopeptidases (13). The active forms of hCPA1, hCPA2, and hCPB 

display distinct but complementary substrate specificities. While hCPA1 and hCPA2 

show a higher preference for small aliphatic and bulky aromatic side chains, 

respectively (14), hCPB preferentially cleaves substrates with C-t basic amino acids 

(15–17). Although their combined action can release a wide range of amino acids 

that are absorbed in the intestinal tract, pancreatic MCPs are unable to release 
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acidic C-t amino acids, such as Asp or Glu (13, 18, 19), even though these acidic 

residues are two of the most abundant amino acids in alimentary proteins (20–22). 

Human carboxypeptidase O (hCPO) is a recently described brush-border (BB) 

digestive enzyme that belongs to the M14-A subfamily of MCPs (18, 23). Enzymes of 

the small intestinal BB are responsible for the final stage of luminal digestion before 

absorption (19). Unlike pancreatic MCPs, hCPO has strict specificity toward acidic C-

t amino acids, a unique feature within the M14-A subfamily (18). In 2001, hCPO was 

first identified in a bioinformatic search for additional MCP members in the human 

genome (23). A decade later, the full-length CPO gene was shown to be present in a 

large number of vertebrate species, including mammals, birds, and fish (18). 

Whereas all other members of the M14-A subfamily are produced as inactive 

zymogens, hCPO does not contain a large prodomain and can be expressed as a 

constitutively active enzyme (18). hCPO is synthesized by cells of the intestinal 

epithelium, where it tethers to the apical plasma membrane through a covalently 

linked glycosylphosphatidylinositol (GPI) anchor (18). A large number of BB digestive 

enzymes have been found to contain anchors at the C-t, including alkaline 

phosphatase, trehalase, and dipeptidase 1, among others (24–26). In addition to GPI 

anchoring, posttranslational glycosylation is a feature common to BB digestive 

enzymes that presumably confers protection against proteolytic degradation (19). 

The glycosylation of hCPO probably accounts for its higher molecular mass (18). 

The activity of MCPs can be specifically regulated by proteinaceous inhibitors (2). 

During the past 50 y, a number of such MCP inhibitors have been isolated and 

characterized so far from potato and tomato (PCI and MCPI, respectively) (27–30), 

intestinal parasites Ascaris suum and Ascaris lumbricoides (ACI) (31, 32), the 

medical leech Hirudo medicinalis (LCI) (33), ticks Rhipicephalus 
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bursa and Haemaphysalis longicornis (TCI and H1TCI, respectively) (34, 35), 

mammals (latexin) (36, 37) and, more recently, from the marine 

annelid Sabellastarte magnifica (SmCI) (38) and sea snail Nerita versicolor (NvCI) 

(39). Among them, the latter inhibitor NvCI was found to be the most potent inhibitor 

discovered for members of the M14-A subfamily, displaying equilibrium dissociation 

constants in the picomolar range (39). During the last decades, several crystal 

structures of pancreatic and extrapancreatic MCPs in complex with protein inhibitors 

have been obtained (29, 39–45). Although these protease-inhibitor structures shed 

light on functional mechanisms of MCPs and inhibitory binding properties, the 

detailed structural features that define the substrate specificity for C-t acidic amino 

acids remain still unexplored. 

In this study, we report the crystal structure of a soluble form of hCPO (hCPOΔC), 

unbound and in complex with NvCI, at 1.85-Å resolution; interestingly, both have 

been observed in the same asymmetric unit of a crystal. The structural analysis, 

functional characterization, and site-directed mutagenesis of hCPO reveal the 

molecular details by which this protease exhibits a preference toward acidic C-t 

amino acids and, hence, completes the analysis of the range of amino acid 

specificities found in digestive MCPs. In addition, structural changes in active site 

residues induced through NvCI binding and interactions between the protease and 

the inhibitor were investigated in detail and compared with those reported previously 

for other MCPs. We also report the substrate preference of hCPO for Glu over Asp 

residues, and describe the ability of this enzyme to cleave the C-t of endogenous 

bioactive proteinaceous molecules, such as the human epidermal growth factor 

(EGF). 
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Results 

Expression and Purification of hCPO Using Mammalian Cells. 

CPO is an N-glycosylated disulfide bond-containing protein with a GPI anchor 

located at the C-t (18). Such structural complexity represents a challenge for the 

expression and purification of the full-length hCPO in large amounts as soluble and 

functional enzyme for structural studies. Initial experiments showed that hCPO in 

which the C-t GPI signal sequence or the N-terminal (N-t) domain were removed 

retained full enzymatic activity (SI Appendix, Fig. S1). This suggested that the short 

N-t domain present within hCPO, with certain homology to the prodomain of related 

enzymes, did not function as an inhibitory prodomain, and that these truncated forms 

reflect the enzymatic functional properties of the wild-type enzyme (SI Appendix, Fig. 

S1E). 

To overcome the difficulties of its production, we cloned a C-t truncated form of 

hCPO (residues Tyr1-Trp329, according to the numbering for mature hCPO, and 

termed hereafter as hCPOΔC) into the pTriEx-7 expression vector, where the 

endogenous N-t signal sequence was exchanged by an IgM exporting signal 

sequence followed by an N-t Strep-tag II fusion protein tag (Fig. 1A). The hCPOΔC–

pTriEx-7 construct was transfected into HEK293 F mammalian cells for transient 

expression, leading to the secretion of the soluble recombinant protein into the 

culture media. At 9 d posttransfection, hCPOΔC was purified from the supernatant 

by a combination of three chromatographic steps (see Fig. 1B and SI Appendix, SI 

Materials and Methods for more details). Fig. 1C shows the SDS/PAGE analysis of 

the eluted samples after the different purification steps. After purification, hCPOΔC 

could be easily visualized on SDS/PAGE by Coomassie blue staining as a single 
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broad band of ∼50 kDa. The identity and purity of the recombinant protein was 

additionally assessed by both size-exclusion chromatography and MALDI-TOF 

analysis, confirming its high purity and molecular mass of about 48.7 kDa (Fig. 

1 D and E). The observed molecular mass of purified hCPOΔC is about ∼20% 

higher than its predicted molecular mass of 40.8 kDa. Digestion of the purified 

recombinant protein with PNGase F confirmed that the molecular size discrepancy is 

a consequence of N-glycosylation, which is in agreement with a previous report (18). 

To investigate whether hCPOΔC behaves as a functional carboxypeptidase, we 

determined the kinetic parameters for the purified hCPOΔC using the colorimetric 

substrate 3-(2-furyl)acryloyl-Glu-Glu-OH (FA-EE) at pH 7.5 (see SI Appendix, SI 

Materials and Methods for more details). The resultant kinetic parameters (SI 

Appendix, Table S1) were comparable to those obtained previously for the full-length 

hCPO produced in insect cells and purified in the presence of detergents (18). 
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Fig. 1. Expression and purification of hCPOΔC. (A) Comparison of the domain structures of pancreatic 

MCPs (hCPA1, hCPA2, and hCPB) with hCPO and hCPOΔC. The latter corresponds to a C-t truncated 

form of hCPO that lacks the C-t tail and, therefore, the GPI membrane anchor. To improve protein 

expression and facilitate its purification, the endogenous N-t signal sequence (SP, in hCPO) of 

hCPOΔC was exchanged for an IgM signal sequence (IgM) plus an N-t Strep-tag II fusion protein tag 

(Strep-tag II). The tag was incorporated immediately before the N-t domain (Nt-domain). (B) 

Schematic diagram of the strategy followed for expression and purification of hCPOΔC. Protein 

expression was performed by transient transfection of HEK293 F mammalian cells grown in 

suspension. Medium was collected after 9-d incubation and the recombinant protein purified in 

three steps: 1) hydrophobic interaction chromatography using a Butyl 650-M resin, 2) affinity 

chromatography using anti–Strep-tag II resin, and 3) size-exclusion chromatography. (C) Coomassie-

stained SDS/PAGE showing purity of hCPOΔC in the expression medium (E.M) and after each 

purification step (1, 2 or 3). (D) Representative size-exclusion chromatography and (E) MALDI-TOF 

MS of the purified hCPOΔC. 

 

 

hCPOΔC Is Inhibited by a Wide Range of MCP Proteinaceous Inhibitors. 

Inhibition kinetic constants (Ki) for hCPOΔC toward different proteinaceous MCPs 

inhibitors (PCI, LCI, TCI, ACI, and NvCI) were determined at pH 7.5. The results of 

such kinetics analyses are summarized in Table 1. As expected, all tested MCP 

proteinaceous inhibitors, except for NvCI, inhibit hCPOΔC with Ki values in the 

nanomolar range (PCI 3.2 ± 0.6 nM, LCI 12.8 ± 3.1 nM, TCI 16.7 ± 3.1 nM, and ACI 
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43.6 ± 6.3 nM), which are comparable to other members of the M14-A subfamily, 

such as hCPA1, hCPA2, and hCPB (28, 33, 34, 42). 

 

Table 1. Inhibitory constants (Ki) for different proteinaceous inhibitors against hCPOΔC 

 

 

Interestingly, NvCI, which was recently reported as the strongest inhibitor discovered 

so far for some members of the M14-A subfamily (39), weakly inhibited hCPOΔC, 

showing a much higher Ki value (Table 1). In the Michaelis–Menten kinetic analysis 

(SI Appendix, Fig. S2), NvCI displays a typical competitive inhibition behavior toward 

hCPOΔC, with a Ki value of 3.8 ± 0.5 µM (Table 1). Preincubation of NvCI with the 

enzyme for various periods of time did not affect its inhibitory activity, suggesting that 

NvCI behaves as a fast binding and stable inhibitor of hCPOΔC. 

Crystal Structure of hCPOΔC in Complex with NvCI. 

After exploring a wide variety of protein combinations and crystallization conditions, 

crystals of hCPOΔC were only grown in complex with NvCI after incubation at 18 °C 

for several weeks. The complex of hCPOΔC with NvCI was formed in the 

crystallization drop by mixing the enzyme and the inhibitor in a molar ratio of 1:0.5 

(hCPOΔC:NvCI). Crystals of hCPOΔC-NvCI belonged to the monoclinic space group 

C2 and diffracted beyond 1.85 Å resolution. The structure of the complex was solved 

by molecular replacement using hCPA4 as a starting model (PDB ID code 2PCU) 
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(46) and was refined to a final R-factor and R-free of 18.6 and 20.8, respectively (SI 

Appendix, Table S2). 

The crystals of the hCPOΔC–NvCI complex contained two hCPOΔC molecules in 

the asymmetric unit (Fig. 2A), chains A and B, but only one had NvCI bound. Each 

hCPOΔC polypeptide chain (chain A bound to NvCI and chain B unbound) could be 

clearly and completely traced in the electron density maps, from Glu23 to Trp329 

(according to the numbering for mature hCPO without the signal peptide). In the 

initial unbiased electron density maps, NvCI (chain C) was clearly observed bound 

only to one of the two hCPOΔC molecules of the asymmetric unit, and could be 

completely traced from Phe1 to Ala53 (Fig. 2A). Despite the presence of two 

hCPOΔC molecules in the asymmetric unit, interface analysis with the PDBePISA 

software (47) and previous results obtained by gel-filtration chromatography indicate 

that the biological unit of hCPOΔC is the monomer (Fig. 1D). 
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Fig. 2. Three-dimensional structure of hCPOΔC in complex with NvCI. (A) The two monomers of 

hCPOΔC in the asymmetric unit (chains A and B, shown in blue and magenta, respectively) are 

stacked forming a homodimeric quaternary crystal structure. In contrast to chain B, chain A has a 

clear electron density in the active site region that accounts for a NvCI molecule (NvCI, in orange). In 

chain A, three N-glycan sites are indicated by an electron density of NAG at the Asn154, Asn167, and 

Asn231 consensus glycosylation sites as shown by the green stick models. In contrast, the electron 

density around the NAG at Asn154 in chain B is less complete, missing the N-glycan located in this 

position. (B) Two views of the 3D structure of recombinant hCPOΔC shown in ribbon representation. 

The catalytic carboxypeptidase domain of hCPOΔC displays a typical MCP-fold composed of eight α-

helices and a mixed eight-stranded β-sheet that forms a globular α/β protein. The α-helices (α1–α8) 

and β-strands (β1–β8) are shown in blue and magenta, respectively. The three N-glycosylated 

residues (Asn154, Asn167, and Asn231) are depicted as green stick models. (C) Surface 

representation of hCPOΔC from chain A (blue model) bound with NvCI in a ribbon representation 

(orange model). (D) Surface representation of hCPOΔC from chain B in its unbound form. 

In C and D a magnification of the catalytic site cleft is shown. (E) Close-up view in stick 

representation of the active site of hCPOΔC in the absence (magenta) or in the presence of NvCI 

(blue). For clarity, only the last two C-t residues of NvCI (Tyr52 and Ala53) that enter the active site 

of hCPOΔC are shown in orange and superimposed with the final electron density corresponding to a 

1.85-Å resolution F0–Fc Fourier map contoured at 1σ (mesh in cyan). The major change caused by the 

presence of NvCI in the active site is observed in the side chain of Tyr268, which rotates around its 

1× angle and displaces the hydroxyl group 10.8 Å to further close the active site pocket. Other minor 

rearrangements at the active site are also observed, including minor movements of the side chains 

of Arg146, Arg164, Leu223, Ser270, Arg275, and Thr288. Residues are numbered according to the 

mature hCPO sequence without the signal peptide (Tyr1-Trp329). In B–E the catalytic zinc atom is 

shown as a yellow sphere. N-t and C-t correspond to the N and C termini in A–C, respectively. 
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Electron density maps clearly define three different N-linked glycosylation sites in the 

hCPOΔC crystal structure at Asn154, Asn167, and Asn231 in chain A; and Asn167 

and Asn231 in chain B. In all cases the maps are well defined only for the N-

acetylglucosamine (NAG) residue of the glycosyl moiety. Interestingly, NAG linked to 

Asn154 that is only observed in chain A is localized at contact distance to the NvCI 

inhibitor and displays the lowest B-factor of all observed NAGs in the structure (Fig. 

2B). 

The two different molecules of hCPOΔC in the asymmetric unit of the crystal, 

substrate-free (chain B) and complexed with the substrate-like inhibitor (chain A), 

allow us to compare the structural changes of residues forming the active-site pocket 

in closely similar environments (Fig. 2 C and D). The average main-chain rmsd 

deviation between chain A and chain B is 0.33 Å, increasing to 1.85 Å in the loop 

region between β-sheet β7 and α-helix α7 that contain the active site residue Tyr268 

(Tyr248 in bCPA), which has been extensively reported in several MCP complex 

structures to move from the “up” to the “down” conformation upon binding of 

substrates or inhibitors (Fig. 2E) (12, 39, 42, 45). It marks the major structural 

difference observed between the “open” and “closed” conformations seen in chain B 

and chain A of hCPOΔC. 

Structure of hCPOΔC. 

The structure of the carboxypeptidase domain of hCPOΔC shows the classic 

compact α/β-hydrolase fold of the M14 family of MCPs, which is formed by a central 

twisted eight-stranded mixed β-sheet (strands β1 to β8) flanked by eight α-helices 

(Fig. 2B and SI Appendix, Fig. S3A). Structural alignment of the carboxypeptidase 

domains of hCPOΔC and pancreatic MCPs hCPA1, hCPA2, and hCPB confirms the 
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structural similarities within the M14-A subfamily, displaying main-chain rmsd 

deviations of 0.85 Å for 299 aligned residues with a 40% sequence identity for 

hCPA1, of 0.83 Å for 297 aligned residues with a 39% sequence identity for hCPA2, 

and of 0.83 Å for 300 aligned residues with a 47% sequence identity for hCPB (SI 

Appendix, Fig. S3). All relevant M14 MCPs active site residues are shared by 

hCPOΔC and located in analogous positions, including: the Zn2+ coordinating 

residues His88, Glu91, and His216 (His69, Glu72, and His196 in bCPA); the catalytic 

Arg146 and Glu290 (Arg127 and Glu270 in bCPA); the C-t carboxylate substrate-

binding Asn163 and Arg164 (Asn144 and Arg145 in bCPA); and Tyr268 (Tyr248 in 

bCPA), in its alternative conformations in liganded and unliganded hCPOΔC 

molecules (Fig. 3 A and B and SI Appendix, Fig. S3B). 
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Fig. 3. Structural features of the active site of hCPOΔC and comparison with the active sites of 

pancreatic MCPs. Detailed view of the active site groove of hCPOΔC in (A) the closed conformation 

observed in the complex with NvCI (chain A), and in (B) the open conformation observed in the 

substrate-free molecule (chain B). In A and B, the side chains of those residues important for 

catalysis and substrate binding are shown in stick representation (in blue and magenta, 

respectively), and shown together with the half-transparent surface (in gray). In both panels, 

residues were numbered according to the amino acid position in mature hCPO. The characteristic 

Arg275 amino acid that determines the substrate specificity for C-t acidic residues in hCPO is located 

at the bottom of the active site cleft. (C) Stereoview of the active site groove of hCPOΔC in the open 

conformation (blue sticks), superimposed with human hCPA1 (green sticks, PDB ID code 3FJU) (42). 

The same residues shown in A and B were labeled and numbered according to the reference bCPA 

nomenclature. For the sake of better visibility of Ile255, the side chain of Ser263 (Ile243 in bCPA) has 

been omitted in the figure. The catalytic zinc atom is shown as a yellow sphere. 
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A distinctive feature of hCPOΔC is its substrate-binding pocket, which endows it with 

the C-t processing specificity of Glu and Asp residues (18). This particular activity of 

hCPO depends on the presence of an arginine residue, Arg275, located at the 

bottom center of the substrate specificity pocket and which plays a central role by 

creating a positively charged surface optimal for interaction with amino acid side 

chains containing negatively charged carboxylate groups, such as glutamate or 

aspartate. Arg275 replaces Ile255 in hCPA1 and hCPA2, which prefer C-t aliphatic 

and aromatic amino acids, respectively, and Asp253 in hCPB, with a demonstrated 

specificity for C-t basic amino acids (Figs. 3C and 4). Only Pro C-t amino acids 

escape from the action of these enzymes; however, these are presumably cleaved 

by proline-hydrolyzing carboxypeptidases, such as angiotensin-converting enzyme 

and carboxypeptidase P, from the BB (19). 
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Fig. 4. Characteristics of the binding pockets in digestive MCPs that determine the different 

substrate specificity. (A–D) Binding pockets of (A) hCPA1, (B) hCPA2, (C) hCPB, and (D) hCPO, 

displayed as a surface-rendered cavity. The electrostatic potential at the surface of the substrate-

binding pocket is represented as a color gradient from red (−60 KBT/ec) to white (0 KBT/ec) to blue 

(+60 KBT/ec). Atomic coordinates of hCPA1 (PDB ID code 3FJU) (42), hCPA2 (PDB ID code 1DTD) (43), 

and hCPB (PDB ID code 1ZLI) (45) were obtained from the PDB. (E–H) Schematic representations of 

the substrate-binding pockets shown in A–D. (E) In hCPA1 a hydrophobic S1′ subsite binds small 

aliphatic residues such as Leu, Val, or Ala better. (F) In hCPA2 the presence of a much larger 

hydrophobic pocket than hCPA1 determines its stronger preference for bulkier hydrophobic amino 

acids such as Phe, Tyr, or Trp. However, in both cases, the specificity for hydrophobic/aliphatic 

amino acids is determined due to the presence of an Ile residue (I255, according to numbering in 

mature active hCPA1 and hCPA2) found in the base of a deep hydrophobic pocket. (G) hCPB 

specificity for basic residues is due to a negatively charged Asp residue (D253, according to 

numbering in mature active hCPB) located in the base of the binding pocket. (H) In hCPO the side 

chain of an Arg residue in position 275 (R275) is located in the base of the active site in an equivalent 

position to the I255 found in hCPA and hCPA2, and to D253 of hCPB. This contributes to its specificity 

for C-t acidic amino acids, such as Glu or Asp. 

 

 

Site-Directed Mutagenesis. 

To confirm the role of Arg275 for the substrate specificity of the enzyme, the 

positively charged Arg275 was replaced, in protein recombinant mutants, either by 

Asp (the hCPOΔC R275D mutant, in homology to hCPB) or by a small aliphatic 

residue Ala (the hCPOΔC R275A mutant). The substitution of the positive residue 

Arg275 for Asp drastically reduced the activity of the enzyme for the substrate FA-EE 
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(Table 2 and SI Appendix, Fig. S4) and reversed the enzyme cleaving specificity: 

from glutamic to lysine C-t residues. As shown in Table 2, the Kcat/KM value of 

hCPOΔC R275D for 3-(2-furyl)acryloyl-Ala-Lys-OH (FA-AK) is 0.041 ± 0.004 

µM−1 s−1 and is similar to CPB with 0.058 ± 0.018 µM−1 s−1 (Table 2). An earlier 

converse experiment by mutations of CPB (48) is in accord with these findings. The 

substitution by mutagenesis for Ala in the same position in hCPOΔC R275A reduced 

the activity of the enzyme toward FA-EE and led to a protease with preference for C-

t hydrophobic residues, as shown by a Kcat/KM of 0.039 ± 0.006 µM−1 s−1 (Table 

2 and SI Appendix, Fig. S4), comparable to type-A carboxypeptidase. It is 

remarkable that the substrate specificity of the different types of carboxypeptidases 

is determined by a single residue at the core of the specific pocket. 

 

Table 2.Effect of mutations of Arg275 on the substrate specificity of hCPO 
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Besides the major role of Arg275, the cavity of the substrate-binding pocket in hCPO 

is also formed by Leu223, Gly227, Ser263, Leu267, Ser273, and Thr288 (Fig. 

3 A and B and SI Appendix, Fig. S3B). These residues are mostly conserved in 

CPA- and CPB-like MCPs, shaping a cavity with enough space to accommodate all 

types of side chains of C-t residues. For example, Leu223 in hCPO is substituted by 

either Met or Ile in hCPAs and hCPB, respectively; and Gly227, Ser263, Ser273, and 

Thr288 in hCPO are substituted by analogous residues in hCPA1, hCPA2, and 

hCPB (Fig. 3C and SI Appendix, Fig. S3B). 

 

Structural Determinants of hCPOΔC Inhibition by NvCI. 

Only one of the hCPOΔC molecules in the asymmetric unit establishes a complex 

with NvCI, leaving the second hCPOΔC molecule unbound. This feature may be 

enforced by favorable crystal contacts and by the weak binding of NvCI to hCPO, as 

shown by an inhibition constant (Ki) value in the micromolar range (Table 1). 

Noteworthy, NvCI interacts extensively with the hCPO surface, with a total contact 

area of 1,734 A2, which is comparable to the previous structure of NvCI in complex 

with hCPA4 (39). NvCI is basically formed by a central two-stranded antiparallel β-

sheet stabilized by three disulphide bonds (SI Appendix, Fig. S5A). The inhibitory 

mechanism is based on a competitive substrate-like interaction of its C-t tail, formed 

by Tyr52 and Ala53, with the active site of hCPO, occluding the active site subsites 

S2 and S1, respectively, as occurs in the other known carboxypeptidase 

proteinaceous inhibitors (SI Appendix, Fig. S5E). The C-t tail of NvCI constitutes the 

“primary” binding region, with the C-t carboxylate group of Ala53 coordinating the 

zinc atom in a bidentate form (Fig. 2E and SI Appendix, Fig. S5B and Table S3). 
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Other relevant interactions of this primary binding region include a hydrogen bond 

between the amino group of Ala53 and the hydroxyl oxygen of Tyr268, which is 

involved in the aforementioned “up” to “down” conformational change of Tyr268 in 

the hCPOΔC structure (SI Appendix, Fig. S5B and Table S3), and the hydrogen 

bonds between the carbonyl oxygen of Tyr52 with side chains of Arg90 and Arg146 

(SI Appendix, Fig. S5B and Table S3). 

The interaction network of the primary binding region of NvCI in complex with 

hCPOΔC is quite similar to the previous complex with hCPA4 (39) and differences 

are mostly observed in contacts of the extended “secondary” binding region. The 

secondary binding region between NvCI and hCPOΔC is composed of contacts 

distant from the active site groove (SI Appendix, Fig. S5 C and D) and seems to 

determine the inhibitory capabilities toward MCPs (39). 

NvCI displays micromolar Ki values for hCPOΔC, in contrast to the 

picomolar Ki values shown for hCPA4 (39). Whereas in NvCI the primary binding 

region between hCPA4 and hCPOΔC are quite similar, several changes are 

observed in the secondary binding region between both complexes (SI Appendix, 

Fig. S6 A and B). Perhaps the most significant difference in the hCPOΔC complex is 

the loss of hydrogen bonds between the amino groups of Cys51 and Tyr52 with the 

side chain of Gln182 (Glu163 in hCPA4), which was suggested to be a relevant 

interaction responsible for the low Ki value displayed toward hCPA4 (SI Appendix, 

Fig. S6 B and C) (39). Other differences include the loss of main-chain hydrogen 

bond contacts from Ile10 and Asn11, and from side chains of Lys28 and Gln39 (SI 

Appendix, Fig. S6 B, D, and E and Table S3). However, in the complex between 

NvCI and hCPOΔC, a few new contacts are observed, such as the side chain of 

Asn32 with the main-chain oxygen of Gly155, and of particular interest, the contact 
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between Asp33 with the NAG-linked Asn154, contacting both the amino acid side 

chains and the sugar moieties (SI Appendix, Fig. S6D and Table S3). 

hCPOΔC Cleaves C-t Acidic Residues, with a Clear Preference for Glu over 

Asp. 

To evaluate the substrate preference of hCPOΔC for cleavage of Glu vs. Asp, we 

examined the activity of the purified enzyme toward a synthetic peptide with a Glu or 

Asp in the C-t position (ARLSQKFPKAE or ARLSQKFPKAD, respectively). Both 

synthetic peptides were incubated with purified hCPOΔC and reactions analyzed by 

MALDI-TOF MS (SI Appendix, Fig. S7 A and B). To obtain semiquantitative 

information about the cleavage, different incubation times for each peptide were 

analyzed. When tested with the synthetic peptide with a C-t Glu, the enzyme 

completely cleaved off the latter residue after 15 min of incubation (SI Appendix, Fig. 

S7A). Similarly, the enzyme was also able to cleave off the peptide containing a C-t 

Asp, but longer times were needed (>30 min) to observe a complete decrease in the 

peak intensity corresponding to the peptide substrate (SI Appendix, Fig. S7B). 

hCPOΔC was not able to process other peptides, such as Met-enkephalin peptides 

with C-t hydrophobic (Phe) or basic residues (Arg or Lys), even after much longer 

incubation times (SI Appendix, Fig. S7 C–E). 

These results demonstrated a clear preference of the enzyme for Glu over Asp. 

Modeling analysis of either Asp or Glu substrate inside the substrate-binding pocket 

in our hCPOΔC structure, based on a previous model structure of hCPA4 in complex 

with a cleaved hexapeptide substrate (46), suggests that hCPO’s preference for C-t 

Glu substrates is facilitated by the contact between the carboxylate group of the 

substrate Glu with the side chain of Arg275 (SI Appendix, Fig. S8). 
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C-t Proteolysis of hEGF by hCPOΔC. 

Human EGF (hEGF) is an important trophic factor produced mainly by salivary 

glands and the Brunner’s duodenal glands as a 53-amino acids peptide (EGF1–53), 

which is secreted in large amounts to the digestive tract (49⇓⇓–52). Although EGF1–

53 is generally considered to be the “mature” form of EGF in humans, other 

circulating C-t truncated forms have been observed (EGF1–52, EGF1–51, EGF1–50, and 

so on), as a result of partial cleavage by unknown proteases from the gastrointestinal 

lumen (53⇓⇓⇓⇓⇓–59). These relatively small changes in the C-t region of the 

molecule result in a marked effect on the EGF receptor binding (60, 61), thus 

affecting its biological activity (62). 

To determine whether hCPO processes EGF, we incubated the full-length EGF 

(EGF1–53) with both CPA and CPB in the absence or in the presence of purified 

hCPOΔC (see SI Appendix, SI Materials and Methods for more details). Fig. 

5A depicts some points of the time course of EGF1–53 degradation as followed by 

MALDI-TOF MS analysis. The combination of CPA and CPB was rapidly able to 

excise Arg53 and Leu52 from EGF1–53 (red spectra, Fig. 5A). The presence of a Glu 

in position 51 of the EGF molecule limited the trimming action of CPA and CPB, 

which is to proceed further to generate smaller EGF forms (such as EGF1–50 or other 

shorter forms). In contrast, the addition of hCPOΔC to the reaction mixtures 

enhanced the C-t truncation of EGF, by cleaving Glu51 from EGF1–51 (blue 

spectra, Fig. 5). These results reveal the ability of hCPO to digest not only synthetic 

and small peptides, but also C-t residues of larger proteins and peptides, suggesting 

a potential role for this enzyme in the regulation of peptidic growth factors and 

bioactive peptides circulating in the BB of the intestinal tract. 

https://www.pnas.org/content/115/17/E3932#ref-49
https://www.pnas.org/content/115/17/E3932#ref-49
https://www.pnas.org/content/115/17/E3932#ref-51
https://www.pnas.org/content/115/17/E3932#ref-52
https://www.pnas.org/content/115/17/E3932#ref-53
https://www.pnas.org/content/115/17/E3932#ref-53
https://www.pnas.org/content/115/17/E3932#ref-55
https://www.pnas.org/content/115/17/E3932#ref-55
https://www.pnas.org/content/115/17/E3932#ref-57
https://www.pnas.org/content/115/17/E3932#ref-57
https://www.pnas.org/content/115/17/E3932#ref-59
https://www.pnas.org/content/115/17/E3932#ref-60
https://www.pnas.org/content/115/17/E3932#ref-61
https://www.pnas.org/content/115/17/E3932#ref-62
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803685115/-/DCSupplemental
https://www.pnas.org/content/115/17/E3932#F5
https://www.pnas.org/content/115/17/E3932#F5
https://www.pnas.org/content/115/17/E3932#F5
https://www.pnas.org/content/115/17/E3932#F5


 

Fig. 5.Substrate specificity of hCPOΔC in the C-t proteolytic cleavage of synthetic peptides and hEGF. 

(A) Representative MALDI-TOF MS spectra of full-length recombinant human EGF (EGF1–53) incubated 

for different times at 37 °C with 30 nM bCPA and 50 nM pCPB in the absence (red spectra) or in the 

presence (blue spectra) of 30 nM hCPOΔC. (B) Ribbon representation and amino acid sequence of 

human EGF. The C-t peptide bonds cleaved by the proteolytic action of bCPA, pCPB, and hCPOΔC are 

indicated below the sequence. The peptide bond that is mainly cleaved by hCPOΔC is indicated 

above the sequence with scissors. Note that the full-length recombinant human EGF used in the 

experiment contains the EGF1−53 sequence plus an additional N-t Met residue. Accordingly, the 

monoisotopic molecular masses are: EGF1−53 = 6,348.77 Da; EGF1−51 = 6,078.85 Da; EGF1−48 = 5,577.32 

Da; EGF1−47 = 5,449.15 Da. Atomic coordinates of hEGF (PDB ID code 1IVO) were obtained from the 

Protein Data Bank (www.rcsb.org). 
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Conclusions 

For many decades, the pancreatic enzymes hCPA1, hCPA2, and hCPB were 

considered the only digestive carboxypeptidases of the M14 family present in 

humans. However, these enzymes are only able to release a fraction of all C-t 

residues present in dietary proteins. The discovery of the distinctive activity of hCPO 

for C-t acidic residues explains the cleavage of almost all types of amino acids and 

the nearly complete C-t degradation of proteins and peptides in the digestive tract. In 

this work we describe the structural details responsible for the specificity of hCPO for 

C-t Glu and Asp residues, and identify Arg275 located at the center of the substrate-

binding pocket of the active site as the essential determinant. Structural comparison 

of the substrate-binding pockets of hCPA1, hCPA2, hCPB, and hCPO, the whole 

complement of digestive MCPs, reveals the essential roles of the equivalent residues 

in these enzymes in determining their cleavage specificities 

Site-specific changes of Arg275 in hCPO to Asp and Ala reverses the specificity of 

these mutants, which cleave C-t basic and apolar residues, respectively, resembling 

the specificity of hCPB and hCPA1/2. In the case of hCPA1 and hCPA2, Ile255 

provides the appropriate environment for binding aliphatic and aromatic substrate 

residues, whereas Asp253 endows hCPB with specificity for basic substrate residues 

(Fig. 4). Biochemical and kinetic analyses using hCPO also indicate a clear 

preference for processing C-t Glu over Asp substrates. Modeling suggests indeed a 

better accommodation of the longer side chain of Glu in the substrate-binding pocket 

by a salt linkage with Arg275. Finally, in addition to its role in the digestion of dietary 

peptides at the apical membrane of intestinal cells, hCPO accelerates C-t trimming 

of human EGF in vitro and might therefore have regulatory functions in the intestine. 
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Materials and Methods 

A detailed description of procedures is provided in SI Appendix, SI Materials and 

Methods. Briefly, to facilitate production and crystallization, a recombinant C-t 

truncated form of hCPO (hCPOΔC) was produced and used instead of the intact/full 

form. Thus, it was overexpressed in HEK293 F mammalian cells by using the pTriEx-

7 vector, which includes an N-t IgM exporting signal sequence and the Strep-Tag II 

affinity tag. The resultant recombinant protein hCPOΔC was purified to homogeneity 

by combining three chromatographic steps: hydrophobic interaction chromatography, 

affinity chromatography, and gel filtration. The catalytic activity of the purified 

hCPOΔC was tested against the typical colorimetric substrates FA-EE, FA-AK, and 

3-(2-furyl)acryloyl-Phe-Phe-OH (FA-FF), and toward synthetic peptides and hEGF by 

MALDI-TOF MS. The same production procedure and assays apply to the mutants 

hCPOΔC R275D and hCPOΔC R275A. In addition, the inhibitory activities of a set of 

MCPs proteinaceous inhibitors were determined. Crystals of the NvCI–hCPOΔC 

complex were obtained by the sitting-drop vapor diffusion method by incubating a 

mix of the protease and the inhibitor (in a molar ratio of 1:0.5). The structure was 

solved by molecular replacement using the coordinates from hCPA4 in complex with 

NvCI as searching model. Crystallographic data are summarized in SI Appendix, SI 

Materials and Methods and Table S2. 

Acknowledgments 

The authors thank Lucía Díaz and Juan Fernandez-Recio (Center for Genomic 

Regulation-Institute for Research in Biomedicine Research Program in 

Computational Biology, Life Sciences Department, Barcelona Supercomputing 

Center) for their advice and experimental contribution in molecular docking; Silvia 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803685115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803685115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803685115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803685115/-/DCSupplemental


Bronsoms (Servei de Proteòmica i Biologia Estructural, Universitat Autònoma de 

Barcelona) for her valuable scientific advice and technical support in proteomics and 

mass spectrometry during the last years; and Carlos López Otin (Universidad de 

Oviedo) for the initial input to work with carboxypeptidase O. X-ray experiments were 

performed at the BL-13 beamline at the ALBA synchrotron (Cerdanyola, Barcelona, 

Spain), in collaboration with the ALBA staff. This work was funded by the Spanish 

Ministry of Innovation and Competitiveness Grants BFU2015-66417-P Ministry of 

Economy and Competitiveness (MINECO) and the European Fund for Regional 

Development (FEDER) (to D.R.) and BIO2016-78057-R (to F.X.A.); and by a Faculty 

Research grant from Andrews University (to P.J.L.). J.G.-P. and M.C.G.-G. were 

supported by PhD Fellowships BES-2011-044872 and FPU12/06137, respectively, 

from MINECO. J.G.-P. was supported by short-term Fellowship ASTF 603–2015 

from the European Molecular Biology Organization. 

 

References 

1. Arolas JL, Vendrell J, Aviles FX, Fricker LD (2007) Metallocarboxypeptidases: 
Emerging drug targets in biomedicine. Curr Pharm Des 13:349–366. 

2. Fernández D, Pallarès I, Covaleda G, Avilés FX, Vendrell J (2013) 
Metallocarboxypeptidases and their inhibitors: Recent developments in biomedically 
relevant protein and organic ligands. Curr Med Chem 20:1595–1608. 

3. Fernández D, Pallarès I, Vendrell J, Avilés FX (2010) Progress in 
metallocarboxypeptidases and their small molecular weight inhibitors. Biochimie 
92:1484–1500. 

4. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: The database of 
proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–
D509. 

5. Waldschmidt-Leitz E, Purr A (1929) Concering proteinase and carboxy-polypeptidase 
originating from the pancreas. (XVII. Communication concerning the specificity of 
animal proteinases.). Ber Dtsch Chem Ges 62:2217–2226. 

6. Folk JE (1956) A new pancreatic carboxypeptidase. J Am Chem Soc 78:3541–3542. 
7. Gardell SJ, et al. (1988) A novel rat carboxypeptidase, CPA2: Characterization, 

molecular cloning, and evolutionary implications on substrate specificity in the 
carboxypeptidase gene family. J Biol Chem 263:17828–17836. 

8. Aloy P, et al. (1998) Comparative analysis of the sequences and three-dimensional 
models of human procarboxypeptidases A1, A2 and B. Biol Chem 379:149–155. 



9. Coll M, Guasch A, Avilés FX, Huber R (1991) Three-dimensional structure of porcine 
procarboxypeptidase B: A structural basis of its inactivity. EMBO J 10:1–9. 

10. Vendrell J, Cuchillo CM, Avilés FX (1990) The tryptic activation pathway of 
monomeric procarboxypeptidase A. J Biol Chem 265:6949–6953. 

11. Villegas V, Vendrell J, Avilés X (1995) The activation pathway of 
procarboxypeptidase B from porcine pancreas: Participation of the active enzyme in 
the proteolytic processing. Protein Sci 4:1792–1800. 

12. Vendrell J, et al. (1992) Pancreatic procarboxypeptidases: Their activation processes 
related to the structural features of the zymogens and activation segments. Biol 
Chem Hoppe Seyler 373:387–392. 

13. Beck IT (1973) The role of pancreatic enzymes in digestion. Am J Clin Nutr 26:311–
325. 

14. Tanco S, et al. (2013) Proteome-derived peptide libraries to study the substrate 
specificity profiles of carboxypeptidases. Mol Cell Proteomics 12:2096–2110. 

15. Folk JE, Gladner JA (1958) Carboxypeptidase B.I. Purification of the zymogen and 
specificity of the enzyme. J Biol Chem 231:379–391. 

16. Aviles FX, Vendrell J (2013) Carboxypeptidase B. Handbook of Proteolytic Enzymes 
(Academic, London), Vol 1, 3rd Ed, pp 1324–1329. 

17. Bayés A, et al. (2005) Structural basis of the resistance of an insect 
carboxypeptidase to plant protease inhibitors. Proc Natl Acad Sci USA 102:16602–
16607. 

18. Lyons PJ, Fricker LD (2011) Carboxypeptidase O is a glycosylphosphatidylinositol-
anchored intestinal peptidase with acidic amino acid specificity. J Biol Chem 
286:39023–39032. 

19. Hooton D, Lentle R, Monro J, Wickham M, Simpson R (2015) The secretion and 
action of brush border enzymes in the mammalian small intestine. Rev Physiol 
Biochem Pharmacol 168:59–118. 

20. Blachier F, Boutry C, Bos C, Tomé D (2009) Metabolism and functions of L-
glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 
90:814S–821S. 

21. Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in 
luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest 
52:1586–1594. 

22. Burrin DG, Stoll B (2009) Metabolic fate and function of dietary glutamate in the gut. 
Am J Clin Nutr 90:850S–856S. 

23. Wei S, et al. (2002) Identification and characterization of three members of the 
human metallocarboxypeptidase gene family. J Biol Chem 277:14954–14964. 

24. Low MG (1989) Glycosyl-phosphatidylinositol: A versatile anchor for cell surface 
proteins. FASEB J 3:1600–1608. 

25. Hooper NM, Keen JN, Turner AJ (1990) Characterization of the glycosyl-
phosphatidylinositol-anchored human renal dipeptidase reveals that it is more 
extensively glycosylated than the pig enzyme. Biochem J 265:429–433. 

26. Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) 
anchored membrane proteins. Amino acid requirements adjacent to the site of 
cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 
267:12168–12173. 

27. Hass GM, Hermodson MA (1981) Amino acid sequence of a carboxypeptidase 
inhibitor from tomato fruit. Biochemistry 20:2256–2260. 

28. Lufrano D, et al. (2015) Biochemical characterization of a novel carboxypeptidase 
inhibitor from a variety of Andean potatoes. Phytochemistry 120:36–45. 

29. Rees DC, Lipscomb WN (1980) Structure of the potato inhibitor complex of 
carboxypeptidase A at 2.5-A resolution. Proc Natl Acad Sci USA 77:4633–4637. 

30. Hass GM, et al. (1975) The amino acid sequence of a carboxypeptidase inhibitor 
from potatoes. Biochemistry 14:1334–1342. 



31. Homandberg GA, Litwiller RD, Peanasky RJ (1989) Carboxypeptidase inhibitors from 
Ascaris suum: The primary structure. Arch Biochem Biophys 270:153–161. 

32. Homandberg GA, Peanasky RJ (1976) Characterization of proteins from Ascaris 
lumbricoides which bind specifically to carboxypeptidase. J Biol Chem 251:2226–
2233. 

33. Reverter D, et al. (1998) A carboxypeptidase inhibitor from the medical leech Hirudo 
medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant expression, 
and characterization. J Biol Chem 273:32927–32933. 

34. Arolas JL, et al. (2005) A carboxypeptidase inhibitor from the tick Rhipicephalus 
bursa: Isolation, cDNA cloning, recombinant expression, and characterization. J Biol 
Chem 280:3441–3448. 

35. Gong H, et al. (2007) Characterization of a carboxypeptidase inhibitor from the tick 
Haemaphysalis longicornis. J Insect Physiol 53:1079–1087. 

36. Normant E, Martres MP, Schwartz JC, Gros C (1995) Purification, cDNA cloning, 
functional expression, and characterization of a 26-kDa endogenous mammalian 
carboxypeptidase inhibitor. Proc Natl Acad Sci USA 92:12225–12229. 

37. Liu Q, et al. (2000) Cloning, tissue expression pattern and genomic organization of 
latexin, a human homologue of rat carboxypeptidase A inhibitor. Mol Biol Rep 
27:241–246. 

38. Del Rivero MA, et al. (2008) SmCI, a bifunctional inhibitor of metallo 
carboxypeptidase and serine proteinase isolated from the marine annelid 
Sabellastarte magnifica. Isolation, characterization, cDNA cloning and recombinant 
expression. FEBS J 275:157. 

39. Covaleda G, del Rivero MA, Chávez MA, Avilés FX, Reverter D (2012) Crystal 
structure of novel metallocarboxypeptidase inhibitor from marine mollusk Nerita 
versicolor in complex with human carboxypeptidase A4. J Biol Chem 287:9250–
9258. 

40. Aloy P, et al. (2001) The crystal structure of the inhibitor-complexed 
carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases. J 
Biol Chem 276:16177–16184. 

41. Pallarès I, et al. (2005) Structure of human carboxypeptidase A4 with its endogenous 
protein inhibitor, latexin. Proc Natl Acad Sci USA 102:3978–3983. 

42. Sanglas L, Aviles FX, Huber R, Gomis-Rüth FX, Arolas JL (2009) Mammalian 
metallopeptidase inhibition at the defense barrier of Ascaris parasite. Proc Natl Acad 
Sci USA 106:1743–1747. 

43. Reverter D, et al. (2000) Structure of a novel leech carboxypeptidase inhibitor 
determined free in solution and in complex with human carboxypeptidase A2. Nat 
Struct Biol 7:322–328. 

44. García-Castellanos R, et al. (2005) Detailed molecular comparison between the 
inhibition mode of A/B-type carboxypeptidases in the zymogen state and by the 
endogenous inhibitor latexin. Cell Mol Life Sci 62:1996–2014. 

45. Arolas JL, et al. (2005) The three-dimensional structures of tick carboxypeptidase 
inhibitor in complex with A/B carboxypeptidases reveal a novel double-headed 
binding mode. J Mol Biol 350:489–498. 

46. Bayés A, et al. (2007) Caught after the act: A human A-type metallocarboxypeptidase 
in a product complex with a cleaved hexapeptide. Biochemistry 46:6921–6930. 

47. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from 
crystalline state. J Mol Biol 372:774–797. 

48. Edge M, et al. (1998) Engineered human carboxypeptidase B enzymes that 
hydrolyse hippuryl-L-glutamic acid: Reversed-polarity mutants. Protein Eng 11:1229–
1234. 

49. Playford RJ, Wright NA (1996) Why is epidermal growth factor present in the gut 
lumen? Gut 38:303–305. 



50. Barnard JA, Beauchamp RD, Russell WE, Dubois RN, Coffey RJ (1995) Epidermal 
growth factor-related peptides and their relevance to gastrointestinal 
pathophysiology. Gastroenterology 108:564–580. 

51. Heitz PU, et al. (1978) Immunohistochemical localisation of urogastrone to human 
duodenal and submandibular glands. Gut 19:408–413. 

52. Rowland KJ, Choi PM, Warner BW (2013) The role of growth factors in intestinal 
regeneration and repair in necrotizing enterocolitis. Semin Pediatr Surg 22:101–111. 

53. Araki F, Nakamura H, Nojima N, Tsukumo K, Sakamoto S (1989) Stability of 
recombinant human epidermal growth factor in various solutions. Chem Pharm Bull 
(Tokyo) 37:404–406. 

54. Britton JR, George-Nascimento C, Udall JN, Koldovský O (1989) Minimal hydrolysis 
of epidermal growth factor by gastric fluid of preterm infants. Gut 30:327–332. 

55. Calnan DP, et al. (2000) Potency and stability of C terminal truncated human 
epidermal growth factor. Gut 47:622–627. 

56. Playford RJ, et al. (1995) Epidermal growth factor is digested to smaller, less active 
forms in acidic gastric juice. Gastroenterology 108:92–101. 

57. Rao RK, et al. (1990) Processing and transfer of epidermal growth factor in 
developing rat jejunum and ileum. Peptides 11:1093–1102. 

58. Tsukumo K, Nakamura H, Sakamoto S (1987) Purification and characterization of 
high molecular weight human epidermal growth factor from human urine. Biochem 
Biophys Res Commun 145:126–133. 

59. Xian CJ, et al. (1996) Production of a human epidermal growth factor fusion protein 
and its degradation in rat gastrointestinal flushings. J Mol Endocrinol 16:89–97. 

60. Panosa C, et al. (2015) A comparison of non-biologically active truncated EGF 
(EGFt) and full-length hEGF for delivery of Auger electron-emitting 111In to EGFR-
positive breast cancer cells and tumor xenografts in athymic mice. Nucl Med Biol 
42:931–938. 

61. Gregory H, Thomas CE, Young JA, Willshire IR, Garner A (1988) The contribution of 
the C-terminal undecapeptide sequence of urogastrone-epidermal growth factor to its 
biological action. Regul Pept 22:217–226. 

62. Goodlad RA, Boulton R, Playford RJ (1996) Comparison of the mitogenic activity of 
human epidermal growth factor I-53 and epidermal growth factor I-48 in vitro and in 
vivo. Clin Sci (Lond) 91:503–507. 

 


