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Abstract Water stress results in a reduction of  the metabolism of plants and in a reorganization of their 

use of resources geared to survival. In the Mediterranean region, periods of drought accompanied by high 

temperatures and high irradiance, occur in summer. Plants have developed various mechanisms to survive 

in these conditions by resisting, tolerating or preventing stress. We used three typical Mediterranean tree 

species in Israel, Pinus halepensis L., Quercus calliprinos and Quercus ithaburensis Webb, as models for 

studying some of these adaptive mechanisms. We measured their photosynthetic rates (A), stomatal 

conductance (gs), and terpene emission rates during spring and summer in a geophysical gradient from 

extremely dry to mesic from Yatir (south, arid) to Birya (north, moist) with intermediate conditions in 

Solelim. 

A and gs of P. halepensis were three fold higher in Birya than in Yatir where they remained very low 

both seasons. Quercus species presented 2-3 fold higher A and gs but with much more variability between 

seasons, especially for Q. ithaburensis with A and gs that decreased 10-30 fold from spring to summer. 

Terpene emission rates for pine were not different regionally in spring but they were 5-8 fold higher in 
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Birya than in Yatir in summer (P < 0.05). Higher emissions were also observed in Solelim for the drought 

resistant Q. ithaburensis (P < 0.001) but not for Q. calliprinos. -Pinene followed by limonene and 3-

carene were the dominant terpenes. Warmer summer conditions result in increased Terpene emission 

rates except under severe drought, in which case they strongly decrease. 

 

Keywords Mediterranean drought conditions, terpene emission rates, gas interchange, Pinus halepensis, 

Quercus calliprinos, Quercus ithaburensis. 
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Key Message Warmer summer conditions result in increased terpene emissions except under severe 

drought, in which case they strongly decrease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Introduction 

The reduction in water intake by plants results in a slowing down of their metabolism (Hsiao 1973) and a 

reorganization of their energy resources geared to survival (Dobrota 2006). In the Mediterranean region, 

periods of drought are accompanied by high temperatures and high irradiance in summer (Aschmann 

1973; Gasith and Resh 1999; Tsakiris et al. 2007; Gratani et al. 2013). This leads to stressful conditions 

for plants that may result in increased mortality. However, plants have developed their own mechanisms 

to survive in these hydric stress conditions (Chaves et al. 2002; Rubio- Casal et al. 2010; Bai et al. 2008; 

Letts et al. 2011; Damesin and Rambal 1995; Werner et al. 1999) resisting, tolerating, or preventing stress 

(David et al. 2007; Mittler 2002; Werner et al. 1999). 

One of these mechanisms is the use of volatile organic compounds (VOCs) (Peñuelas and Llusia 1999, 

2002, 2003; Munné-Bosch et al. 2004; Peñuelas et al. 2005, 2009; Llusià et al. 2005, 2008; Copolovici et 

al. 2005; Filella et al. 2007; Porcar-Castell et al. 2009). Volatile organic compounds not only have an 

important biological role but also environmental effects, affecting atmospheric chemistry (Llusia et al. 

2012b; Seco et al. 2013) , the formation of secondary aerosol (Claeys et al. 2004; Cahill et al. 2006; 

Camredon et al. 2007; Kroll and Seinfeld 2008) and, ultimately, climate (Peñuelas and Llusia 2003; Yuan 

et al. 2009;  Riipinen et al. 2012) . 

The production and emission of biogenic volatile organic compounds, such as isoprene and 

monoterpenes which constitute a majority of the biogenic VOCs, may confer protection against the high 

temperatures and the drought conditions (Sharkey and Singsaas 1995; Singsaas 2000; Peñuelas and Llusia 

2002, 2003; Copolovici et al. 2005; Peñuelas and Staudt 2010). 

The rates of plant VOC emissions are altered by water availability (Bertin and Staudt 1996; Peñuelas 

and Llusia 1997; Llusia and Peñuelas 1998; Hansen and Seufert 1999). While the behavior is complex 

and may differ among chemical and biological species, it seems that in moderate drought conditions, 

isoprenoids help plants resist stress (Gershenzon et al. 1978), but isoprenoid emissions strongly decrease 

under severe drought conditions (Llusia and Peñuelas 1998; Hansen and Seufert 1999). They also respond 

to temperature (Seufert 1997; Hansen and Seufert 1999; Peñuelas and Llusia 2002, 2003; Llusia and 

Peñuelas 2000), and seasonality (Yokouchi and Ambe 1984; Lerdau et al. 1995; Llusia and Peñuelas 1998, 

2000; Peñuelas and Llusia 1997). Temperature increases production and emission rates of most terpenes 

exponentially by enhancing enzymatic activities of synthesis, increasing the vapor pressure of the terpene, 

and decreasing the resistance of the emission pathway (Tingey et al. 1991; Loreto et al. 1996; Peñuelas 
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and Llusia 2001). However, terpene emissions by trees  combining  temperature and drought comparing 

drier and milder sites  is not known. 

Israel presents strong gradient in water availability from semi-arid conditions in the south to 

Mediterranean/sub-humid in the north. The climatic trend of annual aridity (humidity) index P/PET (P = 

Precipitation; PET = Potential Evapotranspiration) is ranging between 0.05 in the south to above 0.65 in 

the north (Kafle and Bruins 2009).  The native Mediterranean woody vegetation in Israel is strongly 

dominated by one species – the evergreen sclerophyllous Quercus calliprinos Webb (Kermes oak) which 

accounts for 80–90% of the tree coverage (Zohary 1973). The Tabor oak, Quercus ithaburensis (Decne.) 

is an East-Mediterranean deciduous oak. Q. ithaburensis appears to be more suitable for the 

restoration/reforestation of dryer environments (Siam et al. 2008). This species dominates in the east and 

south Mediterranean region (Kaplan and Gutman 1999). This species is considered to be drought-resistant 

and capable of growing on shallow and poor soils. The Alepo pine, P. halepensis, is a major conifer forest 

tree in the Mediterranean forests with large distribution around this region (Schiller et al. 1986). This 

tree’s characteristics include it being a pioneer species, a fast grower, and a drought tolerant species 

(Atzmon et al. 2004) with a shallow root system. These advantages made it a favorable tree for plantation 

in that region, particularly in Israel. Its ability to withstand drought is enabled mainly by reducing growth 

rate and water loss, as well as by minimizing and shifting the photosynthetic activity to early morning and 

late afternoon (Maseyk et al. 2008). 

In our study we used three Mediterranean tree species that can serve as models for studying the 

terpene emissions in these particular Mediterranean conditions where warm summer temperatures are 

accompanied by a gradient of drought conditions ranging from mild to very severe. These species are 

Pinus halepensis L., Quercus calliprinos and Quercus ithaburensis Webb. In this Mediterranean region 

these species undergo periods of drought and high temperature frequently (Atzmon et al. 2004; 

Grünzweig et al. 2008). We measured them in Yatir (in the south, arid) Birya (located north, 

Mediterranean sub-humid conditions) and Solelim (located north, Mediterranean conditions). 

Our aim was to compare the same species, P. halepensis, growing in extremely contrasting water 

availabilities in space and time (Yattir and Birya in spring and summer), and to compare two species of 

Quercus sp. of contrasting seasonal biology in a dry site (Solelim also in spring and summer), in order to 

test the hypothesis that summer warmer conditions should increase terpene emissions except under severe 

drought in which case terpene emissions would strongly decrease. 
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Materials and Methods 

Sites of the study 

Yatir 

Yatir forest is a 45-year-old P. halepensis plantation located at the northern edge of the Negev desert, 

Israel (31°20'N, 35°20'E). The forest covers an area of about 2,800 ha and lies on a predominantly light 

brown Rendzina soil (79 ± 45.7 cm deep), overlying a chalk and limestone bedrock. The climate is hot 

(40-year mean annual temperature is 18.2°C) and dry (40-yr average mean annual precipitation is 

279 ± 90 mm), and 247mm during the hydrological studying year (October 2012-September 2013) (Fig. 

1). Stand density is ca. 300 trees ha–1, mean tree height is 10.2 ± 2.49 m and mean diameter at breast 

height (DBH) is 19.8 ± 5.61 cm. 

 

Birya 

Birya forest is a ~50–yr-old P. halepensis plantation located at the northern part of Israel in the Galilee 

region (33°00'N, 35°30'E). The forest covers an area of about 2,000 ha and lies on a Rendzina and Terra 

rossa soil. The climate is Mediterranean sub-humid with average temperature of 16°C, average annual 

precipitation of 710 mm, and 885mm during the hydrological studying year (October 2012-September 

2013) (Fig. 1). Average stand density is 375 trees ha-1, mean tree height is 11 m and mean DBH is 20.3 

cm. 

 

Solelim 

Solelim forest is a native oak forest, dominated by two oak species Q. calliprinos and Q. ithaburensis. 

Since 1940 no massive human interference was done in this forest, allowing the current native vegetation 

society to stabilise. The forest is located at the north part of Israel in the Galilee region, 30 km south of 

Birya forest (32°75'N, 35°23'E).  The forest lies on a Rendzina and Terra rossa soil. The climate is 

Mediterranean with average temperature of 21°C, average annual precipitation of 580 mm, and 743 mm 

during the hydrological studying year (Fig. 1). The measurement site area is characterised by an average 

stand density of 280 trees ha-1, mean tree height of 8 m and mean DBH of 18.9 cm. 
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Gas exchange measures and sampling of terpene emissions 

 

Photosynthetic rates (A) and stomatal conductances (gs) were measured between 9:00 a.m. and 6:00 p.m. 

at a quantum flux density of 1080±19 µmol m-2 s-1 and a constant air temperature of 30±1.5 °C under a 

controlled CO2 concentration of 400±2 ppm. One or several leaves were enclosed in a clamp-on gas-

exchange cuvette of 6 cm2 and 80 cm3. Air flow through the dynamic cuvette was 732±0.05 ml min-1. A 

Licor-6400XT (4647 Superior Street P.O. Box 4425 Lincoln, Nebraska USA) gas-exchange system was 

used. 

The same gas-exchange system (Licor-6400XT) described above was used for sampling of terpene 

emissions. Air exiting the cuvette was pumped through a stainless steel tube (89 mm in length and 6.4 

mm external diameter) manually filled with adsorbents, 115 mg of Tenax® TA and 230 mg of 

SulfiCarb®, separated by sorbent-retaining springs  fixed using gauze-retaining springs  and closed with 

air-tight caps (Markes International Inc. Wilmington, USA). Air samples were collected using a Qmax air-

sampling pump (Supelco, Bellefonte, Pennsylvania). The flow was measured  with a flowmeter Bios 

Defender 510 fluxometer (Bios International Corporation, Butler, USA) and controlled with a metallic 

valve. The hydrophobic properties of activated adsorbents minimized any sample displacement by water. 

The terpenes were not chemically transformed in these tubes, as determined by reference to trapped 

standards (-pinene, -pinene, camphene, myrcene, p-cymene, limonene, sabinene, camphor, -

humulene and dodecane). Prior to terpene sampling, the tubes were conditioned for 35 min at 350 °C with 

a stream of purified helium. The sampling time was 10 min, and the flow was 315±35 mL min-1. The 

trapping and desorption efficiency of standards such as -pinene, -pinene and limonene was 99%. Blank 

samples of air without plants in the cuvette were collected in the tubes for 10 min immediately before 

each measurement. The sampled tubes were stored in a portable refrigerator at 4 °C and transported to the 

laboratory. The terpene content of the blank samples was subtracted from the samples collected from 

plants for calculating the rates of terpene emission. 
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Terpene analysis 

 

The terpene emissions trapped in the metallic tubes were released with an automatic sample processor 

(TD Autosampler, Series 2 Ultra, Markes International Inc. Wilmington, USA) and thermally desorbed 

using a coupled injector (Unity, Series 2, Markes International Inc. Wilmington, USA) connected to a Gas 

Chromatograph (7890A, Agilent Technologies, Santa Clara, USA) with a mass spectrometer detector 

(5975C inert MSD with Triple-Axis Detector, Agilent Technologies). A full-scan (between 25 to 445 m/z) 

method was used in the chromatographic analyses. The desorbed samples were injected into a capillary 

column (HP 5MS, 30m x 0.25 μm x 0.25 mm). The initial oven temperature was 35 ºC for the first 2 min, 

then was increased stepwise at 15 ºC min-1 to 150 ºC and maintained for 5 min, at 30 ºC min-1 to 250 ºC 

and maintained for 5 min and finally at 30 ºC min-1 to 280 ºC and maintained for 5 min. The flow of 

helium was 1 ml min-1, and the total run time was 29 min.  

The identification of terpenes was performed by a comparison of the mass spectra with published 

spectra (Wiley 7n library) and known standards, while quantification of the peaks was conducted using 

the fragmentation product with mass 93 (Blanch et al. 2012; Llusia et al. 2012b). Calibration curves for 

quantification were prepared with commercial standards of some of the most abundant compounds in the 

samples: four monoterpenes (-pinene, sabinene, pinene and limonene), one sesquiterpene (-

caryophyllene) and one non-terpene internal standard (dodecane), all from Fluka Chemie AG, Buchs, 

Switzerland. Terpene calibration curves were always highly correlated (r2 ≥ 0.99) in the relationship 

between signal and terpene concentration. The most abundant terpenes had very similar sensitivities 

(differences were less than 5%). The desorbed sample was retained in a cryo-trap at -25ºC. The split was 

1:20. The sample was desorbed again at 300ºC for 10 min and injected into the column with a transfer 

line at 250ºC. Following sample injection at 35ºC (initial time 1 min), the column temperature was 

increased stepwise at 15ºC min-1 to 150ºC and maintained for 5 min, at 50ºC min-1 to 250ºC and 

maintained for 5 min and finally at 30ºC min-1 to 280ºC and maintained for 5 min. Total run time was 

26.7 min, and the helium flow was 1 ml min-1. The identification of terpenes was performed as above for 

the analysis of terpene concentrations. The rates of terpene emission were expressed in g g-1 (dw) h-1. 
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Statistical analysis 

 

Data variables A, gs and emissions of total terpenes were analyzed using the Shapiro-Wilk test (n > 30) 

and followed a normal distribution with P > 0.05. Fisher’s LSD post-hoc test was used to analyze 

differences among means when the ANOVAs indicated significant differences (P < 0.05), using 

STATISTICA v.6.0 for Windows (StatSoft, Inc. Tulsa, Oklahoma). SigmaPlot v. 11.0 for Windows 

(Systat Software, Chicago, USA) was used for graphics. 

 

Results 

 

Net photosynthetic rates and stomatal conductances 

 

The net photosynthetic rates (A) and the stomatal conductances (gs) of P, halepensis were significantly 

three fold higher in Birya than in Yatir especially in the spring (P < 0.05, Fig. 2). In summer, only A 

significantly decreased 28 % in Birya (P < 0.01, Fig. 2). 

The two studied species of Quercus showed similar values of both A and gs in both the spring and 

summer seasons, although in the summer the A levels decreased significantly (P < 0.001) in both species 

but more in Q. ithaburensis (P < 0.001, 97 %) than in Q. calliprinos (P < 0.01, 80 %). The gs levels 

decreased significantly (P < 0.01) in both species but more in Q. ithaburensis (P < 0.01, 89 %) than in Q. 

calliprinos (P < 0.01, 67 %). 

 

Terpene emission rates 

 

P. halepensis, emitted similar amounts of terpenes in both sites during spring (around 8±3 g g-1 dw h-1, 

Fig. 3). In summer, however, the emission rates of P. halepensis were 5-8 fold lower in the arid Yatir 

forest (0.22±0.16 g g-1 dw h-1) while they increased  ca. 5 fold in the mesic Birya forest (39±26 g g-1 

dw h-1) (P < 0.01, Fig. 3). 

Q. ithaburensis showed significant differences of terpene emissions between seasons (P < 0.001, Fig. 

3). In summer, emissions increased 9 fold for Q. ithaburensis (up to 38.8±18.6 g g-1 dw h-1) and only 35 % 

for Q. calliprinos (up to 4.42±2.26 g g-1 dw h-1,  P < 0.05, Fig. 3). 
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The terpene emissions response to light studied in Yatir forest show an increase with increasing PAR, 

reaching a peak between 1000 and 1500  mol m-2 s-1 (33±4  g g-1 d.m. h-1) (Fig. 4). At the same curve 

inflection point photosynthetic rates reached their maximum value (1.9 mol m-2 s-1). 

In general, all the individual monoterpenes shown in Fig. 5  (-pinene, camphene, -pinene, limonene 

and 3-carene) followed the same pattern as for the total terpene emissions (Fig. 3).  

 

Discussion 

 

Photosynthesis and stomatal conductance 

 

A and gs patterns observed during the spring and summer in this study were consistent with previous 

studies of the Mediterranean species P. halepensis and Quercus ilex (Baquedano and Castillo 2007; 

Peñuelas and Llusià 1999; Llusià and Peñuelas 2000), and Q. calliprinos  and Q. ithaburensis (Klein et al. 

2013; Schiller et al. 2010; Grünzweig et al. 2008). A and gs showed the seasonal trend expected in a 

Mediterranean climate (Llusià and Peñuelas 2000) except under the near-desertic conditions of Yatir 

forest (Maseyk et al. 2008) where values were extremely low both in spring and summer (Figs. 1 and 2). 

These low rates of photosynthesis and stomatal conductance in an extreme climatic environment for P. 

halepensis indicate the adaptive success of this species to the severe stress, by presenting low rates of 

growth and reproduction (Matesanz and Valladares 2014; Gratani 2014; Bussotti et al. 2015). 

 

Terpene emission rates 

 

The individual terpenes detected in P. halepensis were similar to those detected in the same species in 

other Mediterranean regions (Llusia and Peñuelas 2000; Ormeño et al. 2007). The compounds detected in 

the Quercus species studied here are similar to those found in other Quercus of other Mediterranean 

region (Llusia and Peñuelas 2000; Plaza et al. 2005).  

 

P. halepensis showed the typical seasonal behavior of plants in the Mediterranean region (Llusia and 

Peñuelas 1998; Ormeño et al. 2007). In Birya and Solelim, during the summer sampling, P. halepensis 

and Q. ithaburensis showed higher terpene emission rates than in spring, as a result of higher 
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temperatures and more mesic conditions than in Yatir forest. Similarly to what has been often described 

in similar Mediterranean conditions, for example for Q. suber and Q. coccifera species (Pio et al. 2005; 

Llusia et al. 2013). Q. ithaburensis had higher emissions than those of Q. calliprinos during summer 

sampling. These differences in emissions between these two species could be due to genetic causes 

(Loreto et al. 2009; Welter et al. 2012). The differences between the two species of Quercus may be due 

to the geographical adaptations and/or genetics (Staudt et al. 2004; Loreto et al. 2009; Welter et al. 2012). 

Interspecific gene flow is common in oaks. Specifically, in Mediterranean region. This process would 

have produced geographical differences and new species, which may have contributed to the differences 

in the production and emission of volatile terpenes in oak species.  The mechanisms and driving forces 

behind this diversification in European oaks are still unknown. In fact, the extent of intraspecific 

variability in the production and emission of volatile terpenes in Quercus sp. has been little studied 

(Staudt et al. 2001, Loreto et al. 2009). The variability in terpene emissions within and among populations 

of oaks has only been widely investigated in the species Quercus ilex L. (Staudt et al. 2001, 2004) and 

Quercus suber (L.) (Staudt et al. 2004, 2008, Loreto et al. 2009). For both species, inherent differences 

were seen in emission profiles of individual trees. The chemotypes abundance of these varied between 

populations, perhaps reflecting the fragmentation paleogeographic range of species in the Mediterranean 

area and the selective adaptation ecotype to new habitats (Loreto et al. 2009). Another possible source 

contributing to the diversification of emissions of isoprene and monoterpenes in Quercus could be the 

selection and breeding associated with human activities and ease of miscegenation between sympatric 

species of oak (Staudt et al., 2004). Oak trees have been tried to classify  according to taxonomic data and 

terpenoid emissions but it was concluded  that no clear grouping is possible taking into account the 

terpenoid emissions and taxonomic classifications and that the different terpenoid emission rates may be 

due to the different physiological acclimation to the environmental conditions (Csiky and Seufert, 1999). 

On the other hand, the emission rates form the two Quercus studied species, Q. calliprinos and Q. 

ithaburensis,  were very similar quantitatively and qualitatively to those reported by Csiky and Seufert 

(1999). 

 

The responses of the terpene emission rates and photosynthetic rates to increasing PAR intensities 

showed that P. halepensis needles reached the maximum terpene emission and photosynthetic rates at 

lower PARs than usual (Peñuelas and Llusia 1999; Owen et al. 2002; Niinemets et al. 2010) indicating 
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stressful conditions in the arid location of Yatir. The severe decrease in the terpene emissions in summer 

in Yatir soundly demonstrate decreased emissions under severe drought conditions in contrast with 

increased emissions with warming under moderate drought (Llusia and Peñuelas 1998; Llusia et al. 

2012a).  

 

Conclusion 

 

These results thus demonstrate a contrasting seasonal change in the arid and the mesic localities. While in 

the arid Yatir, the summer terpene emissions almost disappeared, in the mesic site they increased 5-fold. 

This illustrates the complex interactions between water availability and temperature where temperature 

can drive increased emissions unless water availability becomes severely limiting. 
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Figure legends 

Fig. 1. Daily average (+SE) of air temperature (ºC) and daily average (+SE) of VDP (Pa) in Yatir (from 

April to May and from August to September 2013), in Birya (May and September 2013) and Solelim 

(May and August 2013).   

 

Fig2. Net photosynthetic rates and stomatal conductances (+SE) of Pinus halepensis (in Yatir and Birya), 

Quercus calliprinos and Quercus ithaburensis (in Solelim) in Spring (empty bars) and Summer (black 

bars). Different letters indicate significant differences (P < 0 .05) among  sites and among species in the 

case of Quercus sp, and asterisks indicate statistical differences between seasons (*, P < 0.05; **, P < 

0.01; ***, P < 0.001). 

 

Fig3. Total terpene emission rates (+SE) of Pinus halepensis (in Yatir and Birya), Quercus calliprinos 

and Quercus ithaburensis (in Solelim) in Spring (empty bars) and Summer (black bars). Different letters 

indicate significant differences (P < 0 .05) among  sites, and asterisks indicate statistical differences 

between seasons (*, P < 0.05; **, P < 0.01). 

 

Fig4. Light responses curves of terpene emission rates (+SE) (black triangles) and net photosynthetic 

rates (+SE) (black circles) conducted in Yatir forest during the spring campaign. 

 

 

Fig5. Individual terpene emission rates (+SE) of Pinus halepensis (in Yatir and Birya), Quercus 

calliprinos and Quercus ithaburensis (in Solelim) in Spring (empty bars) and Summer (black bars). 

Different letters indicate significant differences (P < 0 .05) among  sites, and asterisks indicate statistical 

differences between seasons (*, P < 0.05; **, P < 0.01). 
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