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Abstract

The term Bioinformatics, first coined by Paulien Hogeweg and Ben Hesper, back in
1970 to describe ’the study of informatic processes in biotic systems’, can be defined
as “research, development, or application of computational tools and approaches for
expanding the use of biological, medical, behavioural or health data, including those to
acquire, represent, describe, store, analyze, or visualize such data” or “the development
and application of data-analytical and theoretical methods, mathematical modelling,
and computational simulation techniques to the study of biological, behavioural, and
social systems”. The first definition deals with the biological information management,
and the second one with computational biology. The general objective and methodology
employed in the current Thesis, “Integration of Bioinformatics to molecular research in
forest species: the case of Holm oak (Quercus ilex)”, is focused on the first definition.
The use of bioinformatic tools (algorithms, programs, databases and repositories) has
been used to construct the transcriptome, proteome and metabolome of Holm oak and
their integration to define the metabolism and responses to drought in this species.

Since the end of the last century, biological research has moved from a reductionist to
holistic paradigm, which have been possible thanks to the great technological advances,
especially in the molecular biology discipline. Thus, the appearance of platforms based
on the Next Generation Sequencing (NGS), for genomics and transcriptomics, and Mass
Spectrometry (MS), for proteomics and metabolomics has made possible to obtain from
hundreds to thousands of data in a single experiment, being impossible the management
and analysis of them without the employment of informatics tools. The employment
of high throughput techniques and their combination with classic approaches is what
defines “Systems Biology”. It do not only analyse thousands and thousands of molecular
entities of an individual, but also the integration and creation of predictive models.
This is quite feasible with model organisms (e.g. Arabidopsis), but it is a real challenge
for those orphan and recalcitrant experimental systems such as Q. ilex. The study
of this species is justified because of the environmental and economic importance
in Spain and, because it faces a problem of increasing tree mortality associated to
the decline syndrome, a situation that can be worsen in a climate change scenario.
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Biotechnology can contribute to solve this problem through breeding programs based
on markers-assisted selection of elite genotypes that are more tolerant and resistant to
biotic and abiotic stresses and more resilient to climate change.

As a continuation of the work carried out since 2004 by the research group “Agro-
forestry and Plant Biochemistry, Proteomics, and Systems Biology”, mostly based
on classic biochemistry, physiology and proteomics, and considering that neither the
genome of Holm oak has been sequenced yet nor DNA or proteins sequences are avail-
able in public databases, as first objective of the Thesis was proposed the construction
of the first reference transcriptome for this species. The work is presented in chapter
3, and has been published in Frontiers in Molecular Bioscience. For that purpose, the
mRNA extracted from homogenized tissue from acorn embryo, leaves, and roots, was
sequenced using an Illumina Hiseq 2500 platform. Three different assemblers were
employed, TRINITY, RAY, and MIRA. The assemblies obtained were aligned against
the most accurate and nearest phylogenetically transcriptome currently available, that
of Quercus robur and Quercus petraea. MIRA generated more and longer contigs
than RAY and TRINITY (MIRA>RAY>TRINITY). So, MIRA assembly was used
to continue with the corresponding annotation of Q. ilex transcriptome, resulting in
31973 annotated sequences were obtained by Blast2GO using Swiss-Prot as reference
database.

As a continuation of the previous work, and as a second objective, a new sequencing
platform, Ion Torrent, was evaluated in the construction and analysis of the Q. ilex
transcriptome. The obtained results are presented in chapter 4 and have been already
published in PLoS ONE. Raw sequence reads, obtained from Illumina and Ion Torrent,
were assembled by three different software, MIRA, RAY and TRINITY. A hybrid
transcriptome combining reads from both sequencing technologies was also assembled
using RAY. The hybrid assembly generated the most complete transcriptome. The
assembly of Ion Torrent reads of MIRA showed the highest number of shared sequences
(84.8%) with the oak transcriptome. In addition, an in silico proteomic analysis was
carried out using the translated assemblies as databases. Those from Ion Torrent showed
more proteins compared to the Illumina and hybrid assemblies. All the assembled
transcripts from the hybrid transcriptome were annotated and grouped according to
the corresponding biological processes, molecular functions and cellular components
(Gene Ontology). This new generated transcriptome represents a valuable tool to
conduct differential gene expression studies in response to biotic and abiotic stresses
and to assist and validate the ongoing Q. ilex whole genome sequencing.
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By using the above mentioned plant sample, the transcriptomic (NGS-Illumina),
proteomic (shotgun LC-MS/MS, Orbitrap), and metabolomic (GCMS) profiles were
analysed. Results are presented in chapter 5, and have been already published
in Frontiers in Plant Science. The annotated Q. ilex transcriptome was compared
against the complete in silico proteomes of Arabidopsis thaliana (UP0000065489, Oryza
sativa subsp. Japonica (UP00005968010), Populus trichocarpa (UP00000672911), and
Eucaliptus grandis (UP00003071112) in order to elucidate the unique and shared
sequences. Also, the EC numbers of each proteome were contrasted to achieve a
complete picture of the metabolic pathways coverage differences among proteomes
studied in previously mentioned species. The descriptive analysis and the visualization
of data on a gene-by-gene basis on schematic diagrams (maps) of the biological processes
described in Mapman, resulted in the identification of around 62629 transcripts, 2380
protein species, and 62 metabolites. Data were compared with those reported for
model plant species, whose genome has been sequenced and well annotated, including
Arabidopsis, japonica rice, poplar, and eucalyptus. The integration of the large
amount of data reported using bioinformatics tools allowed the Holm oak metabolic
network to be partially reconstructed. From the 127 metabolic pathways reported
in KEGG pathway database, 123 metabolic pathways can be visualized when using
the described methodology. They included: carbohydrate and energy metabolism,
amino acid metabolism, lipid metabolism, nucleotide metabolism, and biosynthesis
of secondary metabolites. The TCA cycle was the pathway most represented with 5
out of 10 metabolites, 6 out of 8 protein enzymes, and 8 out of 8 enzyme transcripts.
On the other hand, gaps, missed pathways, included metabolism of terpenoids and
polyketides and lipid metabolism. The multi-omics resource generated in this work
will set the basis for ongoing and future studies, bringing the Holm oak closer to model
species.

As a final objective of the current Thesis, an integrated transcriptomics and
proteomics analysis of the response to drought in Q. ilex seedlings has been carried
out. Seedlings were subjected to drought conditions by water withholding, and leaf
tissue sampled at two times of the experiment, 20 and 25 days. RNA and proteins were
extracted and analysed by using RNA-seq (Illumina), and proteomics, LC-MS/MS
Orbitrap. Data are presented in chapter 6; it also corresponds to a manuscript to be
submitted for publication.

Gene products were identified and quantified at transcript and protein levels,
establishing correlations between transcript and the corresponding protein abundance.
Gene ontology (GO) analysis was performed to classify identified transcripts and
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proteins in terms of biological process, molecular function and cellular component.
A multivariate analysis of the total and variable datasets at transcript and protein
levels was performed with mixOmics. To acquire an integrated visualization of Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway maps, total transcript and
protein datasets, specifying those variable transcripts and proteins, were analysed by
Paintomics 3 (v0.4.5), considering Arabidopsis thaliana as a model reference. Pathways
with p-value < 0.05 were considered as significantly pathways. Interaction networks were
constructed using the plugin GeneMANIA under Cytoscape (v3.4.0). The interaction
networks included were prediction, co-expression, co-localization, and shared protein
domains. This software also finds functionally similar genes that do not exist in
the input gene list. RNA-seq analysis generated 47868 transcripts corresponding to
21000 unigenes, with 3588 qualitative or quantitative differences between irrigated and
droughted seedlings (1149 up, and 2439 down). From shotgun proteomics, 4008 protein
species were identified, corresponding to 2767 different genes. Out of them, 640 had
qualitative or quantitative differences in abundance between treatments (353 more and
287 less abundant under drought conditions). A wide gene expression reorganization
was observed at the two omics levels with up and down regulation, being this transitory
(observed at 20 or 25 days) or permanent (observed at 20 and 25 days). The functional
groups, whose genes were most altered in response to drought, were “stress-related”
and “chloroplasts”. The most affected metabolic pathways included protein translation,
photosynthesis, carbohydrates, amino acids and phenolics. Variable gene products were
observed at transcriptomic or proteomic levels, with a reduced number detected at
both levels. This included, for example, RPS2, 4CL2, PSB28, and RIN4, among others.
From the variable transcript and protein datasets, two networks were constructed,
the first one included up accumulated CLPB2, CLPB3, HSP70, HSP17.4, FtsH6,
AT1G23740, SMT1, and UGP3, and down accumulated ABA2, RPS1, ADK, and
RPL4 genes and the second one included up accumulated CLPB2, CLPB3, HSP70,
HSP17.4, FtsH6, AT1G23740, AP1, INVE, AT4G2740, CAD4, FEN1, and HIPP27
and down accumulated ABA2 genes. From a biological point of view, and in terms
of stress response and tolerance,Q. ilex seedlings were characterized by an increase in
general abiotic stress related gene products, including CPLB2, CPLB3, FTSH6 and
PSB28. These variable gene products overexpressed under drought conditions can be
proposed as molecular markers of response and tolerance to drought stress.

As a general conclusion it is necessary to emphasize that without bioinformatics it
would be impossible to analyse the huge amount of data generated by omics approaches,
but also, and more important, the importance of a manual evaluation and validation of
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the results before translating to the biological context, thus avoiding much speculation.
Living organisms are much more complex than we can realize and, improvements in wet
and in silico analysis will be necessary to deep in its knowledge and to shed some light
to biology, to understand the mechanisms connecting genotype and phenotype, and
identify gene and gene product interactions linked to different biological processes such
as the plant response to stresses. So, this knowledge will allow a better progression in
speed breeding programs and biotechnological-related approaches.





Resumen

El término bioinformática, acuñado por Paulien Hogeweg y Ben Hesper en 1970 para 
describir "el estudio de los procesos informáticos en sistemas bióticos", se puede definir 
como "la investigación, desarrollo o aplicación de herramientas y aproximaciones com-
putacionales que permitan el manejo de datos biológicos, médicos o de comportamiento, 
incluyendo aquellas para adquirir, representar, describir, almacenar, analizar o visu-
alizar dichos datos" o como "el desarrollo y aplicación de métodos analíticos y teóricos, 
modelos matemáticos y técnicas de simulación computacional para estudiar sistemas 
biológicos, sociales o de comportamiento". La primera definición hace r eferencia al 
manejo de información biológica, y la segunda a la biología computacional. El objetivo 
general y la metodología empleada en la presente tesis, "Integración de la bioinformática 
en la investigación molecular en especies forestales: el caso de la encina (Quercus ilex)" 
se incluyen en el primer grupo, el del uso de herramientas bioinformáticas (algorit-
mos, programas, bases de datos y repositorios) utilizados para el análisis de datos, 
principalmente ómicos, y la construcción del transcriptoma, proteoma y metaboloma 
de referencia en la encina, además de la integración de dichas ómicas para definir el 
metabolismo y la respuesta a sequía en dicha especie.

Desde el final del último siglo, la investigación biológica se ha movido desde 
un paradigma reduccionista a una aproximación holística, gracias al gran avance 
tecnológico, especialmente en la disciplina de la biología molecular. La aparición de 
plataformas para la secuenciación de nueva generación (NGS), en el caso de la genómica 
y transcriptómica, y la espectrometría de masas (MS), en el caso de la proteómica y 
metabolómica, ha hecho posible obtener desde cientos a miles de datos de un único 
experimento; el tratamiento y el análisis de los mismos es prácticamente inviable sin 
el empleo de herramientas informáticas. El uso de técnicas de alto rendimiento y su 
combinación con aproximaciones clásicas es lo que define la "Biología de Sistemas", la 
nueva dirección establecida en la investigación biológica. La Biología de Sistemas no 
solo incluye el análisis de miles de entidades moleculares, sino también su integración y 
el establecimiento, a partir de ellos, de modelos predictivos. Esto es bastante factible 
y una realidad hoy en día con organismos modelo (por ejemplo, Arabidopsis), sin
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embargo para sistemas huérfanos de estudios moleculares y recalcitrantes, como es
el caso de Q. ilex, constituye un auténtico desafío. El estudio de esta especie está
justificado tanto por su interés medioambiental y económico para nuestra región, como
por el incremento en la mortalidad del arbolado observado en las últimas décadas
y asociado a estreses bióticos y abióticos, cuyo conjunto constituye el denominado
síndrome de la seca. La muerte del arbolado y la pérdida de masa forestal puede verse
agravada en un escenario de cambio climático. La biotecnología puede contribuir a
resolver este problema a través de programas de mejora basados en la selección asistida
de por marcadores moleculares para la identificación de genotipos élite que son más
tolerantes a estreses bióticos y abióticos y más resilientes al cambio climático.

Como continuación al trabajo realizado desde 2004 por el grupo de investigación
"Bioquímica, Proteómica y Biología de Sistemas Vegetal y Agroforestal", centrado
principalmente en estudios de bioquímica clásica, fisiología y proteómica, y considerando
la ausencia de secuencias de DNA y proteínas en encina, el primer objetivo de la
presente tesis fue la construcción del primer transcriptoma de referencia para esta
especie. Este trabajo es presentado en el capítulo 3, y ha sido publicado en Frontiers
in Molecular Biosciences. Para ello, se llevó a cabo una extracción de RNAm a partir de
tejido homogeneizado de embrión, hojas y raíces, y posterior secuenciación mediante la
plataforma Illumina HiSeq 2500. Se emplearon tres ensambladores diferentes, TRINITY,
RAY y MIRA. Las secuencias ensambladas fueron alineadas contra el transcriptoma
de Quercus robur y Q. petraea, considerado como el transcriptoma filogenéticamente
más preciso y cercano a Q. ilex. MIRA generó un mayor número de “contigs” que
RAY y TRINITY (MIRA>RAY>Trinity). Por lo tanto, las secuencias ensambladas
con MIRA fueron las que se usaron para continuar con la anotación correspondiente
del transcriptoma Q. ilex, lo que resultó en 31973 secuencias anotadas obtenidas por
Blast2GO utilizando Swiss-Prot como base de datos de referencia.

Como continuación del trabajo descrito en el capítulo 4, y como segundo objetivo,
se evaluó una nueva plataforma de secuenciación, Ion Torrent, para la construcción y
análisis del transcriptoma de Q. ilex. Los resultados obtenidos han sido publicados en
PLoS ONE. Como en el capítulo anterior, las lecturas obtenidas a partir de Illumina y Ion
Torrent se ensamblaron utilizando tres programas diferentes, MIRA, RAY y TRINITY.
En el ensamblado de MIRA con Illumina y el de TRINITY con Ion Torrent generaron el
mayor número de transcritos anotados (62628 y 74058 respectivamente). El ensamblado
de MIRA con Ion Torrent generó el mayor número de secuencias compartidas con el
transcriptoma del roble (84.8%). RAY generó los mejores resultados atendiendo al
número de contigs y longitud de los mismos, con valores de E90N50 de 1122bp. Todos
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los transcritos del nuevo transcriptoma de referencia fueron anotados y agrupados en
términos de Gene Ontology ("Biological Process", "Celullar Component" y "Molecular
Function"). Dicho transcriptoma se tradujo in silico, obteniéndose una base de datos
de proteínas que será utilizada en experimentos de proteómica para la identificación de
productos génicos. El uso de dicha base de datos incrementó notablemente el número
de especies proteicas identificadas y los parámetros de confianza de la identificación.

A partir de las bases de datos generadas y los datos multiómicos obtenidos cuando
se utilizó una muestra de encina consistente en un pool de extractos de diferentes
tejidos (embrión, hoja y raíz) se reconstruyeron diferentes rutas metabólicas tal y como
ocurren en Q. ilex. Los resultados se presentan en el capítulo 5 y han sido publicados
en Frontiers in Plant Science.

Se llevó a cabo la extracción independiente a partir de la misma muestra del RNA,
proteínas y metabolitos, estableciéndose el perfil ómico mediante NGS-Illumina (RNA),
shotgun LC-MS/MS, Orbitrap (proteínas) y GC-MS (metabolitos). Se identificaron
62629 transcritos, 2380 especies proteicas y 62 metabolitos. Se llevó a cabo la iden-
tificación de productos génicos correspondientes a enzimas mediante la comparación
con genomas de referencia incluyendo Arabidopsis thaliana (UP0000065489, Oryza
sativa subsp. japonica (UP00005968010), Populus trichocarpa (UP00000672911), and
Eucaliptus grandis (UP00003071112). De las 127 rutas metabólicas descritas en KEGG,
y mediante el empleo de Mapman, se visualizaron 123, entre ellas, las del metabolismo
energético, de carbohidratos, de aminoacidos, lípicos, nucleótidos y secundario. El
ciclo de los ácidos tricarboxílicos (TCA) fue la ruta mejor representadas con 5 de 10
metabolitos, 6 de 8 proteínas enzimáticas y 8 de 8 transcritos. Por otro lado, hay rutas
que no se observaron o estaban muy poco representadas, como por ejemplo las del
metabolismo de lípidos, terpenoides y policétidos.

Como objetivo final de la presente tesis, se llevó a cabo un análisis transcriptómico
y proteómico integrado de la respuesta a sequía en plantones de Q. ilex. Los resultados
se presentan en el capítulo 6, correspondiente a un manuscrito que será enviado para
su publicación.

Las plántulas de Q. ilex crecieron en macetas con perlita, siendo sometidas a
condiciones de sequía por falta de riego durante 30 días. Se tomaron muestras de
hojas a dos tiempos, cuando la fluorescencia de las hojas disminuyó en un 30% y un
50% (20 y 25 días). Tras la extracción de RNA y proteínas se llevó a cabo su análisis
mediante RNA-Seq (Illumina) y proteómica “shotgun” (LS-MS/MS, Orbitrap). El
análisis de RNA-seq generó 47868 transcritos correspondientes a 21000 unigenes, con
3588 diferencias cualitativas o cuantitativas entre plántulas irrigadas y no irrigadas
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(1149 sobreexpresados y 2439 reprimidos). A partir de la proteómica “shotgun” se
identificaron 4008 proteoformas, productos de 2767 genes diferentes; de ellos, 640
presentaron diferencias cualitativas o cuantitativas en abundancia entre tratamientos
(353 más y 287 menos abundantes en condiciones de sequía). Los productos genéticos
variables se clasificaron en términos de Gene Ontology (proceso biológico, función
molecular y componente celular) y en rutas metabólicas de KEGG en el caso de las
enzimas. El conjunto de datos variables se sometió a análisis estadístico multivariante,
PCA y sPLS. Finalmente, se usó GeneMANIA para la construcción de redes de inter-
acción. Hubo cambios importantes en el patrón de expresión génica siendo los grupos
de respuesta a estrés y cloroplastos lo más afectados. Respecto a rutas metabólicas, se
detectaron cambios en la síntesis de proteínas, fotosíntesis, carbohidratos, aminoácidos
y fenólicos. Hubo cambios transitorios (observado a un solo tiempo) o permanentes
(comunes a los dos tiempos) detectados a nivel de transcrito y/o proteína. El número
de productos génicos variables detectados por ambas plataformas fue mínimo, entre
ellos RPS2, 4CL2, PSB28 y RIN4. A partir del conjunto de datos de transcritos y
proteínas variables, se construyeron dos redes de interacción: la primera incluía los
genes sobreexpresados CLPB2, CLPB3, HSP70, HSP17.4, FtsH6, AT1G23740, SMT1 y
UGP3, y los genes reprimidos ABA2, RPS1, ADK y RPL4, y la segunda red incluía los
genes sobreexpresados CLPB2, CLPB3, HSP70, HSP17.4, FtsH6, AT1G23740, AP1,
INVE, AT4G2740, CAD4, FEN1 y HIPP27 y el gen reprimido ABA2. Se proponen
como genes marcadores de respuesta y tolerancia a sequía en encina a aquellos so-
breexpresados a los dos tiempos y detectados a nivel de transcrito y proteína. Solo
un número de genes cumplen dichas características entre los que se incluyen posibles
proteínas de respuesta a choque térmico, CPLB2 y CPLB3, a una metaloproteasa
cloroplástica, FTSH6, y la proteína del centro de reacción del fotosistema II, PSB28.

Como conclusión general, es necesario hacer énfasis en la necesidad del empleo de
herramientas bioinformáticas para el análisis de la gran cantidad de datos generados
por las técnicas ómicas, a la vez que, en la necesidad de la revisión y validación manual
de los resultados de cara a una correcta, no especulativa, interpretación biológica. Los
seres vivos son mucho más complejos de lo que podríamos imaginar, y el conocimiento
de su biología requiere mejoras en las técnicas de laboratorio y análisis in silico, con
el fin de profundizar en el conocimiento de los mecanismos que conectan el genotipo
con el fenotipo y la identificación de productos génicos y sus interacciones asociados
a diferentes procesos biológicos como son el de la respuesta y tolerancia/resistencia
a estreses en plantas. Dicho conocimiento permitirá abordar programas de mejora
mediante aproximaciones biotecnológicas.
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Chapter 1

Introduction





1.1 Bioinformatics, definitions and history 3

Figure 1.1 Number of publications per year appearing in PubMed from 1984 to 2018, using ’Bioinformatics’ as
searching term.

1.1 Bioinformatics, definitions and history
Bioinformatics, according to its etymology, is the application of informatics to biological
research and knowledge. The Oxford dictionary defines Bioinformatics as "The science of
collecting and analysing complex biological data such as genetic codes". A more scientific
definitions are: defines Bioinformatics as the science of storing, retrieving and analysing
large amounts of biological information (European Bioinformatics Institute (EMBL-
EBI))or "The study of biological information using concepts and methods in computer
science, statistics, and engineering (Rhee, Dickerson, and Xu, 2006). It is a highly
interdisciplinary field involving many different types of specialists, including biologists,
molecular life scientists, computer scientists and mathematicians. In summary, is the
application to biology of mathematically based computational tools and statistics.

The term Bioinformatics was coined by Paulien Hogeweg and Ben Hesper to describe
’the study of informatic processes in biotic systems’ and firstly appeared in a publication
(Hesper and Hogeweg, 1970). The number of publications in which reference is made
to bioinformatics has grown exponentially over the thirty last years (Figure 1.1).

Bioinformatics have been applied in different fields, from structural and functional
genomics, physiology, morphometry, phenotyping, data integration, and biotic and
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abiotic interactions in specific ecosystems, among others. It has been used in basic and
translational research, including Biomedicine, Agriculture, Climate change and other
environmental concerns.

As reviewed in (Rhee, Dickerson, and Xu, 2006), bioinformatic tools can be divided
in two categories, although with no clear limits between them: biological information
management and computational biology,. The first one is defined by the The National
Institutes of Health (NIH) (https://www.nih.gov/) “research, development, or applica-
tion of computational tools and approaches for expanding the use of biological, medical,
behavioral or health data, including those to acquire, represent, describe, store, analyze,
or visualize such data”. The second one is defined as “the development and application
of data-analytical and theoretical methods, mathematical modeling, and computational
simulation techniques to the study of biological, behavioral, and social systems”.

The methodology employed in the present Thesis belongs to the first category,
as bioinformatic tools (algorithms, programs, databases and repositoires) have been
used to construct from wet data, mostly -omics one, the transcriptome, proteome, and
metabolome of Holm oak and its integration, it aimed at defining the metabolism and
responses to stresses (drought) in this species.

Some key milestones in the development of Bioinformatics as an independent disciple
are mentioned in Table 1.1. In successive sections we will comment on the specific
tools and software used in this doctoral thesis.

Table 1.1 Milestones in Bioinformatics

1962 First Bioinformatic software (COMPROTEIN) (Dayhoff and Ledley, 1962)
1970 First Algorithm for DNA sequence alignment (Needleman and Wunsch, 1970)
1971 Establisment of the Protein Data Bank (Bernstein et al., 1977)
1974 First algorithm for predicting protein structures (Chou and Pasman, 1974)
1978 First probabilistic model of aminoacid substitution (Dayhoff, Schwartz, and Orcutt, 1978)
1979 First software for analyzing Sanger sequencing reads (Staden, 1979)
1981 Creation of GCG and DNASTAR software (Devereux, Haeberli, and Smithies, 1984)
1985 Creation of a journal specialized in bioinformatics (Beynon, 1985)
1986 EMBL and GenBank databases are unified https://www.insdc.org/
1987 DDBJ joins to the EMBL and GenBank union https://www.insdc.org/
1988 Development of FASTA algorithm (Pearson and Lipman, 1988)
1990 Release of Blast algorithm (Altschul et al., 1990)
1991 First version of Linux (Torvalds, 1991)
1991 First version of Python programming language (Rossum and Boer, 1991)
1993 Release of R programming language (Ihaka and Gentleman, 1996)
2005 454 sequencing. Next Generation Sequencing (Margulies et al., 2005a).
2005 Release of the functional annotator, Blast2GO. (Conesa et al., 2005)
2006 First Solexa sequencer (Bennett, 2004)
2011 Pacific Biosciences commercialized SMRT sequencing (Eid et al., 2009)
2015 Oxford Nanopore anounces MinION sequencer (Mikheyev and Tin, 2014)

https://www.nih.gov/
https://www.insdc.org/
https://www.insdc.org/
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Table 1.2 List of some of the principal biological databases of molecular data.

DNA Data Bank of Japan (DDBJ)
European Nucleotide Archive (EMBL-EBI)DNA databases
GenBank (NCBI)
Gene Expression Omnibus (GEO)Gene expression databases Expression Atlas
UniProt
InterPro
ProteomeXchange
Pfam

Protein databases

Protein Data Bank
MetabolomeXchange
KEGG
MetaCycMetabolite database

Plant Metabolic Network (PMN)

With de advenement of the omics techniques, including Transcriptomics, Proteomics
and Metabolomics Bioinformatics is a key tool for interpreting experimental molecular
biology studies which due to their large volume of data and complexity, would be
difficult to approach manually.

The increasing amount of information available on genes, proteins or metabolites,
must be compiled and arranged it in databases. To this end, there are multiple computer
resources that make basically any pieces of information available to researchers (Table
1.2). However, most of the data available in databases correspond to model species or
species that have been extensively studied for different reasons. Orphan species from
molecular studies, such as forest species including Holm oak (Quercus ilex), European
oak (Quercus robur) or Maritime pine (Pinus pinaster) are poorly represented in these
databases. This fact makes a challenge to work with non-model organisms at first, but
as new molecular, physiological or even behavioural data are generated, Bioinformatics
to build an integrated interpretation of the functioning of a cell, tissue or organism.

1.2 Omics technologies
The technological advances and the development of computational algorithms, that
allows the use of the information available in the databases have made possible the
emergence of the omic disciplines (such as Genomics, Transcriptomics, Proteomics,
Metabolomics and Phenomics). By omic techniques we mean those that allow the
massive study of the molecules belonging to the different cellular functional levels from
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genes, transcripts, proteins to metabolites. Bioinformatics, is a mandatory discipline
for the interpretation of the vast amounts of data, such as those generated from the
omics analyses; which in turn requires the use of techniques that can handle with high
sensitivity and specificity large quantities of extremely complex biological samples, such
as the recalcitrant forest species. (Schneider and Orchard, 2011). The omic approaches
are briefly commented below following the flow of the biological information according
to the Dogma of Molecular Biology.

Genomics is the discipline whose objective is the study and cataloguing of all the
genes that an organism possesses and the organization, structure and function of
each of them. Nowadays, the emergence of the Next Generation Sequencing (NGS)
platforms (Illumina®, Oxford Nanopore®, Pacific Biosciences®) allows to sequence novel
genomes of any species, as well as improve comprehensive sequencing from previously
annotated in a fast and economic way (Weirather et al., 2017; Jung et al., 2019).In
recent years the sequencing and annotation of some forest species of great importance of
the genus Quercus, such as the common oak (Quercus robur) or the cork oak (Quercus
suber)(Plomion et al., 2018; Ramos et al., 2018), have been carried out using these
latest sequencing techniques and the information available for these species of great
environmental importance has increased exponentially.

Transcriptomics aims to identify and quantify gene expression under certain condi-
tions. Monitoring individual gene expression profile is routinely conducted by quantita-
tive real time PCR (RT-PCR), while untargeted global profile of gene expression were
done by microarrays.Recently Transcriptomics global analyses have taken advantage
of new emerged NGS technologies, which make possible to sequence and quantify at
once all the transcripts present in any biological system. Hence, these newly developed
methodologies allow accomplishing the ultimate goal of Transcriptomics, to quantify,
as precisely as possible, the greatest possible number of transcripts and their vari-
ants. Clustering methods are used to order and visualize the underlying patterns in
large scale expression datasets showing similar patterns that can therefore be grouped
according to their co-regulation/co-expression (e.g. specific developmental times or
cellular/tissue locations) (Vidman, Källberg, and Rydén, 2019). In this doctoral thesis,
Transcriptomics is used to quantify the expression levels of the genes of holm oak to
decipher which of them are involved in drought stress tolerance.

Proteomics is the large-scale study of proteins, including their expression patterns,
structures, modifications, interactions and functions (Anderson and Anderson, 1998).
The development of Proteomics have been possible thanks to the advances made in mass
spectrometry (MS), that allows sensitive and comprehensively analyses for identifying
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proteins, separating them by their mass/load ratio. The identification of parent proteins
from derived peptides now relies almost entirely on the software of search engines,
which can perform in silico digests of protein sequence to generate peptides. Their
molecular mass is then matched to the mass of the experimentally derived protein
fragments (Angel et al., 2012). In the present doctoral thesis, a proteomic profiling
of holm oak seedlings is performed, which together with the quantification data of
transcripts, allow obtaining a holistic vision of the biology of the species.

Metabolomics is the arrange of techniques intended for the comprehensive and
quantitative analyses of all the metabolites present in a biological sample. The two
most common analytical approaches for the generation of metabolomics data are
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) (Turi
et al. 2018), but other technologies like near infrared spectroscopy (NIRS) are often
used. MS based metabolomics is generally preceded by a separation step, which
reduces the complexity of the biological sample and allows the MS analysis of different
sets of molecules at different times. The most common separation techniques in MS
technology are liquid chromatography (LC), Capillary electrophoresis (CE) and gas
chromatography (GC) columns (Zhang et al., 2016b). Together with the integration
of transcriptomic and proteomic data, a qualitative integration of metabolomic data
corresponding to the identification of some metabolites in holm oak has been carried
out (López-Hidalgo et al., 2018).

Phenotype can be any characteristic of the species, such as: the growth rate of a
tree, its fruit production capacity, the proteins that constitute a certain tissue, etc. In
this way, a phenomic study consists in the acquisition of datasets on the characteristics
of an organism (Houle, Govindaraju, and Omholt, 2010). The phenomenon allows the
understanding of the genotype-phenotype relationship and the effects of environmental
factors on the development and expression of the phenome.

The independent analysis of the data generated from each of the omics technologies
provides valuable information for the knowledge of the organism on study and its
application in various biological areas. However, in these individualized analyses some
crucial information is missing that can only come from the integration of all set of data.
In this way, the development of tools that allow the analysis of the different omic data
together, by means of multivariate analysis, can provide a more realistic view of what
happens in the system biological.
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1.3 Bioinformatics methods and tools
A high number of softwares available for analysing biological data. Those freely ac-
cessible have been very popular in recent years with the promotion of open source
science. Besides being its source code available, these softwares can be permanently
updated and improved according to the needs. In Table 1.3 some of the most popular
free bioinformatics software are listed. Below it will be described the most important

Table 1.3 The 15 Best Free Linux Bioinformatics Tools (www.linuxlinks.com)

Bioconductor Analysis and comprehension of high-throughput genomic data
Biopython Tools for biological computation written in Python
BioPerl Perl tools for computational molecular biology
InterMine Integrate biological data sources
UGENE Set of integrated bioinformatics software
IGV High-performance visualization genome browser tool
BioJava Provides Java tools for processing biological data
GROMACS Versatile package to perform molecular dynamics
Taverna Workbench For designing and executing bioinformatics workflows
EMBOSS The European Molecular Biology Open Software Suite
Clustal Omega Multiple sequence alignment program
BLAST Algorithm for comparing primary biological sequence information
bedtools Powerful toolset for genome arithmetic
geWorkbench Software platform for integrated genomic data analysis
Bioclipse Rich-client platform chemistry and biology workbench

methodologies, softwares, databases and algorithms that have helped to achieve the
objectives of this doctoral thesis. As mentioned above, Bioinformatics is a multidisci-
plinary area that draws on knowledge from other scientific fields. In this particular case,
of non-model species, software related to the assembly and annotation of sequences,
algorithms for the quantification of molecular species and platforms aimed at carrying
out a consensus evaluation of the results have been essential.

1.3.1 Genomics

The most widely used sequencing technologies to date are capable of sequencing small
fragments of an organism’s DNA (Illumina®, Oxford Nanopore®, Pacific Biosciences®).
Each of them has different chemical base, which vary in the amount of data generated,
the length of base pairs capable of sequencing and the amount and types of errors they
generate. The millions of short sequences generated, called ’reads’, are then used by
different computer software to reconstruct or assemble the complete DNA sequences.
However, before proceeding to the assembly of sequences, it is necessary a previous
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step to evaluate the quality of these raw reads and eliminate low quality sequences
and errors. Tools such as FastQC (Andrews, 2010) provide phred score information,
which is a standard parameter for measuring quality in the identification of the bases
generated by the sequencing platforms. Quality phred value is defined by:

q = −10 log10 p

where p is the estimated error probability for that base-call. Thus, a base-call
having a probability of 1/1000 of being incorrect is assigned a quality value of 30. Note
that high quality values correspond to low error probabilities, and conversely (Ewing
and Green, 1998). The %GC distribution should be adjusted to a normal distribution
with the maximum percentage of mean GC of the particular species on study, otherwise
it would mean that the DNA extract could be contaminated with genetic material
from another organism. The sequences or poor quality regios of raw reads are filtered
and removed using software packages such as FASTX-Toolkit (Gordon and Hannon,
2010), Trimmomatic (Bolger, Lohse, and Usadel, 2014) or Cutadapt (Martin, 2011). At
present there are numerous software for the assembly of sequences, being most of them
are based either on the De Bruijn graph method(Trinity, Ray, Velvet)(Grabherr et al.,
2011; Boisvert, Laviolette, and Corbeil, 2010; Zerbino and Birney, 2008) or on the
Overlap-Layout-consensus method(MIRA, Newbler, Edena) (Chevreux, Wetter, and
Suhai, 1999; Margulies et al., 2005b; Hernandez et al., 2008). In addition, assemblers
can also be used to reconstruct transcriptomes, that is, all those messenger RNAs
that are being transcribed at any given time. For this purpose, Illumina technology is
the most frequent choice due to the best quality/price ratio. Once the gene (Whole
Genome Assembly) or transcript (Whole Transcriptome Assembly) sequences have
been obtained, it is necessary to perform a gene annotation, to associate biological
information to each gene. Nowadays, with the number of organisms being sequenced
growing exponentially, it is necessary a nucleotide-level annotation high enough that
allows the integration of genome sequence with other genetic and physical maps of the
genome (Stein, 2001). Understanding the function of genes and their products in the
context of cellular and organismal physiology is the goal of process-level annotation.
The two most common approaches used for annotation are: Gene predictors ab initio.
These softwares search, in the DNA strands, for certain structures and sequences of
protein-coding genes. Sequence similarity gene finding methods. These softwares look
for sequences that are similar to others already described in other works and deposited
in gene or protein databases. Once the sequences have been identified, it is necessary
to carry out a functional annotation, which consists in relating genes to biological
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processes through Gene Ontology (GO) terms. The terms describe the function of genes
in three classes: Biological processes, Molecular function and Cellular components.
Additionally, it can be assigned the pathways to which each gene or protein belongs.
The most popular annotation software is Blast2GO (Conesa and Götz, 2008), although
there are other alternatives such as Sma3s, PANNZER2 or Trinotate (Munoz-Mérida
et al., 2014; Törönen, Medlar, and Holm, 2018; Bryant et al., 2017).

1.3.2 Transcriptomics

When a reference genome or transcriptome has been assembled and annotated, a
differential gene expression study can be performed. Sequencing platforms are used to
reveal the presence and amount of each of the genes being transcribed under different
experimental conditions. This process is known as RNA-seq and is currently widely
used for a multitude of biological studies. The global quantification of the expression
of all genes is done by mapping the reads obtained against a reference genome or
transcriptome as the case may be. In other words, the raw reads are aligned against
the complete sequences of the genes and the quantification of the number of readings
aligned for each gene is carried out. In the case of organisms that do not contain
introns in its genome, it is recommended the use of contiguous aligners such as Bowtie2
or BWA (Langmead and Salzberg, 2012; Li and Durbin, 2009) that were designed to
align DNA. However, in the case of genomes with introns, the best option is to use
aligners such as Hisat2, STAR or Kallisto (Kim, Langmead, and Salzberg, 2015; Dobin
et al., 2013; Bray et al., 2016).

Once the mapping process is complete, a report will be generated containing the
number of aligned readings and the normalized value for each gene. There are several
standardization options such as CPM (Counts per Million), RPKM (Reads Per Kilobase
Million) FPKM (Fragments Per Kilobase Million) or TPM (Transcripts Per Kilobase
Million). Depending on the statistical package used to analyse the results, this may
require a certain type of data normalization. Many of the statistical packages for this
task are written in the programming language R and are deposited in the bioconductor
database (https://www.bioconductor.org/). EdgeR and DEseq2 (Robinson, McCarthy,
and Smyth, 2010; Love, Huber, and Anders, 2014) are two packages that compute the
differential expression based on a model using the negative binomial distribution but
DESeq can use a Wald test or a LikelyHood Test while EdgeR performs a Fisher’s exact
test. Another well-known statistical package is limma that use of linear models for
analysing designed experiments and the assessment of differential expression (Ritchie et
al., 2015). Depending on the variability of the sample, the threshold for the Fold change,

https://www.bioconductor.org/
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the p-value or the ratio of false positives (FDR) can be adjusted. Once the statistical
analysis of differential expression data has been carried out, a list of overexpressed
or repressed genes will be obtained. To explore the functional processes in which a
given set of genes are involved, functional enrichment can be carried out using tools
such as ShinyGO, FunRich, FatiGO or Blast2GO (Al-Shahrour, Díaz-Uriarte, and
Dopazo, 2004; Conesa and Götz, 2008; Ge and Jung, 2018; Pathan et al., 2015). Finally,
differential expression data must be validated by quantifying the expression levels for
some selected genes under the experimental condition by qPCR. Ultimately, this would
indicate the usefulness of certain genes as markers for a specific characteristic.

1.3.3 Proteomics

Proteomic analyses provides complementary and equivalent information to the data
commented above, but in order to carry out a proteomic study, it is necessary to
have the sequences of the proteins, which in the case of model or well-studied species
(i.e. Human, Arabidopsis, yeast) can be found in databases such as UniProt (https:
//www.uniprot.org/). However, when conducting proteomic analysis with orphan
species there is no sequence information in the repositories, making it mandatory to
use a proteome of a nearby species. However, provided a reference transcriptome is
available, it is possible to translate in silico of the transcribed sequences to extrapolate
the amino acid sequences that encode for their corresponding protein. The approach is
known as Proteogenomics. With a reference proteome, it is now possible to process
the peptide data analyzed by Shotgun LC-MS. Proteome DiscovererT M(ThermoFisher
Scientific), Peaks and MaxQuant (Cox and Mann, 2008; Ma et al., 2003) are some
of the most popular software for this type of tasks. Once protein identifications are
obtained for a given species, a quantitative analysis can be performed by either, AUC
(area under the curve) and spectral counting (Neilson et al., 2011). Nowadays, the
normalization of the AUC ratio is the most popular and allows statistically analyse of
changes in protein levels in a similar way as is done with transcripts.

1.3.4 Metabolomics

The gene expression and protein level analysis reveals the set of gene products that are
bein produced in the cell and represents a single and incomplete facet of cell function.
In contrast, metabolic profiling goes a step further to the cell’s physiology.

Metabolites are quite diverse molecules,differing in polarities, molecular weights,
functional groups, stability and chemical reactivity, among other properties. Hence, its

https://www.uniprot.org/
https://www.uniprot.org/
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study requires the use of multiple platforms and analytical configurations to maximize
the coverage of the analysed metabolome, which is something that does not occur
in genomics and proteomics experiments. The retention time for each metabolite
is used together with the values of the mass/charge ratio to be obtained in the
mass spectrometer by generating the necessary information for the identification
of metabolites using a number of available databases such as LipidBank (http://
lipidbank.jp/, LIPID MAPS (https://www.lipidmaps.org/), Metlin Database (https:
//metlin.scripps.edu/), NIST (https://webbook.nist.gov/chemistry/), MetaCyc (https:
//metacyc.org/), Golm Metabolome Database (gmd.mpimp-golm.mpg.de/), etc.

1.3.5 Interactomics

One of the main challenges of systems biology and functional genomics is to integrate
information from proteomics, transcriptomics and metabolomics to provide a bettere
understanding of cell biology. Interaction networks are one of the key elements within
systems biology along with the differential equations that allow to define the changes
in concentration of the different compounds over time. Nevertheless the latter is
difficult to apply, as they involve knowledge of the specific concentrations and kinetics
of numerous enzymes, substrates and products, the networks can be used easily. These
networks are structures made up of nodes and connections that allow us to know the
relationships established between the different nodes. In order to make sense of complex
data networks, Bioinformatics helps us to organise and structure this information.
Bioinformatics has become an essential instrument to perform global analyse and
visualize these interactions, while databases such as KEGG (Kyoto Encyclopaedia of
Genes and Genomes)(https://www.genome.jp/kegg/) or Reactome(https://reactome.
org/), allow to establish maps of regulated enzymes/metabolites within different
metabolic networks. Protein-protein interactions can also be determined using the
STRING database (Szklarczyk et al., 2015).

The combination of proteomics and metabolomics provides a complementary source
of information that improves the reliability of data interpretation. A first approximation
when interpreting all previously generated data is to make an integrated visualization
of each of the dataset from each omics. For this task there are tools such as Paintomics
(Garcia-Alcalde et al., 2011), which is an application programmed in Python (https:
//www.python.org) and Perl (https://www.perl.org/), which processes quantitative
data from various omics and reconstructs metabolic networks from the KEGG database.
Paintomics performs a fisher test to calculate the combined p-value for each pathway
from the individual data of each omic for any of its components.

http://lipidbank.jp/
http://lipidbank.jp/
https://www.lipidmaps.org/
https://metlin.scripps.edu/
https://metlin.scripps.edu/
https://webbook.nist.gov/chemistry/
https://metacyc.org/
https://metacyc.org/
gmd.mpimp-golm.mpg.de/
https://www.genome.jp/kegg/
https://reactome.org/
https://reactome.org/
https://www.python.org
https://www.python.org
https://www.perl.org/
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1.3.6 Other approaches

The complexity of the study can still be increased if attempts are made to create
predictive models with machine learning techniques from each omic dataset. Machine
learning is a part of Artificial Intelligence (AI) whose objective is that a machine could
learn from examples, like datasets, based on statistical methods. Nowadays there is a
great availability of data, particularly in the field of bioinformatics. Machine learning
techniques are increasingly being applied (Li, Wu, and Ngom, 2018), for example for
automatic genome annotation and the analysis of omics data obtained in experiments
with high-performance technologies. Some of the most popular methodologies used
for automatic learning are: neural networks, random forest, decision trees, Naïve
Bayes classification or Algorithm Clustering. A multi-layered omic approach based
in learning patterns, allows such systems to make quite complex predictions when
training with large datasets. This latter approach, along with those explained above,
allows non-model species to be studied at almost the same level as their counterparts,
generating predictive models from experimental data.

1.4 Multi-omics study of orphan species: the case
of Holm oak (Quercus ilex)

Studying orphan species at the molecular level is a major challenge, but there are
necessary to understand mechanisms that regulate physiology and response to envi-
ronment of any organism, as is the case of the holm oak. Holm oak (Quercus ilex) is
one of the predominant tree species in the western Mediterranean forest, and in the
Iberian Peninsula it covers around 4 million hectares (Joffre, Rambal, and Ratte, 1999).
It presents characteristics of sclerophyll species, such as small and coriaceous leaves,
adaptations that allow it to tolerate drought and high temperatures (De Rigo and
Caudullo, 2016). In addition, holm oak also has a high resistance to cold (Morin et al.,
2007), which has allowed it to survive and dominate continental climates with cold
winters followed by long, hot and dried summers. Holm oak germinates from seeds
(acorns), although they are also reproduced by root and vine shoots. Its fruit, the acorn,
is used in the agrosilvopastoral system of the ’dehesa’, where it is used for the feeding
the pigs destined to the production of hams of maximum quality (Cantos et al., 2003).
Holm oak therefore has both economic and ecological value. However, these ecosystems
have been threatened in recent decades, due to the presence of elderly individuals, over-
exploitation, poor regeneration, inappropriate livestock management, and the severe
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effect of forest decline attributed to pathogen attack (Phytophthora cinnamoni and
Hypoxylon mediterraneum). In addition to those threatens, the increase in temperatures
and the extension of the periods of drought that have been developing in a scenario of
climate change, endange the survival of Holm oak (Sanchez et al., 2002). In this context,
the works carried out by the Research Group ’Agroforestry and Plant Biochemistry,
Proteomics and Systems Biology’ (AGR-164) (https://www.uco.es/probiveag/), from
the University of Cordoba (Spain), is focused on the study of different aspects of Holm
oak biology, from physiological to molecular approaches, combining classical biochem-
istry with new -omics approaches (transcriptomics, proteomics and metabolomics)
(Guerrero-Sanchez et al., 2017; Guerrero-Sanchez et al., 2019; López-Hidalgo et al.,
2018).

Holm oak has an extreme complexity due to its biological characteristics, like recal-
citrance, allogamy and a long-life cycle. In addition, like other forest species, classical
breeding programmes are not viable and genetic engineering is neither feasible nor
accepted within the European Union. The only possible alternative is the exploitation
of biodiversity, which involves, as a preliminary step, the characterisation of biodiversity
at morphological, phenological, physiological and molecular levels, including modern
omics approximations. The final objective would be the identification of ’elite’ or ’plus’
trees with phenotypic characteristics based on molecular markers.

In the context of this doctoral thesis, it has been carried out a de novo assembly
and annotation of Holm oak transcriptome. A multi-omic analysis protocol has been
developed, using data from holm oak as a working model. As a result, a web repository
(http://www.uco.es/probiveag/holm-oak-database.html) has been created where the
databases of transcripts, proteins and metabolites of the Q. ilex are housed. Finally,
a multi-omic study has made it possible to characterize the molecular response to
drought in the holm oak at the level of transcripts, proteins and metabolic pathways.

https://www.uco.es/probiveag/
http://www.uco.es/probiveag/holm-oak-database.html
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• Perform a Transcriptomic, proteomic and metabolomic analysis of a representative
sample of Holm oak, consisting of a mixture of different organs (root, leaf, seed and
embryos). Identification and functional and structural cataloguing of molecular
entities.

• Create a species-specific database of genes, proteins and metabolites of Holm
oak. This database will be enriched with those data generated in the group or
that, being freely accessible, appear in databases or publications.

• Generate a knowledge base of the molecular responses to drought in Holm oak by
combining multiple omic analyses (transcriptomic, proteomic and metabolomic).
Identification of genes and gene products responsible of drought response and
tolerance.
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3.1 Introduction
Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) is the dominant tree species
in the Mediterranean forest with great ecological and economic value (Pulido, Diaz,
and Hidalgo de Trucios, 2001). It constitutes, together with cork oak (Quercus suber),
the ’dehesa’, a typical Mediterranean agro-forestry-pastoral ecosystem, covering almost
four million hectares in the western Iberian Península (Joffre, Rambal, and Ratte,
1999). Besides, Holm oak is widely used in reforestation programs and silvicultural
practices, being their seeds, acorns, used for feed, and fatten the exclusive Iberian race
pigs, whose meat is the basis of a high-quality food industry (Vicente and Alés, 2006;
Cañellas et al., 2007).

Nowadays, Quercus ilex forest maintenance and sustainability are facing severe
problems and challenges. Those are related to agricultural practices, low natural
regeneration, seed viability, which may be due to their non-orthodox seed character
(Doody and O’Reilly, 2008), plant mortality in both adult trees and young plants after
field transplantation resulting from adverse environmental conditions like drought, the
so-called decline syndrome (Gallego, Algaba, and Fernandez-Escobar, 1999), especially
considering the current and future climate change scenario (Plieninger, Pulido, and
Schaich, 2004; Bates et al., 2008; Corcobado et al., 2013). Overcoming those threats
could be greatly facilitated if Holm oak ecophysiological behavior was better understood
at the molecular level. Nowadays, multidisciplinary approaches by integrating the
so called omic studies transcriptomics, proteomics and metabolomics have become
indispensable to shed light on the fine-tuned molecular regulation in many biological
systems/species. Thus, system biology aims to describe and interpret the full complexity
of cells, tissues, organs, and organisms.

In this context, our research group has been investigating different aspects of
Quercus ilex biology such as natural variation, seed germination and seedling growth,
physiology, biotic and abiotic stress-responses, combining classical biochemistry, and
integrating those multidisciplinary ’omics’ analysis (Echevarría-Zomeño et al., 2009;
Echevarría-Zomeño et al., 2012; Jorrín-Novo et al., 2009; Valero-Galván et al., 2011;
Valero-Galván et al., 2012; Valero-Galván et al., 2013; Sghaier-Hammami et al., 2013;
Sghaier-Hammami et al., 2016; Romero-Rodríguez et al., 2014). Nevertheless, the
scarce genomic information (to date) available for Quercus ilex, supposes, such as for
other orphan tree species (Abril et al., 2011; Jorrín-Novo et al., 2015), a notable obstacle
to successfully carry out these global studies at molecular level. Driven by that need,
our main aim has been to generate a reference transcriptome of Quercus ilex which
will support and complement future research within this species. For that purpose, as
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a first approach we sequenced the mRNA of a pooled plant sample containing equal
amounts of homogenized tissue from acorn embryo, leaves, and roots, using an Illumina
Hiseq 2500 platform. Contrasting different assembly strategies and algorithms, we
present here the first de novo assembled transcriptome of the non-conventional plant
Quercus ilex.

The pre-processed raw reads generated by the sequencing platform, and used for
the de novo assembly, have been deposited at the NCBI SRA database with accession
number SRR5815058.

This new genomic resource will set the stage for ongoing and future studies to obtain
a better understanding of molecular mechanisms involved in physiological processes
such as seed germination, seedling establishment, drought, which are essential for
selection of superior phenotypes or Candidate Plus for restoration and reforestation
programs under the impending climate change in Mediterranean regions.

3.2 Materials and Methods

3.2.1 Plant material

Mature acorns from Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) were
collected from a tree located in Aldea de Cuenca (province of Córdoba, Andalusia,
Spain). Acorns were germinated and seedlings grew in a chamber under controlled
conditions (a 12 h photoperiod, a temperature of 21 ± 1 ◦C, a relative humidity of
60 ± 5% and an irradiance of 200 µmol m−2s−1, (Echevarría-Zomeño et al., 2009)).
Germinated embryo, leaves and roots from 1 year plantlets were collected separately,
weighted, and individually frozen in liquid nitrogen. The plant material used for RNA
sequencing experiments consisted in a pool generated by mixing equal amounts of
homogenized tissue from acorn embryo, leaves, and roots.

3.2.2 RNA extraction

Total RNA was extracted from 50 mg pooled plant sample according the procedures
previously set up in our laboratory for Quercus ilex samples (Echevarría-Zomeño et al.,
2012). Contaminating genomic DNA was removed by DNase I (Ambion) treatment.
Total RNA was quantified spectrophotometrically (DU 228800 Spectrophotometer,
Beckman Coulter, TrayCell Hellma GmbH & Co. KG). The high quality and integrity
of the RNA preparation was tested electrophoretically (Agilent 2100 Bioanalyzer).



3.2 Materials and Methods 23

Only high-quality RNAs with RIN values > 8 and A260:A280 ratios near 2.0 were used
for subsequent experiments.

3.2.3 Enrichment of mRNA, cDNA synthesis, and library
generation for Illumina HiSeq 2500 platform. paired-
end sequencing

The library construction of cDNA molecules was carried out using Illumina TruSeq
Stranded mRNA Library Preparation Kit according to manufacturer instructions
using 2 µg of total RNA followed by poly-A mRNA enrichment using streptavidin
coated magnetic beads and thermal mRNA fragmentation. The cDNA was synthesized,
followed by a chemical fragmentation (DNA library) and sequenced in the Illumina
HiSeq 2500 platform, using 100 bp paired-end sequencing (De Wit et al., 2012).

3.2.4 De novo assembly and analysis of high throughput RNA
sequencing data

The raw reads obtained from the sequencing platform were pre-processed in order to
retain only high-quality sequences to be subsequently used in the assembly. Thus,
each original sequence was quality trimmed considering several parameters (quality
trimming based on minimum quality scores, ambiguity trimming to trim off e.g.,
stretches of Ns, base trim to remove specified number of bases at either 3’ or 5’
end of the reads). The preprocessing parameters used were selected as following:
trimming sequences by maximum 2 ambiguous nucleotides), minimum mean quality
assuming error probability < 0.01, and filtering out those sequences shorter than 30
nucleotides. Three different assemblers were employed to de novo assemble the Quercus
ilex transcriptome, considering there is not a reference genome available, and further
evaluated to contrast the results obtained (Figure 3.1).

Trinity 2.4.0. performs a de novo assembly using an algorithm based on Bruijn
graphs (Grabherr et al., 2011). For the assembly, Trinity 2.4.0 was launched with a
k-mer value (k = 25). Ray 2.3.1. assembly uses de Bruijn graphs but its framework is
not based on the Eulerian steps. Specific subsequences, seeds, are defined, and for each
of them, the algorithm extends it to a contig. Heuristics are defined that control the
extension process in such a way that the process stops if, at some point, the readings
family does not clearly indicate the address of the extension (Boisvert, Laviolette, and
Corbeil, 2010). In this case we selected a k-mer value of 31.
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Figure 3.1 Evaluation of Q.ilex transcriptomes generated. Contig (longer than 400 nucleotides = L > 400 nt) length
distribution and comparative evaluation against oak transcriptome (BlastN e-value = 10−30). (A) Trinity; (B) Ray;
(C) MIRA.
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MIRA 4.9.6 software (Chevreux, Wetter, and Suhai, 1999), unlike Trinity and Ray,
is based on the strategy known as Overlap /Layout/ Consensus. Following the author
guidelines/recommendations for Illumina data, we used the complete raw data without
a filtering process like we described previously.

Evaluation of the structure of the generated assemblies was done with the QUAST
software (Gurevich et al., 2013).

The assemblies obtained using the three aforementioned softwares were blasted
(e-value of 10−30) against the most accurate and nearest phylogenetic transcriptome
currently available, the oak transcriptome (containing Quercus robur and Quercus
petraea sequences) (Lesur et al., 2015). That transcriptome database is divided in two
files OCV3_91K and OCV3_101K but OCV3_91K has a larger amount of valuable
information of Quercus spp. transcriptome. So, we chose OCV3_91K as a general oak
transcriptome database.

3.3 Results

3.3.1 Evaluation and annotation of the assembled transcrip-
tomes

There are differences between the three assembled transcriptomes in terms of transcrip-
tome architecture/structure. Thus, the N50 value, number of contigs and the average
length of the sequences generated by each algorithm differ (Table 3.1).

Considering these results, we can state that MIRA generated more and longer
contigs than RAY and Trinity (MIRA>RAY>Trinity), suggesting that a more robust
architecture/structure is obtained by MIRA for the Q. ilex transcriptome assemby.
Upon the continuous development of NGS methods, data processing, and transcript
assemby remains a main challenge. Several studies have been published devoted to
evaluate different de novo assemblers varying in performance and quality in terms
of number and length of transcripts and computational speed (Clarke et al., 2013).
Besides, it has been reported that the quality of the assembly using a given software
depends on the biological sample on study (Bradnam et al., 2013). Thus, these
aspects should be taken into consideration when comparing different softwares. The
comparison between the sequences generated from Quercus ilex and those available
from the close species, oak transcriptome, reveals that MIRA assembly was the one
which shared the higher number of transcripts (73073), followed by RAY assembler
(Table 3.1). Besides, MIRA assembly sequences blasted against oak transcriptome
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Table 3.1 Comparison of Q. ilex transcriptome assembly using Trinity, RAY, and MIRA assemblers. Statistics and
structure of the transcriptome assembly are indicated, including the number of contigs obtained of a minimum length
(QUAST output data). Comparative hits with oak transcriptome are shown indicating the number of genes shared
with oak and those newly found in Q. ilex.*Oak total transcripts = 87016; **BlastN with e-value = 10−30.

Number of original raw reads 55275472

MIRA Ray Trinity
# contigs (≥0 bp) 169449 107487 77159
# contigs(≥500 bp) 43014 20495 8803
# contigs (≥1,000 bp) 15445 8773 696
# contigs (≥5,000 bp) 155 73 1
# contigs (≥10,000 bp) 2 3 0
Largest contig 11254 12220 5916
Total length (≥0 bp) 83639406 41292773 26286544
Total length (≥1,000 bp) 27409911 14778197 904440
Total length (≥5,000 bp) 941227 471829 5916
Total length (≥10,000 bp) 21731 34168 0
N50 1211 1260 661
N75 742 827 563
L50 11473 5863 3428
L75 23813 11529 5931
GC (%) 41.69 42.47 39.14
Oak transcripts* present in Q. ilex** 73073 63950 49679
Oak transcripts* absent in Q. ilex** 13943 23066 37337
% of oak* transcripts in Q. ilex** 83,98 73,49 57,09

render the longest alignment lengths and better blast scores (Figure 3.1). Taking
into consideration the data and parameters evaluated (Table 3.1 and Figure 3.1), we
decided to use the MIRA assembly to continue with the corresponding annotation of
Quercus ilex transcriptome. After blastX was completed against UniProt(Swiss-Prot)
curated database (e-value of 10−5), followed by the corresponding mapping process,
31973 annotated sequences were obtained by Blast2GO (Conesa and Götz, 2008).

3.4 Direct link to deposited data
The pre-processed raw reads of the transcriptome assembly generated by the se-
quencing platform, and used for the de novo assembly, have been deposited at the
NCBI SRA database with the following accession number SRX2993508 and direct
link: ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR581/
SRR5815058/SRR5815058.sra

ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR581/SRR5815058/SRR5815058.sra
ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR581/SRR5815058/SRR5815058.sra
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Abstract

Transcriptome analysis is widely used in plant biology research to explore gene expres-
sion across a large variety of biological contexts such as those related to environmental
stress and plant-pathogen interaction. Currently, next generation sequencing platforms
are used to obtain a high amount of raw data to build the transcriptome of any plant.
Here, we compare Illumina and Ion Torrent sequencing platforms for the construction
and analysis of the Holm oak (Quercus ilex) transcriptome. Genomic analysis of this
forest tree species is a major challenge considering its recalcitrant character and the
absence of previous molecular studies. In this study, Quercus ilex raw sequencing
reads were obtained from Illumina and Ion Torrent and assembled by three different
algorithms, MIRA, RAY and TRINITY. A hybrid transcriptome combining both
sequencing technologies was also obtained in this study. The RAY-hybrid assembly
generated the most complete transcriptome (1,116 complete sequences of which 1,085
were single copy) with a E90N50 of 1,122 bp. The MIRA-Illumina and TRINITY-Ion
Torrent assemblies annotated the highest number of total transcripts (62,628 and
74,058 respectively). MIRA-Ion Torrent showed the highest number of shared se-
quences (84.8%) with the oak transcriptome. All the assembled transcripts from the
hybrid transcriptome were annotated with gene ontology grouping them in terms of
biological processes, molecular functions and cellular components. In addition, an in
silico proteomic analysis was carried out using the translated assemblies as databases.
Those from Ion Torrent showed more proteins compared to the Illumina and hybrid
assemblies. This new generated transcriptome represents a valuable tool to conduct
differential gene expression studies in response to biotic and abiotic stresses and to
assist and validate the ongoing Q. ilex whole genome sequencing.

4.1 Introduction
Holm oak (Quercus ilex L.) forms natural forests or ’dehesa’ ecosystems, playing
an important role from an environmental and socio-economic point of view (Patón
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et al., 2009). Holm oak, as with other forest tree species, can be defined as an orphan
and recalcitrant experimental system, whose study at the molecular and genomic
level represents a challenge. To date, partial studies using classical biochemical and
proteomics approaches have shed some light on different aspects of Q. ilex biology
such as natural variation, seed germination, seedling growth, physiology and, biotic
and abiotic stress-responses (Echevarría-Zomeño et al., 2009; Echevarría-Zomeño et al.,
2012; Jorrín-Novo et al., 2009; Valero-Galván et al., 2011; Valero-Galván et al., 2012;
Valero-Galván et al., 2013; Sghaier-Hammami et al., 2016; Romero-Rodríguez et al.,
2014).

The holm oak genome has not yet been sequenced, however, transcriptome analysis,
using RNA-sequencing (RNA-Seq), offers an alternative technology now widely used
to identify and characterize gene sequences (Wang, Gerstein, and Snyder, 2009; Li
et al., 2014). In order to generate transcriptomes, a set of read sequences are obtained
first by next generation sequencing (NGS) technologies. Of these, Illumina is the
most commonly used. However, an alternative technology is provided by Ion Torrent
instruments. The raw read data obtained using both platforms differ in some parame-
ters such as fragment length, probability of base substitutions or insertion/deletion
alterations in homopolymeric regions (Quail et al., 2012). Once generated, these reads
must be de novo assembled to produce a transcriptome. Several de novo transcriptome
assemblers are currently available (El-Metwally, Ouda, and Helmy, 2014; Biswas et al.,
2014) that, combined with user-tunable parameters, enable the generation of a large
figure of candidate assemblies for a single data set.

Recent studies have shown that the evaluation of de novo transcriptome assemblies
remains a challenge (Li et al., 2014; Bradnam et al., 2013), and there is not a universal
accepted optimal assembler identified for de novo generation.

Recently, a de novo transcriptome assembly of Q. ilex was published using an
Illumina Hiseq 2500 platform (Guerrero-Sanchez et al., 2017; López-Hidalgo et al.,
2018). Initially, 31,973 total sequences were annotated using the Blast2Go software
(Guerrero-Sanchez et al., 2017) and later, the total number of transcripts was increased
to 62,628 total sequences using the Sma3s v2 software (López-Hidalgo et al., 2018). To
improve the amount of annotated sequences, in this work, we compare the resulting
assembled sequences from two sequencing platforms, the new Ion Torrent reads against
the Illumina transcriptome previously described by our group (Guerrero-Sanchez et al.,
2017; López-Hidalgo et al., 2018). In addition, a hybrid transcriptome obtained from
Illumina and Ion Torrent combined reads is discussed. It should be noted that the data
obtained from each sequencing platform depends on the organism on study. Every



4.2 Materials and methods 31

species has a different number of genes which requires a tailored sequence yield for an
effective transcriptome (Lowe et al., 2017). Moreover, a comparison of three assemblers
(MIRA, TRINITY and RAY), each using different algorithms, for the construction
of a new de novo transcriptome of holm oak is carried out in each platform and then
compared to each other. The assemblies to provide a transcriptome are highly variable
in the contigs and scaffold lengths, and in the total assembly size (Bradnam et al.,
2013), (Clooney et al., 2016).

4.2 Materials and methods

4.2.1 Plant material

Mature acorns from holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) were
collected from a tree located in Aldea de Cuenca (province of Cordoba, Andalusia,
Spain). Acorns were germinated, and seedlings grown in a chamber under controlled
conditions previously described in (Guerrero-Sanchez et al., 2017). Germinated embryos,
leaves and roots from 6-months plantlets were collected and individually frozen in
liquid nitrogen. The plant material used for RNA sequencing experiments consisted of
a pool generated by mixing equal amounts of homogenized tissue from acorn embryos,
leaves and roots.

4.2.2 RNA extraction

Total RNA was extracted from the frozen homogenized pool tissue following the
procedure previously reported by (Guerrero-Sanchez et al., 2017). A total of 50 mg
pooled fresh tissue was used following the protocol previously described by (Echevarría-
Zomeño et al., 2012). Contaminating genomic DNA was removed by DNase I treatment
(Ambion, Austin, TX). Total RNA was quantified spectrophotometrically (DU 228800
Spectrophotometer, Beckman Coulter, TrayCell Hellma GmbH & Co. KG), and
the integrity of the isolated RNA was assessed using a 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, Calif.). Only high-quality RNAs with RIN values > 8 and
A260:A280 ratios near 2.0 were used for subsequent experiments.
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4.2.3 RNA-Seq Library Construction, Illumina sequencing
and de novo assembly

The holm oak Illumina transcriptome was previously described in (Guerrero-Sanchez
et al., 2017; López-Hidalgo et al., 2018). Briefly, the library construction of cDNA
molecules for Illumina sequencing was carried out by Illumina TruSeq Stranded mRNA
library preparation kit using 2 µg of total RNA. The cDNA was synthesized and
sequenced in the Illumina Hiseq 2500 platform and three different assemblers (TRINITY
2.5.1 (Grabherr et al., 2011), RAY 2.3.1 (Boisvert, Laviolette, and Corbeil, 2010) and
MIRA 4.9.6 (Chevreux, Wetter, and Suhai, 1999) algorithms) were employed to de
novo assemble the Q. ilex transcriptome. Both the length and distribution of Illumina
reads are shown in Figure S1

4.2.4 RNA-Seq Library Construction, Ion Torrent sequenc-
ing and de novo assembly

The cDNA library was built using the Ion Total RNA-Seq Kit v2 for whole transcriptome
libraries (Life Technologies Corporation, California, USA), using an aliquot from the
same RNA used for Illumina. Thus, 10 ng and 50 ng of total RNA were employed to
generate in parallel two cDNA libraries that were loaded by an Ion Chef System in two
Ion 540 sequencing chips and then, further sequenced by an Ion S5 System. Raw reads
with length up to 372 nucleotides (mean of 112 nucleotides) from each sequencing chip
were processed to filter out poor quality sequences (Cutadapt version 1.9 (-m 100)
and BBDuk version 35.43 (qtrim = rt trimq = 20)). Sequencing adapters were first
clipped, and low-quality bases (with phred score below a threshold) were trimmed in
raw sequences. A phred score value was selected as thresholds (20) and reads shorter
than 100 nucleotides were filtered out. Both the length and distribution of Ion Torrent
reads are shown in Figure S1 The processed reads were assembled into contigs using
the same assemblers (TRINITY version 2.5.1, RAY version 2.3.1 and MIRA version
4.9.6) used to obtain the Illumina transcriptome described in the previous section, but
the parameterizations were:

TRINITY chosen parameters:
-max_memory 1000G —CPU 20

–SS_lib_type F

–bflyCalculateCPU

—normalize_max_read_cov 20

—KMER_SIZE 25
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—min_kmer_cov 2

RAY chosen parameters were:
-n 22

-k 31

MIRA chosen parameters were:
job = denovo,est,accurate

COMMON_SETTINGS

-GENERAL:number_of_threads = 12

-KMERSTATISTICS:lossless_digital_normalisation = yes

IONTOR_SETTINGS

-ALIGN:min_relative_score = 70

-ASSEMBLY:minimum_read_length = 100

-CLIPPING:quality _clip = no

-CLIPPING:qc_window_length = 20

-CLIPPING:qc_minimum_quality = 15

-CLIPPING:clip_polyat = yes

-CLIPPING:cp_min_sequence_len = 12

technology = iontor

As with the Illumina transcriptome, the assembly calculations were run in the
Computations Cluster of CICA (Centro de Información Científica de Andalucía, Spain)
(https://www.cica.es/servicios/supercomputacion/), the supercomputing and bioinno-
vation center service of the University of Malaga (Spain) (http://www.scbi.uma.es/
site/), and the supercomputing facilities of the Research, Technological Innovation and
Supercomputing Center of Extremadura, Spain (http://www.cenits.es/).

4.2.5 Development of a hybrid transcriptome

A de novo hybrid transcriptome was also built using both Ion Torrent single-end
and Illumina paired-end reads. Considering tested computational requirements and
performance in the tests carried out in the de novo hybrid transcriptome, the RAY
assembler was selected to carry out the hybrid assembly using raw data from both
sequencing platforms, with the parameter k-mer = 31. In addition, we built a partial
hybrid transcriptome using a random-selection of half of the Illumina reads, and half
of the Ion Torrent reads, with the aim of checking if the good quality of the hybrid
transcriptome was only due to the read depth of using two sequencing platforms. The
partial hybrid transcriptome, using randomly-selected halves of the Illumina and Ion
Torrent reads is designed as partial hybrid transcriptome in the manuscript.

https://www.cica.es/servicios/supercomputacion/
http://www.scbi.uma.es/site/
http://www.scbi.uma.es/site/
http://www.cenits.es/
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4.2.6 Assembly quality and completeness evaluation

The evaluation of the structure of the generated assemblies from both sequencing
platforms was performed using QUAST (version 5.0.0). The QUAST software (Gurevich
et al., 2013) generates an overview of the sizes distribution (including largest contig,
total length, N50, L50, N75, L75, and GC (%)) of the contigs contained in every
de novo transcriptome. Moreover, a re-alignment of all the assemblies was carried
out to obtain more transcriptome-specific metrics such as E90N50 transcript contig
length, DETONATE score values, number of alignable reads and alignments in total
using DETONATE (version 1.11) (Li et al., 2014) in each assembly. DETONATE
(DE novo TranscriptOme rNa-seq Assembly with or without the Truth Evaluation)
evaluates de novo transcriptome assemblies by two component packages, RSEM-EVAL
and REF-Eval, providing a rigorous computational assessment of the quality of a
transcriptome assembly and the best assembly is the one with the highest DETONATE
score (http://deweylab.biostat.wisc.edu/detonate/). The assembly quality for Illumina
assemblies was previously reported in (Guerrero-Sanchez et al., 2017), so it was omitted.

The completeness of all the transcriptomes obtained from Illumina, Ion Torrent and
hybrid transcriptome data was evaluated using Benchmarking Universal Single-Copy
Orthologs (BUSCO) following the BUSCO v3 user guide (version 3.0.2) using as
commands (Simão et al., 2015; Waterhouse et al., 2017):

$ Python run_BUSCO.py –i sequence_file –o output_name –l lineage –m tran

$ Python generate_plot.py –wd working_directory

. A complete annotation of the Q. ilex transcriptome assembled from both Ion
Torrent and hybrid transcriptome data (both whole and partial hybrid transcriptomes)
was carried out by using the Sma3s v2 annotator (Munoz-Mérida et al., 2014; Casimiro-
Soriguer, Muñoz-Mérida, and Pérez-Pulido, 2017).

4.2.7 De novo transcriptome alignment with Quercus robur
and Quercus petraea transcriptomes

All the assemblies obtained in this work were aligned with the most complete and anno-
tated transcriptome sequences of Q. robur and Q. petraea (http://www.oakgenome.fr)
(OCV4 transcriptome version), both species being phylogenetically close to holm oak.
Quercus robur and Q. petraea transcriptomes are designated as oak transcriptomes
in the manuscript [30]. The alignment software used was blastN (Altschul et al.,
1990) with an e-value cutoff of 10−30. Alignment blast outputs were graphically and
statistically analyzed using R 3.5.0 and RStudio 1.1.447 (Team, 2018; RStudio, 2016).

http://deweylab.biostat.wisc.edu/detonate/


4.3 Results 35

4.2.8 Identification of proteins from translated assemblies used
as databases

A protein identification using a holm oak peptide spectra sample previously described
in (López-Hidalgo et al., 2018) was used in this study. A 6-frame translation for each
sequence, in all the transcriptomes generated, was performed using EMBOSS (version
6.6.0) (Rice, Longden, and Bleasby, 2000), filtering and keeping peptides longer than
50 amino acids using the R package Biostrings (version 2.48.0) (Team, 2018; RStudio,
2016; Pages et al., 2009). The resulting FASTA files were used individually as a custom
holm oak protein database for the protein identification. Spectra were processed using
the SEQUEST algorithm available in Proteome Discoverer 2.1 (Thermo-Scientific,
Massachusetts, USA). The following settings were used as previously described in
Romero-Rodríguez et al. (Romero-Rodríguez et al., 2014): precursor mass tolerance
was set to 10 ppm and fragment ion mass tolerance to 0.8 Da. Only charge states
+2 or greater were used. Identification confidence was set to a 5% FDR, the variable
modifications were set to: oxidation of methionine, and the fixed modifications were
set to carbamidomethyl cysteine formation. A maximum of two missed cleavages were
set for all searches.

4.3 Results

4.3.1 Sequencing platforms and de novo assembly structure
analysis

To compare the transcriptome features obtained from two different sequencing platforms,
equal quantities of total RNA from three tissues, acorn embryos, leaves and roots of
holm oak were mixed and used to construct a cDNA library for sequencing based on
the Illumina HiSeq2500 and Ion Torrent S5 platforms. A total of 55,275,472 Illumina
paired-end reads and 55,161,453 (10 ng of total RNA) and 84,364,256 (50 ng of total
RNA) Ion Torrent single-end reads were generated in this study. The raw reads were
preprocessed to eliminate primer/adaptor contamination and low-quality section of
reads, generating a total of 50,870,724 and 46,334,832 (both RNA concentrations were
preprocessed together) clean raw data in Illumina and Ion Torrent, respectively. In each
sequencing platform used, the assembly was performed by three different assemblers
(MIRA, RAY and TRINITY) and compared to each other (Table 4.1). However, the
hybrid assemblies were built using only the RAY assembler, since TRINITY does not
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allow the construction of a hybrid assembly and MIRA requires many computational
resources when a hybrid assembly is built (Table 4.1).

Table 4.1 Summary of the structure of the holm oak assembly. *Data from the Illumina platform were previously
published in (Guerrero-Sanchez et al., 2017).

  

Assembly structure 

Illumina* 

Ion Torrent Hybrid Hybrid half 

MIRA RAY TRINITY MIRA RAY TRINITY RAY 

# contigs (≥ 0 bp) 169449 107487 77159 710041 107497 303541 132720 104640 

# contigs (≥500 bp) 43014 20495 8803 22879 18551 118726 26670 21041 

# contigs (≥ 1000 bp) 15445 8773 696 5017 5233 49190 13779 11715 

# contigs (≥ 5000 bp) 155 73 1 1 4 118 185 173 

# contigs (≥ 10000 bp) 2 3 0 0 0 2 9 7 

Largest contig 11254 12220 5916 5273 5533 11940 15329 15043 

Total length (≥ 0 bp) 83639406 41292773 26286544 145717222 35361128 185129754 56442863 45257060 

Total length (≥ 1000 bp) 27409911 14778197 904440 7040671 7467041 79149878 25612168 22023591 

Total length (≥ 5000 bp) 941227 471829 5916 5273 21202 710782 1206376 1107152 

Total length (≥ 10000 
bp) 21731 34168 0 0 0 22544 112633 82952 

N50 1211 1260 661 839 930 1206 1558 1630 

E90 number of 
transcripts 127958 65285 64150 584912 66454 224685 71023 63138 

E90N50 673 806 361 215 579 946 1122 1188 

Score -2334943804 -3400761031 -6756877372 -6686768444 -5727910347 -4259931488 -7602101330 -1455877920 

Number of alignable 
reads 48681788 39297987 9787481 35784571 27414374 42141854 82372290 22202091 

Number of alignments 
in total 169413628 48341674 15563083 267150454 34964535 631869894 109250751 29749610 

N75 742 827 563 628 685 797 972 1042 

L50 11473 5863 3428 7718 6149 35219 7174 5731 

L75 23813 11529 5931 14324 11404 67779 14209 11200 

GC (%) 41,69 42,47 39,14 42,30 42,76 42,04 41,44 42,07 

 

The assembly structure analysis was carried out by the QUAST software, which
provided an overview of the number of contigs longer than a concrete base pairs length
(from ≥ 0 bp to ≥ 10,000 bp) (Table 4.1), together with other statistical parameters
such as N50, N75, L50, L75 and % GC (Table 4.1). Moreover, the assembly structure
analysis was complemented with other transcriptome-specific metrics (E90N50, overall
score values, length of alignable reads and number of alignments in total) obtained by
using the DETONATE software (Table 4.1). In the case of contigs ≥ 10,000 bp, both
the Illumina and hybrid assemblies resulted in a low number of contigs using MIRA
(Illumina, 2 contigs), RAY (Illumina, 3 contigs), TRINITY (Ion Torrent, 2 contigs)
and RAY (hybrid assembly, 9 contigs and partial hybrid assembly, 7 contigs). The
number of contigs between 1,000 and ≥ 5,000 bp was much higher in the TRINITY-
Ion Torrent assembly (118 and 49,190 contigs, respectively) and the MIRA-Illumina
assembly (155 and 15,445 contigs, respectively) than when the other assemblers were
used (Table 4.1). The highest number of contigs in holm oak was observed in those
contigs between 0 bp and ≥ 500 bp. Both the MIRA-Illumina assembly (169,449
and 43,014 contigs, respectively) and the MIRA-Ion Torrent assembly (710,041 and
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22,879, respectively) showed the highest number of these contigs (Table 4.1). The
largest contig was constructed by RAY using the hybrid assembly reads (15,329 bp)
(Table 4.1). However, from Illumina reads, the largest contig was obtained by RAY
(12,220 bp), while from Ion Torrent reads, the largest contig was obtained by TRINITY
(11,940 bp) (Table 4.1). The maximum total length of annotated sequences (≥ 10,000
bp) was yielded in the RAY hybrid assembly (112,633 bp). Neither the TRINITY
(Illumina) assembly nor MIRA and RAY (Ion torrent) assemblies showed sequence
lengths higher than 10,000 bp. For ≥ 5,000 bp total lengths of annotated sequences,
RAY hybrid assembly showed more annotated sequences (1,206,376 bp) and for ≥
1,000 bp total length of annotated sequences, MIRA-Illumina (27,409,911 bp) and
TRINITY-Ion Torrent (79,149,878 bp) assemblies showed more annotated sequences
than in the remaining assemblies (Table 4.1). For annotated sequences of a total length
of ≥ 0 bp, MIRA-Illumina (83,639,406 bp) and TRINITY-Ion Torrent (185,129,754 bp)
assemblies showed the highest number of annotated sequences in holm oak (Table 4.1).
The contig N50, in the Ion Torrent platform, was higher in TRINITY (1,206 bp) than
in MIRA (930 bp) and RAY (839 bp) and, in the Illumina platform, was practically
equal using MIRA (1,260 bp) and RAY (1,211 bp) (Table 4.1). The N50 value was
1,558 bp in the hybrid transcriptome and 1630 bp in the partial hybrid transcriptome
(Table 4.1). The GC % content was quite similar in all the assemblers (Table 4.1). In
addition, we analysed the transcriptome-specific measurement E90N50 because it is a
preferable parameter over the original N50 when evaluating transcriptome assemblies
[36]. Both hybrid assemblies (1,122 bp in the hybrid transcriptome and 1,188 bp in
the partial hybrid transcriptome) showed the highest E90N50 values in this study,
followed by RAY-Illumina (806 bp) and TRINITY-Ion Torrent (946 bp) (Table 4.1).
The best DETONATE score values were observed in the partial hybrid transcriptome
(-1,455,877,920 bp) and MIRA-Illumina (-2,334,943,804 bp) (Table 4.1). With regard
to the number of alignable reads and total alignments, both the hybrid assembly
(82,372,290) and TRINITY-Ion Torrent (109,250,751) were higher than the rest of
assemblies, respectively (Table 4.1).

The efficiency of the use of resources of each assembler should be considered in a
transcriptome analysis; therefore we monitored this for MIRA, TRINITY and RAY in
the Illumina, Ion Torrent and hybrid transcriptomes. The MIRA-Illumina assembler
used a higher amount of resources, more than 40 central processing units (CPUs) in
some points and a mean of 174.80 GB of RAM memory (Figure S2b). The TRINITY-
Illumina assembler used many resources during the first minutes of the assembly process,
but later, only one core and a mean of 0.55 GB of RAM were used for the final process
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of the assembly (Figure S2c). However, this assembler created an immense amount of
files. Finally, the RAY-Illumina assembler was the most efficient in the use of resources
from the Illumina reads, considering that a mean of 10.73 GB of RAM was used (Figure
S2a). In addition, RAY did not generate weighty temporary files, and only used a few
MB necessary for the assembly and the logs of the process. The MIRA-Ion Torrent
assembler used a mean of 95.85 GB of RAM memory (Figure S3b). The TRINITY-Ion
Torrent assembler used, as TRINITY-Illumina, many resources at the beginning of the
assembly process, and a mean of 0.90 GB of RAM (Figure S3c). From the Ion Torrent
reads, the RAY assembler was also the most convenient in terms of computational
resources compared to the other assemblers analyzed in this study (15.61 GB of RAM)
(Figure S3a). Regarding the RAY-hybrid assemblers, a mean of 13.55 GB of RAM was
used in the hybrid transcriptome assembly and a mean of 15.62 GB of RAM was used
in the partial hybrid transcriptome assembly (Figure S4a and Figure S4b).

4.3.2 Quercus ilex de novo transcriptome alignment with Q.
robur and Q. petraea transcriptomes

An alignment between the holm oak transcriptome and the Q. robur and Q. petraea
transcriptomes was carried out through a local alignment using blastN with the oak
transcriptome as a database and the new assemblies obtained in this work as queries.
As a result, a density graph was generated with the length of the oak transcriptome
and the Q. ilex transcriptome built by all the assemblers used (Figure 4.1). From
Illumina reads, MIRA built the best assembly (Figure 4.1a), as previously described
(Guerrero-Sanchez et al., 2017). From Ion Torrent, TRINITY-Ion Torrent built the
best assembly (Figure 4.1b). The oak transcriptome and Q. ilex (MIRA-Illumina)
transcriptome showed 82.1% of shared sequences (Figure 4.1c), followed by RAY-
Illumina (77.0%) and TRINITY-Illumina (55.1%) (Figure 4.1c). From Ion Torrent
reads, MIRA built the best assembly with 84.8% of shared sequences between oak
and Q. ilex transcriptomes, followed by TRINITY (84.6%) and RAY (74.7%) (Figure
4.1c). The Q. ilex hybrid transcriptome and the Q. ilex partial hybrid transcriptome
showed 82.3% and 78.9% of shared sequences with oak transcriptome, respectively
(Figure 4.1c). The distribution of percentage sequence identity between oak and Q. ilex
(MIRA, RAY and TRINITY) transcriptomes from Illumina, Ion Torrent and hybrid
reads was also analyzed (Figure 4.1c). The highest percentage of identity was observed
in the RAY-Ion Torrent assembly (96.1%), followed by the RAY-Illumina assembly
(95.8%) (Figure 4.1c).
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Figure 4.1 Alignment between Q. robur and Q. petraea transcriptomes (oak transcriptome) and Q. ilex (holm oak)
transcriptome using MIRA, RAY, TRINITY and RAY hybrid assemblies from Illumina (a) and Ion Torrent (b) reads.
Distribution of percent sequence identity between oak and Q. ilex (MIRA, RAY, TRINITY, RAY hybrids) transcrip-
tomes (c).
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Figure 4.2 Results of BUSCO analysis of the holm oak transcriptome. All the transcriptomes are organized depending
on their completeness: RAY-hybrid assembly, RAY-partial hybrid assembly, MIRA-Illumina assembly, RAY-Illumina
assembly, MIRA-Ion Torrent assembly; RAY-Ion Torrent assembly; TRINITY-Ion Torrent assembly; and TRINITY-
Illumina assembly. Blue: complete and single-copy genes; orange: complete and duplicated genes; grey: fragmented
genes; yellow: missing genes.

4.3.3 Transcriptome completeness evaluation

The use of the BUSCO software facilitated an overview of the completeness of the
assemblies obtained in this work. In BUSCO, the embryophyta_odb9 orthologous
database for Magnoliophyta plants (flowering plants) has a total of 1,440 BUSCO
orthologs groups whose completeness will depend on the assembly of holm oak. Ac-
cording to BUSCO analysis, the RAY hybrid assemblies generated the most complete
transcriptomes with 1,116 and 1,057 complete sequences of which 1,085 and 1,036
were single copy sequences in holm oak, respectively (Figure 4.2). From Illumina
reads, MIRA (1,031) generated a more complete transcriptome than RAY (807 bp) and
TRINITY (66) (Figure 4.2). From Ion Torrent reads, TRINITY generated the most
complete transcriptome (779), followed by MIRA (436) and RAY (411) (Figure 4.2).
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Annotation of the best Q. ilex transcriptome from each sequencing plat-
form

The annotation was performed by the Sma3s v2 algorithm. It is worth mentioning
that Blast2GO, rather than Sma3s v2, was previously used in (Guerrero-Sanchez et al.,
2017). However, the annotation increased from 31,972 total transcripts annotated by
Blast2GO to 62,628 total transcripts recently annotated by Sma3s v2 using the MIRA
assembly (López-Hidalgo et al., 2018), both from Illumina reads. From Ion Torrent
reads, 74,058 total transcripts were annotated by the TRINITY assembly while from
the hybrid transcriptome assembly, 34,360 transcripts were annotated using the RAY
assembly. Regarding the partial hybrid transcriptome, around 33,694 transcripts were
annotated using the same assembly as for the hybrid transcriptome.

In order to facilitate the access and use of the Q. ilex transcriptome sequencing data,
the raw data in the FASTQ format was deposited in the Sequence Read Archive (SRA-
NCBI) database with accession numbers: SRR7456533 and SRR7454228 (Ion Torrent
sequencing platform using 10 ng and 50 ng of total RNA, respectively) and SRR5815058
(Illumina sequencing platform), and the whole transcriptome was uploaded to the holm
oak database (http://www.uco.es/probiveag/holm-oak-database.html; section ’data’).

4.3.4 Gene ontology classification of Quercus ilex transcripts

Gene ontology (GO) for the Q. ilex transcripts obtained from the hybrid assembly
were analyzed by Sma3s v2 to classify the functions of the assembled transcripts in
terms of biological process, molecular function and cellular component (Figure 4.3;
Table S1). Within the biological processes, more transcripts were assigned to response
to stress and biosynthetic processes, followed by anatomical structure development and
cellular nitrogen compound metabolic processes (Figure 4.3a; Table S1). In the case
of the molecular functions, many transcripts were associated with ion binding, kinase
activity, oxidoreductase activity and DNA binding (Figure 4.3b; Table S1). Finally,
in the cellular component category, the transcripts were mainly classified in terms of
nucleus, plastid and plasma membrane (Figure 4.3c; Table S1). A high number of
transcripts (5,405 transcripts) of holm oak were assigned to response to stress (Figure
4.3a; Table S1), of which 46 (0.85%) transcripts were directly included in the drought
stress category, according to our annotation (Table S2). Some of the transcripts related
to drought stress were: UDP-Glucosyltransferase; TCTP (Translationally Controlled
Tumor Protein); NACs (82-77-53-46) transcription factors; DICP (Drought Inducible
Cysteine Proteinase); PUF (Pumilio/Fem-3-binding factor), APUM (Arabidopsis

http://www.uco.es/probiveag/holm-oak-database.html
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Figure 4.3 Histogram of GO classification of assembled Quercus ilex transcripts. Horizontal bar charts of the distribu-
tion of GO associated with the holm oak transcripts represented in the three main GO categories: biological processes
(a), molecular functions (b) and cellular components (c). The first twelve transcripts assigned to each GO category are
shown and the remaining transcripts assigned to each GO category are shown in Table S1.

Pumilio RNA binding protein) and PUM (Pumilio) RNA-binding proteins; PXG4
(Peroxygenase 4); PAL and PAL5 (Phenylalanine Ammonia Lyase); NH2 and NH8
(Nam Line Protein); DRS1 (Drought Sensitive 1 protein); Drought-induced protein
RDI; At3g62550-drought responsive ATP-binding motif containing protein; UGT7G3
Anthocyanidin 3-O-glucosyltransferase 2; and TCM_034302 (Chloroplastic drought-
induced stress protein) (Table S2).

On the other hand, we also considered a representative sample of 2,000 random
transcripts to be classified by GO terms (biological process, molecular function and
cellular component) (Table S3). Within the biological processes, more transcripts
were assigned to response to stress, biosynthetic processes and anatomical structure
development in all the transcriptome assemblies built in this study (Table S3). Within
the molecular functions, the majority of transcripts in all the assemblies were grouped
into ion binding, DNA binding and kinase activity (Figure 4.3b; Table S1). Finally,
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in the cellular component category, the transcripts were mainly classified in terms of
nucleus, plastid and cytosol (Figure 4.3c; Table S1).

In addition to the GO classification, the Q. ilex transcripts were classified in terms
of biological process, pathway and cellular component at the Universal Protein Resource
(UniProt). Within the biological processes, more transcripts were assigned to plant
defense, followed by transport and transcription (Table S1). Within the pathway
category, the majority of transcripts were associated with the response to stress and
biosynthetic processes (Table S1). Finally, in the cellular component category, the
transcripts were mainly classified in terms of the membrane and nucleus (Table S1).

To further understand the degree of transcript overlap between each of the assemblers-
platforms, we created a matrix in which each cell represents the overlap between two
assemblers-platforms used in this study (Table 4.2). The highest percentage over-
lap was observed when TRINITY-Ion Torrent was blasted with MIRA-Ion Torrent
(96.58%), followed by MIRA-Illumina blasted with MIRA-Ion Torrent (95.02%) and
RAY-Ion Torrent blasted with hybrid assembly (90.36%) (Table 4.2). As expected, the
lowest percentage overlaps were observed when all the assemblies were blasted with
TRINITY-Ion Torrent, obtaining the lowest overlap between MIRA-Ion Torrent and
TRINITY-Illumina (19.51%) (Table 4.2).

Table 4.2 Blast percentage matrix of all the transcriptomes built in holm oak. Each cell in the matrix represents the
overlap between two assemblers-platforms.

  
RAY MIRA RAY TRINITY 

Hybrid Partial Hybrid Illumina Ion  
Torrent Illumina Ion  

Torrent Illumina Ion  
Torrent 

RAY Hybrid 99,94 61,83 50,03 67,25 56,52 54,28 46,89 64,48 
Partial Hybrid 86,95 99,95 63,20 78,65 63,49 60,83 48,48 76,55 

MIRA Illumina 89,96 86,80 99,94 95,02 83,84 72,02 34,45 94,79 
Ion Torrent 71,85 68,62 74,22 99,97 61,34 55,52 19,51 84,27 

RAY Illumina 88,86 72,68 76,16 74,76 99,92 52,24 50,64 75,33 
Ion Torrent 90,36 77,93 64,26 88,56 61,27 99,98 36,24 85,30 

TRINITY Illumina 73,59 57,55 54,25 68,58 59,57 43,06 99,98 66,55 
Ion Torrent 87,15 82,97 86,85 96,58 77,23 73,52 40,70 100,00 
 

4.3.5 Protein annotation in Holm oak

The protein identification carried out with Proteome Discoverer 2.1 by using a translated
version of Q. ilex transcriptome assemblies gave a successful result (Table 4.3). In
terms of total number of proteins from the Illumina translated transcriptome, 1,878,
1,930 and 565 proteins were identified after using the MIRA, RAY and TRINITY
assemblers, respectively, while from the Ion Torrent translated transcriptome, 2,242,
2,356 and 2,395 proteins were identified after using the MIRA, RAY and TRINITY
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assemblers, respectively. Both hybrid and the partial hybrid assemblies to obtain the
holm oak proteome were also carried out in this work, giving rise to a total of 1,899
and 1,801 proteins after using the RAY assembler, respectively (Table 4.3).

Table 4.3 Summary of the total number of proteins annotated in Holm oak.

Protein identification 

  Illumina Ion Torrent Hybrid Partial 
hybrid 

MIRA RAY TRINITY MIRA RAY TRINITY RAY 
Total 1878 1930 565 2242 2356 2395 1899 1801 

Mean length 440,12 277,42 130,14 136,91 164,69 242,00 321,53 351,77 

Annotated 
1818 1881 547 1972 2303 2373 1841 1753 
-97% -97% -97% -88% -98% -99% -97% -97% 

Unique genes 
1492 1508 460 1365 1523 1284 1522 1492 
-82% -80% -84% -69% -66% -54% -83% -85% 

With at least 1 
unique peptide 

1878 1930 565 2242 2356 2395 1899 1801 

-100% -100% -100% -100% -100% -100% -100% -100% 

With at least 2 
unique peptides 

995 1111 257 681 1153 1258 1128 1100 

-53% -58% -45% -30% -49% -53% -59% -61% 

With at least 3 
unique peptides 

620 762 133 244 629 776 795 804 

-33% -39% -24% -11% -27% -32% -42% -45% 

With at least 7 
unique peptides 

172 192 18 17 67 159 212 251 

-9% -10% -3% -1% -3% -6% -11% -14% 

The total number of annotated proteins was quite similar to the data described in the
total number of proteins identified from each translated transcriptome (Table 4.3). A
total of 1,818 (97%) (MIRA), 1,881 (97%) (RAY) and 547 (97%) (TRINITY) annotated
proteins were identified from the Illumina translated transcriptome, while a total of
1,972 (88%) (MIRA), 2,303 (98%) (RAY) and 2,373 (99%) (TRINITY) annotated
proteins were identified from the Ion Torrents translated transcriptome (Table 4.3).
The highest number of unique genes (or unique translated protein sequences) was
identified in TRINITY-Illumina (84%) and RAY-hybrid (83%) (Table 4.3). The hybrid
assembly showed 1,899 proteins, of which 1,841 (97%) were annotated proteins and
1,522 unique genes (83%), and the partial hybrid assembly showed 1,801 proteins, of
which 1,753 (97%) were annotated proteins and 1,492 unique genes (85%) (Table 4.3).
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4.4 Discussion
In the present work, we evaluate several procedures to build an accurate de novo
transcriptome for Q. ilex from a mixture of experimental raw sequence read data and
statistical approaches. An accurate holm oak transcriptome has already been described
by this research group (Guerrero-Sanchez et al., 2017), and therefore this present study
is now focused on a comparative analysis of two sequencing platforms, Illumina and Ion
Torrent, and three different assemblers (TRINITY, MIRA and RAY) used to assemble
all the clean raw data obtained in the holm oak transcriptome analysis. Moreover, a de
novo hybrid transcriptome using both sequencing platforms was built and compared
to the transcriptomes obtained through Illumina and Ion Torrent alone. The de novo
hybrid transcriptome was only assembled using RAY, as mentioned above, as neither
the TRINITY nor MIRA assemblers are recommended for the assembly of a hybrid
transcriptome using such a large amount of sequences. A de novo hybrid assembly is a
setting up process of sequences by using two or more sequencing platform data. This
kind of assembly was developed due to the limitations of each sequencing platform.
The Illumina technology produces low percentage substitution errors (0.3–3.8%) (Dohm
et al., 2008; Sleep, Schreiber, and Baumann, 2013), and the Ion Torrent technology
presents indels (insertion/deletion error types) at a raw rate of 2.84% (Bragg et al.,
2013). By using a hybrid assembly algorithm, we attempted to correct those errors
generated in both technologies. This strategy is currently used to correct the elevated
rate of errors in third generation sequencing reads (Koren et al., 2012), using high
quality short reads from second generation sequencing platforms. Moreover, the use of a
partial hybrid transcriptome helped in the estimation of the good quality of the hybrid
transcriptome, due mainly to the correction of errors commented above rather than
the read depth of using both sequencing platforms. Guerrero-Sanchez et al. (Guerrero-
Sanchez et al., 2017) previously annotated 31,972 total transcripts by Blast2GO from
Illumina reads assembled by MIRA, which increased the genetic information available
at that time in the databases of holm oak (659 sequences on nucleotide database and
88 EST databases annotated by NCBI, (https://www.ncbi.nlm.nih.gov/). The genetic
information of holm oak was increased to 62,628 total transcripts annotated using
Sma3s v2, rather than Blast2GO (López-Hidalgo et al., 2018), from Illumina reads
assembled by MIRA. Additionally, 74,058 and 34,360 total transcripts were obtained
in this work using Sma3s v2 from Ion Torrent reads assembled by TRINITY and the
hybrid transcriptome assembled by RAY, respectively.

Both sequencing platforms and the assemblers available should be considered
carefully, when looking for the best option, especially when there is scarce information

https://www.ncbi.nlm.nih.gov/
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about the species under study, as in holm oak. Bradnam et al. (Bradnam et al.,
2013) reported in the Assemblathon 2 context that more than a single assembly or a
single metric should be carried out to assess the quality of an assembly. This is due to
the read lengths, read counts and error profiles that are produced by different NGS
technologies (Bradnam et al., 2013). So, we compared the de novo holm oak Illumina
transcriptome previously described by (López-Hidalgo et al., 2018) to the de novo Ion
Torrent transcriptome and de novo hybrid transcriptome, with the aim of building
a more complete de novo Holm oak transcriptome. Moreover, the efficiency in the
use of computational resources should be considered in a transcriptome analysis. The
assembler should be chosen according to the computational resources required to process
the clean raw data, since the computer resources needed represent a clear limitation for
performing the assembly. In this study, the RAY assembler proved more convenient in
all the transcriptomes built due to the efficient use of computational resources (Figure
S2). Regarding the assembly structure, the TRINITY-Ion Torrent assembly annotated
a higher number of sequences, while the MIRA-Ion Torrent assembly shared more
sequences with Q. robur and Q. petraea transcriptomes (Figure 4.1).

With regard to completeness assessment, the hybrid transcriptome yielded the most
complete sequences in relation to the ortholog alignment, followed by MIRA-Illumina
and TRINITY-Ion Torrent assemblies (Figure 4.2). The Ion Torrent assemblies contain
more duplicated and fragmented sequences than Illumina and hybrid assemblies (Figure
4.2), which may be due to both the structure of the reads and, single-end in Ion Torrent
and paired-end in Illumina. Despite these differences, the Ion Torrent technology gave
better assembly structure and protein identification, in addition to being quicker and
cheaper than the paired-end sequencing commonly used in the Illumina platform (Lowe
et al., 2017). On the other hand, the hybrid transcriptome was used to carry out the
GO ontology classification as this transcriptome built the most complete sequence
in relation to the ortholog alignment (Figure 4.2), identifying the highest number of
unique peptides with more than 3 (Table ??) and being the most efficient in the use of
resources during the assembly (Figure S2).

It was remarkable that the higher number of transcripts observed in the GO biologi-
cal processes was related to the stress response (46 out of 5,405; 0.85%). Conversely, Q.
robur did not show any stress response related transcripts (Casimiro-Soriguer, Muñoz-
Mérida, and Pérez-Pulido, 2017), while they have been observed for other related
species such as Castanea dentata and Eucalyptus grandis (Casimiro-Soriguer, Muñoz-
Mérida, and Pérez-Pulido, 2017). The Q. ilex transcriptome annotations revealed
interesting information about its biology, which can be used in a genetic study devoted



4.5 Conclusions 47

to investigating one of the major problems that threaten this species, drought (Giorgi
and Lionello, 2008). A previous study has assessed the effect of the drought in holm
oak by a proteomic analysis, reporting a large list of proteins whose levels changed
under drought conditions (Simova-Stoilova et al., 2015). Interestingly, in this study,
an overview of drought-resistant genes in holm oak is provided from a transcriptomic
approach. Although the number of transcripts related to drought stress identified in
this work was lower than the number of proteins identified previously (Simova-Stoilova
et al., 2015), those transcripts are directly related to drought rather than to general
stress response. Nevertheless, all the proteins identified by (Simova-Stoilova et al.,
2015) were also identified in our annotations but some of them were not included in
the drought stress classification.

Regarding the identification of proteins by Proteome Discovered 2.1, RAY translated
assembly from Illumina reads identified more proteins than TRINITY and MIRA,
and from Ion Torrent reads, the three assemblers used in this study identified similar
numbers of proteins (Table 4.3). However, as a general tendency, all the Ion Torrent
translated assemblies showed more proteins than the Illumina assemblies. The hybrid
assemblies showed quite similar number of proteins as the Illumina translated assemblies.

4.5 Conclusions
To obtain genetic information in a non-model species, such as Holm oak whose genome
has not been yet sequenced, remains a challenge. The comparison between Illumina
and Ion Torrent sequencing platforms using different assemblers was carried out to
further our knowledge of the de novo Holm oak transcriptome previously described
(Guerrero-Sanchez et al., 2017; López-Hidalgo et al., 2018). We found that an increase
of genetic information could be obtained when the Ion Torrent transcriptome and
the hybrid (Illumina and Ion Torrent together) transcriptome were used. This work
sheds light on Q. ilex biology. Besides, the optimized workflow described here for
the Holm oak transcriptome will help to progress on other non-model species (Figure
4.4). The annotated transcripts and proteins could be used to carry out differential
expression studies of different biotic and abiotic stresses such as drought or resistance
to Phytophthora cinnamomi, which seriously affect the biology of holm oak, and as a
tool of validation for the whole genome sequencing of Holm oak.
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Figure 4.4 Experimental work flow showing the steps carried out and bioinformatic utilities used for a transcriptome
analysis.
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4.6 Data Availability
In order to facilitate the access and use of the Q. ilex transcriptome sequencing data,
the raw data in the FASTQ format was deposited in the Sequence Read Archive (SRA-
NCBI) database with accession numbers: SRR7456533 and SRR7454228 (Ion Torrent
sequencing platform using 10 ng and 50 ng of total RNA, respectively) and SRR5815058
(Illumina sequencing platform), and the whole transcriptome was uploaded to the holm
oak database (http://www.uco.es/probiveag/holm-oak-database.html; section ’data’).

http://www.uco.es/probiveag/holm-oak-database.html
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Abstract

Holm oak (Quercus ilex) is the most important and representative species of the Mediter-
ranean forest and of the Spanish agrosilvo-pastoral “dehesa” ecosystem. Despite its
environmental and economic interest, Holm oak is an orphan species whose biology is
very little known, especially at the molecular level. In order to increase the knowledge
on the chemical composition and metabolism of this tree species, the employment of a
holistic and multi-omics approach, in the Systems Biology direction would be necessary.
However, for orphan and recalcitrant plant species, specific analytical and bioinformat-
ics tools have to be developed in order to obtain adequate quality and data-density
before to coping with the study of its biology. By using a plant sample consisting of a
pool generated by mixing equal amounts of homogenized tissue from acorn embryo,
leaves, and roots, protocols for transcriptome (NGS-Illumina), proteome (shotgun
LC-MS/MS), and metabolome (GC- MS) studies have been optimized. These analyses
resulted in the identification of around 62629 transcripts, 2380 protein species, and 62
metabolites. Data are compared with those reported for model plant species, whose
genome has been sequenced and is well annotated, including Arabidopsis, japonica rice,
poplar, and eucalyptus. RNA and protein sequencing favored each other, increasing
the number and confidence of the proteins identified and correcting erroneous RNA
sequences. The integration of the large amount of data reported using bioinformatics
tools allows the Holm oak metabolic network to be partially reconstructed: from the 127
metabolic pathways reported in KEGG pathway database, 123 metabolic pathways can
be visualized when using the described methodology.They included: carbohydrate and
energy metabolism, amino acid metabolism, lipid metabolism, nucleotide metabolism,
and biosynthesis of secondary metabolites. The TCA cycle was the pathway most
represented with 5 out of 10 metabolites, 6 out of 8 protein enzymes, and 8 out of 8
enzyme transcripts. On the other hand, gaps,missed pathways, included metabolism
of terpenoids and polyketides and lipid metabolism. The multi-omics resource gen-
erated in this work will set the basis for ongoing and future studies, bringing the
Holm oak closer to model species, to obtain a better understanding of the molecular
mechanisms underlying phenotypes of interest (productive, tolerant to environmental
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cues, nutraceutical value) and to select elite genotypes to be used in restoration and
reforestation programs, especially in a future climate change scenario.

5.1 Introduction
Holm oak (Quercus ilex) is the most representative species of the Mediterranean forest,
of great importance from an environmental and economic point of view (De Rigo and
Caudullo, 2016). Being the key element of the Spanish agro-forestry-pastoral ecosystem
“Dehesa,” its fruit, the acorn, is the basis of the staple food of the renowned ’black
leg’ pork (Cantos et al., 2003). Quercus spp. have been used in the construction of
wine barrels, contributing to the organoleptic properties of the maturing wine (Chira
and Teissedre, 2014). The use of acorns in human nutrition and for pharmaceutical
purposes has a long history. Employed in ancient civilizations, mainly in Italy and
Spain, as food or beverage, nowadays it is far from being consumed like other common
nuts (Rakić et al., 2006; Al-Rousan et al., 2013; Meijón et al., 2016). As a nutritionally
rich product, and because of its high nutraceutical value, the interest of integrating
acorns into the human diet or as a functional food has been raised (Vinha et al., 2016b;
Hadidi et al., 2017).

Despite its environmental and economic interest, Holm oak is still an orphan species
whose biology is almost unknown, especially at the molecular level. Nevertheless, the
work of our group and others, has contributed to acquiring the knowledge on this species,
focusing on natural variability (Valero-Galván et al., 2011; Akcan et al., 2017), seed
germination and seedling growth (Echevarría-Zomeño et al., 2009; Romero-Rodríguez,
2015), physiology (Valero-Galván et al., 2012), and biotic and abiotic stress-responses
(Echevarría-Zomeño et al., 2009; Sghaier-Hammami et al., 2013; Sardans et al., 2013;
Simova-Stoilova et al., 2015). The above publications, provide fragmented information,
mostly derived from classical biochemical approaches and, to a much lesser extent, those
of proteomics (Valero-Galván et al., 2011; Romero-Rodríguez et al., 2014; Romero-
Rodríguez, 2015) transcriptomics (Guerrero-Sanchez et al., 2017), or metabolomics
(Rakić et al., 2006; Rabhi et al., 2016; Vinha et al., 2016b; López-Hidalgo, 2017), but
lacking a validation and effective integration of the different molecular multilevels.

In spite of their difficulty as orphan, recalcitrant plant species, forest trees, like
other experimental plant systems, deserve to be considered at the wide system level,
that implicates the use of multidisciplinary approaches, from visual phenotype, to
molecular -omics, through physiological and biochemical approaches (Correia et al.,
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2016; Meijón et al., 2016; Escandón et al., 2017). Systems Biology approaches require
the optimization of protocols for both wet and in silico analysis.

In this direction, trying to fill this gap with the use of the available high-throughput
-omics, its combination and also the implementation of required methodology, we
hoped to gain knowledge on the chemical composition and metabolism of the Q. ilex
tree species, its variability among and within populations, the effect on endogenous
ones and their environmental factors, and the search for molecular markers to select
elite genotypes. The lack of information available in public databases on the Holm
oak genome, transcriptome (Guerrero-Sanchez et al., 2017), or proteome (Romero-
Rodríguez et al., 2014) and the absence of standardized laboratory and analytical
protocols make this approach a real challenge.

In this work, we employed a wide range of in silico techniques allowing a system
biology approach for a non-sequenced species. To obtain the maximum level of
biochemical complexity the plant sample employed were multi-organ pools, generated
by mixing equal amounts of homogenized tissue from acorn embryo, leaves, and roots.
In setting up protocols for transcriptome (NGS-Illumina), proteome (shotgun LC-
MS/MS) and metabolome (GC-MS) analysis, and bioinformatic pipelines for annotating
transcripts, proteins and metabolites, the Holm oak metabolic pathways were partially
reconstructed. This research constitutes the basis for ongoing and future studies to
obtain a better understanding of the molecular bases underlying phenotypes of interest
(productive, tolerant to environmental cues, nutraceutical value) and the selection of
elite genotypes to be used in restoration and reforestation programs, especially in the
current climate change scenario. In order to reveal the particularities of the species
under study, data have been compared with those reported for model plant species,
including Arabidopsis, rice, poplar, and eucalyptus.

5.2 Materials and methods

5.2.1 Plant material

Mature acorns from Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) were
collected on December 2015 from a tree located in Aldea de Cuenca (province of
Córdoba, Andalusia, Spain). Acorns were transported to the lab, sterilized, and
germinated as previously reported (Simova-Stoilova et al., 2015). Germinated seeds
were sown in pots (500 mL) with perlite and grown in a greenhouse under natural
conditions for 4 months up to the 10-leaves stage. Plants were periodically watered at
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field capacity and once a week with a Hoagland nutrient (Hoagland and Arnon, 1950)
solution after the second month. Germinated embryos, cotyledons, leaves, and roots
were collected separately, washed with distilled water and frozen in liquid nitrogen.
Then, each tissue was separately homogenized in a mortar until a fine powder was
obtained and finally stored at -80◦C. The experiments were performed with a pool
of fresh weight equivalents of the homogenized tissue from acorn embryo, cotyledons,
leaves, and roots. Depending on the organ, samples from individual trees or plantlets
in number of 18 (roots and leaves) to 50 (seed embryos and cotyledons) were collected
and mixed. Three independent extractions were performed and only consistent proteins
or metabolites, those present in the three replicates, were considered.

5.2.2 Transcriptomics Analysis

RNA Extraction and Sequencing

Total RNA was extracted from the frozen homogenized pool tissue following the
procedure previously reported by (Guerrero-Sanchez et al., 2017). 50 mg pooled fresh
tissue according the procedures previously set up in our laboratory for Quercus ilex
samples was employed (Echevarría-Zomeño et al., 2012). Contaminating genomic
DNA was removed by DNase I (Ambion) treatment. Total RNA was quantified
spectrophotometrically (DU 228800 Spectrophotometer, Beckman Coulter, TrayCell
Hellma GmbH & Co., KG. The high quality and integrity of the RNA preparation were
tested electrophoretically (Agilent 2100 Bioanalyzer). Only high-quality RNAs with
RIN values >8 and A260:A280 ratios near 2.0 were used for subsequent experiments.

The library construction of cDNA molecules was carried out using Illumina TruSeq
Stranded mRNA Library Preparation Kit according to the manufacturer’s instructions
using 2 µg of total RNA followed by poly-A mRNA enrichment using streptavidin
coated magnetic beads and thermal mRNA fragmentation. The cDNA was synthesized,
followed by a chemical fragmentation (DNA library) and sequenced in the Illumina
Hiseq 2500 platform, using 100 bp paired-end sequencing (De Wit et al., 2012).

Data processing

The raw reads obtained from the sequencing platform were preprocessed to retain
only high-quality sequences to be subsequently used in the assembly. Each original
sequence was quality trimmed considering several parameters (quality trimming based
on minimum quality scores, ambiguity trimming to trim off, for example, stretches
of Ns, base trim to remove specified number of bases at either 3’ or 5’ end of the
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reads). The processed reads were assembled de novo using the assembly software
MIRA 4.9.6 (Chevreux, Wetter, and Suhai, 1999). Redundancy reduction of the
assembled sequenced was carried out by using the CD-HIT 4.6 clustering algorithm
(Li, Jaroszewski, and Godzik, 2001; Li, Jaroszewski, and Godzik, 2002).

Gene Ontology

Assembled sequences were blasted against UniRef90 (UniProt) using the software
Sma3s (Casimiro-Soriguer, Muñoz-Mérida, and Pérez-Pulido, 2017) in order to obtain
the annotated sequences with the most probable gene name and protein description,
EC numbers for enzymes, GO terms, and UniProt keywords and pathways. In addition,
their functions were identified using MERCATOR (http://www.plabipd.de/portal/
mercator-sequence-annotation/).

5.2.3 Proteomics Analysis

Protein Extraction and Digestion

Proteins were extracted from the frozen homogenized pool tissue by using the TCA-
acetone-phenol protocol as reported in (Jorrin-Novo, 2014). Protein extracts [600–1000
ng BSA equivalents quantified with Bradford assay (Bradford, 1976)] were subjected
to Orbitrap analysis after SDS–PAGE (12%) prefractionation. Electrophoresis was
stopped when the sample entered the resolving gel, so that a unique protein band was
revealed after Coomassie staining (Pascual et al., 2017).

Protein bands were manually excised, destained, and digested with trypsin Sequenc-
ing grade (Roche) as is described in (Castillejo, Bani, and Rubiales, 2015) with minor
modifications. Briefly, gel plugs were destained by incubation (twice for 30 min) with a
solution containing 100 mM ammonium bicarbonate (AmBic)/50% acetonitrile (AcN)
at 37◦CC. Then, they were dehydrated with AcN and incubated in 100 mM AmBic
containing first 20 mM DTT for 30 min, and then in the same solution containing 55
mM Iodoacetamide instead DTT for 30 min. They were washed with 25 mM AmBic
and 25 mM AmBic/50% AcN two times each. After dehydration in AcN, the trypsin
at a concentration of 12.5 ng/µl was added in a buffer containing 25 mM NH4HCO3,
10% AcN and 5 mM CaCl2, and the digestion proceeded at 37 C for 12 h. Digestion
was stopped, and peptides were extracted from gel plugs by adding 10 µL of 1% (v/v)
trifluoroacetic acid (TFA) and incubating for 15 min.

http://www.plabipd.de/portal/mercator-sequence-annotation/
http://www.plabipd.de/portal/mercator-sequence-annotation/
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Shotgun LC-MS Analysis

Nano-LC was performed in a Dionex Ultimate 3000 nano UPLC (Thermo Scientific)
with a C18 75 µm × 50 Acclaim Pepmam column (Thermo Scientific). The peptide
mix was previously loaded on a 300 µm × 5 mm Acclaim Pepmap precolumn (Thermo
Scientific) in 2% AcN/0.05% TFA for 5 min at 5 µL/min. Peptide separation was
performed at 40◦CC for all runs. Mobile phase buffer A was composed of water, 0.1%
formic acid. Mobile phase B was composed of 80% AcN, 0.1% formic acid. Samples
were separated during a 60-min gradient ranging from 96% solvent A to 90% solvent B
and a flow rate of 300 nL/min.

Eluted peptides were converted into gas-phase ions by nano electrospray ionization
and analyzed on a Thermo Orbitrap Fusion (Q-OT-qIT, Thermo Scientific) mass
spectrometer operated in positive mode. Survey scans of peptide precursors from 400
to 1500 m/z were performed at 120K resolution (at 200 m/z) with a 4 × 105 ion count
target. Tandem MS was performed by isolation at 1.2 Da with the quadrupole, CID
fragmentation with normalized collision energy of 35, and rapid scan MS analysis in
the ion trap. The AGC ion count target was set to 2 × 103 and the maximum injection
time was 300 ms. Only those precursors with charge state 2–5 were sampled for MS2.
The dynamic exclusion duration was set to 15 s with a 10 ppm tolerance around the
selected precursor and its isotopes. Monoisotopic precursor selection was turned on.
The instrument was run in top 30 mode with 3 s cycles, meaning that the instrument
would continuously perform MS2 events until a maximum of top 30 non-excluded
precursors or 3 s, whichever was shorter.

Protein identification

Spectra were processed using the SEQUEST algorithm available in Proteome Dis-
covererpacific bios 1.4 (Thermo Scientific, United States). The following settings
(Romero-Rodríguez et al., 2014) were used: precursor mass tolerance was set to 10 ppm
and fragment ion mass tolerance to 0.8 Da. Only charge states + 2 or greater were used.
Identification confidence was set to a 5% FDR and the variable modifications were set
to: oxidation of methionine and the fixed modifications were set to carbamidomethyl
cysteine formation. A maximum of two missed cleavages were set for all searches. The
protein identification, was carried out against the annotated Q. ilex transcriptome,
previously described. A six-frame translation for each sequence in the transcriptome
was performed by using EMBOSS (Rice, Longden, and Bleasby, 2000), filtering and
keeping peptides longer than 50 amino acids. Considering the identified proteins, the
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protein peak areas were normalized and missing values corrected. Mean values and
standard deviation (SD), as well as the coefficient of variation (CV) of the peak areas of
protein species were determined for three independent analysis (Supplementary Table
S11). The remaining sequences were used as a database for the protein identifications
and their functions were identified using MERCATOR (Lohse et al., 2014).

5.2.4 Metabolomics analysis

Metabolite extraction

Metabolites were extracted from plant tissue as described by (Valledor et al., 2014),
with three independent extractions. A buffer containing 600 µL of cold methanol:
chloroform: water (5:2:2) was added to 15 mg of frozen tissue, vortexed (10 s), and the
mixture sonicated (ultrasonic bath, 40 kHz for 10 min). After centrifugation (4◦C, 4
min, 20,000 × g) the supernatant was transferred to new tubes containing 400 µL of
cold chloroform: water (1:1). For phase separation, the tubes were centrifuged (4◦C, 4
min, 20,000 × g). The upper (polar) and the lower (apolar) phases were re-extracted
with 200 µL of cold chloroform (upper) and water (lower), respectively. After combining
on one hand the water: methanol (upper) and, on the other the chloroform (lower)
phases, they were vacuum dried at 25◦C (Speedvac, Eppendorf Vacuum Concentrator
Plus/5301).

GC-MS Analysis

GC-MS analysis was performed as reported (Furuhashi et al., 2012) and (Meijón et al.,
2016) with some modifications. Polar (water: methanol dissolved) metabolites were
derivatized by re-suspending the dried extract in 20 µL of anhydrous pyridine containing
40 mg/mL of methoxyamine hydrochloride. The mixture was incubated at 30◦C for
30 min under agitation. Next, 60 µL of N-methyl-N-trimethylsilyl trifluoroacetamide
(MSTFA) was added, samples incubated at 60◦C for 30 min, centrifuged (3 min, 20,000 ×
g), and cooled to room temperature. Then, 80 µL of the supernatant was transferred to
GC-microvials. Apolar (chloroform solubilized) metabolites were methylesterified with
295 µL tert-methyl-Butyl-Ether (MTBE), and 5 µL of trimethylsulfonium hydroxide
solution (TMSH) for 30 min at room temperature. The tubes were centrifuged (3
min, 20,000 × g) to remove insoluble particles before transferring the supernatants to
GC-microvials.

Polar metabolites were resolved and analyzed with a Gas Chromatograph/Mass
Spectrometer Agilent 5975B GC/MSD. Inlet temperature was set at 230◦C. Samples
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were injected in discrete randomized blocks with a 1.2 mL/min flow rate. GC separation
was performed splitless on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 mm)
(Agilent 19091J-433) over a 70–76◦C gradient at 0.75◦C/min, 76–180◦C gradient at
6◦C/min, 180–200◦C gradient at 3.5◦C/min, and then to 310°C at 6◦C/min. The
mass spectrometer operated in electron-impact (EI) mode at 70 eV in a scan range of
m/z 40–800. For apolar metabolites a different temperature gradient was employed:
80–190°C at 8◦C/min, 190–220◦C at 5◦C/min, and then to 270◦C at 5◦C/min. The
mass spectrometer was operated in EI mode at 70 eV in a scan range of m/z 40–600.

Metabolite identification

Metabolites were ’tentatively assigned’ based on GC retention times (RT) and m/z
values (Supplementary Tables S4, S5) through searches in different databases, including
the Gölm Metabolome Database (Nielsen and Jewett, 2007), Alkane, Fiehn library
1 y 2 (Kind et al., 2010), GC-TSQ, MoSys, and NIST/EPA/NIH Mass Spectral
Library. Three different softwares were used for metabolite identification: MZmine 2
(2.24 version) (Pluskal et al., 2010), AMDIS software (2.66 version), and NIST.MS
Search (2.01 version). Mean values and SD, as well as the CV of the peak areas of
metabolites were determined for three independent extraction (Supplementary Table
S5). Moreover, the metabolites were annotated using the KEGG compound reference
database6. Metabolomics pathways of each metabolite (Supplementary Table S6) were
searched against KEGG pathway maps. For other general biological networks, we
employed MapMan (3.5.1 version).

5.2.5 Interspecies comparison

The annotated Quercus ilex transcriptome was compared against the complete in
silico proteomes of Arabidopsis thaliana (UP0000065489, Oryza sativa subsp. japon-
ica (UP00005968010), Populus trichocarpa (UP00000672911), and Eucaliptus grandis
(UP00003071112) in order to elucidate the unique and shared sequences. This compar-
ison was performed by using BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi) with
blastX alignment with an e-value of 10−10. Also, the EC numbers of each proteome were
contrasted to achieve a complete picture of the metabolic pathways coverage differences
among proteomes studied in previously mentioned species (Supplementary Table S7).
For the comparison, we represented a Venn diagram plotted using VennDiagram R
package (Chen and Boutros, 2011).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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5.2.6 Integrated Pathway

By using MERCATOR web application (Supplementary Tables S8, S9) (Lohse et
al., 2014), we could assign MapMan “Bins” to arbitrary transcript or protein input
sequences (Usadel et al., 2009). The output was a text file mapping each input
(proteins or transcripts) identifier to one or more Bins by searching a variety of
reference databases (TAIR Release 10, SwissProt/UniProt Plant Proteins, Clusters of
Orthologous Eukaryotic Genes Database (KOG), Conserved Domain Database (CDD),
and InterProScan). The functional predictions generated could directly be used as a
’mapping file’ for the high-throughput data visualization and meta-analysis software
MapMan (3.5.1 version. The ImageAnnotator module allowed us to visualize the data
on a gene-by-gene basis on schematic diagrams (maps) of the biological processes
described.

5.3 Results and Discussion
This paper reports the study and view of the metabolism as it occurs in Holm oak,
the most representative and valuable forest tree species in the Mediterranean region.
For that purpose, a biological sample containing equal fresh weight amount of the
different organs as starting plant material and a combination of high-throughput,
-omics approaches (transcriptomics, proteomics, and metabolomics) as analytical tools
were used. As each analytical platform has its own limitations (Schrimpe-Rutledge
et al., 2016; Tian, Lam, and Shui, 2016; Viant et al., 2017), is their integration that
will provided more confident biological knowledge of them.

The Systems Biology approach for research with species that, like Holm oak are
orphan and recalcitrant is very challenging (Abril et al., 2011), and it required the
optimization of experimental protocols and, more limitative, the creation of custom-
made databases, and pipelines. Beyond the reconstruction of different metabolic
pathways as they may occur in Holm oak, and the comparison with model plant species
(A. thaliana, O. sativa subsp. japonica, P. trichocarpa, and E. grandis) we aimed to
prove that employing state-of-the-art instrumentation and a similar workflow to those
employed in model species is feasible, even though quite uncommon in the current
literature.
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Transcriptome Analysis

The first transcriptome of Q. ilex has recently been reported. For that reason, the
Illumina Hiseq 2500 platform was employed to analyze the tissue mix sample, resulting
in 119889 contigs, and 31973 Blast2GO annotated transcripts (Guerrero-Sanchez et
al., 2017). The number of annotated sequences have been increased to 62628 after
a UniRef90 database search through Sma3s software (Munoz-Mérida et al., 2014;
Casimiro-Soriguer, Muñoz-Mérida, and Pérez-Pulido, 2017). Among them, 27089
sequences corresponded to unique genes. Comparatively, Sma3s performed faster than
Blast2GO and allowed more elaborated results, including functional categories, such
as biological processes, cellular components or molecular functions (Supplementary
Figures S5, S6 and S7). The total transcriptome sequences were categorized in 35
MERCATOR functional plant categories. The result of this categorization showed
a high percentage (41.8%) of non-assigned transcripts (Figure 5.2). Response to
stress and biosynthetic process, and the nucleus and plastids, were, respectively, the
biological processes and organelles most represented (Supplementary Figures S5, S6).
With respect to molecular functions, ion binding and kinase activity were those most
abundant, with around 11225 and 6372 sequences, respectively (Supplementary Figure
S7).

The number of annotated transcripts, 62628, is double that previously found
for the close relative Q. robur (38292 sequences; (Tarkka et al., 2013)), similar to
the figure of 27655 protein-coding genes in Arabidopsis (35386 identified proteins;
Araport11(https://www.arabidopsis.org/)), and below the 82190 unique transcripts
corresponding to 34212 genes also reported in Arabidopsis by (Zhang et al., 2017).

The annotated sequences in Q. ilex transcriptome were compared with the in silico
proteomes of A. thaliana, O. sativa subsp. japonica, P. trichocarpa, and E. grandis
(UniProt) to elucidate the unique and shared sequences. The comparative results are
shown in Supplementary Table S5. The highest percentage of similarity corresponded
to P. trichocarpa (91.7%), and lowest to O. sativa subsp. japonica (77.8%), with
intermediate values for E. grandis (88.5%) and A. thaliana (85.6%). The percentage of
similarity correlated with the phylogenetic distances among the compared species as
reported by The Angiosperm Phylogeny Group III (2009) (Figure 5.2).

Among the annotated transcripts, 2103 corresponded to enzyme transcript products.
These enzymes were assigned to 123 KEGG metabolic pathways (Supplementary Table
S6). The most represented pathways (Table 5.2) were: the carbohydrate metabolism
(starch and sucrose metabolism and glycolysis/gluconeogenesis, with 26 and 30 enzyme
transcripts, respectively). Also, the amino acids metabolism, primarily the cysteine and

https://www.arabidopsis.org/
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methionine metabolism, where 37 enzyme transcripts were detected. This pathway has
an important role in plants. Cysteine constitutes the sulfur donor for the biosynthesis
of methionine, phytochelatins, sulfhydryl compounds, glutathione, and coenzymes.
The homeostasis of sulfur metabolism in trees is more robust than in herbaceous
plants. Also, a greater change in conditions to initiate a response in trees is required
(Rennenberg et al., 2007). This fact is coherent with the requirement for highly
flexible defense strategies in woody plant species because of longevity. In addition, the
lipid metabolism (glycerophospholipid metabolism with 32 enzyme transcripts) has
an important function as a mediator in hormone signal transduction in plants (Janda
et al., 2013).

Proteome Analysis

The protein profile of the Q. ilex tissue mix sample was analyzed using a shotgun
proteomics platform. Protein extracts were obtained by using a TCA-acetone-phenol
protocol. After trypsin digestion, peptides were subjected to UPLC-Q-OT-qIT MS.
The resulting peptides and corresponding proteins were identified by matching MS
and MS/MS m/z data against the protein database resulting from the six-frame
translation of the Q. ilex transcriptome. The employment of species specific databases
instead of generic Viridiplantae ones improved the number and confidence of the
identifications, as previously published (Romero-Rodríguez et al., 2014). By using
Viridiplantae (SwissProt), 891 proteins were identified. Nevertheless, with our custom-
built specific database, 58584 peptides were detected corresponding to 2830 proteins
(with at least one unique peptide (Supplementary Tables S10, S11). Mean, SD, and
CV (%) values of normalized identified protein peak areas were determined for three
replicates (Supplementary Table S11). The mean of the CV obtained was 36.75%
(Supplementary Table S11), which was slightly higher than the CV mean previously
described using a 2-DE gel analysis (28.9%) (Jorge et al., 2005, 2006). This is due
to the number proteins, considering that this number is much lower in a 2-DE gel
analysis and usually highly represented than in a shotgun LC-MS/MS. However, despite
having a slightly higher value of CV, the shotgun LC-MS/MS shows greater sensitivity
and wide dynamic range. Proteins were categorized in 34 MERCATOR functional
plant categories (Figure 5.1). 21.2% of the proteins was not assigned to a functional
plant category. Up-to 18.1% proteins were related to protein fate (assembly, folding,
degradation, and protein posttranslational modifications), this group being the one
most represented.



64 Multi-Omics data integration of Quercus ilex

Figure 5.1 Functional categorization and distribution in percentage of the identified metabolites, proteins and
transcripts, according to the categories establish by MERCATOR. (A) Metabolome. (B) Transcriptome. (C) Pro-
teome. The pie charts show different functional categories: PS (Photosynthesis), major CHO metabolism, minor
CHO metabolism, glycolysis, fermentation, gluconeogenesis/glyoxylate cycle, OPP (Oxidative Pentose Phosphate),
TCA/org transformation, mitochondrial electron transport/ATP synthesis, cell wall, lipid metabolism, N-metabolism,
amino acid metabolism, S-assimilation, metal handling, secondary metabolism, hormone metabolism, co-factor and vi-
tamin metabolism, tetrapyrrole synthesis, stress, redox, polyamine metabolism, nucleotide metabolism, biodegradation
of xenobiotics, C1-metabolism, miscellanea, RNA, DNA, protein, signaling, cell, micro RNA, natural antisense, etc.,
development, transport, and not assigned.
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Figure 5.2 Phylogenetic tree of angiosperms. The tree shows the five-species compared (Arabidopsis thaliana, Eu-
calyptus grandis, Oryza sativa subsp. japonica, Populus trichocarpa, and Quercus ilex). The sequence similarity of
species coincides with the classification in the phylogenetic tree. Species are ranked from highest to lowest similar to
Q. ilex: P. trichocarpa (91.7%), E. grandis (88.4%), A. thaliana (85.6%), and O. sativa subsp. japonica (77.8%).
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The Holm oak proteome was filtered manually looking for proteins corresponding to
enzymes based on the EC number. This resulted in 228 enzyme proteins, corresponding
to 10% of the protein species with EC deduced from the in silico predicted Holm oak
transcriptome (2103 enzyme proteins) and around 20–50% of the enzymes predicted
for the sequenced A. thaliana and O. sativa subsp. japonica systems at UniProt.

The proteins identified were assigned to 93 KEGG metabolic pathways (Supplemen-
tary Table S6). The most represented pathways were: the carbohydrate metabolism
(starch and sucrose metabolism and glycolysis/gluconeogenesis) and the amino acids
metabolism (Table 5.2). The least represented one was the enzymes related to transcrip-
tion (Supplementary Table S6). These figures are much higher than those previously
reported for Q. ilex and other forest tree species (Valero-Galván et al., 2012; Pascual
et al., 2017; Szuba and Lorenc-Plucińska, 2017), maybe due to the use of the powerful
LTQ-Orbitrap mass instrument (Kalli et al., 2013) and the search in custom-built
specific database.

Out of the 228 enzyme proteins identified, 23 were specific for Holm oak, and
202, 157, 88, and 87, shared with, respectively, A. thaliana, O. sativa subsp. japon-
ica, P. trichocarpa, and E. grandis (Figure 5.2). 84 enzymes were common to all
the species, and 471, and 35 specific for A. thaliana and O. sativa subsp. japonica.
It is worthnoting that, for P. trichocarpa and E. grandis no unique enzymes were
found, this proving the quality and validity of our data, with, consequently, a more
complete annotated transcriptome and proteome database. Holm oak unique enzymes
were related to the biosynthesis of hormones and secondary metabolites. They in-
cluded those involved in the zeatin biosynthetic pathway (ath00908), such as cis-zeatin
O-beta-D-glucosyltransferase (EC:2.4.1.215) and zeatin O-beta-D-xylosyltransferase
(EC:2.4.2.40). Zeatin, one of the growth promoting hormones, is the predominant
xylem-mobile cytokinin in many plant species (Kamboj et al., 1999). In the Holm
oak unique enzymes involved in the secondary metabolism [6’-deoxychalcone synthase
(EC:2.3.1.170) and prenylcysteine oxidase (EC:1.8.3.5)] were involved in flavonoid
biosynthesis and terpenoid backbone biosynthesis, respectively. This is not surprising
as secondary metabolites are species specific. Thus, in Holm oak, the flavonoids
epicatechin gallate and epigallocatechin were found (Vinha et al., 2016a).

The 84 enzyme proteins common to the five-species corresponded mostly to path-
ways of the central metabolism, such as those of starch and sucrose (e.g., sucrose
synthase, EC: 2.4.1.13, and glucose-6-phosphate isomerase, EC: 5.3.1.9), glycolysis
and gluconeogenesis [e.g., phosphoglycerate kinase (EC:2.7.2.3) and pyruvate kinase.
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Figure 5.3 Venn diagram for the comparison of enzymes in Arabidopsis thaliana, Eucalyptus grandis, Oryza sativa
subsp. japonica, Populus trichocarpa in silico proteomes, and Quercus ilex proteome. The Venn diagram shows the
overlap of enzymes detected.

(EC:2.7.1.40)], and citrate cycle [e.g., malate dehydrogenase (EC:1.1.1.37), pyruvate
dehydrogenase (EC:1.2.4.1), and aconitate hydratase (EC:4.2.1.3)].

The 228 enzyme proteins identified belonged to 109 pathways, with some of them
being represented by only one enzyme [e.g., caffeine metabolism (ath00232) and
arachidonic acid metabolism (ath00590)] and up to 20 enzymes [e.g., carbon fixation
in photosynthetic organisms (ath00710)]. Analysis of the UniProt in silico enzyme
proteome revealed 106 and 107 pathways for, respectively, P. trichocarpa and E.
grandis, with the figure being higher for A. thaliana (121 pathways) and O. sativa
subsp. japonica (112 pathways) (Supplementary Table S11).

The pathways most represented in Holm oak were those of the intermediate and
central metabolism, including glyoxylate and dicarboxylate metabolism (ath00630)
with 16 enzyme proteins and amino sugar and nucleotide sugar metabolism (ath00520)
with 12 enzyme proteins (Table 5.2). For the glycolysis (Supplementary Figure S8), just
as an example, there were only two enzyme proteins non-detected: phosphofructokinase
(EC:2.7.1.11) and phosphoglycerate mutase (EC:5.4.2.12) (Supplementary Table S12).
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Table 5.1 Metabolite families from GC-MS data of Quercus ilex. Six main chemical families of metabolites are
represented. Carbohydrates (19), organic acids (19), amino acids (11), fatty acids (4), polyols (2), phenolic compounds
(2) and four unique compound classes (others). Data in the brackets are KEGG compound identifier of each metabolite.

Nature of the 
compounds 

Metabolite name 

Amino acids L-Glutamate (C00025), L-aspartate (C00049), L-
alanine (C00041), L-asparagine (C00152), L-serine 

(C00065), L-threonine (C00188), L-leucine (C00123), 
L-valine (C00183), L-isoleucine (C00407), L-proline 

(C00148), L-phenylalanine (C00079) 

Organic acids Ascorbate (C00072), pyruvate (C00022), L-lactate 
(C00186), succinate (C00042), fumarate (C00122), 

malate (C00149), citrate (C00158), aconitate 
(C00417), gluconolactone (C00198), D-glycerate 

(C00258), glucarate (C00818), galactarate (C00879), 
maleate (C01384), salicylate (C00805), pyroglutamic 
acid (C01879), oxalate (C00209), gallate (C00627), 

quinate (C00296), D-ribonate (C01685) 

Carbohydrates D-Glucose (C00031), L-arabinose (C00259), D-
xylulose (C00310), D-galacturonate (C00333), D-
fructose (C00095), L-sorbose (C00247), mannitol 

(C00392), L-rhamnose (C00507), D-sorbitol (C00794), 
sucrose (C00089), D-galactose (C00124), melibiose 

(C05402), myo-inositol (C00137), D-glucose 6-
phosphate (C00092), maltose (C00208), maltotriose 

(C01835), D-cellobiose (C00185), D-galactonate 
(C00880), D-erythrose (C01796) 

Polyols Glycerol (C00116), viburnitol (C08259) 
Fatty acids Palmitic acid (C00249), oleic acid (C00712), stearic 

acid (C01530), linoleic acid (C01595) 
Phenolic compounds 

(flavonoids) 
Catechin (C06562), epigallocatechin (C12136) 

Others Urea (C00086), 4-aminobutanoate (GABA) (C00334), 
tridecane (C13834), anthraquinone (C16207) 
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Table 5.2 Number of metabolites and enzymes (proteomic and transcriptomic level) in KEGG pathways. Pathways
according to the KEGG pathway maps based on Arabidopsis thaliana. The Arabidopsis pathway identifiers are in
brackets. The table shows the most representative pathways. The complete list of pathways is in the Supplementary
Material Table S12.

Pathways Metabolites Proteins Transcripts 
Carbohydrate metabolism         
Glycolysis/gluconeogenesis 
(ath00010) 

Pyruvate, D-glucose, L-
lactate 

3 20 30 

Glyoxylate and 
dicarboxylate metabolism 
(ath00630) 

Pyruvate, L-glutamate, 
succinate, L-serine, malate, 
citrate, glycolate, oxalate, 
glycerate, aconitate 

10 16 27 

Citrate cycle (TCA cycle) 
(ath00020) 

Pyruvate, succinate, 
fumarate, malate, citrate, 
aconitate 

6 9 16 

Amino sugar and 
nucleotide sugar 
metabolism (ath00520) 

D-Glucose, L-arabinose, D-
galacturonate 

3 12 38 

Starch and sucrose 
metabolism (ath00500) 

D-Glucose, sucrose, D-
glucose 6-phosphate, D-
fructose, cellobiose, maltose 

6 18 26 

Pentose phosphate 
pathway (ath00030) 

Pyruvate, D-glucose, 
gluconolactone, glycerate 

4 7 17 

Galactose metabolism 
(ath00052) 

D-Glucose, sucrose, D-
fructose, glycerol, D-
galactose, myo-inositol, D-
sorbitol, D-galactonate, 
melibiose 

9 9 15 

Amino acid metabolism 
Alanine, aspartate, and 
glutamate metabolism 
(ath00250) 

Pyruvate, L-glutamate, L-
alanine, succinate, L-
aspartate, fumarate, L-
asparagine, citrate, 4-
aminobutanoate (GABA) 

9 9 27 

Cysteine and methionine 
metabolism (ath00270) 

Pyruvate, L-alanine, L-
aspartate, L-serine 

4 10 37 

Glycine, serine, and 
threonine metabolism 
(ath00260) 

Pyruvate, L-aspartate, L-
serine, L-threonine, 
glycerate 

5 11 31 

Phenylalanine metabolism 
(ath00360) 

Pyruvate, succinate, L-
phenylalanine, fumarate, 
salicylate 

5 4 14 

Lipid metabolism 
Biosynthesis of unsaturated 
fatty acids (ath01040) 

Palmitic acid, oleic acid, 
stearic acid, linoleic acid 

4 3 13 

Energy metabolism 
Carbon fixation in 
photosynthetic organisms 
(ath00710) 

Pyruvate, L-alanine, L-
aspartate, malate 

4 20 23 

Biosynthesis of other secondary metabolites 
Phenylpropanoid 
biosynthesis (ath00940) 

L-Phenylalanine, gallate 2 7 17 
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These results are more complete than the ones found from the in silico analysis of the
other two woody plants used for comparisons P. trichocarpa and E. grandis, with only
5 out of the 10 glycolytic enzymes.

Metabolome Analysis

The metabolites present in the pooled samples were analyzed by using GC-q-MS.
Two different extraction solvents, methanol:water and chloroform, were, respectively,
used for compounds of different polarities. Up to 155 and 19 peaks were resolved
by gas chromatography using the above mentioned solvents. A complete list of the
identified compounds with their respective RT and the mass-to-charge ratios (m/z) is
included in Supplementary Tables S4, S5. From the m/z values, and after a search in
seven public databases (Alkane, Fiehn library 1 and 2, Gölm Metabolome Database,
GC-TSQ, MoSys, and NIST/EPA/NIH Mass Spectral Library) a total of 62 compounds
were identified, 57 in the methanol:water extract and 5 in the chloroform one. The
normalized peak areas of the metabolites were employed for the mean, SD, and CV
determinations. The average of the CV obtained (13.70%) was lower than the obtained
with proteins data (36.75%), revealing the existence of a greater variability in proteins
analysis. The higher CV could be related with the higher number and diversity of
identified proteins versus the metabolites identified.

Identified compounds were in the 60–500 Da and mostly belonged to the primary
metabolism (59), with only three being secondary metabolites (catechin, epigallocat-
echin, and anthraquinone). The identified metabolites were grouped in six chemical
families according to the KEGG database17, including carbohydrates (19), organic
acids (19), amino acids (11), fatty acids (4), polyols (2), and phenolic compounds (2)
(Table 5.1). The family most represented was that of organic acids (19) and carbohy-
drates (19), followed by amino acids (11). Fatty acids (4) and phenolic compounds
(2) were much less represented. They were included in at least 64 different KEGG
pathways (Supplementary Table S6), and in 15 functional plant categories according
to MapMan classification (Figure 5.1).

These metabolites are starting metabolites or final products from primary metabolism
pathways, like glyoxylate and dicarboxylate metabolism (ath00630), starch and su-
crose metabolism (ath00500), citrate cycle (TCA cycle) (ath00020) of carbohydrate
metabolism; alanine, aspartate, and glutamate metabolism (ath00250) of amino acid
metabolism and biosynthesis of unsaturated fatty acids (ath01040) of fatty acids
metabolism. Many were intermediate metabolites, with 5 (citrate, cis-Aconitate,
succinate, fumarate, and malate), out of the total 8 corresponding to the Citrate
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Figure 5.4 Metabolites and enzymes (protein or transcript level) assigned to the citrate cycle (TCA cycle). Omics
data are highlighted in red (metabolites), blue (proteins), yellow (transcripts), and green (both proteins and transcript).
The enzymes (proteins and transcripts) are named by their EC number. EC numbers and respective detected TCA
cycle enzymes: 2.3.3.1 (Citrate synthase), 4.2.1.3 (Aconitate hydratase), 1.1.1.42 [Isocitrate dehydrogenase (NADP+)],
1.2.4.2 (alpha-ketoglutarate dehydrogenase), 6.2.1.4 (Succinyl coenzyme A synthetase), 1.3.5.1 (Succinate dehydroge-
nase), 4.2.1.2 (Fumarate hydratase), 1.1.1.37 (Malate dehydrogenase). There are two full reactions (metabolite, protein
and transcript level) This figure was adapted from KEGG reference pathway.

cycle (Figure 5.4 and Table 5.2). The pathways most represented were carbohydrate
and amino acid metabolisms. However, the number of secondary metabolites (cate-
chin, epigallocatechin, and anthraquinone) was smaller than the number of secondary
metabolites reported for Quercus spp. acorns (Vinha et al., 2016b). Due to the
small number of secondary metabolites detected, the metabolic pathways related to
the biosynthesis of secondary metabolites, like carotenoid biosynthesis (ath00906),
anthocyanin biosynthesis (ath00942), and monoterpenoid biosynthesis (ath00902) are
not highly represented (Supplementary Table S6). In Arabidopsis, the total number of
secondary metabolites is still unknown due to metabolite identification being one of
the bottlenecks in untargeted metabolomic studies (Wu et al., 2017). Still, in AraCyc
15.0, the total number of compounds described are 2971 and the number of metabolic
pathways 610 (PMN; Plant Metabolic Network). The identification of 62 metabolites is
in the order of what has been reported for non-model plant systems by using a similar
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approach (Warren, Aranda, and Cano, 2012; Cadahía et al., 2015; Asai, Matsukawa,
and Kajiyama, 2016; Pascual et al., 2017), but far from the figure obtained when
using model systems such as A. thaliana, or complementary techniques such as LC-MS.
The employment of complementary LC-MS strategies would increase the number of
metabolites identified, as shown, for example, with A. thaliana, although it would
greatly reduce the number of metabolites identified with no doubts. (Kim, Langmead,
and Salzberg, 2015) detected 4483 distinct metabolite peaks from leaves using 11 mass
spectrometric platforms, but only identifying 1348 metabolites. These results revealed
that the available databases and repositories are incomplete and pointed to the need
for new algorithms for elucidating structures from MSn analyses.

Data Integration

To seek insights into the metabolic pathways as they occur in Holm oak, transcriptomics,
proteomics, and metabolomics data have been integrated. (Table 5.1 and Supplementary
Tables S11, S13). We obtained a deeper view of the metabolic pathways by implementing
proteomics or transcriptomics data as the potential of these techniques is much higher
than that of metabolomics. However, although technological advances and bioinformatic
tools and resources for making those analyses and data interpretation have been
extended to plant biology research, this has mostly been for model plants. The
unique and specialized biology of such diversified species requires the adaptation of
strategies conceived primarily for model organisms and the development of designed
and specific methods. For their integration, we employed EC numbers (proteins and
transcripts) and KEGG identifiers (metabolites). With the latter and with KEGG
pathway maps we obtained the three-different level of information of 61 metabolic
pathways (Supplementary Table S6). The metabolic pathways most represented are
shown in Table 5.2.

In order to obtain a metabolic overview. The ’BINS’ generated from the pro-
teome/transcriptome were employed as a “mapping file,” then introducing identi-
fied metabolites. The representation obtained of the general map (Figure 5.5A) for
the dataset as shown from ImageAnnotator module of MapMan, showed common
metabolism points between metabolites and proteins/transcripts (Figure 5.5B). From
the total number of pathways reported in the plants, for example, in KEGG (127
pathways in Arabidopsis), we procured data from 124 of them at the metabolomic,
proteomic, and transcriptomics level (Supplementary Figure S7). Table 5.2 summarizes
the most representative pathways visualized, including carbohydrate metabolism [glycol-
ysis/gluconeogenesis (ath00010), glyoxylate and dicarboxylate metabolism (ath00630),
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Figure 5.5 MapMan overview of general metabolism for the metabolites and proteins/transcripts of Quercus ilex.
(A) Visualization of 58 metabolites in the context of general metabolism using the using MapMan software. (B)
Visualization of 58 metabolites in different MapMan pathways. Each red square represents a metabolite and each gray
circle represents a protein or transcript. More details can be found in (Usadel et al., 2009)



74 Multi-Omics data integration of Quercus ilex

citrate cycle (TCA cycle) (ath00020), starch and sucrose metabolism (ath00500)],
amino acid metabolism [alanine, aspartate, and glutamate metabolism (ath00250) and
phenylalanine metabolism (ath00360), lipid metabolism (biosynthesis of unsaturated
fatty acids (ath01040)], and energy metabolism [carbon fixation in photosynthetic
organisms (ath00710)]. The one most represented was the TCA, with 5 metabolites out
of a total of 10, and protein and transcript corresponding to, respectively, 6 and 8 en-
zymes (Figure 5.2). On the other hand, there were clear gaps in the hypothetical plant
metabolic chart, mainly corresponding to the secondary metabolism and hormones
[anthocyanin biosynthesis (ath00942), brassinosteroid biosynthesis (ath00905)] and
lipid metabolism [steroid biosynthesis (ath00100)]. For example, the brassinosteroid
biosynthesis pathway, which produces plant steroidal hormones that play important
roles in many stages of plant growth, has only reported 1 protein and 1 transcript
(Supplementary Table S7). Also, the Figure 5.3 shows the low representation of
the different metabolic pathways, also with a multi-omics data integration. From
metabolomics, proteomics, and transcriptomic data we were able to identify 64, 109,
and 118, pathways, respectively. The total number reported at the PMN and deduced
from genome sequencing were 610 (A. thaliana), 519 (E. grandis), and 538 (P. tri-
chocarpa). From these figures we can conclude that the current wet methodologies
only allow the visualization of a low percentage of enzyme gene products in a single
experiment.

The work and dataset generated, even considering future methodological improve-
ments, will be the basis of ulterior studies on the particularities of the metabolism as it
occurs in different organs and developmental processes, as well the changes in response
to environmental cues, thus complementing our previous studies in which morphology,
phenology, classical physiological and biochemical analysis, and the holistic proteomics
have been employed (Echevarría-Zomeño et al., 2009; Echevarría-Zomeño et al., 2012;
Valero-Galván et al., 2011; Valero-Galván et al., 2012; Sghaier-Hammami et al., 2013;
Romero-Rodríguez et al., 2014; Romero-Rodríguez, 2015; Guerrero-Sanchez et al.,
2017). These previously published studies provided quite fragmented and speculative
biological information. Hence to go one step ahead, data validation and integration
at the different molecular levels would be necessary in order to obtain an unbiased
molecular interpretation of the plant biology.



5.4 Conclusions 75

5.4 Conclusions
We have proven that –omics integration, in the Systems Biology direction, is feasible not
only with model organisms, but also with orphan and recalcitrant species such as the
Holm oak, the most emblematic and representative tree species of the Mediterranean
forest. The methodological bases, including wet protocols and in silico analysis,
have been established, allowing the implementation of transcriptome, proteome, and
metabolome databases, comprising 27089 transcripts (unigenes), 2380 protein species,
and 62 metabolites (Supplementary Table S14).

Integrated analysis allowed the visualization and reconstruction of the metabolism
in Holm oak. Up to 123 metabolic pathways, out of the 127-total reported in KEGG,
can be visualized at the transcriptome, proteome, and metabolome level. Thus, as an
example, for the Krebs cycle, six metabolites out of the eight have been detected. This
route comprises eight enzymes detected at the transcriptome or proteome level. These
figures are like those reported for the model plant A. thaliana. There is still room
for improvement, and there are pathways underrepresented in the created database,
including the brassinosteroid biosynthesis pathway. The Q. ilex genome sequencing,
the use of alternative and complementary strategies such as LC-MS will improve the
number of pathways visualized.

The current metabolic reconstruction achieved for this species can be considered to
be sufficient to progress in the biological knowledge of this species.

5.5 Data Availability
RAW and MSF files corresponding to proteomics are available at the ProteomExchange
repository; Datasets: PXD008001. The Project ID of the GC-MS Q. ilex metabolomic
analysis is PR000618 in the Metabolomics Workbench repository.
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Abstract

Quercus ilex, the typical tree of the Mediterranean forest and of the “dehesa” agrosil-
vopastoral ecosystems, is a species well adapted to xeric conditions, being reported
as one of the most drought-tolerant within the European tress and Quercus genus.
In an attempt to identify gene products and pathways related to drought tolerance
in this species, an integrated transcriptomic and proteomic analysis has been carried
out. Quercus ilex seedlings grown on pots containing perlite were subjected to drought
conditions by water withholding for 30 days. Leaves were sampled at two times, when
the leaf fluorescence dropped by 30% and 50% in comparison to the irrigated seedlings
(at day 20 and 25, respectively), RNA and proteins independently extracted from the
same batch of samples and analysed by RNA-seq and shotgun proteomics. RNA-seq
analysis generated 47868 transcripts corresponding to 21000 unigenes, with 3588 qual-
itative or quantitative differences between irrigated and droughted seedlings (1149
up, and 2439 down). From shotgun proteomics, 4008 protein species were identified,
corresponding to 2767 different genes. Out of them, 640 had qualitative or quantitative
differences in abundance between treatments (353 more and 287 less abundant under
drought conditions). Variable gene products were categorized in terms of gene ontology,
biological process, molecular function and cellular component, and, for enzymes, in
KEGG metabolic pathways. The variable dataset was subjected to multivariate, PCA
and sPLS, statistical analysis. Finally, by using GeneMANIA, interaction networks
were constructed.

A wide gene expression was observed at the two omics levels with up and down
regulation, being this transitory (observed at 20 or 25 days) or permanent (observed
at 20 and 25 days). The functional groups, whose genes were most altered in response
to drought, were “stress-related” and “chloroplasts”. The most affected metabolic
pathways included protein translation, photosynthesis, carbohydrates, amino acids and
phenolics. Variable gene products were observed at transcriptomic or proteomic levels,
with a reduced number detected at both levels. This included, for example, RPS2,
4CL2, PSB28, and RIN4, among others.
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From the variable transcript and protein datasets, two networks were constructed,
the first one included up accumulated CLPB2, CLPB3, HSP70, HSP17.4, FTSH6,
AT1G23740, SMT1, and UGP3, and down accumulated ABA2, RPS1, ADK, and
RPL4 genes and the second one included up accumulated CLPB2, CLPB3, HSP70,
HSP17.4, FTSH6, AT1G23740, AP1, INVE, AT4G2740, CAD4, FEN1, and HIPP27
and down accumulated ABA2 genes.

From a biological point of view, and in terms of stress response and tolerance,
Q. ilex seedlings were characterized by an increase in general abiotic stress related
gene products, including FTSH6, PSB28, CPLB2, and CPLB3. These variable gene
products overexpressed under drought conditions can be proposed as molecular markers
of response and tolerance to drought stress.

6.1 Introduction
Currently, drought conditions, accompanied by high temperatures and irradiance, are
considered as one of the main causes of forest decline and tree mortality (Pasho et al.,
2011). Moreover, this situation could become worse in a climate change scenario (Allen,
2009; Menezes-Silva et al., 2019), considering the simulation models and predictions of
an increase in both temperature and frequency of drought periods (Collins et al., 2012).
Thus, high temperatures, changes in precipitation patterns, among other climatic
conditions, are increasing the aridity of the Mediterranean region, strongly impacting
its ecosystems composition (Peñuelas et al., 2018).

Under the current climate change conditions, the conservation of the “dehesa”,
in particular, and the Mediterranean forest, in general, as well as reforestation and
afforestation programmes require the employment of novel strategies for the sustainable
management and conservation of these ecosystems, among which breeding for resilience
should be a priority. In Q. ilex, considered as a non-domesticated, long-lived species,
and because of its allogamous character, the only plausible alternative in a breeding
programme for tolerance is the selection of elite genotypes assisted by phenotypic and
molecular markers, which involve the characterization of the biodiversity and those
mechanisms of tolerance from a morphological, physiological and molecular point of
view (Guzmán et al., 2015; Martínez et al., 2019).

Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.), considered as the most
representative species of the Mediterranean forests and the agrosilvopastoral ecosystem
“dehesa”, has suffered an increase in the mortality rate in last decades in Southern
Spain an increase in the mortality rate, both in natural stands and in novel plantations
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(Villar-Salvador et al., 2004; Natalini et al., 2016). Although this increased mortality is
mostly associated to the root rot pathogen Phytophthora cinnamomi, it has also been
linked to drought episodes that worsen the survival of the species. Both factors, drought
and P. cinnamomic, are considered as the main elements of the holm oak decline
syndrome (Brasier, Robredo, and Ferraz, 1993; Sanchez et al., 2002; Ruiz Gómez et al.,
2018).

Quercus ilex is a sclerophyllous species well adapted to climate conditions prevailing
in the Central-Western Mediterranean basin (De Rigo and Caudullo, 2016). This
species is considered as one of the most drought-tolerant species (David et al., 2007;
Forner, Valladares, and Aranda, 2018; Früchtenicht et al., 2018)(San Eufrasio et al.,
2020) due to themorpho-functional traits and strategies developed to face conditions
of low water availability (Guzmán et al., 2015; Vicente et al., 2018). However, it has
been reported that both inter- and intra-population variability in the level of drought
tolerance within Q. ilex do exist (Valero-Galván et al., 2013). To date, many studies
have shown the variability in the responses to biotic (e.g. P. cinnamomic) and abiotic
(e.g. drought) stresses in Q. ilex by using physiological, classic biochemistry and -omics
approaches. (Jorge et al., 2006; Echevarría-Zomeño et al., 2009; Sghaier-Hammami
et al., 2013; Valero-Galván et al., 2011; Valero-Galván et al., 2013; Simova-Stoilova
et al., 2015; Simova-Stoilova et al., 2018; López-Hidalgo et al., 2018; Rey et al., 2019).
As a continuation of the previous referenced work, a combined RNA-seq transcriptomics
and shotgun, LC-MS/MS, proteomics analysis of the drought response in 6-month old
Q. ilex seedlings was carried out, with the main objective to generate as much data
as possible from each -ome. This work provides some new data and knowledge on
the molecular processes and mechanisms related to drought tolerant character of this
species, as well as shed some light about possible candidates to be used as molecular
markers in a breeding programme.

6.2 Materials and methods

6.2.1 Plant material and drought treatment

Healthy acorns were collected from trees located in ’Almadén de la Plata’, Seville,
Andalusia, Spain (37◦ 52’N 6◦ 28’W). Acorns were selected and germinated as previously
reported (Simova-Stoilova et al., 2015). The drought experiment was performed with
6-month-old seedlings grown in 0.5 L pots containing perlite in July 2017 in Córdoba,
Andalusia (Spain) under natural conditions (44◦C and 19◦C mean maximum and
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minimum temperatures, respectively, and 40% relative humidity), as reported in
(Valero-Galván et al., 2013) and (San Eufrasio et al., 2020) (Supplementary document).
Seedlings were irrigated at field capacity every two days and once a week with a
Hoagland nutrient solution (Hoagland and Arnon, 1950). The drought treatment was
carried out as previously described in (San Eufrasio et al., 2020). Briefly, severe drought
was imposed by water withholding for 30 days. The effect of drought was determined
by total pot weight, damage symptoms and leaf fluorescence. Leaf fluorescence was
measured regularly with a fluorometer (FluorPen FP100, Photon Systems Instruments,
Drasiv, Czech Republic). Asymptomatic leaves were collected when the leaf fluorescence
dropped by 30% and 50% in the droughted seedlings with respect to the well-watered
ones (at day 20 and 25, respectively). Leaves were taken from three biological replicates
per treatment and time and, they were immediately shock-frozen in liquid nitrogen
and kept at 80◦C until RNA extraction.

6.2.2 RNA extraction

Total mRNA was extracted from plant leaves according the procedures previously set
up in our laboratory for Q. ilex samples (Echevarría-Zomeño et al., 2012). Briefly, RNA
was extracted from 50 mg of fresh tissue and DNA was removed by DNase I treatment
(Ambion, Austin, TX, USA). Total RNA was quantified spectrophotometrically (DU
228800 Spectrophotometer, Fullerton, CA USA), and the integrity of the isolated RNA
was assessed using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).
Only high-quality RNAs with RIN values > 8 and A260:A280 ratios near 2.0 were used
for subsequent experiments.

6.2.3 RNA-Seq Library construction, Illumina sequencing and
de novo re-assembly

Extracted total RNA was sent to Allgenetics & Biology Sl. (https://www.allgenetics.
eu/) for library preparation and Illumina RNA sequencing. Illumina’s TruSeq Stranded
mRNA Library Prep Kit was used to prepare the libraries strictly following the man-
ufacturer’s instructions. Briefly, each sample was enriched in mRNA by selecting
those molecules with poly-A tail at their 3’ end. Captured mRNAs are then converted
into cDNA, and sequencing adaptors are added to their ends in order to make the
samples ready for sequencing The fragment size distribution and concentration of the
libraries were checked in the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). The libraries were quantified with Qubit dsDNA HS Assay Kit (Thermo

https://www.allgenetics.eu/
https://www.allgenetics.eu/
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Scientific, Madison, WI, USA). Then, they were pooled in equimolar amounts accord-
ing to the Qubit results.The library was used for high-throughput sequencing with
the Illumina Hiseq 4000 platform using a paired-end sequencing system to generate
raw data. A quality control of the raw reads generated to obtain only high-quality
reads was carried out using FastQC (v0.11.8) (Andrews, 2010). Truseq Adapter Index
7 (ATCGGAAGAGCACACGTCTGAACTCCAGTCACCGGCTATGATCTCGTATG)
and Illumina Single End PCR Primer 1 (ATCGGAAGAGCGTCGTGTAGGGAAA-
GAGTGTGCCTCTATGTGTAGATCTC) adapters, ambiguous nucleotides and low
quality sequences (first 12 bp of each read) were removed by using Cutadapt (v 1.9)
(Martin, 2011). Previous to this study, a de novo transcriptome of Q. ilex was gener-
ated by using raw data obtained from Illumina (Guerrero-Sanchez et al., 2017) and
Ion torrent (Guerrero-Sanchez et al., 2019). These raw data together the combining
datasets of well-watered and droughted seedlings obtained in this study were used
to assemble all the clean reads generated in Q. ilex into contigs using RAY (v2.3.1)
(Boisvert, Laviolette, and Corbeil, 2010). The evaluation of the structure of the gen-
erated transcriptome was performed using QUAST (v5.0.0) (Gurevich et al., 2013;
Guerrero-Sanchez et al., 2017; Guerrero-Sanchez et al., 2019). The new version of
the Q. ilex transcriptome was annotated against Uniref90 (UniProt) using Sma3s
(v2) (Munoz-Mérida et al., 2014; Casimiro-Soriguer, Muñoz-Mérida, and Pérez-Pulido,
2017). In addition, all the transcripts identified were subjected to a Gene Ontology
term comparison and classification. A GO term was assigned to each transcript based
on the GO annotations for biological process, molecular function and cellular compo-
nent. GO enrichment was evaluated by Fisher’s exact test with a false discovery rate
(FDR) in the biological process, molecular function and cellular component categories.
The assembly calculations were run in the Supercomputing and Bioinnovation Center
Service of the University of Malaga (Andalusia, Spain) (http://www.scbi.uma.es/site/).
More information on the Illumina sequencing can be found in (Guerrero-Sanchez et al.,
2017; Guerrero-Sanchez et al., 2019).

6.2.4 mRNA differential expression

The transcript quantification was carried out by mapping the filtered reads to the
new transcriptome generated in this study, using Expectation Maximization method
(RSEM) (Li et al., 2014). Differential expression analysis were performed with the
edgeR R package (Robinson, McCarthy, and Smyth, 2010) by normalizing the counts
using the Trimmed Mean of M-value (TMM) method. The counts represent the total
number of reads aligning to each gene/transcript. EdgeR uses a generalized linear

http://www.scbi.uma.es/site/


84 Drought tolerance mechanisms of Holm oak

model (GLM) which is like a linear model but assumes that the counts (raw reads)
are not normally distributed, because most genes are not differentially expressed.
EdgeR fits the counts to a negative binomial distribution and estimate the expected
dispersion (variance). The GLM likelihood ratio test was selected for determining
differential expression patterns. All the transcripts that varied from the well-watered
seedlings with an adjusted p-value Benjamini-Hochberg FDR < 0.05 were considered
as differently expressed (Benjamini and Hochberg, 1995). Venn diagram analysis of
the upregulated and downregulated transcripts under drought conditions was carried
out as previously reported in (Oliveros, 2007). A Gene Ontology Enrichment analysis
was performed using ShinyGO v0.61 in order to classify genes according to biological
process, molecular function and cellular component (Ge and Jung, 2018).

6.2.5 Protein extraction and digestion

Protein extraction was carried out using the trichloroacetic acid (TCA)/acetone-phenol
protocol previously used for Holm oak (Jorrin-Novo, 2014). The protein concentration
was determined by Bradford method (Bradford, 1976) (BioRad, Hercules, CA, USA)
using bovine serum albumin (BSA) as standard. 90 µg of BSA protein equivalent
from each biological replicate of all treatments were subjected to SDS-PAGE (12%
acrylamide) on the Protean XL-II (20×20 cm) system (Bio-Rad). The gel was run at
80 V and stopped when the bromophenol blue advanced 0.5 cm into the resolving gel,
a step introduced for protein sample cleaning (Pascual et al., 2017). The gel was then
stained with Coomassie Brillant blue (CBB) (Mathesius et al., 2001), and the unique
resulting band excised using a clean scalpel and digested with trypsin (Sequencing
grade, Promega, Madison, WI) as described in (Castillejo, Bani, and Rubiales, 2015).
Digestion was stopped, and peptides were extracted from gel plugs by adding 10 µL
of 1% (v/v) trifluoroacetic acid (TFA) and incubating for 15 min, which were later
completely evaporated in speed-vac.

6.2.6 Shotgun (LC-MS/MS) protein analysis

Protein analyses were conducted at the Proteomics Facility of the Research Support
Central Service (SCAI) of the University of Cordoba. Nano-LC was performed in a
Dionex Ultimate 3000 nano UPLC (Thermo Scientific, Madison, WI, USA) with a C18
75 µm x 50 Acclaim Pepmam column (Thermo Scientific, Madison, WI, USA). The
digested peptides (3 ug in 5 µl) was previously loaded on a 300 µm x 5 mm Acclaim
Pepmap precolumn (Thermo Scientific, Madison, WI, USA) in 2% AcN/0.05% TFA for
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5 min at 5 µL/min. Peptide separation was performed at 40◦C for all runs. Samples
were separated during a gradient of 120 min ranging from 95% solvent A (0.1% FA) to
80% solvent B (80% ACN, 0.1% FA) and a flow rate of 300 nL/min. LC was coupled
to MS using an ESI source. Eluted peptides were converted into gas-phase ions by
nano electrospray ionization and analysed on a Thermo Orbitrap Fusion (Q-OT-qIT,
Thermo Scientific, Madison, WI, USA) mass spectrometer operated in positive mode.
Survey scans of peptide precursors from 400 to 1500 m/z were performed at 120K
resolution (at 200 m/z) with a 4 x 105 ion count target threshold. Tandem MS was
performed by isolation window at 1.2 Da with the quadrupole. Monoisotopic precursor
ions were CID-fragmented in the ion trap, which was set up as follows: automatic
gain control, 2 × 103, maximum injection time, 300 ms, and 35% normalized collision
energy.

6.2.7 Protein identification and quantification

Spectra were processed using the SEQUEST algorithm available in Proteome Discov-
erer™ 2.1(Thermo Scientific, Madison, WI, USA). The following settings (Romero-
Rodríguez et al., 2014) were used: precursor mass tolerance was set to 10 ppm and
fragment ion mass tolerance to 0.6 Da. Identification confidence was set to a 5%
FDR and the variable modifications were set to: oxidation of methionine and the
fixed modifications were set to carbamidomethyl cysteine formation. A maximum of
two missed cleavages were set for all searches. The protein identification was carried
out against the translated Q. ilex transcriptome generated in this work. A six-frame
translation for each sequence in the transcriptome was performed by using transdecoder
(Haas et al., 2013) filtering and keeping peptides longer than 50 amino acids. Proteome
Discoverer™ filtered out those proteins groups that had no unique peptides among
the considered peptides during the protein grouping process. Proteins were quantified
as reported in (Silva et al., 2006), using the average MD signal response for the three
most intense tryptic peptides. Values for individual proteins were then divided by
the total sum of the peak area values within each sample. After the natural log
transformation of these relative values, a statistical analysis using the Student’s t test
(p-value < 0.05) was performed to identify the differential proteins (Zybailov et al.,
2006). The criteria used to consider a protein as significantly change was as variable
was as follows: (a) the protein was consistently present or absent in all three replicates
for a condition and (b) it exhibited statistically significant differences (t-test, p-value <
0.05; between treatments). Venn diagram analysis of variable proteins was also carried
out as previously reported in (Oliveros, 2007). A Gene Ontology Enrichment analysis
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was performed using ShinyGO v0.61 in order to classify proteins according to biological
process, molecular function and cellular component (Ge and Jung, 2018).

6.2.8 Multivariate Analysis

A multivariate analysis of the total and variables datasets at the transcript and protein
levels was performed with mixOmics (Rohart et al., 2017) using Principal Component
Analysis (PCA) and sparse Partial Least Squares (sPLS). The sPLS method was used
to find correlations between predictors (Transcripts matrix) and response variables
(Proteins) and the PCA method was performed to corroborate the sPLS plotting.

6.2.9 Pathway mapping of omics data

To acquire an integrated visualization of Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway maps, total transcript and protein datasets, specifying those variable
transcripts and proteins, were analysed by Paintomics 3 (v0.4.5) (Garcia-Alcalde et al.,
2011; Diego et al., 2018). A logarithm transformation was applied to the total and
variable datasets. Arabidopsis thaliana was considered as a model reference. Pathways
with p-value > 0.05 were considered as significantly enriched pathways.

6.2.10 Interaction network

Interaction networks were constructed using GeneMANIA Cytoscape plugin (Warde-
Farley et al., 2010; Shannon et al., 2003). The interaction networks included were
co-expression, co-localization, shared protein domains and co-localization. This software
also finds functionally similar genes that do not exist in the input gene list (Franz et al.,
2018). All the variables transcripts and proteoforms at each sampling time were used
to the construction of the interaction networks, and A. thaliana was also considered as
a model reference.

6.2.11 Data availability

The transcriptome data set will be available in the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) and the proteome data will be available in the
PRoteomics IDEntifications Database (PRIDE, https://www.ebi.ac.uk/pride/). Acces-
sion numbers will be provided after the publication of this work.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/pride/
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6.3 Results
The transcript and protein profiles of leaves from Q. ilex seedlings subjected to well-
watered (control) and drought-stress (water withholding) conditions were analysed
by using RNA-seq (Illumina®) and Shotgun, LC-MS/MS, proteomics platforms. The
analysis was performed at two sampling times corresponding to a decrease of leaf
fluorescence of 30 and 50% in droughted seedlings compared to the well-irrigated ones
(at days 20 and 25, respectively) in three biological replicates per treatment.

6.3.1 Transcriptomic and Proteomic Profile analysis

Transcriptomics

Illumina RNA-seq resulted in about 40 million 150bp paired-end reads per sample
(480 million in total). In this work, a deeper coverage of transcriptome was achieved
from these data and previous raw data obtained recently (Guerrero-Sanchez et al.,
2017; Guerrero-Sanchez et al., 2019), a more complete version of the Q. ilex de novo
transcriptome was assembled. The assembly structure analysis provided 23826, 253
and 10 contigs that had, respectively, more than 1000, 5000, and 10000 bp. The largest
contig size was 15009 bp and the N50 and L50 values were of 1044 and 14029 bp,
respectively.

After mapping to the new assembled transcriptome, 71,9% of the reads generated
during the drought experiment, accounted for mRNA. In total, 47868 assembled
transcripts, corresponding to approximately 21000 unigenes, were obtained, having a
minimum and average length of 200 and 1076 bp, respectively (Table 6.1; Supplementary
Table S15).

Table 6.1 Features of the transcriptome and proteome analysis at the two sampling days. The total number of
identified transcripts and proteins, its sequence length, as well the number of them showing qualitative or quantitative
differences between treatments are indicated. Newly appeared/disappeared indicates transcripts and proteins showing
qualitative changes, being only present in drought/control treatments. Up/down indicates transcripts and proteins
showing quantitative changes, being more abundant in drought/control treatments. a-e correspond to minimum (a)
and mean (b) bp values;, number of sequenced amino-acids with at least 1 unique peptide (c); sequenced amino acids
mean value (d), and number of unigenes (e-f).
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Figure 6.1 Venn diagram of the number of variable transcripts and proteins between treatments, droughted and
well-watered seedlings, found at the two sampling, days 20 and 25. Intercepts show common differences at the two
times and/or two platforms.

A differential gene expression analysis of the assembled transcripts was performed
between well-watered and droughted seedlings at days 20 and 25 (Supplementary Table
S15). The differences between treatments within each time were classified as qualitative
(absence/presence) or quantitative (p<0,05, t-test). Only consistent transcripts, those
present in all the three replicates were considered. Out of 47868 assembled transcripts,
1116 showed qualitative differences between treatments, being 423 (155 at day 20, and
268 at day 25), and 693 (333 at day 20, and 360 at day 25) only present in droughted
or well-watered seedlings, respectively (Table 6.1). The number of transcripts showing
quantitative differences was much higher, 2463 in total. Out of them 726 (362 at day
20, and 364 at day 25), and 1737 (709 at day 20, and 1028 at day 25) were more and
less abundant in droughted than in well-watered seedlings, respectively (Table 6.1).

When comparing transcript abundance between drought and control treatments,
there were statistically significant differences common or specific to the two sampling
times. Thus, while 231 variable transcripts were common to both times, 1431, and
1933, were specific of respectively, 20 and 25 days (Figure 6.1).
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Proteomics

In a parallel analysis, a shotgun, LC-MS/MS, proteomic analysis was also performed
in well-irrigated and droughted seedlings at days 20 and 25. A total of 4008 proteins,
corresponding to 2737 unigenes, were identified satisfying the confidence parameters
established (at least 1 unique peptide and FDR < 0.05) (Supplementary Table S16;
Table 6.1). The minimum number of sequenced amino-acids with at least 1 unique
peptide was 50 and the sequenced amino-acid mean number in a proteoform was
347. The number of peptides identified ranged in between 1 and 54, corresponding
to sequence coverage of 1 to 93 %. Original raw data have been deposited in PRIDE
Database, and the list of proteins identified, its quantitative abundance value, and
statistical analysis p-value, are included in Supplementary Table S16.

After the t-test statistics analysis of the protein abundance (p< 0,05), 640 proteins
in total were variable between treatments at the two times, 20 and 25 days, they
showing qualitative, 220 proteoforms, or quantitative, 420 proteoforms, differences
(Table 6.1). Within the first group, qualitative differences, 134 (54 at day 20 and 80
at day 25), and 86 (41 at day 20 and 45 at day 25) proteoforms were only detected
in, respectively, droughted and well-watered seedlings. Regarding the quantitative
changes, 219 (94 at day 20 and 125 at day 25) and 201 (104 at day 20 and 97 at day
25) were more abundant at, respectively, droughted and well-watered seedlings (Table
6.1).

As shown in the Venn diagram (Figure 6.1), when protein abundance in the two
treatments was compared, 237, 292 and 53 proteins were identified at day 20, at day
25 and at both sampling times, respectively.

Correlations between transcript and protein abundance

The total number of gene products detected at both transcript and protein levels at the
two sampling times was of 3374, with 939 out of them being variable at the transcript
and/or protein level at day 20 and/or 25 (Tables S15 and S16). The maximum value
for transcript abundance in the total and variable datasets was close to 11000 counts
per million (CPM), with only 31 and 13 transcripts, respectively, showing values >
5000 CPM. With respect to proteoforms, the highest abundance value for the total
and variable datasets was, in arbitrary units, of 0,255 and 0,05, respectively, with most
of values being below 0,05.

The correlation analysis between the transcriptome and proteome abundance for
both datasets was carried out by using the Pearson´s test. Data corresponding to gene
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products detected at both levels independently of its sample and replicate origin were
employed. A correlation analysis between all transcripts and proteins identified did not
correlated as measured by Pearson´s r (20244) = 0,1055 (Supplementary Figure S9).
On the other hand, the comparison between variable transcripts and proteins did not
correlated as measured by Pearson´s r (5634) = 0,2139 (Supplementary Figure S9),
being only a total of six common transcripts and proteins at days 20 and 25 (Figure
6.1).

6.3.2 Gene Ontology analysis

Gene ontology (GO) analysis was performed to classify identified transcripts and
proteins in terms of biological process, molecular function and cellular location. The
total set of data covered most of the categories included in the GO list for the three
criteria, cellular, and molecular function, and location (Supplementary Table S15). A
most detailed analysis was performed with the set of variable transcripts and proteins
(Figure 6.2, Supplementary Table S18). All the GO categories with an FDR < 0,05
were selected. Within the biological process, the number of functional categories
ranged between 20 and 261, depending on the treatment (well-watered and droughted
seedlings), sampling time (at days 20 and 25), and omics platform (transcriptome
and proteome) (Supplementary Table S18). There were more functional categories
with downregulated (240, and 261, at 20 and 25 days) than upregulated transcripts
(20, and 59, at days 20 and 25), while the figures were more homogeneous when
analysing the proteomics data, 75 and 51 (upregulated, days 20 and 25), and 72 and 31
(downregulated, days 20 and 25). These categories were filtered, firstly, to those common
categories to the two -omics levels, resulting 7 and 12 categories upregulated at days
20 and 25, and, 30 and 22 categories downregulated at days 20 and 25. A second filter
was established by eliminating redundant categories, keeping the final figures to 5 and
9 categories (upregulated at days 20 and 25) and, 27 and 14 categories (downregulated
at days 20 and 25) (Figure 6.2). Some of the variable categories were common to
both sampling times with the list of upregulated categories including “Response to
chemical”, “Response to abiotic stimulus”, “Response to temperature stimulus”, and
“Response to light stimulus”; and the list of downregulated categories having “Response
to chemical”, “Oxidation-reduction process”, “Small molecule metabolic process”,
“Response to oxygen-containing compound”, “Response to biotic stimulus”, “Response
to bacterium”, and “Response to heat”. Some of the functional categories were included
within the upregulated and downregulated categories, as for example, “Response to
chemicals”, one of the largest groups.
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(a) Biological process

(b) Molecular functionMolecular function

(c) Cellular component

Figure 6.2 Gene Ontology analysis of the variable gene products. (a) Biological process; (b) Molecular function; (c)
Cellular location. The X axes contain the categories and the Y one the number of identified gene products. Blue:
transcript at day 20, Red: protein at day 20; Light blue: transcripts at day 25, Orange: proteins at day 25. Original
data are included in Supplementary Table S18.
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Within the molecular function, the number of functional categories identified ranged
between 4-88, depending on the treatment, sampling time, and omics platform (Table
S18). At day 20, the number of functional categories (both up- and downregulated
categories) was quite similar in the Q. ilex transcriptome and proteome; however,
at day 25, the number of functional categories was higher in the upregulated than
downregulated transcripts and proteins. The same filters used in the biological process
were applied in this function. Firstly, 0 and 22 categories in both transcripts and
proteins (upregulated at days 20 and 25) and, 30 and 22 categories in transcripts
and proteins (downregulated at days 20 and 25), and secondly, 0 and 2 categories
(upregulated at days 20 and 25) and, 3 and 1 categories (downregulated at days 20 and
25) were identified (Figure 6.2). The most common molecular category identified in
both omics platforms at days 20 and 25 between well-watered and droughted seedlings
was “Small molecule binding”, in which other molecular categories were included such
as “Nucleotide binding”, “Nucleoside phosphate binding”, “ATP binding”, “Cofactor
binding”, “Drug binding”, among others.

Within the cellular location, annotated variable gene products were associated to
21-46 subcellular fractions, depending on the treatment, time, and omics platform, with
no clear different tendencies (Supplementary Table S18). The values for transcriptomics
and proteomics were 21-42 and 27-46, respectively; 21-46 and 23-42 at days 20 and 25,
respectively; and 21-43 and 23-46 for up- and downregulated categories, respectively.
The same filters used in the above GO categories were applied in the cellular location.
Firstly, 17 and 33 categories in both transcripts and proteins (upregulated at days
20 and 25) and, 17 and 4 categories in transcripts and proteins (downregulated at
days 20 and 25), and secondly, 6 and 13 categories (upregulated at days 20 and 25,
respectively) and, 10 and 3 categories (downregulated at days 20 and 25, respectively)
were identified (Figure 6.2). The most represented categories were “Chloroplast”
and “Mitochondria” (116 and 53 upregulated transcripts and proteins, respectively,
at day 20); “cell periphery”, “chloroplast”, “plasma membrane”, “cell-cell junction”,
“cell wall”, “vacuole”, “peroxisome”, and others organelles (34 and 91 upregulated
transcripts and proteins, respectively, at day 25), “cell periphery”, “chloroplast”,
“organelle membrane”, “extracellular region”, “cell wall”, “vacuole”, “apoplast”, and
“ribosome” (232 and downregulated transcripts and proteins, respectively, at day
20), “chloroplast”, “vacuole”, and “apoplast” (76 and 27 downregulated transcripts
and proteins, respectively, at day 25). The most represented subcellular fraction
was “chloroplast”, with proteins and transcripts changing at 20 (201) and 25 (216)
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days, upregulated (297), and downregulated 120), and at the two -omics levels (284
transcripts, 123 proteins).

6.3.3 Multivariate analysis of omics data

In order to reduce the complexity of the data, to know which gene products do more
contribute to the variability of the analyzed samples (well-watered and droughted
seedlings at two sampling times, days 20 and 25), stablishing tendencies and correla-
tions, and which of the variables would be associated to the droughty treatment, a
multivariate analysis of the variance, including sPLS and PCA tests, was carried out
(Supplementary Figure S11). These analyses were performed with different datasets:
(1) total transcriptome and proteome, (2) total individual transcriptome, (3) total indi-
vidual proteome, (4) variable transcriptome and proteome, (5) variable transcriptome,
and (6) variable proteome. The main features of the different analysis are summarized
in Table 6.2).

In all the sPLS performed, component 1 separated treatments, while days were
separated only by component 2 when the set of variable data were employed (Sup-
plementary Table S15, Table 6.2). The number of components requested to account
for 50 % of the variability depended on the dataset, two for the variable transcript
and protein, three for the total transcriptome, and four for the total proteome dataset
(Supplementary Table S16).

PCA analysis of the total transcript and proteins, whether individually or together,
did not discriminate treatments or days based on PC1 and PC2. On the contrary, PC1
discriminated drought from well-watered seedlings, and PC2 20 from day 25 when,
the variable protein and transcript datasets were employed (Supplementary Table S15,
Table 6.2). To explain 50 % of the variability, from three to four PCs were necessary
when using the whole dataset, however, the first two PCs explained 50% of variability
in both variable transcript and protein datasets.

In order to identify which of the gene products, (transcript or proteins) do more
contribute to the variability and that are most related to the drought treatment, the
sPLS of the variable proteins and transcripts were analysed in detail. Table 6.3 shows
all the gene products ordered from the ten highest and ten lowest loadings, having,
respectively, positive or negative correlations.
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Table 6.2 Main features of the sPLS and PCA analysis based on the fifth first components. Values correspond to
the percentage of variability explained by each component, and the number of components explaining 50% of the
variability.

Principal Component Analysis (PCA)

DATASET PC1 PC2 PC3 PC4 PC5 50% 
Variability

Separate
Treatments

Separate
Times

Whole Transcriptome 
and Proteome 0,24 0,15 0,12 0,08 0,08 PC1-PC3 No No

Whole Transcriptome 0,25 0,16 0,12 0,08 0,07 PC1-PC3 No No
Whole Proteome 0,17 0,13 0,12 0,1 0,09 PC1-PC4 No Yes
Variable Transcripts 
and Proteins 0,33 0,18 0,11 0,07 0,06 PC1-PC3 Yes Yes

Variable Transcripts 0,36 0,18 0,11 0,07 0,06 PC1-PC2 Yes Yes
Variable Proteins 0,34 0,2 0,11 0,06 0,06 PC1-PC2 Yes Yes

sparse Partial Least Square (sPLS)

DATASET Comp1 Comp2 Comp3 Comp4 Comp5 50% 
Variability

Separate 
Treatments

Separate
Times

Whole Transcriptome 
and Proteome - - - - - - Yes No

Whole Transcriptome 0,24 0,17 0,14 0,08 0,07 Comp1-
Comp3 Yes No

Whole Proteome 0,14 0,13 0,11 0,12 0,1 Comp1-
Comp5 Yes No

Variable Transcripts 
and Proteins - - - - - - Yes Yes

Variable Transcripts 0,32 0,19 0,17 0,13 0,1 Comp1-
Comp2 Yes Yes

Variable Proteins 0,34 0,18 0,12 0,06 0,06 Comp1-
Comp2 Yes Yes
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Table 6.3 List of gene products exhibiting the highest loadings to component 1 in the sPLS analysis of the variable
transcripts and proteins. Contig ID, gene3 acronyms and description, loading parameter and quantitative relative
values, drought/control.

Variable Transcriptome dataset 

Gene Description Loading Day 20 
Fold Change 

Day 25 
Fold Change 

PWD Phosphoglucan water dikinase 0.035313537 2.53608580 5.01133265 
fbp1 Fructose-1,6-bisphosphatase, chloroplastic 0.035087055 6.72595130 71.90484784 

PGSC0003DMG400013943 NA 0.035076491 2.77540926 2.34559807 
grpE GrpE protein homolog 0.034749614 2.85123685 2.79573939 

ELIP1 Early light-induced protein 1, chloroplastic 0.034743042 2.97871283 6.96935228 
CER3 Protein ECERIFERUM 3 0.034420941 4.04444142 3.85791450 
PYD2 Dihydropyrimidinase 0.034304659 1.98800712 4.93674015 
IAP75 Protein TOC75, chloroplastic 0.034086451 1.81732269 3.68928767 

TOC159 Translocase of chloroplast 159, chloroplastic 0.033863208 2.88100706 5.51495098 
GWD3 Phosphoglucan, water dikinase, chloroplastic 0.033298551 1.83614878 3.30710448 
kco1b Calcium-activated outward-rectifying potassium channel 1 -0.032773415 0.12343472 0.17303041 
AMT Ammonium transporter -0.032832286 0.26487629 0.38353880 
nl27 Disease resistance protein (TIR-NBS-LRR class) -0.033293177 0.24637206 0.09146642 
NA TMV resistance protein N -0.033585758 0.50673277 0.24237495 
c3'h p-coumarate 3-hydroxylase -0.033801474 0.22347716 0.16031336 

LRK10 Receptor-like kinase -0.034174734 0.40430169 0.17128215 
BI-1 Bax inhibitor 1 -0.034240492 0.32866244 0.39134065 
T1.1 T1.1 protein -0.034319035 0.10033921 0.19753233 

CML19 EF hand calcium-binding family protein -0.035269551 0.07886879 0.15301722 
BVRB_4g091600 NA -0.035278830 0.23048644 0.04465059 

Variable Proteome dataset 

Gene Description Loading Day 20  
Fold Change 

Day 25  
Fold Change 

sqdB Uridine 5'-diphosphate-sulfoquinovose synthase 0.07298291 1.4001E+00 1.8899E+00 
ERD7 AT3g51250/F24M12_290 0.072330095 3.8538E+00 1.7168E+09 

CHRC Probable plastid-lipid-associated protein 2, 
chloroplastic 0.070053381 2.6469E+09 7.5729E+00 

HSP17.4B 17.4 kDa class III heat shock protein 0.069930911 4.5386E+00 4.0172E+00 
HSP70 Heat shock cognate 70 kDa protein 0.069501331 3.5000E+00 4.8181E+00 

SARED1 Os05g0110300 protein 0.069231708 3.9104E+00 2.1154E+00 
stk Serine/threonine-protein kinase 0.069066131 5.5881E+08 5.2851E+08 

SARED1 Os05g0110300 protein 0.068555284 2.4203E+00 1.9273E+00 
hspB Heat shock protein 70 0.068053709 1.4765E+00 2.3667E+00 

PGSC0003DMG400008259 Galactose-1-phosphate uridylyltransferase 0.067922253 3.2889E+09 3.4138E+09 
PPH1 Protein phosphatase 2C 57 -0.064501978 9.2683E-10 3.2415E-10 
GPP2 (DL)-glycerol-3-phosphatase 2 -0.065429023 8.8551E-03 3.0915E-11 
IFR Isoflavone reductase, putative -0.065574026 3.3291E-10 4.7938E-11 
ychF Ribosome-binding ATPase YchF -0.066309298 3.5516E-01 2.9291E-01 

At3g26720 Alpha-mannosidase At3g26720 -0.066399069 3.8231E-10 4.7078E-01 
hdr 4-hydroxy-3-methylbut-2-enyl diphosphate reductase -0.066655366 5.0349E-01 7.7475E-01 

SBE3 Starch branching enzyme 3 -0.066868425 5.3121E-01 3.3846E-01 
fnr Ferredoxin--NADP reductase -0.067204050 2.9376E+10 4.7920E-01 

RPS13A 40S ribosomal protein S13-1 -0.073315490 4.8753E-10 2.1372E-10 
4CLL9 4-coumarate--CoA ligase-like 9 -0.073643243 1.1418E-09 3.4723E-10 
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6.3.4 Integrated visualization of omics data in metabolic path-
ways

To obtain a more global and integrative vision of the metabolic changes in response
to drought in Q. ilex, PaintOmics 3 was used to carry out a KEGG pathway analysis.
Identified transcript and protein enzymes were linked to 125 KEGG pathways (Table
S21).
Table 6.4 KEGG pathway analysis. List of pathways to which identified transcripts and/or protein enzymes are
linked and showed statistically significant differences (Fischer test, p < 0,05) between treatments. Columns include
the pathway name, number of gene products identified within each pathway, significance p-values at the transcript,
protein or combined levels, changes in response to drought (up or down) and identified transcript or protein enzymes.

Pathway name
Unique 
genes

Gene 
expression Proteomics

Combined p-value 
(Fisher)

Ribosome 53 5.46694E-14 0.390805479 6.93874E-13
Glyoxylate and dicarboxylate metabolism 26 0.075875383 0.002218035 0.001630737
Phenylpropanoid biosynthesis 17 0.001955976 0.167367291 0.002954295
Phenylalanine metabolism 8 0.00311676 0.111185675 0.003107594
Flavonoid biosynthesis 4 0.000547595 1 0.004660021
Stilbenoid, diarylheptanoid and gingerol biosynthesis 6 0.006338102 - 0.006338102
Biosynthesis of secondary metabolites 268 0.005297628 0.263029184 0.010556612
Photosynthesis 35 0.527196172 0.002659193 0.010612389
Carbon metabolism 68 0.032768139 0.069147043 0.016064252
Plant-pathogen interaction 62 0.021472121 0.167367291 0.023821276
Cysteine and methionine metabolism 26 0.035504942 0.106842142 0.024939814
Ubiquinone and other terpenoid-quinone biosynthesis 11 0.017242761 0.280591355 0.03063151

Table 6.5 List of transcripts and proteins linked to the variable pathways. The columns include the name of the
pathway, and gene products up and down accumulated at days 20 and 25.

Metabolic pathway Transcript Proteins
Up Down Up Down

Ribosomal RNAs rrn18 rrn18

Ribosomal proteins
RPS10, RPL4, RPS17, 
RPL18,   RPL9, rps18, 

RPS6

Rps3, rpl14, rps8, 
RPS15A, RPL15, RPL34, 
RPS13A, RPL27, RPS1, 
SAG24, RPL24, RPS1, 

UBQ1, rps2

rps2

Glyoxylate and dicarboxylate metabolism CSY1, HPR, LPD1, 
AGT, GLU1 MDH

Phenylpropanoid biosynthesis HCT, FAH1 4CL2 4CL2

Phenylalanine metabolism 4CL2 4CL2

Flavonoid biosynthesis HCT

Stilbenoid, diarylheptanoid and gingerol
biosynthesis

PPL1, PSBY, PSAG, 
ATPC2, PSB28

psbC, psbB, psbM, 
psbZ, psaB, psaC, atpF

PSB28, psbh

Plant-pathogen interaction NOA1, FRK1, BAK1, EFR, 
RPM1, MYB30

CPK1, CML11, MPK6, 
WRKY2, MKK5, PRB1, 

SHD, EDS1, RIN4
RIN4

Cysteine and methionine metabolism CSYD1 MDH, BCAT3, AK3, 
ACS1, SAMDO

Ubiquinone and other terpenoid-quinone 
biosynthesis 

PG1, ICS2, PPT1, MENG, 
ABC4 HST, 4CL2 HST, 4CL2

Out of the 125 pathways, 10 showed significant differences (Fischer p-value <
0.05) between treatments (well-watered and droughted seedlings) at transcript and
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protein levels (Tables 6.4 and 6.5). The number of gene products identified per
variable pathway ranged between 1 (caffeine metabolism, monoterpenoid biosynthesis,
riboflavin metabolism and other types of O-glycan biosynthesis) and 268 (biosynthesis
of secondary metabolites) (Supplementary Table 6.5). All the significant KEGG
pathways are showed in Table 6.4.

6.3.5 Interaction network analysis

A functional network analysis was performed by using GeneMANIA. The analysis
included those gene products detected at the two -omics levels, transcripts and proteins,
with statistically significant differences between treatments at days 20 and 25 (Figure
6.1). The list is reduced to 29 and 14 gene products at, respectively, days 20 and 25.

At day 20, a principal cluster composed by heat shock proteins and molecular
chaperons was observed (e.g. HSP70, HSP17.4B, CLPB3, and CLPB2 ) (Figure 6.3;
Supplementary Table S20). At day 25, two principal clusters composed by genes
implicated in both the cellular response to DNA damage/DNA repair and response to
heat (e.g. FEN1, ABA2, EGY3 or CLPB3 ) were observed (Figure 6.3; Supplementary
Table S20). Variable gene products detected at both sampling times at the transcript
and protein levels, namely ABA2, CLPB3, CLPB2, FTSH6, and AT1G23740, were
included in the three stablished networks. All of them, except ABA2 that was
downregulated, were upregulated under drought conditions (Figure 6.3).

Apart from these genes, other genes were included in these networks. At day 20, the
genes AtHB26, SMT1, UGP3, AT5G48020, HSP70, HSP17.4B and AT3G23600 were
upregulated and ADK, RPL4Z and RPS1 were downregulated; and at day 25, FEN1,
HIPP27, CAD4, AP1, INVE and EGY3 were upregulated under drought conditions
(Figure 6.3).
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Heat Shock Proteins / 
Molecular Chaperones

(a)

(b)

Response to Heat

Cellular response to DNA 
damage / DNA repair

Figure 6.3 GeneMANIA network analysis. It was performed with variable gene products detected at the two -omics
level. The analysis was performed at days 20 (a) and 25 (b). A red background circle indicates upregulated gene
and protein, a blue background circle indicates downregulated gene and protein, a purple background circle indicates
contrary gene and protein changes, and a grey background circle indicates GeneMania predicted interactions.
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6.4 Discussion

6.4.1 Environmental stress, drought and climate change, bio-
diversity, and tolerance

The environment determines plant reproduction, growth, development and physiology,
and, hence, geographical distribution. In situations of adverse environmental condi-
tions and when the intensity and duration thresholds cause serious damages in the
plant species, the mortality rate increases significantly, it determining geographical
distribution (Schäfer and Dirk, 2011; Harfouche, Meilan, and Altman, 2014). Among
the main factors that cause restrictions in the survival of plant species, drought is
one of the most restrictive factors, predicting to be the most climatic extreme that
affects terrestrial ecosystems, including natural and intervened forest, such as the
Mediterranean and “dehesa” (Greenwood et al., 2017; Schwalm et al., 2017; Peñuelas
et al., 2017; Ruosteenoja et al., 2018). Increased tree mortality associated to drought
episodes has been observed in last 30 years, being argued as evidence of vulnerability to
forest dieback. This is because of that the main objectives of the research community
have been focused on the determination of processes related to tree species mortality
and survival (Meir, Mencuccini, and Dewar, 2015). The relevance of this topic is closely
related to the climate change issue, with models predicting extreme weather events,
including severe drought episodes in the next decades, species distribution, forest com-
position, and biomes replacement, with the prevalence of drought-tolerant and lower
growth rate species (Menezes-Silva et al., 2019). Social concerns and environmental
and economic interests favour those studies carried out in plant species and genotypes
well-adapted to arid conditions.

Despite being sessile organisms, plant species are able to survive under biotic and
abiotic stress conditions. During the course of evolution, mechanisms have evolved to
cope with these extreme environmental conditions, allowing plants to colonize different
and variable ecological niches. These mechanisms, either permanent or transitory, and
depending on the intensity and duration of the stress, occur and operate at different
time scales and organism levels from the plant body to the subcellular fractions, from
morphometry to chemical composition, and from short to long term adjustments (Polle
et al., 2019). The different phenotypes behind adaptation to water shortage and
drought conditions, including avoidance (e.g. water content homeostasis, leaf and root
morphology) or tolerance/resistance (e.g. metabolic adjustments) mechanisms are, ulti-
mately, the result of the genotype, including epigenetic labels, and the reprogramming
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of gene expression and interaction among different gene products (Müller and Gailing,
2019).

Between and within forest tree species, there is an enormous genetic diversity for
stress tolerance. Thus, and as an example, European beech (Fagus sylvatica) and
Penduculate oak (Quercus robur), two related species within the genus Fagaceae whose
genomes have been recently sequenced (Mishra et al., 2018; Plomion et al., 2018),
exhibit quite different ecological behaviour (Roman et al., 2015); the same can be
applied to populations within a species (Valero-Galván et al., 2013; Aranda et al.,
2015). For a better management of forest populations, it is necessary to understand
the relationship between tree genotype and phenotype, as well as the searching of
morphometric and molecular markers. The genetic and molecular bases of tolerance
are rapidly being known thanks to the advances in sequencing and -omics technologies,
and its integration with phenotyping, physiological and classic biochemistry approaches
(Harfouche, Meilan, and Altman, 2014). The investigation of the molecular and genetic
bases of polygenic traits as is the tolerance to drought is an important goal in tree
breeding and forest conservation and management.

Plant adaptation to water resources, water status and homeostasis is determined
by a number of phenological, morphological traits and physiological and molecular
mechanisms, such as root structure, leaf morphology, surface, and shedding, anatomical
adjustment of the conducting system, hydraulic conductivity and cavitation, chemical
composition of the cuticular leaf surface, stomatal conductance, and metabolic and
osmotic adjustment, among the most relevant ones (Polle et al., 2019; Müller and
Gailing, 2019).

Drought tolerance is associated to well-known changes in the cellular metabolism
such as photosynthesis and energy production, stored non-structural carbohydrates
mobilization and respiration, secondary metabolism, membrane composition, protein
folding, osmotic adjustment, redox homeostasis by Reactive Oxigen Species (ROS)
scavenging, aquaporins, and the induction of drought-related proteins such as Late
Embryogenesis Abundant proteins (LEAs). These biochemical changes are mediated
by sensors, inter and intracellular signalling, calcium and related signal transduction
pathways, hormones such as abscisic acid (ABA), ethylene, as well as other intracellular
and jasmonic, as main hallmarks (Harfouche, Meilan, and Altman, 2014; Polle et al.,
2019; Müller and Gailing, 2019).
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6.4.2 Drought responses in forest tree species: the genus
Quercus, Quercus ilex. Breeding for drought tolerance
based on the selection of elite genotypes

The effect, and the responses and tolerance to drought have been widely studied in
model plant species (Sharma et al., 2018), crops (Swamy and Kumar, 2013; Zhu et al.,
2016; Pieczynski et al., 2018) and much lesser in forest trees, among which productive
species such as Populus (Cohen et al., 2010), Eucalyptus (Correia et al., 2018), and
Pinus (Moran et al., 2017) have received more attention from the scientific community.
On the contrary, little attention has been paid to other species of more environmental
than economics interest such as those of the genus Quercus (Müller and Gailing, 2019).

In the present work, Q. ilex has been used as an experimental system to study
responses to drought. It is the typical tree of the Mediterranean forest and of the dehesa
agrosilvopastoral ecosystem (Moreno and Pulido, 2009). Its election is justified because
of the environmental and economic importance in the Andalusian region, and because
is one of the most drought tolerant species within the Quercus spp. (San Eufrasio
et al., 2020). This character makes it an excellent candidate in reforestation programs.
Although it is well adapted to xeric conditions (Echevarría-Zomeño et al., 2009; Valero-
Galván et al., 2013; Gil-Pelegrín, Peguero-Pina, and Sancho-Knapik, 2018), drought
stress is the main cause of Q. ilex seedling mortality in forest plantations, and one of
the damaging factors of the decline syndrome (Villar-Salvador et al., 2004; Gentilesca
et al., 2017; Colangelo et al., 2018; Ruiz Gómez et al., 2018). Plant responses and
mechanisms of tolerance to drought in Q. ilex have been approached at different
levels in field and greenhouse experiments, employing morphometric, physiological,
classic biochemistry, and -omics approaches (Peña-Rojas, Aranda, and Fleck, 2004;
Serrano et al., 2005; Limousin et al., 2010; Vaz et al., 2011; Sardans, Peñuelas, and
Lope-Piedrafita, 2010; Galiano et al., 2012; Barbeta, Ogaya, and Peñuelas, 2013; Rosas
et al., 2013; Valero-Galván et al., 2013; Rico et al., 2014; Simova-Stoilova et al., 2015;
Chiatante et al., 2015; Sperlich et al., 2016; Salomón et al., 2017; Rodríguez-Calcerrada
et al., 2018).

Breeding for resilience to drought and other stresses is a priority in tree breeding
programmes (Polle et al., 2019). Within this objective, and being a long-lived, and
non-domesticated species of allogamous and promiscuous properties, selection of elite
or plus genotypes based on molecular markers is the almost unique and most plausible
biotechnological approach in Q. ilex. Conventional breeding, genetic engineering, or
genome edition are not possible or realistic alternatives. In this regard, genetic diversity
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within Q. ilex and other Quercus species has been very well-documented, with some
studies reporting variability in drought tolerance (Jorge et al., 2006; Echevarría-Zomeño
et al., 2009; Valero-Galván et al., 2013; Rico et al., 2014; Müller and Gailing, 2019).

Selection of elite genotypes are based on phenotypic, physiology or molecular
characteristics, with the last ones aimed at profiling the different cell biomolecules,
DNA, RNA, proteins, enzymes, and metabolites, by using classic biochemistry, or
modern DNA marker or -omics techniques (Porth and El-Kassaby, 2014; Gudeta,
2018).

6.4.3 Research on Quercus ilex at the Agroforestry and Plant
Biochemistry, Proteomics, and Systems Biology Group,
from classic biochemistry to -omics and systems biology
approaches

In the direction presented in the previous sub-sections, the Agroforestry and Plant
Biochemistry, Proteomics, and Systems Biology Group is currently investigating on
different aspects of the biology of Q. ilex by using a molecular biology approach. Biolog-
ical processes under study include development, seed maturation and germination, and
responses to biotic (Phytophthora cinnamomi) and abiotic (drought) stresses (Valero-
Galván et al., 2013; Sghaier-Hammami et al., 2013; Romero-Rodríguez et al., 2018;
Simova-Stoilova et al., 2018; Romero-Rodríguez, Jorrín-Novo, and Castillejo, 2019).
As methodological approaches, and beyond classic biochemistry, and physiology tech-
niques, microsatellites, and -omics approaches have been optimized to this experimental
system, mostly proteomics, and to a lesser extent, transcriptomics and metabolomics
(Guerrero-Sanchez et al., 2017; Guerrero-Sanchez et al., 2019; López-Hidalgo et al.,
2018; Marti et al., 2018). The objective is to integrate all of them in the Systems
Biology direction (López-Hidalgo et al., 2018). Up to 2010, -omics approaches were
developed and employed independently with not much integration between them, which
made proteomics and transcriptomics mostly descriptive and speculative. In the 2010,
papers reporting the integrated employment of the two or three -omics approaches,
mostly transcriptomics and proteomics, have started to appear in plant biology re-
search. As stated in (Rey et al., 2019), “The logical transition from reductionists to a
holistic strategy and integration of multidimensional biological information is currently
accepted by the scientific community as the only way to decipher the complexity of living
organisms and predict through multiscale networks and models.” The integrated use of
the -omics approaches will not only allow us to connect the phenotype and the genotype
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but also, more importantly, to deepen the knowledge of gene expression mechanisms,
including posttranscriptional (RNA splicing, micro-RNAs, small interfering RNA, long
noncoding RNAs), and posttranslational (phosphorylation, glycosylation, acetylation,
286 methylation, etc.) events”. This new strategy requires novel methodologies and
equipment, with bioinformatics and computer skills being the real bottleneck, and
because of that the present doctoral thesis was programmed and executed.

6.4.4 Integrated proteomics and transcriptomics analysis of
responses to drought in Quercus ilex. Identified tran-
scripts and proteins, and functional grouping

It has recently been reported that Q. ilex was the most tolerant species, within the
genus Quercus, found in the Iberian Peninsula, including Q. robur, Q. faginea, Q.
pyrenaica, and Q. suber (San Eufrasio et al., 2020). The tolerant phenotype was
established based on the appearance of damage symptoms in leaves and plant mortality.
Within the Q. ilex species, five populations covering the Andalusian geography were
surveyed, observing differences in tolerance among them. At the physiological level, it
was observed that under severe drought conditions as well as high temperature and
illumination, tolerant individuals kept well hydrated. Leaf fluorescence, gas exchange
(stomata closure) and photosynthesis were reduced at different degrees depending on
the population. Metabolic homeostasis was proven as there were not differences in the
protein, sugar, amino acid, photosynthetic pigments, and phenolic contents between
well-hydrated and droughted seedlings. Following these previous results, an integrated
transcriptome and proteome analysis was performed on six-old-month seedlings of the
Seville population at two times (days 20 and 25) corresponding to a 30 and 50 %,
respectively, of leaf fluorescence decrease.

RNA and proteins were independently extracted from the same batch of samples,
and transcripts and protein species were analysed by Next-Generation Sequencing
(Illumina HiSeq 4000) and shotgun proteomics (LC-MS/MS, Orbitrap). After a search
in the Q. ilex transcriptome generated during the current Thesis (Chapters 3 and 4;
(Guerrero-Sanchez et al., 2017; Guerrero-Sanchez et al., 2019) and the current chapter),
47868 transcripts, corresponding to 21000 unigenes, were identified Table 6.1. From
these data, a new improved version of the Q. ilex transcriptome has been constructed.
It contains a higher number of larger contigs (> 1000, 5000 and 10000 bp) than the
previously reported version (Guerrero-Sanchez et al., 2017; Guerrero-Sanchez et al.,
2019). Assuming a Q. ilex estimated genome size of, approximately, 930 Mb/C with a
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total length of 1.87 Gb as assessed by flow cytometry (2n=2x=24, Rey et al., 2019), we
could conclude a good coverage of the whole exome. The number of proteins identified
was one order of magnitude lower, 4008 proteoforms, corresponding to 2737 unigenes,
around 10 % of the total expected proteome (Ramírez-Sánchez et al., 2016). These
figures are similar to those reported in similar experimental systems (Madritsch et al.,
2019; Gugger et al., 2017; Romero-Rodríguez, Jorrín-Novo, and Castillejo, 2019; Liu
et al., 2019). The difference between whole transcriptome and proteome coverage can be
due to the employed platforms, analytical techniques, and to the physico-chemical and
biological properties of both type of biomolecules. Thus, PCR will ensure the detection
of low abundant transcripts and differently from proteins, nucleic acids only differ in
length, having similar physicochemical properties, being the number of species and the
dynamic range lower (Wang et al., 2019a). The advantage of the proteome analysis is,
among other considerations (Post-Translational modification, PTMs, interactomics),
its close position to the phenotype, hence it is not always possible to jump from
the presence of a transcript to the biological function due to posttranscriptional and
posttranslational events (Vélez-Bermúdez and Schmidt, 2014).

A relative quantitation at both -omics levels was performed. The dynamic ranges
were of four (100-104, in counts per million) and twelve (10-14-10-2, relative peak area)
orders of magnitude, which is in the range reported in the literature for the two platforms
employed (Schiess, Wollscheid, and Aebersold, 2009; Zhao et al., 2014). For both
biomolecules, most of them are in the low abundant range, 0-2x103 (transcripts), and 10-
14-10-3 (proteins). Correlations between mRNA and protein abundance were analysed
by the Pearson test (Supplementary Figure S9). The Pearson correlation coefficients
were low both in the total transcriptome and proteome and in the variable transcript
and protein datasets, indicating no correlation between both omics approaches. This
agrees with other studies carried out in plant species (Pan et al., 2012; Li et al.,
2016; Xing et al., 2018)). Apart from analytical explanations, biological ones can also
be the cause, including, among others, variable translation efficiency of the different
transcripts, the mRNA transport to distant tissues, modification and degradation of
proteins (Thieme et al., 2015).

Univariate statistical analysis of the data (GLM for transcripts, and t-test for
proteins) revealed the existence of significant differences between treatments (control
and drought) at the two sampling times (days 20 and 25). The variable dataset was
filtered to consistent transcripts and proteins, those present in all the three biological
replicates performed. As summarized in Table 6.1, 3579 transcripts (8% of the total)
and 640 proteoforms (14 % of the total) responded to the drought treatment, with



6.4 Discussion 105

qualitative (1116 for RNA, and 220 for proteins) or quantitative (2463 for RNA, and
420 for proteins) changes in abundance. The number of variables at day 25 (2020
for RNA and 347 for proteins) was higher than at day 20 (1559 for RNA, and 293
for proteins). Out of the total variable transcripts and proteins, 726 (RNA) and
219 (proteins) were up accumulated in droughted seedlings, while 1737 (RNA) and
201 (proteins) were down accumulated. These data reveal important and complex
gene expression reorganization, as previously reported in similar published papers.
Transcript figures presented are higher and lower than those reported for Q. ilex, Q.
pubescens, and Q. robur by (Madritsch et al., 2019), and Q. lobata by (Gugger et al.,
2017). Protein figures are in the range of those reported for other studies on changes
in the leaf protein profile in response to drought, as reviewed by (Wang et al., 2016).

Following, the variable gene products will be discussed at the category and indi-
vidual levels, focusing, firstly, on permanent changes, which are common to the two
sampling times, better than time specific ones and, secondly, to those observed at
the transcriptomic and proteomic level. Data will be compared with those previously
reported in Q. ilex and other Quercus spp. at the transcriptomic level (Madritsch
et al., 2019) and in a recent review by (Wang et al., 2016) on proteomics studies of
drought responses in plant leaves. However, an exact comparison is not always possible
as the experimental design (plant systems, intensity and duration of the stress) and
the methodological approaches employed are different.

Both variable transcripts and proteins were grouped in terms of biological pro-
cess, molecular function and cellular location (Figure 6.2; Supplementary Table S18).
Focusing on the GO categories included both at transcriptome and proteome levels
at both sampling times, the following functional ones showed statistically significant
differences: i) Up regulated gene products were mostly involved in “response to chem-
ical”, “response to abiotic stimulus”, “response to light stimulus” and “response to
temperature stimulus”. ii) Down regulated gene products were mostly involved in “small
molecule metabolic process”, “oxidation reduction process”, “response to biotic stimu-
lus”, “responses to heat”, “responses to bacterium”, “response to oxygen-containing
compounds”, and “response to chemicals”.

Under the experimental conditions employed in the current work, water restriction
under hight temperature and illumination, some clear tendencies can be observed,
such as an up regulation of the responses to abiotic stresses functional categories, and
a down regulation of responses to biotic stimulus, and metabolism. However, there
are components of the same functional category that are up or down regulated, as
is the case of “response to chemical” (Supplementary Table S18). In similar studies
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on the responses to drought in Q. ilex and other Quercus spp. (Gugger et al., 2017;
Madritsch et al., 2019), also showed that differentially expressed gene dataset was
enriched in response to stimulus/stress GO terms. Similar studies with other plant
species also got to similar conclusions (Shan et al., 2018; Wang et al., 2019b). With
respect to the cellular component categories, differential abundant transcripts and
proteins, were mostly located at the different chloroplastic and mitochondrial fractions.
Both organelles play an important role in the responses of plant to stresses, being the
communication and crosstalk with the nucleus, the retrograde signalling, of pivotal
role in the correct function of the plant cells (Zhao et al., 2018).

In order to simplify the dataset of variable transcripts and proteins and to obtain an
integrative vision of the metabolic changes, a KEGG pathway analysis using PaintOmics
3 was employed (http://www.paintomics.org/; (Fàbregas et al., 2018)). From the
confidence statistical parameters, the following significant variable pathways were
identified: ribosome and protein translation, primary (photosynthesis, cysteine and
methionine, glyoxylate and dicarboxylate) and secondary (shikimate, phenylpropanoid
and extension to flavonoids, stilbenoid and terpenoids) metabolism. Following each
pathway will be briefly discussed.

Common variable gene products belonging to the ribosome protein translation
included 36 (transcripts) and 11 (proteins), with only one, down regulated RPS2,
detected at two sampling times. RPS2 encodes a structural component of the mito-
chondrial ribosome small subunit, implicated in the signalling cascade of the immune
response in plant (Kim et al., 2009). Out of variable transcripts, 7 were up and 3
down accumulated. Within the first several members of the RPS and RPL family were
included, which encode different ribosomal proteins. Apart from having an essential
role in protein synthesis, and consequently, in metabolism, growth and development,
it has been reported their participation in the response to stress with up or down
regulation depending on the type of stress, intensity and duration (Wang et al., 2013).
Apart from ribosomal proteins, other genes included in KEGG within the ribosome
category, were identified, such as UBQ1 that encodes for an ubiquitin extension protein.
In Arabidopsis, it has been reported as an early-responsive to dehydration (Callis,
Raasch, and Vierstra, 1990). Together with GADPH, UBQ1 has been proposed as
a marker of sugarcane genotypes with different tolerance to drought (Andrade et al.,
2017).

It is widely know that photosynthesis is probably most affected pathway in under
stress conditions. Drought causes a closure of stomata, and a decrease of available CO2,
that together with photo-oxidative damage, alters and decreases the photosynthetic

http://www.paintomics.org/
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activity (Yang et al., 2006). Four (up) and 7 (down) gene products changes were
common to both sampling time. Out of them, only one, up regulated PSB28, was
detected by two platforms. PSB28 encodes a PSII reaction centre protein. It has been
implicated, together with other member of PSB family, in the response to high-light
intensity (Parrine et al., 2018). The list of up accumulated transcripts included other
members of the photosystem proteins (PPL1, PSBY, PSAG), and ATPC2, encoding for
ATP synthase gamma chain 2, chloroplast, putative. Enhanced stability of thylakoid
membrane proteins contributes to drought stress tolerance, as previously reported for
some wheat mutants (Tian et al., 2013). Down accumulation of seven gene products
was observed under drought conditions, most of them belonging to PSB and PSA
families. The decrease of these proteins has been proven by immunoblotting analysis
in Arabidopsis (Chen et al., 2016). A striking recurrent result is once more observed,
which is how different members of the same family are up and down accumulated. This
is the case of PSAs where PSAG is up and PSAB and PSAC are down, since it is
impossible to conclude on phenotype (activity of pathways) based on descriptive omics
data. So, it needed the functional validation of data using microscopic and classical
biochemistry and physiology.

Amino acid metabolism is also an enriched pathway in response to drought. It is re-
lated to its role in the biosynthesis of proteins, GSH, secondary metabolism, compatible
osmolytes, ethylene, and their usage as a carbohydrate alternative respiratory substrate
under reduced photosynthesis activity. In the current study, we have observed changes
in the metabolism of amino acids, particularly of the sulphur containing, cysteine
and methionine, pathways. Common changes to the two times included one up and
six down accumulated gene products only detected at the transcriptome level. The
up accumulated was CYSD1 encoding for a cysteine synthase CYSD1. Cysteine is
the precursor of glutathione, the major antioxidant biomolecules whose induction is a
common feature of the plant responses to oxidative damage and stresses (Ahmad et al.,
2016). Within the down accumulated transcripts, SAM1, SAMDC, ACS1, encoding for
s-adenosylmethionine synthase, descarboxilase, and 1-aminocyclopropane-1-carboxylate
synthase, respectively, are implicated in the biosynthesis of the hormone ethylene. Al-
though mostly linked to biotic stresses, it has been also implicated in responses to
abiotic ones. Different members of the SAM family have organ and stress specific
expression patterns, so it is difficult to conclude from the transcriptomic data to the
metabolic phenotype (Wang, Oh, and Komatsu, 2016).

The glyoxylate pathway comprises those reactions occurring in plants that convert
Acetyl-CoA, as a product of fatty-acid beta oxidation and amino acid catabolism
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in succinil-CoA, which is used in the biosynthesis of carbohydrates. This pathway
becomes relevant in situations of photosynthesis inhibition, as a source of sugars. This
could be the case of drought and other water related stresses. In our system, a number
of variable transcripts common to the both sampling times were up accumulated under
drought conditions. The list includes genes encoding for glyoxylate/hydroxypyruvate
reductase (HPR3) and Dihydrolipoyl dehydrogenase 1, chloroplastic (LPD1) (Ebeed
et al., 2018).

Included in different pathways, the malate dehydrogenase gene, encoding a chloro-
plastic NADP-dependent MDH (EC 1.1.1.82) was down accumulated under drought
conditions. It is a key enzyme controlling the malate valve, which “plays an essen-
tial role in the regulation of catalase activity and the accumulation of a hydrogen
peroxide-dependent signal by transmitting the redox state of the chloroplast to other
cell compartments” (Heyno et al., 2014).

Different enzymes of the secondary metabolic pathways have been altered under
drought conditions including shikimate, phenylpropanoid and its extension to flavonoids,
stilbenoids, and terpenoids. While some are up (HCT and FAH1 ), other (4CL2 ) was
down accumulated. Changes in the phenolic patterns are a common phenomenon
well-reported since long in different plant systems as a response to biotic and abiotic
stresses (Cheynier et al., 2013; Sharma et al., 2019). In our system, HCT that encodes
a hydroxycinnamoyl-Coenzyme A shikimate/quinate hydroxycinnamoyltransferase
both synthesizing and catabolizing the hydroxycinnamoylesters (coumaroyl/caffeoyl
shikimate and quinate) was up accumulated (Carocha et al., 2015). Previous studies
have demonstrated that this gene is induced by drought and other abiotic stresses
(low temperature and high salinity) (Sun, Yang, and Tzen, 2018). On the other hand,
isogen 2 of the 4-coumarate: CoA ligase (4CL2 ) was down accumulated. The different
expression pattern for isogenes has been reported for this enzyme. Thus, in Bassica
napus, it has been reported the organ specific up accumulation in root and leaves of
isoforms 1 and 5 of this enzyme, 4CL1 and 4CL5 (Liu et al., 2015).

With respect to the changes observed at the individual gene product level, a short
discussion of the most relevant and more related to the responses to drought stress
is presented, starting by the qualitative changes between treatments (control and
drought). At the transcriptomic level, at day 20, droughted plants were enriched in
15 members of the gene expression group, including ribosomal proteins, transcription
factors related to auxin and gibberellin hormones, a maturase K, and a RNAse P
(RPL4, RPL34, AIL1, RPS13, ARF17, RPL5, PRORP1, NLP8, AT2G45640, TBP1,
TPR4, GR1, NLP3, RPL29, and MATK ), plus two members of the ALA family, 3
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and 8, ATPases implicated in phospholipid transfer. The synthesis of phospholipids
involved in membrane stabilization and stress signalling is one of the reported responses
to drought (Zhang, Xu, and Huang, 2019). At day 25, new transcripts appeared,
belonging to different cellular biology processes and metabolic pathways related to
drought responses, including starch, cellulose, and cell wall polysaccharides (DBE1, SS4,
DPE1, CSLG3, and XTH5 ) (Thalmann and Santelia, 2017), photosynthesis (PSBR,
PSBO1, RBL) (Pelloux et al., 2001; Suja and Parida, 2008; Pawłowicz, Kosmala, and
Rapacz, 2012), chlorophyll catabolism (PPD, NOL) (Foulkes et al., 2004; Sato, Ito,
and Tanaka, 2015). Droughted plants at day 20 were enriched in stress responsive
gene products when proteomics data were analysed. The list of proteins included:
heat-shock proteins (HSP17; (Sewelam et al., 2019)), RubisCO activase (RCA,(Ji et al.,
2012)), AT3G01520 (Kim et al., 2015), tubulin (TUBA 6; TUBA genes can be uses as
housekeeping in gene expression analysis, (Montilla-Bascón et al., 2017), proteasome
(RPT 2A; (Stone, 2019)), thioredoxin (TRX 2; (Cha et al., 2014), auxin-related (PIN3;
(Jiang, Li, and Qu, 2017)). The enrichment of stress-related proteins in droughted
plants was more evident at day 25. The list includes at least three members of the
HSP family, 17, 26.5, and 83 (Mishra et al., 2018), RubisCO activase, (RCA (Chen
et al., 2015)), thioredoxin, TRX 9 (Cha et al., 2014), RBG4, with a possible role in
RNA-transcription or processing during stress (Kwak, Kim, and Kang, 2005), related to
proteasome (CSN1), ribosomal protein RPS12 (Moin et al., 2017). Some of the proteins
are related to ABA (RAB, (Alqurashi et al., 2018)) or auxin (CHY1; (Gonçalves et al.,
2019)). Two proteins of the shikimate-phenolic pathways, CS1, and CAD (Kim, Bae,
and Huh, 2010; Guo et al., 2018), and a metalloprotease (EGY3) were also included in
the list.

Changes in gene product abundance also include those that are absent in stress, but
present in control conditions, although they are not always considered in the current
literature. In the present -omics study there were a few of transcripts or proteins that
fit in this criterium (Tables S15 and S16). The list included also members of multigene
families of the functional groups also detected in stressed seedlings, as for example
cellular process, gene expression, protein metabolism. Several functional groups and
genes were common at both days 20 and 25. It was noticeable that at day 20, some
components of the ribosomal proteins RPL and RPS large families were absent (Moin,
2017). Also, some stress related gene products were only detected in control plants
(CRT3, MED15A, EXL1, YDA, ARK1, BBD1, ADH, TPS1, RPL13, FRK1, LAC2,
HSI2, CRK1, ACS1, AT2G47470, CA1, PAP1, CRRSP38, RPL12, RPL24, ACO2,
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RAC7, CYC1, DME, CPK1, CLT3, DND1, COL1, EFR, CAS, BIP, ERF096, PK5,
BZIP1, EXL3, HSP83, PP7, IAA9, and RPS12 ).

With respect to protein abundance, new families appeared with members within
the filter absent in drought and present in control at day 20, such as cell death
(RIN4, CRY1), defence response to bacterium (RCA, RIN4). Others that contained
members that were only detected under stress came out, including pigment metabolic
process (ACSF, CRY1), translation and other biosynthetic processes (MYB3, ABA2,
RPS24A, TCP20, ACSF, GRF2, and RPS8). Two of the genes, ABA2 and CRY1,
were included within the group of response to water deprivation, a result that would
not be expected (Endo et al., 2014; D’Amico-Damião and Carvalho, 2018). However,
it has been reported that ABA2 transcript did not change in response to ABA or
dehydration in rice (Endo et al., 2014). At day 25, several proteins included in different
metabolic pathways were only detected in control, being absent in drought treatment.
The set include enzymes of the sugar metabolism CYT1 and PMM, implicated in
the biosynthesis of mannose, L-ascorbic, and nucleotide-sugars, biosynthesis of small
organic molecules, including carboxylic acids, oxylipins, (LOX3, ABA2, CYT1, PMM,
4CLL9, among others, Supplementary Tables S15 and S16).

Time dependent regulation of the gene expression may operate independently at
the transcriptional or translational levels. As recurrently discussed along this section,
differences may be methodological or biologically explained, so, for a confident in-
terpretation of the data focus should be given to permanent better that transitory
differences. There were not common permanent (days 20 and 25) qualitative changes
observed at the two -omics levels. Both criteria should be used in searching for markers
of drought tolerant related genes. The following criterium of confidence established
was those genes products up or down regulated at both sampling times. Following,
specific transcripts and proteins are discussed. At the mRNA level, 9 were only present
in drought treatment at both times, that corresponded to accession: glysoja_034204,
OSIGBa0096P03.5, RFC1, PRUPE_ppa020167mg, PERK2, TCM_026400, contig-
8784000021, At1g56120, and PGSC0003DMG400030893. Out of them, three corre-
sponded to receptors, including contig-2451000013 and contig-7688000013, putatives
LRR receptor-like serine/threonine-protein kinase, and contig-190000023, a member
of the proline-rich receptor-like protein kinase family. Members of the Ser/Thr PK
have been reported as ABA-receptors, being implicated in drought and salt tolerance
in soybean (Sun et al., 2013). In A. thaliana roots, PERK4 has been reported as
a regulator of Ca2+ signalling that is required for ABA responses (Bai et al., 2009).
For the other transcripts, neither annotated function nor relationship with drought
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has been reported, including contig-1473000003 that matched OSIGBa0096P03.5,
contig-5570000008, that matched RFC1, a replication factor subunit 1 (“it Plays a
role as mediator of transcriptional gene silencing (TGS), DNA replication, DNA re-
pair, hypersensitive response (HR) and telomere length regulation; (Liu et al., 2010)),
contig-1259000017 that matched PRUPE_ppa020167mg, contig-6159000022, a sul-
phate/thiosulfate import ATP-binding protein cysA, and contig-8784000021, a putative
U4/U6.U5 tri-snRNP-associated protein 1-like.

Following gene products showing quantitative differences between treatments will be
discussed. The total variable dataset was filtered for those that according to the sPLS
and PCA multivariate tests do more explain the variability, discriminating between well-
watered and droughted seedlings (Table 6.2, Supplementary Figure S11). Among them,
those common to the two times, with the highest and lowest loadings, showing positive
and negative correlations will be included. There were not gene products detected
at both transcriptomic and proteomics levels. The list of gene products detected at
the transcriptomic level and up accumulated in droughted seedlings was DG1 encodes
a pentratricopeptide repeat containing protein that is targeted to the chloroplast
(Chi et al., 2008) and TOC159 is an integral membrane GTPase that functions as a
transit-sequence receptor required for the import of proteins necessary for chloroplast
biogenesis (Chang et al., 2017). On the other hand, some of the down accumulated
gene products under drought conditions were genes encoding for enzymes associated to
phenolic metabolism (C3H, HCT and LAR), and related to plant immunity (Ankyrin
repeat family protein) (Yang et al., 2012). CYP98A3 encodes coumarate 3-hydrozylase
(C3H) involved in both lignin and flavonoids biosynthesis (Kim et al., 2006; Varbanova
et al., 2011) and LAR encodes a pinoresinol reductase involved in lignan biosynthesis
(Nakatsubo et al., 2008). Several gene products detected at the proteomic level and
up accumulated under drought conditions were identified in the sPLS of the variable
transcripts and proteins. Of these, two heat shock proteins (HSP17.4 and HSP70) and
one chaperon (cp10) were identified. HSP family considered as stress-inducible genes
respond to abiotic stresses such as drought (Cho and Hong, 2004). CP10 encode a
chloroplast-localized chaperonin 10 (Koumoto et al., 2001). SQDB encode an uridine
5´-diphosphate-sulfoquinovose synthase and is related to the glycolipid biosynthesis
(Shimojima and Benning, 2003) and STIP1 encode a stress-induced-phosphoprotein
and it has been identified as an up-regulated protein in alfafa roots in response to water
deficit stress (Byung-Hyun, 2016). M6PR encodes a NADPH-dependent mannose
6-phosphate reductase and is a key enzyme involved in mannitol biosynthesis that is
affected by drought and salt stresses (Carvalho et al., 2014). On the other hand, two
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gene products (SBE3 and HDR) were down accumulated under drought conditions.
SBE3 encodes a starch branching enzyme similar to SBE2 in rice (Han et al., 2007) and
HDR encodes a protein with 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase
activity involved in the last step of mevalonate-independent isopentenyl biosynthesis
(Hsieh et al., 2014).

GeneMANIA web site contained algorithm has been employed to establish network
analysis (Franz et al., 2018). For plants, it is based on Arabidopsis and has been
previously used in the multi-omics analysis in for example in the analysis of the cell
wall signalling proteins (Ihsan et al., 2017). Other alternative algorithms have been
more employed, such as STRING (Dai et al., 2015; Escandón et al., 2020). The
election of GeneMANIA was merely empirical based on the resulting networks and its
interpretation in terms of response to drought. It is based on prediction, co-expression,
co-localization, and shared protein domains. Two times specific, days 20 and 25,
networks were obtained from variable gene products detected at two omics levels. The
first one corresponding to day 20 contained 11 up and 4 down regulated genes plus
10 predicted genes (Figure 6.3). Within this network, we have found the previously
discussed drought responsive proteins including up accumulated heat shock proteins
(CLPB2, CLPB3, HSP70, and HSP17.4), FTSH6, AT1G23740 (AOR gene), SMT1, and
UGP3, and down accumulated ABA2, RPS1, ADK, and RPL4. Some of the genes have
been not previously reported to drought stress; as it is the case of SMT1 that controls
the levels of cholesterol in plants and that could be a factor of the drought response
at the membrane level as determine its fluidity (Hartmann, 1998). The second one
corresponding to day 25 contained 10 up and 1 down regulated genes plus 20 predicted
genes (Figure 6.3). The network is enriched in cellular response to DNA damage/DNA
repair and response to heat. Some of them also appeared in the day 20 network (CLPB2,
CLPB3, HSP70, HSP17.4, FTSH6, AT1G23740, and ABA2 ). The ones only appeared
at day 25 included the up accumulated AP1, INVE, AT4G22740, CAD4, FEN1, and
HIPP27 genes. Details of genes that are not described above can be found below.
FTSH6 encodes an ATP-dependent zinc metalloprotease, reported to be the major
thylakoid membrane protease implicated in the biogenesis of thylakoid membranes,
quality control in the photosystem II repair cycle, and retrograde signalling mechanism
(Kato, Hyodo, and Sakamoto, 2018). CLPB (casein lytic proteinase/heat shock protein)
are chaperones that act to remodel or disassemble protein complexes and/or aggregates
using the energy of ATP (Lee et al., 2007). AT1G23740 (AOR gene) is an oxidoreductase
that helps to maintain the photosynthetic process by detoxifying reactive carbonyls
formed during lipid peroxidation (Yamauchi et al., 2012). UGP3 encodes for a UDP-
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glucose phosphorylase and is involved in anthocyanins biosynthesis in Arabidopsis
(Rajpal et al., 2019). ABA2 encodes a cytosolic short-chain dehydrogenase/reductase
involved in the conversion of xanthoxin to ABA-aldehyde during ABA biosynthesis
(Lin et al., 2007). ADK1 encodes an adenosine kinase 1 and is associated with the
protein and receptor kinase group of drought tolerance (Sarwar et al., 2019). INVE
encodes a chloroplast-targeted alkaline/neutral invertase implicated in the development
of the photosynthetic apparatus. This is enzyme included in the sucrose synthesis and
degradation in the carbohydrate metabolism that is up regulated under drought stress
(Shaar-Moshe, Hübner, and Peleg, 2015). AT4G22740 encodes a glycine-rich protein
that is involved in response to drought stress as previously described in Arabidopsis
(Yao et al., 2016). CAD4 encodes a catalytically active cinnamyl alcohol dehydrogenase
involved in the biosynthesis of lignin (Goujon et al., 2003). HIPP27 encodes a heavy
metal transport/detoxification superfamily protein. HIPP family is induced during
cold, salt and drought stress (Barth et al., 2009). So far, no clear relationships between
AP1 and FEN1, and drought have been described. AP1 and FEN1 encode a MADS
domain protein homologous to SRF transcription factors and 5’-3’ exonuclease family
protein, respectively (Busch, Bomblies, and Weigel, 1999; Zhang et al., 2016a).

In conclusion, because of the huge amount of variable gene products (47868 tran-
scripts and 4008 proteins), complexity of the results and low correlation between
transcripts and proteins, only the variable dataset has been analysed based on func-
tional groups and pathways according to GO (biological process, molecular functions
and cellular component) and KEGG. Even so, it is important to realise that the work
presented should be considered as a descriptive analysis of difficult biological interpreta-
tion until functional validation. Variable gene products were transitory, observed in one
of the two sampling times, or permanent, observed at two sampling times. As we are
also searching molecular markers, the discussion was limited, as a general rule, to those
observed at both days 20 and 25. For a confident biological interpretation of the data
in terms of response and tolerance to drought stress and to search molecular markers,
we pretended to focus on those gene products detected at the two omics levels, but it
was almost impossible because the number of gene products was too low compared to
the total dataset (6 gene products). The low correlation observed can be explained
from a methodological or biological point of view, considering the particularities and
characteristics of the two employed analytical platforms and the complexity of the
gene expression regulation including transcriptional, post-transcriptional, translational
or post-translational events, as well as the stability, degradation of the RNA and
proteins. These conclusions can be also applied to similar studies where a multi-omics
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approach is employed to study different biological processes. We have observed both
up and down regulation of the different groups paying attention at those with more
abundant transcripts and proteins under drought conditions, as within them, the search
of molecular markers must be performed. The up and down changes in response to
drought is of difficult interpretation from a biological point of view as the same category
is up and down, with members of the same or close gene families included in one or
the other. The situation is even more complicated for isozymes located in different
subcellular fractions.

In addition to the analysis of groups, individual gene product analysis has also been
performed. For that, the total variable dataset has been filtered to those consistent
(present in all the three biological replicates) observed at the two sampling times, with
the same up or down tendency and, if any, detected at transcriptomic and proteomic
levels. Firstly, qualitative changes, with no statistical analysis, were considered.
Quantitative variables were filtered based on univariate (GLM for transcripts, and
t-test for proteins) and multivariate (PCA and sPLS) analysis. As it has been discussed
above the biological interpretation based on the omics data is not always possible, even
being quite restrictive in the confidence parameters. Finally, within the qualitative and
quantitative variable gene products commonly observed at both sampling times and
both omics levels, we could propose as molecular markers of response and tolerance to
drought stress: CLPB2, CLPB3, FTSH6 and PSB28.



Chapter 7

General Conclusions
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7.1 Conclusions
1. A reference transcriptome for Quercus ilex has been constructed.It contains

47868 annotated transcripts being present in different organs (leaves, roots and
embryos), either constitutive or induced, in response to drought stress.

2. The employment of complementary NGS platforms (Illumina and Ion Torrent)
and assembling algorithms (MIRA > TRINITY > RAY) resulted in a deeper
transcriptome coverage, with longer sequences.

3. From the transcriptome a custom Q. ilex specific protein database has been
constructed to be used in the proteomic analysis and protein identification in
this species.

4. The integrated multiomic analysis resulted in the metabolic pathways reconstruc-
tion as it occurs in Q. ilex. Out of 127 metabolic pathways reported in KEGG,
123 could be visualized at the transcriptome, proteome and/or metabolome levels.
the TCA cylce was the pathway most represented with 5 out of 10 metabolites, 6
out of 8 protein enzymes, and 8 out of 8 enzyme transcripts.

5. Drought causes changes in the leaf transcript and protein profiles, resulting in
3588 mRNA and 640 proteoforms showing qualitative or quantitative differences
in abundance. Up or down changes were observed, being transitory in just
sampling time, or permanent, at both sampling times.

6. A low correlation (lower than 0.2) between mRNA and protein abundances was
obtained

7. Responses to stress and chloroplast were the gene ontology groups more enriched
in variable gene products.

8. The KEGG pathways more affected in responses to drought were photosynthesis,
protein translation, carbohydrates, amino-acid metabolism and phenolics.

9. Variable gene products detected at both omics levels, being up-accumulated at
both both sampling times, can be proposed as molecular markers of responses and
tolerance to drought in Q. ilex. The list of genes fitting in these characteristics
induced CLPB2, CLPB3, FTSH6 and PSB28.
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7.2 Conclusiones
1. Se ha construido un transcriptoma de referencia para Q. ilex, conteniendo 47868

transcritos anotados. Las secuencias se obtuvieron a partir de muestras de RNA
de diferentes órganos (hojas, raíces y embriones), siendo estos expresados de
manera constitutiva o inducida en respuesta a sequía.

2. El empleo de dos plataformas complementarias de secuenciación de última gen-
eración (Illumina e Ion Torrent) junto con los algoritmos de ensamblaje de
“contigs” (RAY, TRINITY y MIRA) generaron secuencias más largas y una
mayor cobertura del exoma.

3. A partir de dicho transcriptoma de referencia, se ha construido una base de datos
de proteínas específica para Q. ilex, que será utilizada en la identificación de
proteínas en estudios de proteómicas.

4. El uso integrado de las diferentes plataformas ómicas, transcriptómica, proteómica
y metabolómica, permitió la reconstrucción de las rutas metabólicas en Q. ilex.
Del total de las 127 rutas incluidas en la base de datos KEGG, se visualizaron, a
nivel de transcrito, proteínas y/o metabolitos, 123. El ciclo de Krebs fue la ruta
más representada con 5 de los 10 metabolitos, 6 de los 8 enzimas y el total de los
transcritos, 8, identificados.

5. El tratamiento de sequía provocó grandes cambios en el patrón de expresión
génica, detectándose 3588 mRNAs y 640 proteoformas como variables, presen-
tado diferencias cualitativas o cuantitativas. Dichos cambios fueron transitorios
(detectados en un solo tiempo) o permanentes (detectados a los dos tiempos).

6. La correlación entre la abundancia a nivel de transcritos y la correspondiente
proteína fue muy baja (valores inferiores a 0.2 en el coeficiente de correlación de
Pearson).

7. Los grupos génicos más alterados en condiciones de sequía fueron, desde un punto
de vista funcional, los de la “respuesta a estrés”, y en cuanto a su localización
celular los “cloroplásticos”.

8. Los productos génicos variables correspondientes a enzimas correspondieron a las
siguientes rutas metabólicas: síntesis de proteínas, fotosíntesis, carbohidratos,
aminoácidos y fenólicos.
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9. Los productos génicos variables detectados a ambos niveles ómicos y sobreex-
presados a ambos tiempos de muestreo pueden ser propuestos como marcadores
moleculares de respuesta y tolerancia a sequía en Q. ilex. La lista de genes
que cumplen dichos criterios fue muy corta, incluyendo hipotéticas proteínas de
respuesta a choque térmico, CPLB2 y CPLB3, una metaloproteasa cloroplástica,
FTSH6, y una proteína del centro de reacción del fotosistema II, PSB28.
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Table S1 Total number of transcripts included in the GO and Uniprot classification in holm oak. Accessible in this
link:

https://doi.org/10.1371/journal.pone.0210356.s001

Table S2 List of transcripts related to drought stress in the holm oak transcriptome.

Abbreviation Gene name EC (enzyme code)

Bpm BPM
At3g62550 Drought responsive ATP-binding motif containing protein
dreb5 Drought responsive element binding protein 5

Drought-induced protein RDI
drs1 Drought-sensitive 1 protein
drs1 Drought-sensitive 1 protein
drs1 Drought-sensitive 1 protein
drs1 Drought-sensitive 1 protein
drs1 Drought-sensitive 1 protein
GT1 Glycosyltransferase 2.4.1.-;2.4.1.115;2.4.1.91
GT1 Glycosyltransferase 2.4.1.-;2.4.1.115;2.4.1.91
NAC13 NAC domain class transcription factor 1.11.1.7
NAC014 NAC domain-containing protein 14 1.11.1.7
NAC078 NAC domain-containing protein 78
NAC078 NAC domain-containing protein 78
NAC078 NAC domain-containing protein 78
NAC078 NAC domain-containing protein 78
AIF NAC domain-containing protein 78
AIF NAC domain-containing protein 78 4.6.1.1
NAC082 NAC domain-containing protein 82
NAC082 NAC domain-containing protein 82
NAC086 NAC domain-containing protein 86 1.11.1.7
NAC1 NAC transcription factor
NTL5 NAC transcription factor NTL5 1.11.1.7
NAM No apical meristem 1.11.1.7
Os05g0109600 Os05g0109600 protein
pal Phenylalanine ammonia-lyase 4.3.1.25;2.3.3.10;4.3.1.24
PAL Phenylalanine ammonia-lyase 4.3.1.25;2.3.3.10;4.3.1.24
PAL Phenylalanine ammonia-lyase 4.3.1.25;2.3.3.10;4.3.1.24
PXG4 Probable peroxygenase 4 1.11.2.3
NTL9 Protein NTM1-like 9 1.11.1.7
NTL9 Protein NTM1-like 9 1.11.1.7
APUM2 Pumilio homolog 2
APUM5 Pumilio homolog 5
Bpm Pumilio isogeny 2
puf2 Pumilio isogeny 2
Bpm Pumilio isogeny 2
puf2 Pumilio isogeny 2
DICP Putative drought-inducible cysteine proteinase 3.4.22.-;3.4.22.16
NAC1 Putative membrane bound NAC transcription factor 1
NAC77 Putative NAC domain class transcription factor
TCTP Translationally-controlled tumor protein homolog
TCTP Translationally-controlled tumor protein homolog 2.5.1.47
TCTP Translationally-controlled tumor protein homolog 2.5.1.47
UGT71K1 UDP-glycosyltransferase 71K1 2.4.1.-;2.4.1.115;2.4.1.91
UGT71K1 UDP-glycosyltransferase 71K1 2.4.1.-;2.4.1.115;2.4.1.91

Table S3 Total number of transcripts included in the GO and Uniprot classification in holm oak. Accessible in this
link:

https://doi.org/10.1371/journal.pone.0210356.s003

https://doi.org/10.1371/journal.pone.0210356.s001
https://doi.org/10.1371/journal.pone.0210356.s003
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Figure S1 Distribution of sequence lengths over all sequences used in this study.
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Figure S2 Efficiency in the use of computational resources in each assembler used in this study (RAY, MIRA and
TRINITY) from Illumina clean raw data. Ncpus indicates how many central processing units (CPUs) are used by
the software, Ncpus_sys indicates how many CPUs are used by the system, Mem indicates RAM memory and Pro-
cess_creation indicates how many files are created.
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Figure S3 Efficiency in the use of computational resources in each assembler used in this study (RAY, MIRA and
TRINITY) from Ion Torrent clean raw data. Ncpus indicates how many central processing units (CPUs) are used
by the software, Ncpus_sys indicates how many CPUs are used by the system, Mem indicates RAM memory and
Process_creation indicates how many files are created.
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Figure S4 Efficiency in the use of computational resources in the RAY assembler from hybrid transcriptome (a) and
partial hybrid transcriptome clean raw data (b). Ncpus indicates how many central processing units (CPUs) are used
by the software, Ncpus_sys indicates how many CPUs are used by the system, Mem indicates RAM memory and
Process_creation indicates how many files are created.



150 Supplementary Material

A.2 A multi-omics analysis pipeline for the metabolic
pathway reconstruction in the orphan species
(Quercus ilex). Supporting information
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Figure S8 Enzymes (transcript level and protein level) assigned to the glycolysis/gluconeogenesis.
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Table S4 Metabolite features.

Metabolite m/z RT
1 Pyruvic acid 147, 217, 133 11.59
2 L-Glutamic acid 246, 147, 128 25.23
3 Glucose 319, 205, 147 31.35
4 Alanine 116, 190, 75 12.13
5 Succinic acid 147, 247, 75 18.40
6 Aspartic acid 232, 218, 147 23.32
7 L-Serine 204, 218, 147 19.74
8 L(+)-Ascorbic acid 332, 147, 205 32.13
9 L-Phenylalanine 218, 192, 266 25.25
10 Urea 147, 189, 171 16.82
11 Sucrose 361, 217, 437 43.56
12 Glucose-6-phosphate 387, 299, 357 39.08
13 Glycerol 205, 218, 133 17.60
14 Fructose 217, 437, 147 29.33
15 Fumaric acid 156, 147, 232 23.19
16 Leucine 158, 147, 232 17.39
17 Galactose 319, 205, 147 31.20
18 myo-Inositol 305, 318, 217 31.65
19 L-Proline 142, 147, 75 17.87
20 Malic acid 147, 233, 245 22.70
21 Asparagine 231, 116, 132 26.24
22 Citric acid 273, 147, 347 29.50
23 Glycolic acid 147, 205, 177 11.21
24 Valine 144, 218, 75 15.78
25 D-Cellobiose 204, 361, 217 44.79
26 Lactic acid 147, 117, 191 10.69
27 L-Threonine 218, 291, 117 20.38
28 Gluconic acid 292, 319, 147 33.31
29 Maltose 361, 204, 217 44.89
30 Oxalic acid 147, 133, 220 13.35
31 Sorbose 217, 307, 103 31.08
32 Palmitic acid 313, 117, 129 33.50
33 Glyceric acid 292, 147, 189 19.03
34 Arabinose 307, 217, 103 26.34
35 D(-)-Quinic acid 345, 255, 147 30.37
36 Xylulose 205, 147, 263 26.62
37 D-(+)-Galacturonic

acid
217, 204, 292 39.80

38 4-Aminobutyric acid
(GABA)

174, 304, 147 23.37

39 Mannitol 319, 205, 217 31.91
40 L-Isoleucine 158, 147, 218 17.94
41 cis-Aconitic acid 147, 229, 375 27.69
42 L-Rhamnose 204, 319, 220 33.96
43 Oleic acid 339, 129, 117 36.60
44 Sorbitol 319, 147, 217 32.05
45 Salicylic acid 267, 370, 193 27.97
46 Glucaric acid 333, 292, 305 33.63
47 Galactaric acid 217, 204, 292 39.80
48 Galactonic acid 205, 275, 147 30.89
49 Maleic acid 147, 245, 75 18.19
50 Gallic acid 458, 281, 443 32.17
51 Stearic acid 341, 117, 129 37.03
52 Linoleic Acid 294, 263, 109 18.36
53 Ribonic acid 292, 217, 147 28.39
54 D-Erythrose 147, 201, 117 21.49
55 Maltotriose 361, 204, 217 44.19
56 Pyroglutamic acid 156, 147, 232 23.19
57 Melibiose 204, 217, 147 44.27
58 Catechin 368, 355, 204 46.10
69 Viburnitol 217, 191, 204 32.50
60 Epigallocatechin 456, 355, 345 46.65
61 Tridecane 112, 98, 85 9.82
62 Anthraquinone 369, 267, 204 46.26
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Table S5 GC-MS metabolomic data. Mean values of normalized peak areas, as well as SD (standard deviation)
and CV% (percentage of coefficient of variation) were determined for replicates of the metabolite extract. CV%=
(SD/mean)*100. Range of CV% (0.7 - 40.0). CV% mean (13.70).

Asigned to/Identified Replicate 1 Replicate 2 Replicate 3 mean SD CV%
Pyruvic acid 0.07 0.08 0.06 0.07 0.01 17.8

L-Glutamic acid 5.15 4.63 4.45 4.74 0.37 7.72
Glucose 28.39 36.31 38.59 34.43 5.35 15.5
Alanine 2.98 3.26 2.69 2.98 0.28 9.45

Succinic acid 0.98 0.89 0.77 0.88 0.11 12.5
Aspartic acid 11.27 10.10 8.57 9.98 1.36 13.6

L-Serine 0.98 0.74 0.85 0.86 0.12 14.1
L(+)-Ascorbic acid 0.71 0.97 0.80 0.83 0.13 15.8

L-Phenylalanine 0.22 0.29 0.25 0.25 0.04 14.5
Urea 0.04 0.07 0.06 0.06 0.02 30.8

Sucrose 25.66 25.14 27.52 26.11 1.26 4.81
Glucose-6-phosphate 0.16 0.21 0.17 0.18 0.02 12.8

Glycerol 1.16 1.49 1.21 1.29 0.18 13.9
Fructose 0.42 0.66 0.52 0.53 0.12 22.7

Fumaric acid 0.65 0.42 0.46 0.51 0.12 23.5
Leucine 0.17 0.34 0.19 0.23 0.09 40

Galactose 4.00 4.66 4.14 4.27 0.35 8.1
myo-Inositol 20.29 21.69 19.46 20.48 1.13 5.5

L-Proline 0.77 0.73 0.74 0.75 0.02 3.04
Malic acid 41.81 40.02 40.45 40.76 0.94 2.3
Asparagine 2.09 2.33 2.30 2.24 0.13 5.82
Citric acid 16.22 16.84 16.41 16.49 0.32 1.92

Glycolic acid 0.26 0.30 0.23 0.26 0.04 13.4
Valine 1.18 1.52 1.31 1.33 0.17 12.6

D-Cellobiose 0.23 0.36 0.33 0.31 0.07 22.5
Lactic acid 2.54 2.21 2.49 2.42 0.18 7.46

L-Threonine 0.17 0.25 0.19 0.21 0.04 20.7
Gluconic acid 0.11 0.11 0.11 0.11 0.00 2.66

Maltose 3.52 1.61 2.30 2.48 0.97 39.2
Oxalic acid 0.59 0.54 0.63 0.59 0.05 8.29

Sorbose 12.83 13.42 12.99 13.08 0.30 2.31
Palmitic acid 0.86 0.88 0.84 0.86 0.02 2.07
Glyceric acid 0.11 0.24 0.20 0.18 0.07 38

Arabinose 0.09 0.11 0.09 0.10 0.01 10
D(-)-Quinic acid 26.66 27.01 26.76 26.81 0.18 0.66

Xylulose 0.03 0.05 0.03 0.04 0.01 20
D-(+)-Galacturonic acid 3.16 2.19 2.26 2.54 0.54 21.2

4-Aminobutyric acid (GABA) 6.41 5.50 6.13 6.01 0.46 7.73
Mannitol 0.39 0.38 0.38 0.38 0.01 1.57

L-Isoleucine 0.33 0.58 0.40 0.44 0.13 29.3
cis-Aconitic acid 0.30 0.24 0.28 0.27 0.03 11.7

L-Rhamnose 7.99 7.06 7.32 7.46 0.48 6.45
Oleic acid 1.65 1.67 1.62 1.65 0.02 1.29
Sorbitol 0.13 0.11 0.12 0.12 0.01 6.78

Salicylic acid 0.09 0.08 0.08 0.09 0.01 7.87
Glucaric acid 0.12 0.14 0.14 0.14 0.01 7.78

Galactaric acid 0.37 0.31 0.33 0.34 0.03 10
Galactonic acid 1.37 1.79 1.37 1.51 0.24 16.1

Maleic acid 3.75 2.80 2.39 2.98 0.70 23.4
Gallic acid 2.72 2.25 2.31 2.43 0.26 10.6
Stearic acid 0.46 0.49 0.57 0.51 0.05 10.6

Linoleic Acid 19.33 17.29 16.26 17.63 1.56 8.85
Ribonic acid 0.26 0.25 0.23 0.25 0.02 6.74
D-Erythrose 0.05 0.05 0.05 0.05 0.00 2.31
Maltotriose 0.60 1.03 0.71 0.78 0.22 28.4

Pyroglutamic acid 1.27 1.06 1.08 1.14 0.12 10.3
Melibiose 0.74 0.54 0.77 0.68 0.12 18.2
Catechin 12.40 9.05 9.98 10.47 1.73 16.5

Viburnitol 16.88 18.60 17.86 17.78 0.86 4.86
Epigallocatechin 1.47 2.25 2.07 1.93 0.41 21.1

Tridecane 2.78 2.71 4.40 3.29 0.96 29
Anthraquinone 0.16 0.33 0.27 0.26 0.09 34.9



A.2 Multi-Omics data integration of Quercus ilex. Supporting information 157

Table S6 KEGG pathways with metabolites, proteins, and transcripts.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_3.XLSX

Table S7 Comparison of KEGG pathways of different species.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_4.XLSX

Table S8 Bins of transcripts.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_5.XLSX

Table S9 Bins of proteins.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_6.XLSX

Table S10 Comparison of in silico proteomes.

Protein databases (Uniprot Proteomes) Number of proteins in DB Q. ilex blasted transcripts % of Q. ilex transcripts
Oryza sativa subsp. Japonica 39947 48724 77.80
Arabidopsis thaliana 39179 53644 85.65
Populus trichocarpa 44466 57440 91.72
Eucalyptus grandis 44150 55392 88.45

Total annotated sequences in Q. ilex transcriptome = 62628
Blastx (e-value 10−10)

Table S11 Shotgun LC-MS/MS proteomic data. Mean values of normalized peak areas, as well as SD (standard
deviation) and CV% (percentage of coefficient of variation) were determined for replicates of protein extract (Jorge
et al., 2005; Jorge et al., 2006). The area values correspond to replicate 1 (0.6 µg of protein), replicate 2 (0.8 µg of
protein), and replicate 3 (1 µg of protein). Accessible in this link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_8.XLSX

Table S12 Enzymes (transcripts).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_9.xlsx

Table S13 Enzymes (proteins).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_10.xlsx

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_3.XLSX
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_4.XLSX
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_5.XLSX
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_6.XLSX
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_8.XLSX
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_9.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050436/bin/Table_10.xlsx
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Table S14 Omics overview.

Omics mapping

TRANSCRIPTOME
Q. ilex annotated sequences 62628

Unique genes 27080
Transcripts of Enzymes 2103

PROTEOME
Identified proteins 2380

Enzymes 228
METABOLOME

Identified metabolites 62
Metabolites mapped to the metabolic reconstruction (Mapman) 58
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Table S15 List of transcripts. Columns A to M correspond to contig ID, corresponding gene acronyms, and annotations.
Columns N to AG contain quantitative values for each gene for each sample within each sample and the statistical
parameters, FDR and p-value:

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_1.xlsx

Table S16 List of proteins. Columns A to D correspond to contig and protein IDs, corresponding gene and description.
Columns E to AA contain quantitative values for each gene for each proteoform within each sample and the statistical
p-value.

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_2.xlsx

Table S17 Correlation between transcripts and proteins abundance. Two different datasets were employed, the total
and the group containing variable ones. The first and second columns correspond to the quantitative values for,
respectively, transcripts and proteins. The Pearson correlation coefficient for each dataset is indicated.

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_3.xlsx

Table S21 KEGG pathway analysis. List of pathways to which identified transcripts and/or protein enzymes are
linked. Columns include the pathway name, number of gene products per pathway corresponding to Arabidopsis
thaliana, and significance p-values at the transcript, protein or combined levels.

Pathway name UniGenes Gene expression Proteomics Combined p-value
Ribosome 53 5.46694E-14 0.39081 6.93874E-13
Glyoxylate and dicarboxylate metabolism 26 0.07588 0.00222 0.00163
Phenylpropanoid biosynthesis 17 0.00196 0.16737 0.00295
Phenylalanine metabolism 8 0.00312 0.11119 0.00311
Flavonoid biosynthesis 4 0.00055 1 0.00466
Stilbenoid, diarylheptanoid and gingerol biosynthesis 6 0.00634 NA 0.00634
Biosynthesis of secondary metabolites 268 0.00530 0.26303 0.01056
Photosynthesis 35 0.52720 0.00266 0.01061
Carbon metabolism 68 0.03277 0.06915 0.01606
Plant-pathogen interaction 62 0.02147 0.16737 0.02382
Cysteine and methionine metabolism 26 0.03550 0.10684 0.02494
Ubiquinone and other terpenoid-quinone biosynthesis 11 0.01724 0.28059 0.03063
Nitrogen metabolism 21 0.02418 0.39007 0.05342
Monobactam biosynthesis 4 0.01271 1 0.06819
Plant hormone signal transduction 64 0.01357 1 0.07193
Biosynthesis of amino acids 68 0.01842 0.85423 0.08106
Carbon fixation in photosynthetic organisms 19 0.25709 0.07021 0.09052
Propanoate metabolism 8 0.35336 0.06164 0.10513
Glycerolipid metabolism 24 0.02208 1 0.10626
Linoleic acid metabolism 4 0.11377 NA 0.11377
Oxidative phosphorylation 38 0.03273 0.91770 0.13532
alpha-Linolenic acid metabolism 15 0.41035 0.11119 0.18648
Glycine, serine and threonine metabolism 20 0.07296 0.62891 0.18728
Phenylalanine, tyrosine and tryptophan biosynthesis 16 0.08488 0.62891 0.20982
Diterpenoid biosynthesis 6 0.23127 NA 0.23127
Citrate cycle (TCA cycle) 15 0.12518 0.62891 0.27883
Lipoic acid metabolism 2 0.28317 NA 0.28317
Tyrosine metabolism 8 0.73628 0.11119 0.28674
2-Oxocarboxylic acid metabolism 22 0.23982 0.34836 0.29093
Butanoate metabolism 5 0.56511 0.15170 0.29633
Vitamin B6 metabolism 4 0.48626 0.28059 0.40821
C5-Branched dibasic acid metabolism 3 1.00000 0.15170 0.43779
Valine, leucine and isoleucine biosynthesis 5 0.56511 0.28059 0.45058
Limonene and pinene degradation 5 0.17084 1 0.47272
Selenocompound metabolism 5 0.17084 1 0.47272
Carotenoid biosynthesis 13 0.61503 0.28059 0.47577
Spliceosome 30 0.30732 0.56194 0.47599
Taurine and hypotaurine metabolism 4 0.48626 NA 0.48626
Sulfur metabolism 10 0.18827 1 0.50266
Photosynthesis - antenna proteins 10 0.18827 1 0.50266
Isoquinoline alkaloid biosynthesis 4 0.48626 0.39007 0.50499
Tropane, piperidine and pyridine alkaloid biosynthesis 4 0.48626 0.39007 0.50499
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Table S21 KEGG pathway analysis. List of pathways to which identified transcripts and/or protein enzymes are
linked. Columns include the pathway name, number of gene products per pathway corresponding to Arabidopsis
thaliana, and significance p-values at the transcript, protein or combined levels.

Pathway name UniGenes Gene expression Proteomics Combined p-value
Alanine, aspartate and glutamate metabolism 20 0.57515 0.34836 0.52247
Glutathione metabolism 31 0.46489 0.46299 0.54585
Pyruvate metabolism 15 0.32060 0.68574 0.55288
Valine, leucine and isoleucine degradation 12 1.00000 0.22708 0.56371
Fatty acid biosynthesis 11 0.23113 1 0.56969
Other glycan degradation 6 0.23127 1 0.56988
Endocytosis 36 0.82492 0.28798 0.57902
beta-Alanine metabolism 13 0.61503 0.39007 0.58237
Fructose and mannose metabolism 16 0.69446 0.34836 0.58524
Mismatch repair 13 0.88554 0.28059 0.59445
Ribosome biogenesis in eukaryotes 16 1.00000 0.28059 0.63718
Glucosinolate biosynthesis 2 0.28317 1 0.64045
Ascorbate and aldarate metabolism 13 1.00000 0.28798 0.64648
One carbon pool by folate 7 0.29268 1 0.65229
Arginine and proline metabolism 13 0.61503 0.48303 0.65766
Phosphatidylinositol signaling system 22 0.64597 0.48303 0.67543
Fatty acid metabolism 21 0.40567 0.77480 0.67809
Galactose metabolism 13 0.32060 1 0.68531
Protein processing in endoplasmic reticulum 51 0.50812 0.69115 0.71868
Tryptophan metabolism 14 0.36574 1 0.73362
Arginine biosynthesis 15 0.65658 0.56194 0.73684
Fatty acid degradation 15 0.91806 0.40698 0.74147
Inositol phosphate metabolism 21 1.00000 0.39007 0.75729
Fatty acid elongation 9 0.77680 NA 0.77680
Pentose phosphate pathway 9 0.41209 1 0.77742
Amino sugar and nucleotide sugar metabolism 54 0.72459 0.60666 0.80089
Starch and sucrose metabolism 56 0.49582 0.90260 0.80735
Base excision repair 10 0.81110 NA 0.81110
RNA transport 41 0.98970 0.46299 0.81582
Phagosome 11 0.46805 1 0.82338
Lysine biosynthesis 4 0.48626 1 0.83686
Glycosphingolipid biosynthesis - globo series 4 0.48626 1 0.83686
Glycolysis / Gluconeogenesis 26 0.87272 0.61084 0.86844
Terpenoid backbone biosynthesis 19 0.53659 1 0.87063
mRNA surveillance pathway 32 1.00000 0.56194 0.88582
Glycerophospholipid metabolism 39 0.56506 1 0.88761
Brassinosteroid biosynthesis 5 0.56511 1 0.88764
Thiamine metabolism 5 0.56511 1 0.88764
RNA degradation 23 1.00000 0.68574 0.94444
DNA replication 15 0.69446 1 0.94767
Aminoacyl-tRNA biosynthesis 14 0.90315 0.77480 0.94959
Ubiquitin mediated proteolysis 49 0.99729 0.73393 0.96035
Biosynthesis of unsaturated fatty acids 8 0.73628 1 0.96169
Cyanoamino acid metabolism 17 0.75985 1 0.96853
Homologous recombination 21 0.96997 NA 0.96997
Purine metabolism 48 0.86819 0.88476 0.97076
Pyrimidine metabolism 43 0.99925 0.77480 0.97234
Nicotinate and nicotinamide metabolism 9 0.77680 1 0.97300
Sphingolipid metabolism 9 0.77680 1 0.97300
Pantothenate and CoA biosynthesis 9 0.77680 1 0.97300
Steroid biosynthesis 9 0.77680 1 0.97300
Circadian rhythm - plant 18 0.78776 1 0.97569
Basal transcription factors 13 0.88554 1 0.99318
SNARE interactions in vesicular transport 26 0.92534 1 0.99714
Nucleotide excision repair 19 0.95803 1 0.99911
Porphyrin and chlorophyll metabolism 20 0.96450 1 0.99936
Proteasome 24 0.98183 1 0.99983
Peroxisome 39 0.98808 1 0.99993
Caffeine metabolism 1 1 NA 1
Monoterpenoid biosynthesis 1 1 NA 1
Riboflavin metabolism 1 1 NA 1
Other types of O-glycan biosynthesis 1 1 NA 1
Histidine metabolism 2 1 1 1
Sesquiterpenoid and triterpenoid biosynthesis 2 1 NA 1
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 2 1 NA 1
Sulfur relay system 3 1 1 1
ABC transporters 3 1 NA 1
Glycosphingolipid biosynthesis - ganglio series 4 1 1 1
Biotin metabolism 4 1 1 1
Indole alkaloid biosynthesis 4 1 1 1
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Table S21 KEGG pathway analysis. List of pathways to which identified transcripts and/or protein enzymes are
linked. Columns include the pathway name, number of gene products per pathway corresponding to Arabidopsis
thaliana, and significance p-values at the transcript, protein or combined levels.

Pathway name UniGenes Gene expression Proteomics Combined p-value
Non-homologous end-joining 5 1 NA 1
Glycosaminoglycan degradation 5 1 1 1
Folate biosynthesis 6 1 NA 1
Regulation of autophagy 6 1 NA 1
Protein export 6 1 1 1
Pentose and glucuronate interconversions 6 1 1 1
Arachidonic acid metabolism 7 1 1 1
Cutin, suberine and wax biosynthesis 8 1 NA 1
Lysine degradation 8 1 1 1
Zeatin biosynthesis 8 1 NA 1
Ether lipid metabolism 8 1 NA 1
N-Glycan biosynthesis 15 1 NA 1
RNA polymerase 20 1 1 1
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Figure Supplementary 1

(c) 

(a) 

(d) 

(b) 

Figure S9 Correlation between transcripts and proteins abundance. Only gene products detected at both transcrip-
tomic and proteomic levels were considered. (a) and (c) correspond to, respectively, the total and the variable gene
product datasets. (b) and (d) correspond to the low abundant gene products.

Table S18 Gene Ontology analysis of the variable gene products. Tabs correspond to biological process, molecular func-
tion, and cellular component. Each tab contains the categories, number of total and identified genes, acronyms of the
identified genes, and the enrichment FDR. Data are organized according to the -omics platform (from transcriptomics
to proteomics), up/down regulated in droughted seedlings, and sampling time, days 20 and 25.

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_4.xlsx

Table S19 KEGG pathway analysis. List of pathways to which identified transcripts and/or protein enzymes are
linked. Columns include the pathway name, number of gene products per pathway corresponding to Arabidopsis
thaliana, and significance p-values at the transcript, protein or combined levels.

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_5.xlsx

Table S20 GeneMANIA network analysis. Columns correspond to the gene acronyms, functional annotation, GO
code, log score, Arabidopsis thaliana ortholog, node type (query = interrogated gene products; result= predicted gene
products; unknown= contrary gene and protein changes).

http://www.uco.es/probiveag/files/supplementary/Supplementary_Table_6.xlsx
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(f) Proteome

Figure S10 PCA and sPLS analysis of the data. PCA (on the right) and sPLS (on the left) plots based on the two
first components, PC1, and PC 2. Different datasets were employed for the analysis: (A) total transcriptome and
proteome, (B) total transcriptome, (C) total proteome, (D) total variable transcriptome and proteome, (E) variable
transcriptome, and (F) variable proteome. (Blue) Control at day 20, (Orange) Control at day 25, (Grey) Drought at
day 20, (Green) Drought at day 25. The three replicates per sample are shown.
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Figure S11 PCA and sPLS analysis of the data. (D) total variable transcriptome and proteome, (E) variable
transcriptome, and (F) variable proteome. (Color) Control at day 20, (Color) Control at day 25, (Color) Drought
at day 20, (Color) Drought at day 25. The three replicates per sample are shown.
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Figure Supplementary 1

(c) 

(a) 

(d) 

(b) 

Figure S12 KEGG metabolic charts of the twelve pathways showing statistically significant differences between
treatments, control and drought. In red and blue up or down gene products accumulated in droughted seedlings at
days 20 (left) and 25 (right).
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Figure S13 Paintomics KEGG differential pathway analysis: Ribosome (Garcia-Alcalde et al., 2011). In red and blue
up or down gene products accumulated in droughted seedlings at days 20 (left) and 25 (right)
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Figure S21 Paintomics KEGG differential pathway analysis: Carbon metabolism (Garcia-Alcalde et al., 2011). In
red and blue up or down gene products accumulated in droughted seedlings at days 20 (left) and 25 (right)
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Figure S22 Paintomics KEGG differential pathway analysis: Plant-pathogen interaction(Garcia-Alcalde et al., 2011).
In red and blue up or down gene products accumulated in droughted seedlings at days 20 (left) and 25 (right)
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Figure S23 Paintomics KEGG differential pathway analysis: Cysteine and Methionine metabolism (Garcia-Alcalde
et al., 2011). In red and blue up or down gene products accumulated in droughted seedlings at days 20 (left) and 25
(right)



178 Supplementary Material

Figure S24 Paintomics KEGG differential pathway analysis: Ubiquinone and other terpenoid-quinone biosynthesis
(Garcia-Alcalde et al., 2011). In red and blue up or down gene products accumulated in droughted seedlings at days
20 (left) and 25 (right)


