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GLOBAL PHASE PORTRAITS FOR THE ABEL

QUADRATIC POLYNOMIAL DIFFERENTIAL EQUATIONS

OF SECOND KIND WITH Z2-SYMMETRIES

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. We provide normal forms and the global phase portraits in
the Poincaré disk for all Abel quadratic polynomial differential equations
of the second kind with Z2-symmetries.

1. Introduction and statement of the main results

There are more than one thousand papers published in quadratic poly-
nomial differential systems (or simply quadratic systems). The difficulty
of studying these differential systems is due to the fact that they depend
on twelve parameters. In these published papers the authors studied many
subclasses of quadratic systems. A list of them without trying to be exhaus-
tive is the following: quadratic systems with a center [33, 38, 40, 52, 59];
with no finite real singularities [17, 50]; with a unique finite singularity
[10, 20, 37, 49, 51, 54, 55]; with a focus and one anti-saddle [2]; with an
integrable saddle [6]; with a third order weak focus [5, 31]; with all points
at infinity as singularities [18, 45]; that are Hamiltonian [3, 4, 22]), that
are bounded [11, 26], that are Darboux [28, 53]; that are homogeneous
[56, 57]; that are Lotka-Volterra [47, 48]; structurally stable [1, 21]; semilin-
ear [32]; with invariant lines of total multiplicity greater than or equal to four
[41, 42, 43, 44, 46]; with rational first integrals [7, 29, 30]; with polynomial
first integrals [16]; with a polynomial inverse integrating factor [8],...

Nowadays there are still many open questions regarding quadratic sys-
tems. In this paper our objective is to characterize all the global phase
portraits in the Poincaré disc of the class of quadratic systems which come
from Abel quadratic polynomial differential equations of the second kind.

An Abel differential equation of the second kind is of the form

(1) y
dy

dx
= A(x)y +B(x),
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with A(x) and B(x) non-zero functions, or equivalently, to the differential
system

ẋ = yc(x),
ẏ = a(x)y + b(x),

where A(x) = a(x)/c(x) and B(x) = b(x)/c(x). In this paper we are inter-
ested in studying the Abel quadratic polynomial differential systems, i.e. the
differential systems of the form

(2)
ẋ = yc(x) := y(c0 + c1x),
ẏ = a(x)y + b(x) := (a0 + a1x)y + b0 + b1x+ b2x

2,

where a0, a1, b0, b1, b2, c0, c1 ∈ R and such that ẋ and ẏ do not have a common
factor, so b20 + b21 + b22 6= 0. Moreover we assume that c20 + c21 6= 0, otherwise
the system is trivial. Note that we always have a20+a21 6= 0, otherwise would
not be an Abel equation of the second kind. Moreover we additionally have
that b22 + a21 + c21 6= 0 in order that the system be a quadratic system.

Note that systems (2) have seven parameters and, at present, the full
classification of their global phase portraits is unabordable. So we restrict
to the ones that have a Z2-symmetry. We recall that there are two types of
Z2-symmetric systems: the equivariant and the reversible ones. Let X : U ⊂
R2 → R2 be the vector field associated to system (2). We say that it is
equivariant if either

(3)

(
−1 0
0 1

)
X (x, y) = X (−x, y),

or

(4)

(
1 0
0 −1

)
X (x,−y) = X (x,−y),

and X is reversible if either

(5)

(
−1 0
0 1

)
X (x, y) = −X (−x, y)

or

(6)

(
1 0
0 −1

)
X (x,−y) = −X (x,−y).

Different families of planar polynomial vector fields with a Z2-symmetry
have been studied by several authors, see for instance [24, 27, 58].

Note that by this definition system (2) is equivariant satisfying (3) if and
only if c1 = a0 = b0 = b2 = 0 and in this case system (2) becomes

(7)
ẋ = c0y,
ẏ = a1xy + b1x,

where a1b1c0 6= 0.

System (2) is equivariant satisfying (4) if and only if c0 = c1 = b0 = b1 =
b2 = 0 which is not possible.



PHASE PORTRAITS FOR THE ABEL EQUATIONS OF SECOND KIND 3

System (2) is reversible satisfying (5) if and only if c0 = a1 = b1 = 0 and
system (2) becomes

(8)
ẋ = c1yx,
ẏ = a1xy + b0 + b2x

2,

where a1c1b0 6= 0.

Finally system (2) is reversible satisfying (6) if and only if a0 = a1 = 0
which is again not possible.

In this work we provide the global phase portraits of the Abel quadratic
polynomial differential systems of the second kind that are equivariant (i.e.
system (7)), and that are reversible (i.e. system (8)). For doing this we
will use the Poincaré compactification of polynomial vector fields, see the
Appendix.

We say that two polynomial vector fields in the Poincaré disk are topolog-
ically equivalent if there exists a homeomorphism from one onto the other
which sends orbits to orbits preserving or reversing the direction of the flow.

Theorem 1. All quadratic polynomial differential systems (7), after a linear
change of variables and a rescaling of its independent variable t, can be
written as one of the following systems:

(I.1) ẋ = y, ẏ = x(y + 1);
(I.2) ẋ = y, ẏ = x(y − 1).

The global phase portrait for system (I.1) and (I.2) is topologically equivalent
to (10) and (11) of Figure 1, respectively.

The proof of Theorem 1 is given in section 2.

Theorem 2. All quadratic polynomial differential systems (8), after a linear
change of variables and a rescaling of its independent variable t, can be
written as one of the following five classes:

(II.1) ẋ = xy, ẏ = µ+ xy with µ ∈ {−1, 1};
(II.2) ẋ = xy, ẏ = 1 + x2 + axy;
(II.3) ẋ = xy, ẏ = −1− x2 + axy;
(II.4) ẋ = xy, ẏ = −1 + x2 + axy;
(II.5) ẋ = xy, ẏ = 1− x2 + axy;

where a ∈ R. Moreover the global phase portrait for

• system (II.1) with µ = −1 is (1),
• system (II.1) with µ = 1 is (2),
• system (II.2) is (2),
• system (II.3) with |a| > 2 is (1),
• system (II.3) with |a| = 2 is (3),
• system (II.3) with |a| < 2 is (4),
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11)

Figure 1. The global phase portraits in the Poincaré disc for
the Abel quadratic polynomial differential equations of second kind
with Z2-symmetries.

• system (II.4) is (5),
• system (II.5) with |a| > 2 is (6),
• system (II.5) with |a| = 2 is (7),
• system (II.5) with |a| < 2 and a 6= 0 is (8),
• system (II.5) with a = 0 is (9),

of Figure 1.

In section 3 we prove Theorem 2. We have an appendix where we provide
some preliminary definitions, notations and theorems about the Poincaré
sphere and the Poincaré compactification as well as results on canonical
regions that we shall use for proving Theorems 1 and 2.
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For more information on the phase portraits of Figure 1 see Table 1 and
the proof of Theorem 1.

2. Proof of Theorem 1

We first prove the normal form provided in Theorem 1. To do that we
consider the rescaling of variables

(9) x → δX, y → βY, t → γT,

with βδγ 6= 0. Note that b1c0 6= 0. If b1c0 > 0 we take

δ =
a1√
b1c0

, β =
a1
b1

, γ =
√

b1c0,

obtaining system (I.1). If b1c0 < 0 we take

δ =
a1√
|b1c0|

, β = −a1
b1

, γ =
√

|b1c0|,

obtaining system (I.2).

Now we study the local phase portraits of the finite and infinite singular
points of system (I.1).

The origin is the unique finite singular point which is a hyperbolic saddle
because the eigenvalues of the Jacobian matrix at the origin are ±1.

On the local chart U1 (see the Appendix) system (I.1) becomes

u̇ = u+ v − u2v, v̇ = −uv2.

The unique singular point on v = 0 is the origin w0 = (0, 0) which is semi-
hyperbolic because the eigenvalues of the Jacobian matrix at w0 are 1 and 0.
Using [15, Theorem 2.19] we get that it is a semi-hyperbolic unstable node.

On the local chart U2 (see again the Appendix) system (I.1) becomes

u̇ = v − u2 − u2v, v̇ = −uv − uv2.

The origin of the local chart U2 is nilpotent. Using [15, Theorem 3.5] we
obtain that it is locally the union of one elliptic, two parabolic and one
hyperbolic sectors. Applying blow-up techniques we conclude that the hy-
perbolic sector is separated from the others by the infinity.

Using this information on the local phase portraits of the finite and infinite
singular points, that y = −1 is an invariant straight line of the system, and
that it is symmetric with respect to the y-axis we conclude that the unique
possible global phase portrait is topologically equivalent to (10) in Figure
1. Moreover using the Appendix we conclude that the global phase portrait
(10) has 4 canonical regions and 13 separatrices.

Now we study the local phase portraits of the finite and infinite singular
points of system (I.2).
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The origin is the unique finite singular point which is a center because
the eigenvalues of the Jacobian matrix at the origin are ±i and the system

has the analytic first integral H = (y − 1)2e2y−x2
.

On the local chart U1 system (I.2) becomes

u̇ = u− v − u2v, v̇ = −uv2.

The unique singular point on v = 0 is the origin w0 = (0, 0) which is semi-
hyperbolic because the eigenvalues of the Jacobian matrix at w0 are 1 and
0. Using [15, Theorem 2.19] we get that it is a semi-hyperbolic saddle.

On the local chart U2 system (I.2) becomes

u̇ = v − u2 + u2v, v̇ = −uv + uv2.

The origin of the local chart U2 is nilpotent. Using [15, Theorem 3.5] we
get that it is the union of one elliptic sector and one hyperbolic sector.
Applying blow-up techniques we conclude that both sectors are separated
by the infinity.

Using this information on the local phase portraits of the finite and infinite
singular point, that y = 1 is an invariant straight line of the system, and
that it is symmetric with respect to the y-axis we conclude that the unique
possible global phase portrait is topologically equivalent to (11) in Figure
1. Finally, using the Appendix we conclude that the phase portrait has 2
canonical regions and 10 separatrices.

3. Proof of Theorem 2

We consider the linear change of variables and a rescaling of the indepen-
dent variable (the time) of the form

(10) x → δX, y → βY, t → γT,

with βδγ 6= 0. Since c1 6= 0 we take

γ =
1

c1β

and so we always have X ′ = XY .

If b2 = 0 then since a1b0 6= 0 we take

β =

√∣∣∣b0
c1

∣∣∣ and δ =
c1β

a1
.

Then Y ′ = µ+XY with µ ∈ {−1, 1}, and we obtain the normal form (II.1)
of the theorem.

If b2 6= 0, since b0 6= 0, we take

β =

√∣∣∣b0
c1

∣∣∣ and δ =

√∣∣∣b0
b2

∣∣∣.
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Then Y ′ = µ + νX2 + aXY with µ, ν ∈ {−1, 1} and a ∈ R. We obtain the
normal forms (II.2)–(II.5) of Theorem 2.

Systems (II.1)–(II.5) have the invariant straight line F = x = 0, and so
they have at most one limit cycle (see, for instance, [9, 12]).

Now we study the finite singular points of systems (II.1)–(II.5).

Systems (II.1), (II.2) and (II.3) have no finite singular points.

System (II.4) has the finite singular points p0 = (1, 0) and p1 = (−1, 0).

Both of them are hyperbolic saddles because the eigenvalues are (a±
√
a2 + 8)/2

for p0 and (−a±
√
a2 + 8)/2 for p1, for all a ∈ R.

System (II.5) has the finite singular points p0 = (1, 0) and p1 = (−1, 0).

The eigenvalues at p0 are (a ±
√
a2 − 8)/2, and the eigenvalues at p1 are

(−a±
√
a2 − 8)/2. If a = 0 then p0 and p1 are centers (the system has the

analytic first integral H = x2e−(x2+y2)). If a 6= 0 and a2 ≥ 8 then p0 and p1
are hyperbolic nodes: p0 is stable if a < 0 and unstable if a > 0, while p1
is stable if a > 0 and unstable if a < 0. If a 6= 0 and a2 < 8, then p0 and
p1 are foci: p0 is stable if a < 0 and unstable if a > 0, while p1 is stable if
a > 0 and unstable if a < 0.

Finally we study the local phase portraits of the infinite singular points.

System (II.1). In the local chart U1 system (II.1) becomes

u̇ = u− u2 + µv2, v̇ = −uv.

On v = 0 we have the singular points w0 = (0, 0) and w1 = (1, 0). The
singular point w1 is a hyperbolic stable node because the eigenvalues of
the Jacobian matrix at w1 are −1 and −1. The singular point w0 is semi-
hyperbolic because the eigenvalues of the Jacobian matrix at w0 are 1 and
0. Using [15, Theorem 2.19] we get that it is a saddle if µ = −1, and an
unstable node if µ = 1.

On the local chart U2 system (I) becomes

u̇ = u(1− u− µv2), v̇ = −v(u+ µv2).

The origin, w2 is a singular point. The eigenvalues of the Jacobian matrix
at the origin are λ1 = 1 and λ2 = 0. So, it is semi-hyperbolic. Using [15,
Theorem 2.19] we get that it is a saddle if µ = 1, and an unstable node if
µ = −1.

System (II.2). In the local chart U1 we have

u̇ = 1 + au− u2 + v2, v̇ = −uv

There are two singular points w0 = (a +
√
4 + a2)/2, 0) and w1 = (a −√

4 + a2)/2, 0). The singular point w0 is a hyperbolic stable node because

the eigenvalues of the Jacobian matrix at w0 are −
√
4 + a2 and −(a +
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√
4 + a2)/2. The singular point w1 is a hyperbolic unstable node because the

eigenvalues of the Jacobian matrix at w1 are
√
4 + a2 and −(a−

√
4 + a2)/2.

On the local chart U2 we have

u̇ = u(1 − au− u2 − v2), v̇ = −v(au+ u2 + v2).

The origin of U2 is a singular point which is semi-hyperbolic because the
eigenvalues at the origin w2 are 1 and 0. Using [15, Theorem 2.19] we get
that it is a saddle.

System (II.3). In the local chart U1 we have

u̇ = −1 + au− u2 − v2, v̇ = −uv.

There are two singular points w0 = (a +
√
a2 − 4)/2, 0) and w1 = (a −√

a2 − 4)/2, 0) if and only if |a| > 2. If |a| = 2 then there is a unique
singular point w = w0 = w1 = (a/2, 0). When |a| > 2, the singular point
w0 is a hyperbolic saddle if a < 0 and a hyperbolic stable node if a > 0
because the eigenvalues of the Jacobian matrix at w0 are −

√
a2 − 4 and

−(a+
√
a2 − 4)/2. The singular point w1 is a hyperbolic saddle if a > 0 and

a hyperbolic unstable node if a < 0 because the eigenvalues of the Jacobian
matrix at w1 are

√
a2 − 4 and −(a−

√
a2 − 4)/2. When |a| = 2, the singular

point w is semi-hyperbolic. Using [15, Theorem 2.19] we get that it is a
saddle-node.

On the local chart U2 we have

u̇ = u(1 − au+ u2 + v2), v̇ = −v(au− u2 − v2).

The origin of U2 is a singular point which is semi-hyperbolic because the
eigenvalues at the origin w2 are 1 and 0. Using [15, Theorem 2.19] we get
that it is an unstable node.

System (II.4). In the local chart U1 we have

u̇ = 1 + au− u2 − v2, v̇ = −uv.

There are two singular points w0 = (a +
√
a2 + 4)/2, 0) and w1 = (a −√

a2 + 4)/2, 0). The singular point w0 is a hyperbolic stable node because

the eigenvalues of the Jacobian matrix at w0 are −
√
4 + a2 and −(a +√

4 + a2)/2. The singular point w1 is a hyperbolic unstable node because the

eigenvalues of the Jacobian matrix at w1 are
√
4 + a2 and −(a−

√
4 + a2)/2.

On the local chart U2 we have

u̇ = u(1 − au− u2 + v2), v̇ = −v(au+ u2 − v2).

The origin of U2 is a singular point which is semi-hyperbolic because the
eigenvalues at the origin w2 are 1 and 0. Using [15, Theorem 2.19] we get
that it is an unstable node.
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System (II.5). In the local chart U1 we have

u̇ = −1 + au− u2 + v2, v̇ = −uv.

There are two singular points w0 = (a +
√
a2 − 4)/2, 0) and w1 = (a −√

a2 − 4)/2, 0) if and only if |a| > 2. If |a| = 2 then there is a unique
singular point w = w0 = w1 = (a/2, 0). When |a| > 2, the singular point
w0 is a hyperbolic saddle if a < 0 and a hyperbolic stable node if a > 0
because the eigenvalues of the Jacobian matrix at w0 are −

√
a2 − 4 and

−(a+
√
a2 − 4)/2. The singular point w1 is a hyperbolic saddle if a > 0 and

a hyperbolic unstable node if a < 0 because the eigenvalues of the Jacobian
matrix at w1 are

√
a2 − 4 and −(a−

√
a2 − 4)/2. When |a| = 2, the singular

point w is semi-hyperbolic. Using [15, Theorem 2.19] we get that it is a
saddle-node.

On the local chart U2 we have

u̇ = u(1 − au+ u2 − v2), v̇ = −v(au− u2 + v2).

The origin of U2 is a singular point which is semi-hyperbolic because the
eigenvalues at the origin w2 are 1 and 0. Using [15, Theorem 2.19] we get
that it is a saddle.

In Table 1 we include all the information and phase portraits for the
different systems (II.1)–(II.5) depending on their parameters. In this table
we have the following notation: F.S.P. states for finite singular points, I.S.P.
states for infinite singular points, P.P. states for phase portrait, C.R. states
for canonical regions, Σ states for sepatrices, S states for saddle, UN states
for unstable node, SN states for stable node, UF states for unstable focus,
SF states for stable focus, C states for center and S-N states for saddle-node.

Using the information on the local phase portraits described in Table 1 for
the finite and infinite singular points, the existence of the invariant straight
line x = 0 (and consequently the system has at most one limit cycle), and
the fact that whenever the local phase portrait has two foci it does not
have limit cycles due to the symmetry with respect to the y-axis, each local
phase portrait give rise to a unique global phase portrait in the Poincaré disc
and we obtain nine topologically different global phase portraits as given in
Table 1 and provided in Figure 1. Moreover for each global phase portrait
using the results of the Appendix in Table 1 we describe the number of their
canonical regions and separatrices.

Appendix

Poincaré compactification. Let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
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Table 1. Study of systems (II)

Family Conditions F.S.P. I.S.P. P.P. C.R. Σ
(II.1) µ = −1 ∅ w0 =S, w1 =SN, w2 =UN (1) 3 14
(II.1) µ = 1 ∅ w0 =UN, w1 =SN, w2 =S (2) 2 13
(II.2) a ∈ R ∅ w0 =SN, w1 =UN, w2 =S (2) 2 13
(II.3) a > 2 ∅ w0 =SN, w1 =S, w2 =UN (1) 3 14
(II.3) a = ±2 ∅ w =S-N, w2 =UN (3) 3 10
(II.3) a ∈ (−2, 2) ∅ w2 =UN (4) 1 4
(II.3) a < −2 ∅ w0 =S, w1 =UN, w2 =UN (1) 3 14
(II.4) a ∈ R p0 =S, p1 =S w0 =SN, w1 =UN, w2 =UN (5) 7 22

(II.5) a ≥ 2
√
2 p0 =UN, p1 =SN w0 =SN, w1 =S, w2 =S (6) 2 17

(II.5) a ∈ (2, 2
√
2) p0 =UF, p1 =SF w0 =SN, w1-S, w2 =S (6) 2 17

(II.5) a = 2 p0 =UF, p1 =SF w =S-N, w2 =S (7) 2 13
(II.5) a ∈ (0, 2) p0 =UF, p1 =SF w2 =S (8) 2 7
(II.5) a = 0 p0 =C, p1 =C w2 =S (9) 2 7
(II.5) a ∈ (−2, 0) p0 =SF, p1 =UF w2 =S (8) 2 7
(II.5) a = −2 p0 =SF, p1 =UF w =S-N, w2 =S (7) 2 13

(II.5) a ∈ (−2
√
2,−2) p0 =SF, p1 =UF w0 =S, w1 =UN, w2 =S (6) 2 17

(II.5) a ≤ −2
√
2 p0 =SN, p1 =UN w0 =S, w1 =UN, w2 =S (6) 2 17

be the quadratic polynomial vector field associated to the polynomial differ-
ential system (1). The Poincaré compactified vector field p(X ) associated to
X is an analytic vector field on S2 constructed as follows (see, for instance
[19], or Chapter 5 of [15]).

The Poincaré sphere is defined as S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 +
y23 = 1} and TyS2 is the tangent plane to S2 at the point y. The plane R2

where we have our polynomial vector field X is identified with the tangent
plane T(0,0,1)S2. Now we consider the central projection f : T(0,0,1)S2 → S2.
It defines two copies of X , one in the northern hemisphere and the other in
the southern hemisphere. Denote by X ′ the vector field Df ◦ X defined on
S2 except on S1 = {y ∈ S2 : y3 = 0}. The equator S1 is identified to the
infinity of R2. For extending X ′ to a vector field on S2 (including S1) it is
necessary that X satisfies suitable conditions. In our case p(X ) is the only
analytic extension of y3X ′ to S2. On S2\S1 there are two symmetric copies
of X , and knowing the behaviour of p(X ) around S1, we know the behaviour
of X at infinity.

The Poincaré disc is just the projection of the closed northern hemisphere
of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2). It is denoted by D2. We note
that the Poincaré compactification has the property that S1 is invariant
under the flow of p(X ).

As we already stated in the introduction, we say that two polynomial
vector fields X and Y on R2 are topologically equivalent if there exists a
homeomorphism on S2 preserving the infinity S1 carrying orbits of the flow
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induced by p(X ) into orbits of the flow induced by p(Y), preserving or re-
versing simultaneously the direction of all orbits.

As S2 is a differentiable manifold, in order to compute p(X ), we can
consider the six local charts Ui = {y ∈ S2 : yi > 0}, Vi = {y ∈ S2 :
yi < 0} for i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R2, Gi : Vi →
R2 for i = 1, 2, 3 (here Gi are the inverses of the central projections from
the planes tangent at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1)
and (0, 0,−1) respectively). If we denote by (u, v) the value of Fi(y) or Gi(y)
for any i = 1, 2, 3 (here (u, v) represents different things according to the
local charts under consideration), then some easy computations give for p(X )
the following expressions:

v2∆(u, v)

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)
,−vP

(
1

v
,
u

v

))
in U1,(11)

v2∆(u, v)

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)
,−vQ

(
u

v
,
1

v

))
in U2,(12)

∆(u, v) (P (u, v), Q(u, v)) in U3,

where ∆(u, v) = (u2 + v2 + 1)−
1
2 . The expression for Vi is the same as that

for Ui except for a multiplicative factor −1. In these coordinates for i = 1, 2,
v = 0 always denotes the points of S1. In what follows we omit the factor
∆(u, v) by rescaling the vector field p(X ). Thus we obtain a polynomial
vector field in each local chart.

Separatrices and canonical regions. We continue to denote by p(X )
the Poincaré compactification in the Poincaré disc D of the polynomial dif-
ferential system (1), and by Φ its analytic flow. We follow the notation in
Markus [34] and Neumann [35] and we let (U,Φ) be the flow of a differential
system on an invariant set U ⊂ D under the flow Φ. As before, two flows
(U,Φ) and (V,Ψ) are topologically equivalent if and only if there exists a
homeomorphism h : U → V which sends orbits of the flow Φ into orbits of
the flow Ψ either preserving or reversing the orientation of all the orbits.

The flow (U,Φ) is parallel if it is topologically equivalent to one of the
following flows:

(i) The flow defined in R2 by the differential system ẋ = 1, ẏ = 0, called
strip flow.

(ii) The flow defined in R2 \ {(0, 0)} by the differential system in polar

coordinates ṙ = 0, θ̇ = 1, called annular flow.
(iii) The flow defined in R2 \ {(0, 0)} by the differential system in polar

coordinates ṙ = r, θ̇ = 0, called spiral or radial flow.

It is well-known that the separatrices of the vector field p(X ) in the
Poincaré disc D are:
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(I) all orbits of p(X ) which are in the boundary S1 of the Poincaré disc,
(II) all finite singular points of p(X ),
(III) all limit cycles of p(X ), and
(IV) all separatrices of the hyperbolic sectors of the finite and infinite

singular points of p(X ).

Moreover such vector fields p(X ) have finitely many separatrices. See for
instance [25] for further details.

We denote by S the union of the separatrices of the flow (D,Φ) defined
by p(X ) in the Poincaré disc D. It is clear that S is an invariant closed set.
If N is a connected component of D \ S, then N is also an invariant set
under the flow Φ of p(X ), and we call the flow (N,Φ|N ) a canonical region
of (D,Φ). For a proof of the following proposition see either [35] or [25].

Proposition 3. If the number of separatrices of the flow (D,Φ) is finite,
then every canonical region of the flow (D,Φ) is parallel.

The separatrix configuration Sc of a flow (D,Φ) is the union of all the
separatrices S of the flow jointly with an orbit belonging to each canonical
region. The separatrix configuration Sc of the flow (D,Φ) is topologically
equivalent to the separatrix configuration S∗

c of the flow (D,Φ∗) if there exists
an orientation preserving homeomorphism from D to D which transforms
orbits of Sc into orbits of S∗

c , and orbits of S into orbits of S∗.

Theorem 4 (Markus–Neumann–Peixoto Theorem). Let (D,Φ) and (D,Φ∗)
be two compactified Poincaré flows with finitely many separatrices coming
from two polynomial vector fields (1). Then they are topologically equivalent
if and only if their separatrix configurations are topologically equivalent.

For a proof of this result we refer the reader to [34, 35, 39].

It follows from the previous theorem that in order to classify the phase
portraits in the Poincaré disc of a planar polynomial differential system
having finitely many separatrices finite and infinite, it is enough to describe
their separatrix configuration.
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Técnica de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt


