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Abstract

A social choice function (SCF) is robustly implementable in rationalizable strate-

gies if every rationalizable strategy profile on every type space results in outcomes

consistent with it. First, we establish an equivalence between robust implementation

in rationalizable strategies and “weak rationalizable implementation”. Second, using

the equivalence result, we identify weak robust monotonicity as a necessary and al-

most sufficient condition for robust implementation in rationalizable strategies. This

exhibits a contrast with robust implementation in interim equilibria, i.e., every equilib-

rium on every type space achieves outcomes consistent with the SCF. Bergemann and

Morris (2011) show that strict robust monotonicity is a necessary and almost sufficient

condition for robust implementation in interim equilibria. We argue that strict robust

monotonicity is strictly stronger than weak robust monotonicity, which further implies

that, within general mechanisms, robust implementation in rationalizable strategies is

more permissive than robust implementation in interim equilibria. The gap between

robust implementation in rationalizable strategies and that in interim equilibria stems

from the strictly stronger nonemptiness requirement inherent in the latter concept.
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1 Introduction

We consider robust (full) implementation of a social choice function (SCF) in (interim cor-

related) rationalizable strategies. That is, we want the designer to construct a mechanism

such that every rationalizable strategy profile results in outcomes that are consistent with

the SCF regardless of the players’ beliefs and higher-order beliefs about each other’s types.

We thus take a global approach to robustness, following the seminal work of Bergemann

and Morris (2005, 2009, 2011). We however depart from the work of Bergemann and Morris

in terms of the solution concept: They assume interim equilibrium whereas we assume ra-

tionalizability as the solution concept. On a given type space, rationalizability is a weaker

solution concept than interim equilibrium, and it characterizes outcomes that are consistent

with common knowledge of rationality (Dekel et al., 2007)

We first characterize robust implementation in rationalizable strategies as equivalent to

weak rationalizable implementation. In the appendix of their working paper, Bergemann and

Morris (2010) define weak rationalizable implementation by imposing conditions directly on

messages that are “rationalizable” for payoff types. These messages survive the following

iterative deletion process: At each stage, for each payoff type of each player, delete every

message that is never a best response to any belief over the other players’ payoff types and

their messages that have survived until the previous stage. Weak rationalizable implemen-

tation imposes two conditions: Firstly, if a message profile is rationalizable for a payoff-type

profile, then it should be consistent with the SCF at that payoff-type profile. Secondly,

each first-order type (i.e., a pair of payoff type and first-order belief) of each player has a

nonempty best response to some belief over the rationalizable messages of the payoff types

of the other players.

The equivalence between robust implementation in rationalizable strategies and weak

rationalizable implementation proves useful on two counts: First, we use it to identify weak

robust monotonicity (weak RM) as a necessary and almost sufficient condition for robustly

implementing an SCF in rationalizable strategies. Second, as the name suggests, weak ratio-

nalizable implementation is weaker than “rationalizable implementation”. Bergemann and

Morris (2011) show that robust implementation in interim equilibria implies rationalizable

implementation – the converse is true under a particular restriction on the mechanisms. It

then follows from our equivalence result that if an SCF is robustly implementable in interim

equilibria, then it is robustly implementable in rationalizable strategies.

Bergemann and Morris (2011) show that strict robust monotonicity (strict RM) is nec-

essary and almost sufficient for robust implementation in interim equilibria – as well as

rationalizable implementation. Strict RM implies weak RM. The converse is true for “re-

2



sponsive” SCFs but not more generally. In Example 6.2, we present an SCF that satisfies

weak RM but not strict RM. Thus, there exist SCFs that are robustly implementable in

rationalizable strategies but not in interim equilibria. Figure 1 summarizes the relationships

between different implementation and monotonicity concepts.

We can understand the gap between robust implementation in rationalizable strategies

and that in interim equilibria by comparing the strength and weakness of the two desiderata

in the respective definitions. For a given solution concept (interim equilibrium or rational-

izability), robust implementation requires: (i) Nonemptiness : The solution concept must

be nonempty on every type space and (ii) Uniqueness : Every outcome associated with the

solution concept on every type space must be consistent with the SCF. It turns out that the

uniqueness requirement for robust implementation is the same regardless of whether we use

rationalizability or interim equilibrium as the solution concept. This is because (a) every

interim equilibrium action is rationalizable on a given type space and (b) every rationaliz-

able action on a given type space can be obtained in interim equilibrium on another type

space. The latter result is known in the literature on epistemic foundations (see, for instance,

Remark 2 in Dekel et al., 2007). It therefore follows that the gap between robust implemen-

tation in rationalizable strategies and that in interim equilibria is due to the strictly stronger

nonemptiness requirement imposed by the latter solution concept. That is, it is possible that

rationalizable strategies exist and the SCF is implementable in rationalizable strategies on all

type spaces but there exists a type space on which the mechanism has no interim equilibria.

If we restrict the designer to use finite mechanisms, then interim equilibria will exist on

all type spaces. Hence, robust implementation in interim equilibria and that in rationalizable

strategies are equivalent under this restriction. The designer will thus be compelled to use

countably infinite mechanisms if her aim is to robustly implement an SCF in rationalizable

strategies which cannot be robustly implemented in interim equilibria. The implementation

literature relies on countably infinite mechanisms to obtain tight necessary and sufficient

conditions. In that spirit, we too construct a countably infinite mechanism to prove that

weak RM is almost sufficient for robust implementation in rationalizable strategies. However,

such constructions have been criticized for being impractical (see, for e.g., Jackson, 1992).

In the context of complete information environments, Bergemann et al. (2011) show

that the necessary condition for implementation in rationalizable strategies is stronger than

Maskin monotonicity, which is necessary and almost sufficient for Nash implementation

(Maskin, 1999). In their Section 5, they also give an example of a Nash implementable SCF

that is not implementable in rationalizable strategies. Recently, Xiong (2018) has provided

a complete characterization of SCFs that are implementable in rationalizable strategies.

The implementing mechanism in Xiong (2018) also Nash implements the SCF. Thus, in
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Robust Implementation
in Interim Equilibria

By Def. & Cor. 6.1
===============⇒

Prop. 6.6
⇐================
(Finite Mechanisms)

Robust Implementation
in Rationalizable Strategies

~

w

�
BM’s Th. 3

~

w

�
Th. 3.1

Rationalizable
Implementation

By Def.
======⇒

Weak Rationalizable
Implementation

~

w

� BM’s Th. 1 & 2
~

w

� Th. 4.3 & 5.5

Strict Robust Monotonicity

By Def.
======⇒

Lm. 4.6
⇐===============
(Responsive SCFs)

Weak Robust Monotonicity

Figure 1: Summary of relationships between different implementation and monotonicity concepts.
BM stands for Bergemann and Morris (2011); Cor. stands for Corollary; Def. stands for Definition;
Lm. stands for Lemma; and Th. stands for Theorem.

complete information environments, the designer can implement a strictly larger set of SCFs

in equilibrium than in rationalizable strategies.1 In an interesting contrast, we show that

the designer can robustly implement a strictly larger set of SCFs in rationalizable strategies

than in equilibrium.

The rest of the paper is organized as follows. We present the preliminary definitions in

Section 2. In Section 3, we show the equivalence between robust implementation in rational-

izable strategies and weak rationalizable implementation. In Sections 4 and 5, respectively,

we show that weak RM is necessary and almost sufficient for robust implementation in ra-

tionalizable strategies. We compare robust implementation in rationalizable strategies and

that in interim equilibria in Section 6 before concluding in Section 7.

1This is true only for SCFs. For multi-valued social choice correspondences, implementation in rational-
izable strategies is strictly weaker than Nash implementation, as shown in Kunimoto and Serrano (2019).
Also see Jain (2018).
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2 Preliminaries

There is a finite set of players I = {1, . . . , n}. A player’s payoff type is θi ∈ Θi, where we

assume that Θi is finite. A payoff state is θ ∈ Θ = ×i∈NΘi. Denote Θ−i ≡ Θ1×· · ·×Θi−1×

Θi+1×· · ·×Θn.
2 There is a countable set of alternatives A with at least two elements. We let

∆(A) to be the set of lotteries over A.3 We denote an arbitrary lottery by ℓ, and let a be the

lottery that puts probability 1 on alternative a. For any lottery ℓ, let ℓ[a] be the probability

assigned by ℓ to a ∈ A. Let Z be any countable set of indices. For any countable set of

lotteries {ℓz}z∈Z and corresponding weights {αz}z∈Z such that αz ≥ 0, ∀z, and
∑

z∈Z αz = 1,

we let
∑

z∈Z αzℓz be the lottery that is obtained as a reduced form of the compound lottery

in which for all z ∈ Z, lottery ℓz is selected with probability αz.

We endow A with the discrete topology. Thus, A is separable and completely metrizable

by the discrete metric, and hence it is a Polish space. As a result, ∆(A) is also Polish under

the weak∗ topology (Aliprantis and Border, 2006, Theorem 15.15). Therefore, ∆(A) contains

a countable dense subset, which we denote by ∆∗(A).

Preferences of player i over the set of lotteries are represented by the von Neumann-

Morgenstern expected utility function ui : ∆(A)×Θ → ℜ. Thus, for any payoff state θ and

lottery ℓ, ui(ℓ, θ) =
∑

a∈A ℓ[a]ui(a, θ). We assume that utilities are bounded to ensure that

expected utility is well defined over the space of lotteries with countable support, i.e., for all

i ∈ I and θ ∈ Θ, there exists ζ > 0 such that |ui(ℓ, θ)| ≤ ζ for all ℓ ∈ ∆(A).4

2.1 Type Space

A type space is a collection T = (Ti, θ̂i, π̂i)i∈I such that for each i ∈ I, Ti is countable,

θ̂i : Ti → Θi and π̂i : Ti → ∆(T−i). A player’s type ti ∈ Ti defines her payoff type θ̂i(ti) ∈ Θi

and her belief type π̂i(ti) ∈ ∆(T−i). For any t−i ∈ T−i, we let π̂i(ti)[t−i] denote the probability

that player i of type ti assigns to other players having types t−i. We assume that θ̂i : Ti → Θi

is surjective for all i ∈ I, i.e., no payoff type is redundant.

For each i ∈ I, let H0
i = Θi be the space of zeroth-order types of player i. Letting

Z1
i = ∆(H0

−i), we can define H1
i = Θi × Z1

i to be the space of first-order types of player i.

Thus, the first-order type h1i = (θi, z
1
i ) specifies player i’s payoff type θi and her belief z1i

regarding the payoff types of all other individuals. Iterating this way, we define Hk
i = Θi×Z

k
i

to be the space of kth-order types of player i, where Zk
i = ∆(Hk−1

−i ). Finally, we define

H∞
i = ×∞

k=0H
k
i as the set of i’s all infinite hierarchy of beliefs (h0i , h

1
i , h

2
i , . . .).

2Similar notation will be used for products of other sets.
3For any set X , we will use ∆(X) to denote the set of probability measures over X .
4See Blackwell and Girshick (1954) for an axiomatization of expected utility over all discrete probability

measures on a set, which results in bounded utilities.
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There is an infinite hierarchy of beliefs (h0i (ti), h
1
i (ti), h

2
i (ti), . . .) ∈ H∞

i corresponding to

each type ti ∈ Ti: viz., h0i (ti) = θ̂i(ti); h
1
i (ti) = (θ̂i(ti), z

1
i (ti)), where z

1
i (ti) is such that

z1i (ti)[θ−i] =
∑

t−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i] for all θ−i ∈ Θ−i; in general, hki (ti) = (θ̂i(ti), z

k
i (ti)),

where zki (ti) is such that zki (ti)[h
k−1
−i ] =

∑

t−i:h
k−1

−i (t−i)=h
k−1

−i
π̂i(ti)[t−i] for all h

k−1
−i ∈ Hk−1

−i .

2.2 Social Choice Function and Mechanism

The planner’s objective is specified by a social choice function (henceforth, SCF) as a function

f : Θ → ∆(A).

We say that the SCF f is responsive to θi and θ
′

i, denoted by θ
′

i 6∼
f
i θi, if f(θi, θ−i) 6=

f(θ
′

i, θ−i) for some θ−i ∈ Θ−i. Otherwise, f is non-responsive to θi and θ
′

i, denoted by

θ
′

i ∼
f
i θi.

The SCF f is responsive if for all i ∈ I and θi, θ
′

i ∈ Θi: θi 6= θ
′

i ⇒ θi 6∼
f
i θ

′

i. Otherwise, f

is non-responsive.

A mechanism Γ = ((Mi)i∈I , g), where Mi is a countable nonempty set of messages for

player i, M = ×i∈IMi, and g : M → ∆(A) is the outcome function. The mechanism

Γ = ((Mi)i∈I , g) is finite if Mi is finite for all i ∈ I.

2.3 Rationalizable Strategies

Fix a type space T and mechanism Γ = ((Mi)i∈I , g). A message correspondence profile

S = (S1, . . . , Sn), where each

Si : Ti → 2Mi\∅.

Let S be the collection of all such message correspondence profiles. The collection S is a

complete lattice with the natural ordering of set inclusion: S ≤ S
′

if Si(ti) ⊆ S
′

i(ti) for all

i ∈ I and ti ∈ Ti. The largest element is S̄ = (S̄1, . . . , S̄n), where S̄i(ti) = Mi for each i ∈ I

and ti ∈ Ti. The smallest element is S = (S1, . . . , Sn), where Si(ti) = ∅ for each i ∈ I and

ti ∈ Ti.

We define the best response operator b : S → S as follows:

bi(S)[ti] ≡



























mi ∈Mi :

∃λi ∈ ∆(T−i ×M−i) such that

(i) mi ∈ arg max
m

′

i
∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui(g(m
′

i, m−i), θ̂(ti, t−i))

(ii) margT−i
λi = π̂i(ti)

(iii) λi(t−i, m−i) > 0 ⇒ m−i ∈ S−i(t−i)



























,

where S−i(t−i) = ×j 6=iSj(tj) for each t−i ∈ T−i.
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Starting with the largest element S̄ of S, we iteratively eliminate never best responses

using the operator b. That is, starting with the message correspondence B0 = (B0
1 , . . . , B

0
n)

such that B0 = S̄, for each k ≥ 1, iteratively define the message correspondence Bk =

(Bk
1 , . . . , B

k
n) such that for each player i ∈ I and type ti ∈ Ti,

Bk
i (ti) = bi(B

k−1)[ti].

Observe that b is increasing by definition: i.e., S ≤ S
′

⇒ b(S) ≤ b(S
′

). It therefore

follows that Bk ≤ Bk−1 for all k ≥ 1.

As the best response operator b is increasing and S is a complete lattice, by Tarski’s fixed

point theorem, there is a largest fixed point of b, which we label B∞. Thus, (i) b(B∞) = B∞

and (ii) b(S) ≥ S ⇒ S ≤ B∞.

B∞ is the (interim correlated) rationalizable message correspondence profile (Dekel et al.,

2007). For each type of each player, it characterizes the messages that are consistent with

common certainty of rationality. In general, B∞ ≤ Bk for all k, i.e., B∞
i (ti) ⊆

⋂∞

k=1B
k
i (ti)

for all ti ∈ Ti and i ∈ I. If message sets are finite, B∞
i (ti) =

⋂∞
k=1B

k
i (ti). In this case, we

can also construct the fixed point B∞ by starting with S̄ – the largest element of the lattice

– and iteratively applying the operator b. But when the mechanism is countably infinite,

transfinite induction may be necessary to reach the fixed point. Thus, in this case, B∞
i (ti)

are the set of messages surviving (transfinite) iterated deletion of never best responses of

type ti of player i. We refer the reader to Lipman (1994) for the formal treatment.

2.4 S∞ Correspondences

As we will see, insisting on implementation that is robust to the underlying type space will

force the solution concept to depend only on the payoff types of the individuals. Hence, we

need to define strategies that are “rationalizable” for payoff types.

Fix a mechanism Γ = ((Mi)i∈I , g). A message correspondence profile with payoff-type

domain S = (S1, . . . ,Sn), where each

Si : Θi → 2Mi\∅

Let SΘ be the collection of such message correspondence profiles with payoff-type domain.

The collection S
Θ is a complete lattice with the natural ordering of set inclusion: S ≤ S

′

if Si(θi) ⊆ S
′

i(θi) for all i ∈ I and θi ∈ Θi. The largest element is S̄ = (S̄1, . . . , S̄n), where

S̄i(θi) = Mi for each i ∈ I and θi ∈ Θi. The smallest element is S = (S1, . . . ,Sn), where

Si(θi) = ∅ for each i ∈ I and θi ∈ Θi.
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We define the best response operator for payoff types bΘ : SΘ → S
Θ as follows:

bΘi (S)[θi] ≡



















mi ∈Mi :

∃ψi ∈ (Θ−i ×M−i) such that

(i) mi ∈ argmax
m

′

i

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′

i, m−i), (θi, θ−i))

(ii) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S−i(θ−i)



















,

where S−i(θ−i) = ×j 6=iSj(θj) for each θ−i ∈ Θ−i.

As the operator bΘ is increasing and SΘ is a complete lattice, by Tarski’s fixed point

theorem, there is a largest fixed point of bΘ, which is S∞. Thus, (i) bΘ(S∞) = S∞ and (ii)

bΘ(S) ≥ S ⇒ S ≤ S∞.

2.5 Notions of Implementation

In this section, we discuss various notions of implementation. The first one is robust imple-

mentation in rationalizable strategies, which is the focus of this paper.

2.5.1 Robust Implementation in Rationalizable Strategies

To define robust implementation in rationalizable strategies, we start by defining what we

mean by implementation on a specific type space in rationalizable strategies.

Definition 2.1. A mechanism Γ = ((Mi)i∈I , g) implements the SCF f on the type space T

in rationalizable strategies if, for all t ∈ T , we have

(nonemptiness) B∞(t) 6= ∅ and (uniqueness) g(m) = f(θ̂(t)), ∀m ∈ B∞(t).

We now define robust implementation in rationalizable strategies as implementation over

“all type spaces” in rationalizable strategies.

Definition 2.2. A mechanism Γ robustly implements the SCF f in rationalizable strategies

if, for all type spaces T , the mechanism implements f on T in rationalizable strategies. The

SCF f is robustly implementable in rationalizable strategies if there exists a mechanism that

robustly implements f in rationalizable strategies.

2.5.2 Robust Implementation in Interim Equilibria

Bergemann and Morris (2011) analyze two notions of implementation: robust implementa-

tion in interim equilibria and rationalizable implementation.
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To define the former, consider a type space T and a mechanism Γ = ((Mi)i∈I , g). The

resulting incomplete information game is denoted by (T ,Γ). A strategy for individual i in

this game is a mapping σi : Ti → ∆(Mi). A strategy profile σ = (σ1, . . . , σn) is an interim

equilibrium of the game (T ,Γ) if, for all i ∈ I, ti ∈ Ti, and mi ∈ Mi with σi(ti)[mi] > 0, we

have

∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(mi, m−i), θ̂(ti, t−i)
)

≥
∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

, ∀m
′

i ∈Mi.

We then have the following notion of interim implementation:

Definition 2.3. A mechanism Γ = ((Mi)i∈I , g) interim implements the SCF f on the type

space T if (nonemptiness) the game (T ,Γ) has an interim equilibrium and (uniqueness) for

every interim equilibrium σ of the game (T ,Γ), if σ(t)[m] > 0, then g(m) = f(θ̂(t)).

Robust implementation in interim equilibria is defined as interim implementation “over

all type spaces”.

Definition 2.4. A mechanism Γ robustly implements the SCF f in interim equilibria if, for

all type spaces T , the mechanism Γ interim implements f on T . The SCF f is robustly

implementable in interim equilibria if there exists a mechanism that robustly implements f

in interim equilibria.

2.5.3 Rationalizable Implementation

Bergemann and Morris (2011) define rationalizable implementation by directly imposing two

conditions on the S∞ correspondence, as defined below.

Definition 2.5. A mechanism Γ = ((Mi)i∈I , g) rationalizably implements the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptyness) For each i ∈ I and z1i ∈ Z1
i , there exists a belief ψi ∈ ∆(Θ−i ×M−i)

such that:

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅ for all θi ∈ Θi.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .
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The SCF f is rationalizably implementable if there exists a mechanism that rationalizably

implements f .

Bergemann and Morris (2011, Theorem 3) prove that if a mechanism robustly implements

an SCF in interim equilibria, then the same mechanism also rationalizably implements the

SCF. They also prove that the converse is true whenever the mechanism that rationalizably

implements the SCF is such that the message correspondence S∞ satisfies the ex post best

response property. The property requires that for all i ∈ I and θi ∈ Θi, there exist a message

m∗
i ∈ S∞

i (θi) such that

m∗
i ∈ arg max

mi∈Mi

ui
(

g(mi, m−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and m−i ∈ S∞
−i(θ−i).

2.5.4 Weak Rationalizable Implementation

The nonemptiness requirement in rationalizable implementation (the second condition in

Definition 2.5) is strong: It requires that for any individual i and for any belief z1i that

i might have over the payoff types of others, there exists a belief ψi over S∞
−i(θ−i) such

that individual i has a best response to this belief regardless of her payoff type. In the

appendix of their working paper, Bergemann and Morris (2010) define weak rationalizable

implementation which weakens the nonemptiness requirement by allowing the belief ψi to

depend on the payoff type of individual i.

Definition 2.6. A mechanism Γ = ((Mi)i∈I , g) weakly rationalizably implements the SCF f

if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptyness) For each i ∈ I, θi ∈ Θi and z1i ∈ Z1
i , there exists a belief ψi ∈

∆(Θ−i ×M−i) such that:

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .

The SCF f is weakly rationalizably implementable if there exists a mechanism that weakly

rationalizably implements f .
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3 Equivalence between Robust Implementation in Ra-

tionalizable Strategies and Weak Rationalizable Im-

plementation

We now show that robust implementation in rationalizable strategies is equivalent to weak

rationalizable implementation because the former imposes the same conditions on S∞ as the

latter.

Theorem 3.1. The SCF f is robustly implementable in rationalizable strategies by the mech-

anism Γ if and only if f is weakly rationalizably implementable by Γ.

Proof. We first prove the following lemma:

Lemma 3.2. Consider any mechanism Γ. The message profile m ∈ S∞(θ) if and only if

there exists a type space T such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t).

Proof. (⇒) Bergemann and Morris (2011, Proposition 1) show that ifm ∈ S∞(θ), then there

exist a type space T , a pure-strategy interim equilibrium σ, and a type profile t such that

σ(t) = m and θ̂(t) = θ. Therefore, m ∈ B∞(t).

(⇐) Consider any type space T . Define the message correspondence profile with payoff-

type domain Ŝ = (Ŝ1, . . . , Ŝn) such that for all i ∈ I,

Ŝi(θ
′

i) =
⋃

ti:θ̂i(ti)=θ
′

i

B∞
i (ti), ∀θ

′

i ∈ Θi.

If m
′

i ∈ Ŝi(θ
′

i), then there exists t
′

i ∈ Ti such that θ̂i(t
′

i) = θ
′

i and m
′

i ∈ B∞
i (t

′

i). Thus, there

exists a belief λi ∈ ∆(T−i ×M−i) such that

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui(g(m
′′

i , m−i), θ̂(t
′

i, t−i)),

margT−i
λi = π̂i(t

′

i) and λi(t−i, m−i) > 0 ⇒ m−i ∈ B∞
−i(t−i).

Define ψi ∈ ∆(Θ−i ×M−i) as follows:

ψi(θ−i, m−i) =
∑

t−i:θ̂−i(t−i)=θ−i

λi(t−i, m−i), ∀θ−i, m−i.

Then ψi(θ−i, m−i) > 0 implies that m−i ∈
⋃

t−i:θ̂−i(t−i)=θ−i
B∞

−i(t−i) = Ŝ−i(θ−i). Moreover, by
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construction,

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′′

i , m−i), (θ
′

i, θ−i)).

Thus, m
′

i ∈ bΘi (Ŝ)[θ
′

i]. Hence, b
Θ(Ŝ) ≥ Ŝ. Therefore, Ŝ ≤ S∞.

Now suppose there exist m ∈ M and θ ∈ Θ such that m ∈
⋃

t:θ̂(t)=θ B
∞(t). Then

m ∈ Ŝ(θ), and hence m ∈ S∞(θ). This completes the proof of the lemma.

We prove the necessity part of Theorem 3.1 first.

Suppose the SCF f is robustly implementable in rationalizable strategies by the mecha-

nism Γ. Then the following is true for all type spaces T : For all t ∈ T , we have

B∞(t) 6= ∅ and g(m) = f(θ̂(t)), ∀m ∈ B∞(t).

Pick any θ ∈ Θ. If m ∈ S∞(θ), then it follows from Lemma 3.2 that there exists a type

space T
′

such that m ∈
⋃

t∈T
′ :θ̂(t)=θ B

∞(t). Hence, g(m) = f(θ).

Next, pick any i, θi and z
1
i . For each j 6= i, pick any z1j ∈ Z1

j . Define the type space T

such that (i) Tj = {t
θ̃j
j : θ̃j ∈ Θj} for all j ∈ I, and (ii) θ̂j(t

θ̃j
j ) = θ̃j and π̂j(t

θ̃j
j )[t

θ̃−j

−j ] = z1j (θ̃−j)

for all t
θ̃j
j ∈ Tj and t

θ̃−j

−j ∈ T−j.

By our hypothesis of robust implementation in rationalizable strategies, B∞
i (tθii ) 6= ∅.

Therefore, there exists λi ∈ ∆(T−i ×M−i) such that

1. argmax
m

′

i

∑

t
θ
−i

−i ,m−i
λi(t

θ−i

−i , m−i)ui
(

g(m
′

i, m−i), θ̂(t
θi
i , t

θ−i

−i )
)

6= ∅.

2. margT−i
λi = π̂i(t

θi
i )

3. λi(t
θ−i

−i , m−i) > 0 ⇒ m−i ∈ B∞
−i(t

θ−i

−i ).

Define ψi ∈ ∆(Θ−i ×M−i) as follows: for any θ−i ∈ Θ−i and m−i ∈M−i,

ψi(θ−i, m−i) = λi(t
θ−i

−i , m−i).

Then ψi(θ−i, m−i) > 0 implies that m−i ∈ B∞
−i(t

θ−i

−i ). It follows from Lemma 3.2 that

m−i ∈ S∞
−i(θ−i). Lastly, by construction, margΘ−i

ψi = z1i and

arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′

i, m−i), (θi, θ−i)).

We prove the sufficiency part of Theorem 3.1 next.
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Suppose that the SCF f is weakly rationalizably implementable by the mechanism Γ.

Consider any type space T . If m ∈ B∞(t), then it follows from Lemma 3.2 that m ∈

S∞(θ̂(t)). Hence, g(m) = f(θ̂(t)).

We now show that B∞(t) 6= ∅ for all t ∈ T . Define the message correspondence profile

Ŝ = (Ŝ1, . . . , Ŝn) such that, for all i ∈ I and ti ∈ Ti,

Ŝi(ti) = S∞
i (θ̂i(ti)).

Pick any type ti ∈ Ti. By our hypothesis of weak rationalizable implementability, there

exists a belief ψi ∈ ∆(Θ−i ×M−i) such that

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i (ti).

By the definition of S∞
i (θ̂i(ti)), we have

∅ 6= arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

⊆ S∞
i (θ̂i(ti)).

Since Ŝi(ti) = S∞
i (θ̂i(ti)), we also have Ŝi(ti) 6= ∅.

We now show that Ŝi(ti) ≤ bi(Ŝ)[ti]. Consider any message m̃i ∈ Ŝi(ti). By our hypothesis

of weak rationalizable implementability, we have that for any θ ∈ Θ, m
′

∈ S∞(θ) ⇒ g(m
′

) =

f(θ). Since m̃i ∈ S∞
i (θ̂i(ti)) and ψi(θ−i, m−i) > 0 implies m−i ∈ S∞

−i(θ−i), by weakly

rationalizable implementability, we have

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m̃i, m−i), (θ̂i(ti), θ−i)
)

=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

f(θ̂i(ti), θ−i), (θ̂i(ti), θ−i)
)

.

Thus, either every message in Ŝi(ti) is a best response to ψi or none of the messages in Ŝi(ti)

is a best response to ψi. But, as already argued,

Ŝi(ti) = S∞
i (θ̂i(ti)) ⊇ arg max

m
′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

Thus, every message in Ŝi(ti) is a best response to ψi.
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Now pick any mi ∈ Ŝi(ti). As argued above,

mi ∈ arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

.

Define the belief λi ∈ ∆(T−i ×M−i) such that for all (t−i, m−i) ∈ T−i ×M−i,

λi(t−i, m−i) =

{

π̂i(ti)[t−i]
(

ψi(θ̂−i(t−i),m−i)

z1i (ti)[θ̂−i(t−i)]

)

, if π̂i(ti)[t−i] > 0

0, otherwise.

Since
∑

m−i
ψi(θ̂−i(t−i), m−i) = z1i (ti)[θ̂−i(t−i)], we have margT−i

λi = π̂i(ti). Moreover,

λi(t−i, m−i) > 0 ⇒ ψi(θ̂−i(t−i), m−i) > 0 ⇒ m−i ∈ S∞
−i(θ̂−i(t−i)) = Ŝ−i(t−i).

Finally, for all m
′

i ∈Mi,

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

=
∑

θ−i,m−i





∑

t−i:θ̂−i(t−i)=θ−i

π̂i(ti)[t−i]
ψi(θ−i, m−i)

z1i (ti)(θ−i)
ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)





=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

,

where the last equality follows because
∑

t−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i] = z1i (ti)(θ−i). Hence, we

must have

mi ∈ arg max
m

′

i∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

.

We thus conclude that mi ∈ bi(Ŝ)[ti].

As b(Ŝ) ≥ Ŝ, we have Ŝ ≤ B∞. Pick any t ∈ T . Then B∞(t) 6= ∅ because, as already

shown, Ŝ(t) 6= ∅. This completes the proof of the theorem.

4 Necessary Condition

We now apply the equivalence result presented in the previous section to present the key

necessary condition for robust implementation in rationalizable strategies.

A deception is a profile of correspondences β = (β1, . . . , βn) such that βi : Θi → 2Θi \ ∅

and θi ∈ βi(θi) for all θi ∈ Θi and i ∈ I. A deception β is unacceptable if there exist θ ∈ Θ
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and θ
′

∈ β(θ) for which f(θ) 6= f(θ
′

); otherwise, β is acceptable.

For each i ∈ I and θi ∈ Θi, define

Yi[θi] ≡











y : Θ−i → ∆(A) :

∀θ−i ∈ Θ−i,

either y(θ−i) = f(θi, θ−i)

or ui
(

f(θi, θ−i), (θi, θ−i)
)

> ui
(

y(θ−i), (θi, θ−i)
)











.

Thus, Yi[θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is either equal to f(θi, θ−i) or strictly worse than f(θi, θ−i) for individual

i in state (θi, θ−i).

Definition 4.1. We say that an unacceptable deception β is weakly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∈ Θi and ψi ∈

∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Definition 4.2. The SCF f satisfies weak robust monotonicity (weak RM) if every unac-

ceptable deception β is weakly refutable.

Here is the main result of this section:

Theorem 4.3. If the SCF f is robustly implementable in rationalizable strategies, then f

satisfies weak RM.

Proof. Suppose the mechanism Γ = ((Mi)i∈I , g) robustly implements f in rationalizable

strategies. It follows from Theorem 3.1 that Γ weakly rationalizably implements f . We now

argue that f must satisfy weak RM.

Pick any i ∈ I and θ ∈ Θ. Consider the belief z1i ∈ ∆(Θ−i) that puts probability one on

θ−i. By weak rationalizable implementability, there exists a belief ψθi ∈ ∆(Θ−i ×M−i) such

that

(a) arg max
m̃i∈Mi

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

6= ∅.

(b) ψθi (θ̃−i, m̃−i) > 0 ⇒ m̃−i ∈ S∞
−i(θ̃−i).

(c) margΘ−i
ψθi = z1i .
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If θ̃−i 6= θ−i, then ψ
θ
i (θ̃−i, m̃−i) = 0 because margΘ−i

ψθi = z1i and z1i assigns probability

one on θ−i. Therefore, for all m̃i ∈Mi,

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

=
∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)ui

(

g(m̃i, m̃−i), θ
)

= ui





∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 . (1)

Define the set of lotteries

Li(θ) =







∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i) : m̃i ∈Mi







.

Pick any mi ∈ argmaxm̃i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃i, m̃−i), (θi, θ̃−i)
)

. Then mi ∈

S∞
i (θi) because ψ

θ
i (θ̃−i, m̃−i) > 0 implies m̃−i ∈ S∞

−i(θ̃−i). Therefore, by weak rationalizable

implementability,
∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i) = f(θ).

Moreover, for all m̃i ∈Mi, we have

ui





∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i), θ



 =
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

= ui





∑

m̃−i∈S
∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 ,

where the first and last equality follows from (1). Hence, ui
(

f(θ), θ
)

≥ ui
(

ℓ, θ
)

for all

ℓ ∈ Li(θ).

We next claim that for any ℓ ∈ Li(θ), ℓ 6= f(θ) implies ui
(

f(θ), θ
)

> ui
(

ℓ, θ
)

. Suppose not.

Then there is some ℓ ∈ Li(θ) such that ℓ 6= f(θ) but ui
(

ℓ, θ
)

≥ ui
(

f(θ), θ
)

. By construction

of Li(θ), there exists a message m̃i such that
∑

m̃−i∈S
∞

−i(θ−i)
margM−i

ψθi (m̃−i)g(m̃i, m̃−i) = ℓ.
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Then, as per the above arguments, ui(ℓ, θ) ≥ ui(f(θ), θ) is equivalent to

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

,

for some mi ∈ argmax
m̃

′

i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃
′

i, m̃−i), (θi, θ̃−i)
)

. Therefore, m̃i is

also a best response to the belief ψθi when i’s payoff type is θi. Hence, m̃i ∈ S∞
i (θi). But

g(m̃i, m̃−i) 6= f(θ) for at least one m̃−i ∈ S∞
−i(θ−i), which contradicts weak rationalizable

implementation of f .

We are now ready to prove the theorem. Consider any deception β. Define the message

correspondence profile with payoff-type domain S = (S1, . . . ,Sn) such that

Si(θi) =
⋃

θ
′

i∈βi(θi)

S∞
i (θ

′

i).

Suppose β is not weakly refutable. Then, by definition of weak refutablility, for all i ∈ I,

θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼
f
i θi, there exist θ̃i and ψi ∈ ∆(Θ−i × Θ−i), which

satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), such that for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

. (2)

We first show that for any i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼
f
i θi, there exist

θ̃i ∈ Θi and ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (2)

holds for all y ∈ Yi[θ̃].

Pick any i, θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼
f
i θi. We set θ̃i = θi and the belief ψi ∈

∆(Θ−i × Θ−i) such that ψi(θ̂−i, θ̂−i) = 1 for some θ̂−i ∈ Θ−i. As θ̂−i ∈ β−i(θ̂−i), the belief

ψi satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i). Since θi ∼
f
i θ

′

i, we have f(θ
′

i, θ̂−i) = f(θi, θ̂−i).

Moreover, Yi[θ̃i] = Yi[θi] because θ̃i = θi. Therefore, for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

= ui
(

f(θi, θ̂−i), (θi, θ̂−i)
)

≥ ui
(

y(θ̂−i), (θi, θ̂−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

.

Thus, if we combine the above result with the hypothesis that β is not weakly refutable,

then we can hypothesize that for all i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi), there exist θ̃i ∈ Θi and
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ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (2) holds for all

y ∈ Yi[θ̃i].

We next show that bΘ(S) ≥ S. Pick any i ∈ I, θi ∈ Θi, and m
′

i ∈ Si(θi). We now

construct a belief ψΓ ∈ ∆(Θ−i ×M−i) satisfying ψΓ
i (θ−i, m−i) > 0 implies m−i ∈ S−i(θ−i)

such that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

By definition of S, we have m
′

i ∈ S∞
i (θ

′

i) for some θ
′

i ∈ βi(θi). Then, by our hypothesis,

there exist θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such

that (2) holds for all y ∈ Yi[θ̃i]. Define the belief ψΓ
i ∈ ∆(Θ−i ×M−i) as follows: for any

(θ−i, m−i),

ψΓ
i (θ−i, m−i) =

∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i).

By construction, ψΓ
i (θ−i, m−i) > 0 implies that there exists θ

′

−i ∈ Θ−i such that ψi(θ−i, θ
′

−i) >

0 and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0. But ψi(θ−i, θ
′

−i) > 0 implies θ
′

−i ∈ β−i(θ−i). Moreover,

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i) – recall the definition of ψ
(θ̃i,θ

′

−i)

i from

the beginning of this proof. Since θ
′

−i ∈ β−i(θ−i) and m−i ∈ S∞
−i(θ

′

−i), it follows from the

definition of S that m−i ∈ S−i(θ−i).

For any mi ∈Mi, define y
mi : Θ−i → ∆(A) as follows: for all θ−i ∈ Θ−i,

ymi(θ−i) =
∑

m−i

margM−i
ψ

(θ̃i,θ−i)
i (m−i)g(mi, m−i).

By construction, ymi(θ−i) ∈ Li(θ̃i, θ−i). Therefore, if f(θ̃i, θ−i) 6= ymi(θ−i), then, as argued

earlier in the proof, we must have

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ymi(θ−i), (θ̃i, θ−i)
)

.

So ymi ∈ Yi[θ̃i]. By our hypothesis, (1) holds for all y ∈ Yi[θ̃i]. Hence, for any mi ∈Mi,

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

. (3)
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We are ready to show that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(m
′

i, m−i), (θi, θ−i)
)

=
∑

θ−i,m−i







∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)







(by definition of ψΓ
i )

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

(

by weak rationalizable implementability of f because m
′

i ∈ S∞
i (θ

′

i)

and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i)

)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

(∵ inequality (3) holds for any mi ∈Mi)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)





∑

m−i

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(mi, m−i), (θi, θ−i)
)





(by definition of ymi)

=
∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(mi, m−i), (θi, θ−i)
)

(by definition of ψΓ
i ).

Since m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i and ψΓ

i (θ−i, m−i) > 0

implies m−i ∈ S−i(θ−i), it follows by definition that m
′

i ∈ bΘi (S)[θi].

As bΘ(S) ≥ S, we have S ≤ S∞. For any θ ∈ Θ and θ
′

∈ β(θ), we obtain S∞(θ
′

) 6= ∅

since the mechanism Γ weakly rationalizably implements f . So pick any m
′

∈ S∞(θ
′

) ⊆

S(θ) ⊆ S∞(θ). Then g(m
′

) = f(θ
′

) and g(m
′

) = f(θ) because, once again, the mechanism Γ

weakly rationalizably implements f . Thus, f(θ
′

) = f(θ). So β is acceptable. This completes

the proof.

For responsive SCFs, Bergemann and Morris (2010) identify a necessary condition for

weak rationalizable implementation that is a priori stronger than weak RM. We present an

equivalent definition below.

Definition 4.4. We say that an unacceptable deception β is strictly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all ψi ∈ ∆(Θ−i × Θ−i)
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satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈
⋂

θ̃i∈Θi
Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

If an unacceptable deception β is strictly refutable, then it is weakly refutable. This is

because strict refutability requires us to find a y in
⋂

θ̃i∈Θi
Yi[θ̃i] whereas for weak refutability,

we are allowed to find a y in Yi[θ̃i] that depends on θ̃i.

Definition 4.5. The SCF f satisfies strict robust monotonicity (strict RM) if every unac-

ceptable deception β is strictly refutable.

Strict RM implies weak RM because strict RM imposes a stronger refutability require-

ment on every unacceptable deception.

Bergemann and Morris (2010, Lemmata 4, 5, and 6 and Proposition 4) show that strict

RM is necessary for weak rationalizable implementation of responsive SCFs. The equiva-

lence between weak rationalizable implementation and robust implementation in rational-

izable strategies (Theorem 3.1) immediately implies that for responsive SCFs, strict RM

is a necessary condition for robust implementation in rationalizable strategies. Indeed, for

responsive SCFs, weak RM implies strict RM.

Lemma 4.6. If the SCF is responsive and satisfies weak RM, then it must satisfy strict

RM.5

However, there are non-responsive SCFs that satisfy weak RM but not strict RM, as

shown in Example 6.2.

5 Sufficiency for Robust Implementation in Rational-

izable Strategies

In this section, we show that weak RM is sufficient for robust implementation in rationalizable

strategies under a mild additional assumption: conditional no total indifference (as discussed

below, our definition is weaker than the one appearing in Bergemann and Morris, 2011).

5Here is an indirect argument to prove this statement. We show later that weak RM implies semi-strict
ex post incentive compatibility (semi-strict EPIC). Bergemann and Morris (2010, Lemma 4) show that for
responsive SCFs, semi-strict EPIC implies strict ex post incentive compatibility. Bergemann and Morris
(2010, Lemma 5) show that if the SCF satisfies strict ex post incentive compatibility and “strict pairwise
robust monotonicity”, then it satisfies strict RM. Strict pairwise robust monotonicity is weaker than weak
RM. It thus follows that if the SCF is responsive and satisfies weak RM, then it satisfies strict ex post
incentive compatibility and strict pairwise robust monotonicity, and hence it satisfies strict RM.
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For each i ∈ I and θi ∈ Θi, define

Y w
i [θi] ≡

{

y : Θ−i → ∆(A) : ∀θ−i, ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)}

.

Thus, Y w
i [θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is weakly worse than f(θi, θ−i) for individual i in state (θi, θ−i). Notice

that Yi[θi] (recall the definition from Section 4) is a subset of Y w
i [θi].

Definition 5.1. The SCF f satisfies conditional no total indifference (conditional NTI) if,

for all i ∈ I, θi ∈ Θi, and ψi ∈ ∆(Θ−i ×Θ−i), there exist y, y
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Remark: Bergemann and Morris (2011) also define a “conditional no total indifference”

condition which is stronger than our definition. They require the existence of the said y and

y
′

in the set
⋂

θ̃i∈Θi
Y w
i [θ̃i] whereas we only require the existence of y and y

′

in the set Y w
i [θi].

In the sufficiency result, we focus on a countable subset of Y w
i [θi], as defined next. Recall

that ∆∗(A) is a countable dense subset of ∆(A). For each i and θi, define

Y ∗
i [θi] ≡











y : Θ−i → ∆(A) :

∀θ−i,

(i) y(θ−i) ∈ ∆∗(A)
⋃

θ
′

i
∈Θi

{f(θ
′

i, θ−i)} and

(ii) ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)











Note that Y ∗
i [θi] ⊆ Y w

i [θi]. Since Θ−i is finite and ∆∗(A) is countable, Y ∗
i [θi] is also countable.

Thus, we denote Y ∗
i [θi] by {y0i [θi], y

1
i [θi], . . . , y

k
i [θi], . . .}. For each i ∈ I and θi ∈ Θi, we then

define yθii such that

yθii (θ−i) = (1− δ)
∞
∑

k=0

δkyki [θi](θ−i), ∀θ−i,

where δ ∈ (0, 1).

Similarly, since A is countable, we denote it by {a0, a1, . . . , ak, . . .}. Then, we define

ᾱ = (1− η)
∞
∑

k=0

ηkak,

where η ∈ (0, 1).

The following lemma notes two important consequences of conditional NTI.
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Lemma 5.2. If the SCF f satisfies conditional NTI, then the following statements are true:

(a) For all i ∈ I, θi ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i), there exists y ∈ Y ∗
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθii (θ
′

−i), (θi, θ−i)
)

.

(b) For all i ∈ I, θi ∈ Θi and z
1
i ∈ ∆(Θ−i), there exists a ∈ A such that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

>
∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

.

Proof. We prove (a) first. Suppose the SCF f satisfies conditional NTI. Pick any i ∈ I,

θi ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i).

Firstly, it follows from the definition of conditional NTI that for all θ
′

−i ∈ Θ−i, there

exists ℓθ
′

−i ∈ ∆(A) such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

ℓθ
′

−i , (θi, θ
′

−i)
)

. (4)

To see this, consider the degenerate belief ψ̃i such that ψ̃i(θ
′

−i, θ
′

−i) = 1. Then there must

exist ỹ, ỹ
′

∈ Y w
i [θi] such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

≥ ui
(

ỹ(θ
′

−i), (θi, θ
′

−i)
)

=
∑

θ−i,θ
′′

−i

ψ̃i(θ−i, θ
′′

−i)ui
(

ỹ(θ
′′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′′

−i

ψ̃i(θ−i, θ
′′

−i)ui
(

ỹ
′

(θ
′′

−i), (θi, θ−i)
)

= ui
(

ỹ
′

(θ
′

−i), (θi, θ
′

−i)
)

,

where the first weak inequality follows from the fact that ỹ ∈ Y w
i [θi] and the strict inequality

follows from conditional NTI. Then ℓθ
′

−i = ỹ
′

(θ
′

−i) satisfies (4).

Secondly, since f satisfies conditional NTI, there exist y, y
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Pick any ǫ ∈ (0, 1) and define yǫ : Θ−i → ∆(A) such that yǫ(θ
′

−i) = (1− ǫ)y(θ
′

−i) + ǫℓθ
′

−i for
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all θ
′

−i. We similarly define y
′ǫ. By construction, yǫ and y

′ǫ are such that for all θ
′

−i ∈ Θ−i,

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

yǫ(θ
′

−i), (θi, θ
′

−i)
)

and ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

y
′ǫ(θ

′

−i), (θi, θ
′

−i)
)

.

For ǫ sufficiently close to 1, we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yǫ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′ǫ(θ

′

−i), (θi, θ−i)
)

.

We fix any such sufficiently large ǫ.

Thirdly, since ∆∗(A) is a dense subset of ∆(A), for each θ
′

−i, there exists a sequence of

lotteries {ℓz(θ
′

−i)}
∞
z=1 ∈ ∆∗(A) converging to yǫ(θ

′

−i). For each z ≥ 1, define yz : Θ−i →

∆∗(A) such that yz(θ
′

−i) = ℓz(θ
′

−i) for all θ
′

−i. Similarly, we can define y
′z : Θ−i → ∆∗(A)

such that y
′z(θ

′

−i) converges to y
′ǫ(θ

′

−i) for all θ
′

−i. As Θ−i is finite, there exists a sufficiently

large z such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

yz(θ
′

−i), (θi, θ
′

−i)
)

and ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

y
′z(θ

′

−i), (θi, θ
′

−i)
)

,

for all θ
′

−i, and

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

. (5)

The first set of inequalities imply that yz, y
′z ∈ Y ∗

i [θi].

Lastly, since yθii assigns a positive weight to all y ∈ Y ∗
i [θi], if

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθii (θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

, ∀y ∈ Y ∗
i [θi],

then it must be that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

,

which contradicts (5).

We prove (b) next. Suppose the SCF f satisfies conditional NTI. Pick any i ∈ I, θi ∈ Θi
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and z1i ∈ ∆(Θ−i). As ᾱ assigns a positive weight to all a ∈ A, if

∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

≥
∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

, ∀a ∈ A,

then it must be that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

=
∑

θ−i

z1i (θ−i)ui
(

a
′

, (θi, θ−i)
)

,

for all a, a
′

∈ A. Now consider the belief ψ̃i ∈ ∆(Θ−i×Θ−i) such that ψ̃i(θ−i, θ−i) = z1i (θ−i)

for all θ−i ∈ Θ−i. Then, by conditional NTI, there must exist ỹ, ỹ
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ỹ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ỹ
′

(θ
′

−i), (θi, θ−i)
)

.

But the left-hand side of the above inequality equals
∑

θ−i
z1i (θ−i)ui

(

ỹ(θ−i), (θi, θ−i)
)

while

the right-hand side equals
∑

θ−i
z1i (θ−i)ui

(

ỹ
′

(θ−i), (θi, θ−i)
)

, which contradicts the fact that

type θi is indifferent over all alternatives when she holds the belief z1i .

We need one more result before presenting our main sufficiency result for this section.

We now show that weak RM implies semi-strict ex post incentive compatibility.

Definition 5.3. The SCF f satisfies ex post incentive compatibility (EPIC) if, for all i ∈ I,

θi, θ
′

i ∈ Θi, and θ−i ∈ Θ−i,

ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

The SCF f satisfies semi-strict ex post incentive compatible (semi-strict EPIC) if the above

inequality becomes strict whenever θi 6∼
f
i θ

′

i.

Lemma 5.4. If the SCF f satisfies weak RM, then it satisfies semi-strict EPIC.6

Proof. Suppose the SCF f satisfies weak RM. Pick any i ∈ I, θi, θ
′

i ∈ Θi. If θi ∼f
i θ

′

i,

then trivially ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

for all θ−i ∈ Θ−i. So suppose

6Bergemann and Morris (2010, Lemma 6) show that if f is weakly rationalizable implementable, then
it satisfies semi-strict EPIC. It follows from their result and our Theorem 3.1 that semi-strict EPIC is
a necessary condition for robust implementation in rationalizable strategies. The above lemma does not
immediately follow from Bergemann and Morris’s result because weak RM is a necessary condition for weak
rationalizable implementation. Moreover, due to this lemma, we do not have to add semi-strict EPIC as an
additional condition in our sufficiency result. Bergemann and Morris (2011, Lemma 1) show that “robust
monotonicity” implies semi-strict EPIC. Robust monotonicity is a slightly weaker version of strict RM – the
only difference is that we need to replace “y ∈

⋂

θ̃i
Yi[θ̃i]” with “y ∈

⋂

θ̃i
Y w

i
[θ̃i]” in the definition of strict

refutability. Strictly speaking, weak RM and robust monotonicity are not comparable.
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θi 6∼
f
i θ

′

i. Consider the deception β such that βj(θj) = {θj} for all θj and j 6= i but

βi(θ̃i) =

{

{θi, θ
′

i}, if θ̃i = θi

{θ̃i}, otherwise.

Since θi 6∼
f
i θ

′

i, the deception β is unacceptable. Hence, it must be weakly refutable. That

is, there exist j ∈ I, θ̂j ∈ Θj, and θ̂
′

j ∈ βj(θ̂j) satisfying θ̂
′

j 6∼
f
j θ̂j such that for any θ̃j ∈ Θj

and ψj ∈ ∆(Θ−j ×Θ−j) satisfying ψj(θ−j, θ
′

−j) > 0 ⇒ θ
′

−j ∈ β−j(θ−j), there exists y ∈ Yj[θ̃j ]

such that

∑

θ−j ,θ
′

−j

ψj(θ−j, θ
′

−j)uj
(

y(θ
′

−j), (θ̂j , θ−j)
)

>
∑

θ−j ,θ
′

−j

ψj(θ−j , θ
′

−j)uj
(

f(θ̂
′

j , θ
′

−j), (θ̂j, θ−j)
)

.

Since θ̂
′

j 6∼
f
j θ̂j and θ̂

′

j ∈ βj(θ̂j), it must be that j = i, θ̂j = θi and θ̂
′

j = θ
′

i.

Now pick any θ−i ∈ Θ−i. Consider θ̃i = θi and the degenerate belief ψi such that

ψi(θ−i, θ−i) = 1. Note that θ−i ∈ β−i(θ−i). Hence, we must have some y ∈ Yi[θ̃i] = Yi[θi]

such that

ui
(

y(θ−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

But y ∈ Yi[θi] implies that ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)

. Therefore,

ui
(

f(θi, θ−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

For the sufficiency result, we propose the following mechanism Γ = ((Mi)i∈I , g): For

each individual i, pick any one payoff type from Θi. We denote this payoff type as θ∗i .

Each individual i sends a message mi = (m1
i , m

2
i , m

3
i , m

4
i ), where m

1
i = (m1

i [j])j∈I such that

m1
i [j] ∈ Θj for all j ∈ I, m2

i ∈ N, m3
i = (m3

i [θi])θi∈Θi
such that m3

i [θi] ∈ Y ∗
i [θi] for all θi ∈ Θi,

and m4
i ∈ A. Note that each Mi is countable. The outcome function g : M → ∆(A) is

defined as follows: For each m ∈M ,

Rule 1: m2
i = 1 for all i ∈ I ⇒ g(m) = f(m1

1[1], m
1
2[2], . . . , m

1
n[n]).

Rule 2: If there exists i ∈ I such that m2
i > 1 but m2

j = 1 for all j ∈ I\{i}, then one of the

following sub-rules apply:
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Rule 2-1: If there exists θi ∈ Θi such that m1
j [i] = θi for all j ∈ I\{i}, then

g(m) =

{

m3
i [θi]

(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

yθii
(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 2-2: If m1
j
′ [i] 6= m1

k[i] for some j
′

, k ∈ I\{i}, then

g(m) =

{

m3
i [θ

∗
i ]
(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

y
θ∗i
i

(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 3: In all other cases:

g(m) =



































m4
1 with probability m2

1/(1 +m2
1)n,

m4
2 with probability m2

2/(1 +m2
2)n,

...
...

m4
n with probability m2

n/(1 +m2
n)n,

ᾱ with remaining probability.

Here is our sufficiency result for robust implementation in rationalizable strategies:

Theorem 5.5. If the SCF f satisfies weak RM and conditional NTI, it is robustly imple-

mentable in rationalizable strategies.

Proof. : We use the mechanism Γ constructed above and prove that Γ weakly robustly

implements f , which implies that Γ robustly implements f in rationalizable strategies because

of Theorem 3.1. The proof of the theorem consists of Steps 1 through 4.

Step 1: mi ∈ S∞
i (θi) ⇒ m2

i = 1.

Proof. Suppose by way of contradiction that mi ∈ S∞
i (θi) but m

2
i > 1. Then, mi is a best

response of individual i of payoff type θi against some conjecture ψi ∈ ∆(Θ−i ×M−i).

For each θ
′

i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M2
−i(θ

′

i, θ
′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ
′

i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.

For θ∗i and each θ
′

−i ∈ Θ−i, we define

M2
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.
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Also define

M3
−i =

{

m−i : there exist one or more j 6= i such that m2
j > 1

}

.

Note that
(

(M2
−i(θ̃i, θ

′

−i))θ̃i∈Θi,θ
′

−i∈Θ−i
,M3

−i

)

defines a partition of M−i. As m2
i > 1, if

m−i ∈ M2
−i(θ̃i, θ

′

−i), then Rule 2 is used under the profile (mi, m−i) whereas if m−i ∈ M3
−i,

then Rule 3 is used under the profile (mi, m−i).

For each θ̃i ∈ Θi, define

Ψ2,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M
2

−i(θ̃i,θ
′′

−i)

ψi(θ−i, m−i).

Thus, Ψ2,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

Also, define

Ψ3
i =

∑

θ−i,m−i∈M
3

−i

ψi(θ−i, m−i).

Thus, Ψ3
i is the probability of the event that all other individuals report a message profile

in M3
−i.

If θ̃i is such that Ψ2,θ̃i
i > 0, then define ψ2,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ2,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M
2

−i(θ̃i,θ
′

−i)

ψi(θ−i, m−i)

Ψ2,θ̃i
i

.

Thus, ψ2,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M2
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

in M2
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome

to be given by the lottery

(

m2
i

1 +m2
i

)

m3
i [θ̃i]

(

θ
′

−i

)

+

(

1−
m2
i

1 +m2
i

)

yθ̃ii
(

θ
′

−i

)

.

As a result, conditional on the event that all other individuals report a message profile in
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⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she plays mi is

(

m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1−
m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

. (6)

If Ψ3
i > 0, then define ψ3

i ∈ ∆(Θ−i) such that, for any θ−i ∈ Θ−i,

ψ3
i (θ−i) =

∑

m−i∈M
3

−i

ψi(θ−i, m−i)

Ψ3
i

.

Thus, ψ3
i (θ−i) is the conditional probability of the event that the payoff-type profile of all

other individuals is θ−i and they report a message profile in M3
−i given the event that all

other individuals report a message profile in M3
−i.

If the payoff-type profile of all other individuals is θ−i and they report a message profile

m−i ∈ M3
−i, then when individual i of payoff type θi plays mi, she expects the outcome to

be given by the lottery

1

n

(

m2
i

1 +m2
i

)

m4
i +

1

n

(

1−
m2
i

1 +m2
i

)

ᾱ +
∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

m4
j +

1

n

(

1−
m2
j

1 +m2
j

)

ᾱ

)

.

As a result, conditional on the event that all other individuals report a message profile in

M3
−i, the expected payoff of individual i of payoff type θi when she plays mi is

1

n

(

m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

+
1

n

(

1−
m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

+
∑

θ−i,m−i∈M
3

−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1−
m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

.

(7)

Now let individual i of type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m̂

4
i ) such that

• m̂2
i = m2

i + 1.

• m̂3
i is defined as follows for each θ̃i:
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⊲ If Ψ2,θ̃i
i > 0, then let m̂3

i [θ̃i] ∈ Y ∗
i [θ̃i] be such that

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

and
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui(y
θ̃i
i (θ

′

−i), (θi, θ−i)
)

.

Note that such m̂3
i [θ̃i] exists because of Lemma 5.2.

⊲ If Ψ2,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

• m̂4
i is defined as follows:

⊲ If Ψ3
i > 0, then let m̂4

i ∈ A be such that

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

≥
∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

and
∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

>
∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

.

Note that such m̂4
i exists because of Lemma 5.2.

⊲ If Ψ3
i = 0, then let m̂4

i = m4
i .

If Ψ2,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

,

which is, by construction, greater than her expected payoff in (6) when she plays mi.

If Ψ3
i > 0, then conditional on the event that all other individuals report a message profile
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in M3
−i, the expected payoff of individual i of payoff type θi when she plays m̂i is

1

n

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

+
1

n

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

+
∑

θ−i,m−i∈M
3

−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1−
m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

,

which is, by construction, greater than her expected payoff in (7) when she plays mi.

As
∑

θ̃i
Ψ2,θ̃i
i + Ψ3

i = 1 (because m2
i > 1), it follows that m̂i is a better response for

individual i of type θi against ψi, a contradiction. This completes the proof of Step 1.

Step 2: For each i ∈ I and θi ∈ Θi, let

βi(θi) = {θi} ∪ {θ
′

i ∈ Θi : ∃ mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i}.

Then, the deception β = (βi)i∈I is acceptable.

Proof. Suppose not, that is, β is unacceptable. Then, by weak RM, β must be weakly

refutable. That is, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼
f
i θi such that for

all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists

y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

As θ
′

i 6∼
f
i θi and θ

′

i ∈ βi(θi), we can find a message mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i.

Then, mi is a best response to some belief ψΓ
i ∈ ∆(Θ−i ×M−i) such that ψΓ

i (θ−i, m−i) >

0 ⇒ m−i ∈ S∞
−i(θ−i). From Step 1, it follows that ψΓ

i (θ−i, m−i) > 0 implies m2
j = 1 for all

j 6= i. We next define a partition of all those message profiles in M−i such that m2
j = 1 for

all j 6= i.

For each θ̂i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M1
−i(θ̂i, θ

′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ̂i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.
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For θ∗i and each θ
′

−i ∈ Θ−i, we define

M1
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.

For each θ̃i ∈ Θi, we define

Ψ1,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M
1

−i(θ̃i,θ
′′

−i)

ψΓ
i (θ−i, m−i).

Thus, Ψ1,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If θ̃i is such that Ψ1,θ̃i
i > 0, then define ψ1,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ1,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M
1

−i(θ̃i,θ
′

−i)

ψΓ
i (θ−i, m−i)

Ψ1,θ̃i
i

.

Thus, ψ1,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M1
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

inM1
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome to

be f(θ
′

i, θ
′

−i). As a result, conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays mi is

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

. (8)

Now, ψ1,θ̃i
i (θ−i, θ

′

−i) > 0 implies that ψΓ
i (θ−i, m−i) > 0 for some m−i ∈ M1

−i(θ̃i, θ
′

−i). But

ψΓ
i (θ−i, m−i) > 0 also implies that m−i ∈ S∞

−i(θ−i). Hence, due to the construction of β, we

have θ
′

−i ∈ β−i(θ−i). So, it follows from weak refutability of β that there exists y[θ̃i] ∈ Yi[θ̃i]

such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.
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It is without loss of generality to assume that y[θ̃i] ∈ Y ∗
i [θ̃i]. If not, then consider

any sequence ℓz : Θ−i → ∆∗(A) ∪ {f(θ̃i, θ−i)} such that (a) if y[θ̃i](θ−i) = f(θ̃i, θ−i), then

ℓz(θ−i) = f(θ̃i, θ−i) for all z ∈ N and (b) if y[θ̃i](θ−i) 6= f(θ̃i, θ−i), then ℓ
z(θ−i) converges to

y[θ̃i](θ−i) for all θ−i ∈ Θ−i as z → ∞. As Θ−i is finite and ui(·, θ) is continuous over ∆(A),

we can find a sufficiently large ẑ such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

ℓẑ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

,

and, because y[θ̃i] ∈ Yi[θ̃i], if ℓ
ẑ(θ−i) 6= f(θ̃i, θ−i), then

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ℓẑ(θ−i), (θ̃i, θ−i)
)

.

The latter condition implies that ℓẑ ∈ Y ∗
i [θ̃i].

Now, let individual i of type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m

4
i ) such that

• m̂2
i > 1, where the specific value is chosen later.

• m̂3
i is defined as follows: for each θ̃i ∈ Θi:

⊲ If Ψ1,θ̃i
i > 0, then let m̂3

i [θ̃i] = y[θ̃i].

⊲ If Ψ1,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

If Ψ1,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

.

If m̂2
i is large enough, then the above expression is greater than her expected payoff in (8)

when she plays mi. Since Θi is finite, we can find a sufficiently large m̂2
i such that the

above statement is true for all θ̃i ∈ Θi such that Ψ1,θ̃i
i > 0. As

∑

θ̃i
Ψ1,θ̃i
i = 1 (because

ψΓ
i (θ−i, m−i) > 0 ⇒ m−i ∈ S∞

−i(θ−i) ⇒ m2
j = 1, ∀j 6= i), it follows that m̂i is a better

response for individual i of type θi against ψ
Γ
i , a contradiction. This completes the proof of

Step 2.

It follows from Steps 1 and 2 that m ∈ S∞(θ) ⇒ g(m) = f(θ).
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Step 3: Define the message correspondence profile with payoff-type domain S = (S1, . . . ,Sn)

such that for all i ∈ I and θi ∈ Θi,

Si(θi) = {(m1
i , 1, m

3
i , m

4
i ) : m

1
i [i] = θi}.

Then, we have bΘ(S) ≥ S, which implies that S ≤ S∞.

Proof. Pick any i ∈ I, θi ∈ Θi, and mi ∈ Si(θi). Fix some θ−i ∈ Θ−i and pick any

m̃−i ∈ S−i(θ−i) such that m̃1
j [i] = θi and m̃1

j [j] = θj , for all j 6= i. Let the belief ψi ∈

∆(Θ−i ×M−i) be such that ψi(θ−i, m̃−i) = 1. When individual i of payoff type θi holds the

belief ψi and plays mi, then she expects the payoff of ui
(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the other hand,

if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1−
m̂2
i

1 + m̂2
i

)

ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence, mi ∈ bΘi (S)[θi]. This

completes the proof of Step 3.

Step 4: Condition (2) in Theorem 3.1 is satisfied by the constructed mechanism

Proof. Pick i ∈ I, θi ∈ Θi and z
1
i ∈ Z1

i . For each θ−i ∈ Θ−i, pick some m̃−i ∈M−i such that

m̃1
j [i] = θi, m̃

1
j [j] = θj , and m̃

2
j = 1 for all j 6= i. From Step 3, it follows that m̃−i ∈ S∞

−i(θ−i).

Define the belief ψi ∈ ∆(Θ−i ×M−i) such that ψi(θ−i, m̃−i) = z1i (θ−i) for all θ−i ∈ Θ−i.

By construction, ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i) and margΘ−i

ψi = z1i . When

individual i of payoff type θi holds the belief ψi and plays mi = (m1
i , 1, m

3
i , m

4
i ) such that

m1
i [i] = θi, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the

other hand, if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence,

arg max
m′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m′
i, m−i), (θi, θ−i)

)

6= ∅,
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which completes the proof of Step 4.

Steps 1 through 4 complete the proof of the theorem.

Remark 5.6. Bergemann and Morris (2011) show that strict RM and their stronger ver-

sion of conditional NTI are sufficient conditions for both rationalizable implementation and

robust implementation in interim equilibria. As rationalizable implementation implies weak

rationalizable implementation and the latter is equivalent to robust implementation in ra-

tionalizable strategies, we can conclude that strict RM and their stronger conditional NTI

are sufficient conditions for robust implementation in rationalizable strategies. Theorem 5.5

weakens both these conditions, thus providing us with a stronger sufficiency result for robust

implementation in rationalizable strategies.

6 Robust Implementation: Rationalizable Strategies

versus Interim Equilibria

In this section, we compare robust implementation in rationalizable strategies with robust

implementation in interim equilibria. A priori, robust implementation in rationalizable

strategies appears to be neither stronger nor weaker than robust implementation in in-

terim equilibria. On a given type space, any message profile that is supported in interim

equilibrium at some type profile is also rationalizable at that type profile. Therefore, the

nonemptiness requirement seems weaker whereas the uniqueness requirement seems stronger

in robust implementation in rationalizable strategies than in robust implementation in in-

terim equilibria.

It turns out that robust implementation in interim equilibria in fact implies robust im-

plementation in rationalizable strategies by the same mechanism. The nested relationship

between different implementation notions offers an indirect way to reach this conclusion: If

an SCF is robustly implementable in interim equilibria by a mechanism, then it is ratio-

nalizably implementable by the same mechanism (Bergemann and Morris, 2011, Theorem

3). Since rationalizable implementation implies weak rationalizable implementation, it fol-

lows from our Theorem 3.1 that the SCF is also robustly implementable in rationalizable

strategies by the same mechanism.

But the underlying reason why robust implementation in rationalizable strategies turns

out to be weaker than robust implementation in interim equilibria is that, while the nonempti-

ness requirement in the former concept is weaker than that in the latter concept, the unique-

ness requirements in the two concepts are in fact equivalent, as argued next.
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Corollary 6.1. Consider any mechanism Γ. There exists a type space T such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t) if and only if there exists a type space T

′

, an interim equilibrium σ of the

game (T
′

,Γ), and a type profile t
′

∈ T
′

such that σ(m|t
′

) > 0 and θ̂(t
′

) = θ.

Proof. By Lemma 3.2, there exists a type space T such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t) if and

only if m ∈ S∞(θ). By Proposition 1 in Bergemann and Morris (2011), m ∈ S∞(θ) if and

only if there exists a type space T
′

, an interim equilibrium σ of the game (T
′

,Γ), and a type

profile t
′

∈ T
′

such that σ(m|t
′

) > 0 and θ̂(t
′

) = θ.

Thus, if a message profile m is rationalizable at some type profile t in some type space T

such that θ̂(t) = θ, then that message profile is also supported in some interim equilibrium

for some type-profile t
′

in some type space T
′

such that θ̂(t
′

) = θ, and vice versa. Hence,

insisting on robust implementation “over all type spaces” makes the uniqueness requirement

under the solution concept of interim equilibria equivalent to the uniqueness requirement

under the solution concept of rationalizable strategies.

The rest of this section is organized as follows: In Section 6.1, we show by means of an

example that robust implementation in rationalizable strategies is strictly more permissive

than that in interim equilibria. Section 6.2 establishes the equivalence between robust im-

plementation in rationalizable strategies and that in interim equilibria when we restrict our

attention to finite mechanisms.

6.1 An Example

We now present an example with an SCF that is robustly implementable in rationalizable

strategies but not in interim equilibria. We do so by exploiting the gap between strict

RM and weak RM for non-responsive SCFs. (As already mentioned, strict RM and weak

RM are equivalent for responsive SCFs.) To elaborate, Bergemann and Morris (2011) show

that strict RM is a necessary condition for rationalizable implementation of any SCF. The

non-responsive SCF in the example below fails to satisfy strict RM. Thus, the SCF is not

rationalizably implementable, and hence not robustly implementable in interim equilibria.

The SCF however satisfies weak RM and conditional NTI. Hence, the SCF is robustly im-

plementable in rationalizable strategies.

Thus robust implementation in interim equilibria is strictly stronger than robust imple-

mentation in rationalizable strategies. In light of our above discussion on the equivalence of

the uniqueness requirements under the two solution concepts, the explanation for this gap

between robust implementation in interim equilibria and robust implementation in ratio-

nalizable strategies is that the nonemptiness requirement in the former concept is strictly

stronger than the nonemptiness requirement in the latter concept. Any mechanism Γ, in
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particular the canonical mechanism constructed in the proof of Theorem 5.5, that robustly

implements the SCF in the example in rationalizable strategies must fail the nonemptiness

requirement for robust implementation in interim equilibria. That is, there must exist some

type space in which the set of interim equilibria of the mechanism is empty.

Example 6.2. There are two players i ∈ {1, 2}. Player 1 has three payoff types: Θ1 =

{θ1, θ
′

1, θ
′′

1} and player 2 has two payoff types: Θ2 = {θ2, θ
′

2}. There are six pure alternatives:

A = {a, b, c, d, z, z
′

}. The following tables list the payoffs of the two players:

a θ2 θ
′

2

θ1 4, 4 4, 0

θ
′

1 0, 0 4, 1

θ
′′

1 1, 1 4, 0

b θ2 θ
′

2

θ1 0, 0 3, 3

θ
′

1 1, 1 2, 0

θ
′′

1 0, 0 2, 1

c θ2 θ
′

2

θ1 0, 0 3, 1

θ
′

1 3, 3 3, 0

θ
′′

1 3, 3 3, 0

d θ2 θ
′

2

θ1 3, 4 2, 0

θ
′

1 0, 0 3, 3

θ
′′

1 0, 0 3, 3

z θ2 θ
′

2

θ1 4, 1 2, 0

θ
′

1 2, 2 5, 0

θ
′′

1 2, 2 2, 0

z
′

θ2 θ
′

2

θ1 4, 0 4, 1

θ
′

1 2, 0 2, 2

θ
′′

1 2, 0 5, 0

The SCF f selects the alternative which maximizes the aggregate payoff in each payoff

state.

f θ2 θ
′

2

θ1 a b

θ
′

1 c d

θ
′′

1 c d

We first show that f fails strict RM.

Claim 6.3. The SCF f violates strict RM.

Proof. Consider the deception β such that

β1(θ1) = {θ1, θ
′

1}, β1(θ
′

1) = {θ
′

1}, β1(θ
′′

1 ) = {θ
′′

1},

and

β2(θ2) = {θ2, θ
′

2}, β2(θ
′

2) = {θ
′

2}.

Given this deception, there are exactly two tuples (i, θi, θ
′

i) such that θ
′

i ∈ βi(θi) and θ
′

i 6∼
f
i θi:

(1, θ1, θ
′

1) and (2, θ2, θ
′

2).
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First, consider (2, θ2, θ
′

2). Fix the degenerate belief ψ2 ∈ ∆(Θ1×Θ1) such that ψ2(θ1, θ
′

1) =

1. Then, there does not exist any y ∈
⋂

θ̃2∈Θ2
Y2[θ̃2] such that

u2
(

y(θ
′

1), (θ1, θ2)
)

> u2
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

,

because f(θ
′

1, θ
′

2) = d is one of the best alternatives for player 2 in the payoff state (θ1, θ2).

Second, consider (1, θ1, θ
′

1). Fix the degenerate belief ψ1 such that ψ1(θ2, θ
′

2) = 1. If there

exists y ∈
⋂

θ̃1∈Θ1
Y1[θ̃1], then y(θ

′

2) must satisfy the following equations

u1
(

f(θ
′

1, θ
′

2), (θ
′

1, θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′

1, θ
′

2)
)

u1
(

f(θ
′′

1 , θ
′

2), (θ
′′

1 , θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′′

1 , θ
′

2)
)

.

These two inequalities imply that

2y(θ
′

2)[z] + y(θ
′

2)[a] ≤ y(θ
′

2)[z
′

] + y(θ
′

2)[b] and 2y(θ
′

2)[z
′

] + y(θ
′

2)[a] ≤ y(θ
′

2)[z] + y(θ
′

2)[b],

where y(θ
′

2)[x] is the probability of alternative x in the lottery y(θ
′

2). Summing these two

inequalities, we obtain y(θ
′

2)[z] + y(θ
′

2)[z
′

] + 2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b]. In order to satisfy strict

RM, we must satisfy the following inequality:

u1
(

y(θ
′

2), (θ1, θ2)
)

> u1
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

.

The above inequality is translated into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c].

We then claim that this inequality is impossible to be satisfied. Plugging y(θ
′

2)[z]+y(θ
′

2)[z
′

]+

2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b] into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c], we obtain

−y(θ
′

2)[a] > y(θ
′

2)[b] + 3y(θ
′

2)[c].

However, this inequality is impossible because y(θ
′

2)[a], y(θ
′

2)[b], and y(θ
′

2)[c] all are nonneg-

ative. We therefore conclude that the SCF f does not satisfy strict RM.

Next we argue that f satisfies weak RM.

Claim 6.4. The SCF f satisfies weak RM.

Proof. First, we consider any unacceptable deception β such that either θ
′

1 ∈ β1(θ1) or
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θ
′′

1 ∈ β1(θ1). Pick any belief ψ1 ∈ ∆(Θ2 ×Θ2). Then

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

f(θ
′

1, θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

f(θ
′

1, θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

f(θ
′

1, θ
′

2), (θ1, θ
′

2)
)

= 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2).

Similarly,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

= 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2).

In what follows, we consider each possible case of θ̃1 ∈ {θ1, θ
′

1, θ
′′

1}.

Case 1: θ̃1 = θ1.

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) =
2
3
z+ 1

3
z
′

. It is straightforward

to confirm that y ∈ Y1[θ1]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ
′

2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) + 4ψ1(θ2, θ
′

2) +
8

3
ψ1(θ

′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

.

Similarly,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

Case 2: θ̃1 = θ
′

1.

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) = z
′

. It is straightforward to
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confirm that y ∈ Y1[θ
′

1]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ
′

2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) + 4ψ1(θ2, θ
′

2) + 4ψ1(θ
′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

.

Similarly,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

Case 3: θ̃1 = θ
′′

1 .

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) =
1
5
c+ 4

5
z. It is straightforward

to confirm that y ∈ Y1[θ
′′

1 ]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ
′

2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) +
16

5
ψ1(θ2, θ

′

2) +
11

5
ψ1(θ

′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

.

Similarly,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

It follows that any unacceptable deception β satisfying θ
′

1 ∈ β1(θ1) is weakly refutable

using the tuple (1, θ1, θ
′

1) whereas any unacceptable deception β satisfying θ
′′

1 ∈ β1(θ1) is

weakly refutable using the tuple (1, θ1, θ
′′

1 ).
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Second, we consider any unacceptable deception β such that θ
′

2 ∈ β2(θ2) and β1(θ1) =

{θ1}. Pick any belief ψ2 ∈ ∆(Θ1 × Θ1) such that ψ2(θ̃1, θ̃
′

1) > 0 ⇒ θ̃
′

1 ∈ β1(θ̃1). Then we

have ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0. Therefore,

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

= ψ2(θ1, θ1)u2
(

f(θ1, θ
′

2), (θ1, θ2)
)

+ ψ2(θ1, θ
′

1)u2
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

+ ψ2(θ1, θ
′′

1 )u2
(

f(θ
′′

1 , θ
′

2), (θ1, θ2)
)

+ψ2(θ
′

1, θ1)u2
(

f(θ1, θ
′

2), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

f(θ
′

1, θ
′

2), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2
(

f(θ
′′

1 , θ
′

2), (θ
′

1, θ2)
)

+ψ2(θ
′′

1 , θ1)u2
(

f(θ1, θ
′

2), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

f(θ
′

1, θ
′

2), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2
(

f(θ
′′

1 , θ
′

2), (θ
′′

1 , θ2)
)

= ψ2(θ
′

1, θ1).

Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ
′

1) = y(θ
′′

1 ) = z. It is straightforward

to confirm that y ∈ Y2[θ2] ∩ Y2[θ
′

2]. Moreover, since ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0, we have

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

y(θ̃
′

1), (θ̃1, θ2)
)

= ψ2(θ1, θ1)u2
(

y(θ1), (θ1, θ2)
)

+ ψ2(θ1, θ
′

1)u2
(

y(θ
′

1), (θ1, θ2)
)

+ ψ2(θ1, θ
′′

1 )u2
(

y(θ
′′

1 ), (θ1, θ2)
)

+ψ2(θ
′

1, θ1)u2
(

y(θ1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y(θ
′

1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2
(

y(θ
′′

1 ), (θ
′

1, θ2)
)

+ψ2(θ
′′

1 , θ1)u2
(

y(θ1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y(θ
′

1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2
(

y(θ
′′

1 ), (θ
′′

1 , θ2)
)

= ψ2(θ1, θ1) + 2
(

ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 )
)

+ 2
(

ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 )
)

> ψ2(θ
′

1, θ1)

=
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

.

It follows that any unacceptable deception β such that θ
′

2 ∈ β2(θ2) and β1(θ1) = {θ1} is

weakly refutable using the tuple (2, θ2, θ
′

2).

Third, we consider any unacceptable deception β such that θ2 ∈ β2(θ
′

2) and β1(θ1) = {θ1}.

Pick any belief ψ2 ∈ ∆(Θ1 ×Θ1) such that ψ2(θ̃1, θ̃
′

1) > 0 ⇒ θ̃
′

1 ∈ β1(θ̃1). Then we have that
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ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0. Therefore,

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

= ψ2(θ1, θ1)u2
(

f(θ1, θ2), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′

1)u2
(

f(θ
′

1, θ2), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′′

1 )u2
(

f(θ
′′

1 , θ2), (θ1, θ
′

2)
)

+ψ2(θ
′

1, θ1)u2
(

f(θ1, θ2), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

f(θ
′

1, θ2), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2
(

f(θ
′′

1 , θ2), (θ
′

1, θ
′

2)
)

+ψ2(θ
′′

1 , θ1)u2
(

f(θ1, θ2), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

f(θ
′

1, θ2), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2
(

f(θ
′′

1 , θ2), (θ
′′

1 , θ
′

2)
)

= ψ2(θ
′

1, θ1).

Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
4
b + 3

4
z
′

. It is straight-

forward to confirm that y ∈ Y2[θ2] ∩ Y2[θ
′

2]. Moreover, since ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0, we

have

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

y(θ̃
′

1), (θ̃1, θ
′

2)
)

= ψ2(θ1, θ1)u2
(

y(θ1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′

1)u2
(

y(θ
′

1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′′

1 )u2
(

y(θ
′′

1 ), (θ1, θ
′

2)
)

+ψ2(θ
′

1, θ1)u2
(

y(θ1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y(θ
′

1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2
(

y(θ
′′

1 ), (θ
′

1, θ
′

2)
)

+ψ2(θ
′′

1 , θ1)u2
(

y(θ1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y(θ
′

1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2
(

y(θ
′′

1 ), (θ
′′

1 , θ
′

2)
)

=
3

2
ψ2(θ1, θ1) +

3

2

(

ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 )
)

+
1

4

(

ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 )
)

> ψ2(θ
′

1, θ1)

=
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

.

It follows that any unacceptable deception β such that θ2 ∈ β2(θ
′

2) and β1(θ1) = {θ1} is

weakly refutable using the tuple (2, θ
′

2, θ2).

Fourth, we consider any unacceptable deception such that β1(θ1) = {θ1}, β2(θ2) = {θ2},

and β2(θ
′

2) = {θ
′

2}. Such a deception involves either θ1 ∈ β1(θ
′

1) or θ1 ∈ β1(θ
′′

1 ). Then the fact

that f satisfies semi-strict EPIC implies that β is weakly refutable. We show this formally

for the case when θ1 ∈ β1(θ
′

1) as the argument for the case when θ1 ∈ β1(θ
′′

1 ) is similar. So

suppose θ1 ∈ β1(θ
′

1). Pick any belief ψ1 ∈ ∆(Θ2×Θ2) such that ψ1(θ̃2, θ̃
′

2) > 0 ⇒ θ̃
′

2 ∈ β2(θ̃2).

Then we have that ψ1(θ2, θ
′

2) = ψ1(θ
′

2, θ2) = 0. Therefore,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ1, θ̃
′

2), (θ
′

1, θ̃2)
)

= 2ψ1(θ
′

2, θ
′

2)

Define y : Θ2 → ∆(A) to be such that y(θ2) = f(θ
′

1, θ2) = c and y(θ
′

2) = f(θ
′

1, θ
′

2) = d. It
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is straightforward to confirm that y ∈ Y1[θ1] ∩ Y1[θ
′

1] ∩ Y1[θ
′′

1 ]. Moreover, since ψ1(θ2, θ
′

2) =

ψ1(θ
′

2, θ2) = 0,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ
′

2, θ
′

2) >
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ1, θ̃
′

2), (θ
′

1, θ̃2)
)

.

It follows that the deception β is weakly refutable using the tuple (1, θ
′

1, θ1).

We thus conclude that every unacceptable deception is weakly refutable, and hence f

satisfies weak RM.

We now check that the SCF f satisfies conditional NTI.

Claim 6.5. The SCF f satisfies conditional NTI.

Proof. First, we consider player 1 of payoff type θ1. Let y : Θ2 → ∆(A) be such that

y(θ2) = a and y(θ
′

2) = z. Also, let y
′

: Θ2 → ∆(A) be such that y
′

(θ2) = b and y
′

(θ
′

2) = d. It

is straightforward to confirm that y, y
′

∈ Y w
1 [θ1]. Now,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ1, θ
′

2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ2, θ
′

2) + 4ψ1(θ
′

2, θ2) + 2ψi(θ
′

2, θ
′

2).

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y
′

(θ2), (θ1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y
′

(θ
′

2), (θ1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y
′

(θ2), (θ1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y
′

(θ
′

2), (θ1, θ
′

2)
)

= 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 2ψi(θ
′

2, θ
′

2).

We therefore have that

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

⇔ ψ1(θ
′

2, θ
′

2) = 1.

Thus, for all ψ1 ∈ ∆(Θ2 × Θ2) such that ψ1(θ
′

2, θ
′

2) < 1, we have found y, y
′

∈ Y w
1 [θ1]

that satisfy the requirement for conditional NTI. If ψ1 is such that ψ1(θ
′

2, θ
′

2) = 1, then
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we define y : Θ2 → ∆(A) such that y(θ2) = y(θ
′

2) = b and y
′

: Θ2 → ∆(A) such that

y
′

(θ2) = y
′

(θ
′

2) = d. It is straightforward to confirm that y, y
′

∈ Y w
1 [θ1]. Since ψ1(θ

′

2, θ
′

2) = 1,

u1(y(θ
′

2), (θ1, θ
′

2)) = u1(b, (θ1, θ
′

2)) = 3 and u1(y
′

(θ
′

2), (θ1, θ
′

2)) = u1(d, (θ1, θ
′

2)) = 2, we obtain

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

.

Thus, if ψ1 is such that ψ1(θ
′

2, θ
′

2) = 1, then too we satisfy the requirement for conditional

NTI.

Second, we consider player 1 of payoff type θ
′

1. Then we define y : Θ2 → ∆(A) such that

y(θ2) = y(θ
′

2) = c and y
′

: Θ2 → ∆(A) such that y
′

(θ2) = y
′

(θ
′

2) = b. It is straightforward to

confirm that y, y
′

∈ Y w
1 [θ

′

1]. Fix ψ1 ∈ ∆(Θ2 ×Θ2). Now,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ
′

1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ
′

1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ
′

1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ
′

1, θ
′

2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 3ψi(θ
′

2, θ
′

2)

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′

1, θ̃2)
)

= ψ1(θ2, θ2)u1
(

y
′

(θ2), (θ
′

1, θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y
′

(θ
′

2), (θ
′

1, θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y
′

(θ2), (θ
′

1, θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y
′

(θ
′

2), (θ
′

1, θ
′

2)
)

= ψ1(θ2, θ2) + ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ2) + 2ψi(θ
′

2, θ
′

2).

This implies that for any ψ1 ∈ ∆(Θ2 ×Θ2),

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′

1, θ̃2)
)

.

Thus, we satisfy the requirement for conditional NTI.

Third, we consider player 1 of payoff type θ
′′

1 . Once again, we define y : Θ2 → ∆(A)

such that y(θ2) = y(θ
′

2) = c and y
′

: Θ2 → ∆(A) such that y
′

(θ2) = y
′

(θ
′

2) = b. It is
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straightforward to confirm that y, y
′

∈ Y w
1 [θ

′′

1 ]. Fix ψ1 ∈ ∆(Θ2 ×Θ2). Now

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′′

1 , θ̃2)
)

= ψ1(θ2, θ2)u1
(

y(θ2), (θ
′′

1 , θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y(θ
′

2), (θ
′′

1 , θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y(θ2), (θ
′′

1 , θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y(θ
′

2), (θ
′′

1 , θ
′

2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 3ψi(θ
′

2, θ
′

2)

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′′

1 , θ̃2)
)

= ψ1(θ2, θ2)u1
(

y
′

(θ2), (θ
′′

1 , θ2)
)

+ ψ1(θ2, θ
′

2)u1
(

y
′

(θ
′

2), (θ
′′

1 , θ2)
)

+ψ1(θ
′

2, θ2)u1
(

y
′

(θ2), (θ
′′

1 , θ
′

2)
)

+ ψ1(θ
′

2, θ
′

2)u1
(

y
′

(θ
′

2), (θ
′′

1 , θ
′

2)
)

= 2ψ1(θ
′

2, θ2) + 2ψi(θ
′

2, θ
′

2).

This implies that for any ψ1 ∈ ∆(Θ2 ×Θ2),

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′′

1 , θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′′

1 , θ̃2)
)

.

Thus, we satisfy the requirement for conditional NTI.

Fourth, we consider player 2 of payoff type θ2. Then we define y : Θ1 → ∆(A) such that

y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
2
a + 1

2
c and y

′

: Θ1 → ∆(A) such that y
′

(θ1) = y
′

(θ
′

1) = y(θ
′′

1 ) = b.

It is straightforward to confirm that y, y
′

∈ Y w
2 [θ2]. Fix ψ2 ∈ ∆(Θ2 ×Θ2). Now

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ2))

= ψ2(θ1, θ1)u2
(

y(θ1), (θ1, θ2)
)

+ ψ2(θ1, θ
′

1)u2
(

y(θ
′

1), (θ1, θ2)
)

+ ψ2(θ1, θ
′′

1 )u2(y(θ
′′

1 ), (θ1, θ2))

+ψ2(θ
′

1, θ1)u2
(

y(θ1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y(θ
′

1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2(y(θ
′′

1 ), (θ
′

1, θ2))

+ψ2(θ
′′

1 , θ1)u2
(

y(θ1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y(θ
′

1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2(y(θ
′′

1 ), (θ
′′

1 , θ2))

= 2(ψ1(θ1, θ1) + ψ1(θ1, θ
′

1) + ψ1(θ1, θ
′′

1 )) +
3

2
(ψ2(θ

′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ))

+2(ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 ))
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whereas

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ2))

= ψ2(θ1, θ1)u2
(

y
′

(θ1), (θ1, θ2)
)

+ ψ2(θ1, θ
′

1)u2
(

y
′

(θ
′

1), (θ1, θ2)
)

+ ψ2(θ1, θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ1, θ2))

+ψ2(θ
′

1, θ1)u2
(

y
′

(θ1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y
′

(θ
′

1), (θ
′

1, θ2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ
′

1, θ2))

+ψ2(θ
′′

1 , θ1)u2
(

y
′

(θ1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y
′

(θ
′

1), (θ
′′

1 , θ2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ
′′

1 , θ2))

= ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ).

This implies that for any ψ2 ∈ ∆(Θ1 ×Θ1),

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ2)) >
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ2)).

Thus, we satisfy the requirement for conditional NTI.

Finally, we consider player 2 of payoff type θ
′

2. Then we define y : Θ1 → ∆(A) such that

y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
2
b+ 1

2
d and y

′

: Θ1 → ∆(A) such that y
′

(θ1) = y
′

(θ
′

1) = y(θ
′′

1 ) = c.

It is straightforward to confirm that y, y
′

∈ Y w
2 [θ

′

2]. Fix ψ2 ∈ ∆(Θ1 ×Θ1). Then

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ
′

2))

= ψ2(θ1, θ1)u2
(

y(θ1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′

1)u2
(

y(θ
′

1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′′

1 )u2(y(θ
′′

1 ), (θ1, θ
′

2))

+ψ2(θ
′

1, θ1)u2
(

y(θ1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y(θ
′

1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2(y(θ
′′

1 ), (θ
′

1, θ
′

2))

+ψ2(θ
′′

1 , θ1)u2
(

y(θ1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y(θ
′

1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2(y(θ
′′

1 ), (θ
′′

1 , θ
′

2))

=
3

2
(ψ1(θ1, θ1) + ψ1(θ1, θ

′

1) + ψ1(θ1, θ
′′

1 )) +
3

2
(ψ2(θ

′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ))

+2(ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 ))

whereas

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ
′

2))

= ψ2(θ1, θ1)u2
(

y
′

(θ1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′

1)u2
(

y
′

(θ
′

1), (θ1, θ
′

2)
)

+ ψ2(θ1, θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ1, θ
′

2))

+ψ2(θ
′

1, θ1)u2
(

y
′

(θ1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′

1)u2
(

y
′

(θ
′

1), (θ
′

1, θ
′

2)
)

+ ψ2(θ
′

1, θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ
′

1, θ
′

2))

+ψ2(θ
′′

1 , θ1)u2
(

y
′

(θ1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′

1)u2
(

y
′

(θ
′

1), (θ
′′

1 , θ
′

2)
)

+ ψ2(θ
′′

1 , θ
′′

1 )u2(y
′

(θ
′′

1 ), (θ
′′

1 , θ
′

2))

= ψ2(θ1, θ1) + ψ2(θ1, θ
′

1) + ψ2(θ1, θ
′′

1 ).
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This implies that for any ψ2 ∈ ∆(Θ1 ×Θ1),

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ
′

2)) >
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ
′

2)).

Thus, we satisfy the requirement for conditional NTI.

We therefore conclude that f satisfies conditional NTI.

6.2 Finite Mechanisms

The SCF in the above example satisfies weak RM and conditional NTI, and hence is robustly

implementable in rationalizable strategies using the canonical mechanism constructed in The-

orem 5.5. The canonical mechanism, however, is countably infinite. If we restrict attention

to finite mechanisms, then the set of interim equilibria in every countable type space is

nonempty. Hence, robust implementation in interim equilibria becomes equivalent to robust

implementation in rationalizable strategies.

Proposition 6.6. The SCF f is robustly implementable in rationalizable strategies by a

finite mechanism Γ if and only if f is robustly implementable in interim equilibria by the

same mechanism Γ.

Proof. We have already argued that if f is robustly implementable in interim equilibria by

some mechanism, then it is robustly implementable in rationalizable strategies by the same

mechanism. To argue the converse, suppose f is robustly implementable in rationalizable

strategies by a finite mechanism Γ. Consider any type space T . First, because the mechanism

Γ is finite and Ti is countable for all i, there exists an interim equilibrium for the game (T ,Γ)

on every type space T .7 Second, suppose σ is an interim equilibrium of the game (T ,Γ).

If σ(t)[m] > 0 such that θ̂(t) = θ, then by Corollary 6.1 there exists a type space T
′

such

that m ∈
⋃

t
′
∈T

′ :θ̂(t′ )=θ B
∞(t

′

). Since Γ robustly implements f in rationalizable strategies,

g(m) = f(θ).

Bergemann and Morris (2011) show that an additional “robust measurability” condition

is necessary for robust implementation in interim equilibria using finite mechanisms. It thus

follows that robust measurability is also necessary for robust implementation in rational-

izable strategies using finite mechanisms. Robust measurability is generally not related to

weak RM.8 It is therefore an additional restriction on robust implementation in rational-

izable strategies when using finite mechanisms. However, for the class of “single crossing

7For a proof of this statement, see Footnote 14 in Bergemann et al. (2017).
8We can show this using Examples 1 and 2 in Section 8.3 in Bergemann and Morris (2007).
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aggregator” environments, robust measurability is equivalent to strict RM (see section 5 in

Bergemann and Morris (2011) for details). In such environments, any responsive SCF satis-

fying strict RM can be robustly implemented in interim equilibria using a direct mechanism

in which players report their payoff types (Bergemann and Morris, 2009). Recall that strict

RM is equivalent to weak RM for responsive SCFs. Thus, it follows that for responsive SCFs,

weak RM characterizes robust implementation in rationalizable strategies in single crossing

aggregator environments even when the designer is restricted to finite mechanisms.

In a complete information environment with lotteries and transfers, Chen, Kunimoto,

Sun, and Xiong (2020) show that Maskin monotonicity*, a strengthening of Maskin monot-

nicity, is a necessary and sufficient condition for implementation in rationalizable strategies

by a finite mechanism. They also show that Maskin monotonicity* is strictly stronger than

Maskin monotonicity, which is a necessary and sufficient condition for Nash implementation

by a finite mechanism in the same class of environments with transfers and lotteries (See

Chen, Kunimoto, Sun, and Xiong (2019)). Therefore, if we restrict our attention to finite

mechanisms in a complete information setup, implementation in rationalizable strategies

is more restrictive than Nash implementation. This exhibits a contrast with our Proposi-

tion 6.6, which establishes the equivalence between robust implementation in rationalizable

strategies and that in interim equilibria in finite mechanisms. In other words, the robustness

consideration within the class of finite mechanisms makes the difference between rationaliz-

able strategies and equilibria moot.

7 Conclusion

We showed that robust implementation in rationalizable strategies is equivalent to weak

rationalizable implementation. We utilized this equivalence result to prove that weak RM

is necessary and almost sufficient for robust implementation in rationalizable strategies.

The equivalence result also helped us establish that if a mechanism robustly implements

an SCF in interim equilibria, then the same mechanism robustly implements the SCF in

rationalizable strategies too. However, the converse is not necessarily true if the SCF is non-

responsive and the designer is allowed to use countably infinite mechanisms. We argued that

this gap between robust implementation in interim equilibria and robust implementation in

rationalizable strategies is explained by the more stringent nonemptiness requirement under

the former concept because the two concepts impose the same uniqueness requirement. An

open question is whether there is any gap between the two concepts for the case of responsive

SCFs.
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