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Abstract
Most of existing correlation filter-based tracking approaches
only estimate simple axis-aligned bounding boxes, and very
few of them is capable of recovering the underlying similar-
ity transformation. To tackle this challenging problem, in this
paper, we propose a new correlation filter-based tracker with
a novel robust estimation of similarity transformation on the
large displacements. In order to efficiently search in such a
large 4-DoF space in real-time, we formulate the problem
into two 2-DoF sub-problems and apply an efficient Block
Coordinates Descent solver to optimize the estimation result.
Specifically, we employ an efficient phase correlation scheme
to deal with both scale and rotation changes simultaneously in
log-polar coordinates. Moreover, a variant of correlation filter
is used to predict the translational motion individually. Our
experimental results demonstrate that the proposed tracker
achieves very promising prediction performance compared
with the state-of-the-art visual object tracking methods while
still retaining the advantages of high efficiency and simplicity
in conventional correlation filter-based tracking methods.

Introduction
Visual object tracking is one of the fundamental problems in
computer vision with a variety of real-world applications,
such as video surveillance and robotics. Although having
achieved substantial progress during past decade, it is still
difficult to deal with the challenging unconstraint environ-
mental variations, such as illumination changes, partial oc-
clusions, motion blur, fast motion and scale variations.

Recently, correlation filter-based methods have attracted
continuous research attention (Mueller, Smith, and Ghanem
2017; Ma et al. 2015a; 2015b; Zhang et al. 2017; Li, Xu, and
Zhu 2017) due to its superior performance and robustness in
contrast to traditional tracking approaches. However, with
correlation filters, little attention has been paid on how to ef-
ficiently and precisely estimate scale and rotation changes,
which are typically represented in a 4-Degree of Freedom
(DoF) similarity transformation. To deal with scale changes
of the conventional correlation filter-based trackers, (Danell-
jan et al. 2017b) and (Li and Zhu 2014) extended the 2-
DoF representation of original correlation filter-based meth-
ods to 3-DoF space, which handles scale changes in object

*Corresponding author.
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: The similarity geometric transformation represen-
tation achieves more accurate and robust tracking results.

appearance by introducing a pyramid-like scale sampling
ensemble. Unfortunately, all these methods have to inten-
sively resample the image in order to estimate the geomet-
ric transformation, which incurs huge amounts of compu-
tational costs. In addition, their accuracy is limited to the
pre-defined dense sampling of the scale pool. This makes
them unable to handle the large displacement that is out of
the pre-defined range in the status space. Thus, none of these
methods is guaranteed to the optimum of the scale estima-
tion. On the other hand, rotation estimation for the corre-
lation filter-based methods has not been fully exploited yet,
since it is very easy to drift away from the inaccurate rotation
predictions. This greatly limits their scope of applications in
various wide situations. Table 1 summarizes the properties
of several typical trackers.

To address the above limitations, in this paper, we pro-
pose a novel visual object tracker to estimate the similarity
transformation of the target efficiently and robustly. Unlike
existing correlation filter-based trackers, we formulate the
visual object tracking into a status space searching problem
in a 4-DoF status space, which gives a more appropriate ge-
ometric transformation parameterization for the target. As
shown in Fig. 1, the representation in similarity transforma-
tion describes the object more correctly and helps to track
the visual object more accurately. To yield real-time tracking
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Table 1: Comparison with different kinds of trackers.

Type Trackers Sample Num. Scale Rot. Pretrain Performance GPU FPS

Traditional
Methods

Lucas-Kanade based (Baker and Matthews 2004) Depends
√ √

× Fair × Depends
Keypoint based (Nebehay and Pflugfelder. 2014) Depends

√ √
× Fair × 1~20

Particle filter-based (Ross et al. 2008; Ji 2012) 300~600
√ √

× Fair × 1~20
Deep
Learning

MDNet (Nam and Han 2016) 250
√

×
√

Excellent
√

~1
SiamFC (Bertinetto et al. 2016) 5

√
×

√
Excellent

√
15~25

Correlation
Filter

original CF (Henriques et al. 2015; Bolme et al. 2010) 1 × × × Fair × 300+
DSST (Danelljan et al. 2017b),SAMF (Li and Zhu 2014) 7~33

√
× × Good × 20~80

Ours 2~8
√ √

× Excellent × 20~30

performance in the 4-DoF space, we propose to tackle the
optimization task of estimating the similarity transformation
by applying an efficient Block Coordinates Descent (BCD)
solver. Specifically, we employ an efficient phase correlation
scheme to deal with both scale and rotation changes simul-
taneously in log-polar coordinates and utilize a fast variant
of correlation filter to predict the translational motion. This
scheme sets our approach free from intensive sampling, and
greatly boosts the performance in the 4-DoF space. More
importantly, as BCD searches the entire similarity trans-
formation space, the proposed tracker achieves very accu-
rate prediction performance in large displacement motion
while still retaining advantages of the efficiency and sim-
plicity in conventional correlation filter. Experimental re-
sults demonstrate that our approach is robust and accurate
for both generic object and planar object tracking.

The main contributions of our work are summarized as
follows: 1) a novel framework of similarity transformation
estimation which only samples once for correlation filter-
based trackers; 2) a joint optimization to ensure the stabil-
ity in translation and scale-rotation estimation; 3) a new ap-
proach for scale and rotation estimation with efficient im-
plementation which can improve a family of existing corre-
lation filter-based trackers (our implementation is available
at https://github.com/ihpdep/LDES).

Related Work
Traditionally, there are three genres to handle scale and rota-
tion changes. The most widely used approach is to iteratively
search in an affine status space with gradient descent-based
method (Baker and Matthews 2004; Song et al. 2016). How-
ever, they are easy to get stuck at local optima, which are not
robust for large displacements. Trackers based on particle
filter (Ross et al. 2008; Ji 2012; Zhang, Xu, and Yang 2017;
Li, Zhu, and Hoi 2015) search the status space stochastically
by observing the samples, which are employed to estimate
the global optima in the status space. Their results are highly
related to the motion model that controls the distribution
of the 6-DoF transformation. This makes the tracker per-
form inconsistently in different situations. Another choice
is to take advantage of keypoint matching to predict the
geometric transformation (Nebehay and Pflugfelder. 2014;
Zuysal et al. 2010). These keypoint-based trackers first de-
tect feature points, and then find the matched points in the
following frames. Naturally, they can handle any kind of
transformations with the matched feature points. Due to the
lack of global information on the whole target, these track-

ers cannot effectively handle the general objects (Kristan et
al. 2015).

Our proposed method is highly related to correlation
filter-based trackers (Henriques et al. 2015; Bolme et al.
2010). (Danelljan et al. 2017b) and (Li and Zhu 2014) ex-
tend the original correlation filter to adapt the scale changes
in the sequences. (Bertinetto et al. 2015) combines color
information with correlation filter method in order to build
a robust and efficient tracker. Later, (Danelljan et al. 2015)
and (Galoogahi, Fagg, and Lucey 2017) decouple the rela-
tionship between the size of filter and searching range. These
approaches enable the correlation filter-based methods to
have larger searching range while maintaining a relative
compact presentation of the learned filters. (Mueller, Smith,
and Ghanem 2017) learns the filter with the additional neg-
ative samples to enhance the robustness. Note that all these
approaches emphasize on the efficacy issue, which employs
either DSST or SAMF to deal with the scale changes. How-
ever,these methods cannot deal with rotation changes.

Fourier Mellin image registration and its
variants (Ravichandran and Casasent 1994;
Zokai and Wolberg 2005) are also highly related to
our proposed approach. These methods usually convert both
the test image and template into log-polar coordinates, in
which the relative scale and rotation changes turn into the
translational displacement. (Ravichandran and Casasent
1994) propose a rotation-invariant correlation filter to detect
the same object from a god view. (Zokai and Wolberg
2005) propose an image registration method to recover
large-scale similarity in spatial domain. Recently, (Li and
Liu 2016) and (Zhang et al. 2015) introduce the log-polar
coordinates into correlation filter-based method to estimate
the rotation and scale. Compared with their approaches, we
directly employ phase correlation operation in log-polar
coordinates. Moreover, an efficient Block Coordinates
Descent optimization scheme is proposed to deal with large
motions with real-time performance.

Our Approach
In this paper, we aim to investigate robust visual object
tracking techniques to deal with challenging scenarios es-
pecially when there are large displacements. We propose
a novel robust object tracking approach, named ”Large-
Displacement tracking vis Estimation of Similarity (LDES),
where the key idea is to enable the tracker with capability in
2D similarity transformation estimation in order to handle
large displacement. Figure 2 gives an overview of the pro-
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Figure 2: Overview of our proposed approach in estimation of similarity transformation.

posed LDES approach. In the following, we first formally
formulate the problem as an optimization task, and then di-
vide it into two sub-problems, translation estimation and
scale-rotation prediction. We solve the two sub-problems it-
eratively to achieve a global optimal.

Problem Formulation
Given an image patch xi sampled from the i-th frame Ii in a
video sequence, the key idea of our proposed approach is to
estimate the similarity transformation Sim(2) in 2D image
space of the tracked traget. To this end, we need to predict
a 4-DoF transformation status vector τi ∈ R4 based on the
output of the previous frame. Generally, τi is obtained by
optimizing the following score function:

τi = arg max
τ∈Sim(2)

f(W(Ii, τ);hi−1), (1)

where f(·) is a score function with the model hi−1 learned
from the previous frames I1:i−1. W is an image warping
function that samples the image Ii with respect to the simi-
larity transformation status vector τ .

The 2D similarity transformation Sim(2) deals with 4-
DoF {tx, ty, θ, s} motion, where {tx, ty} denotes the 2D
translation. θ denotes the in-plane rotation angle, and s rep-
resents the scale change with respect to the template. Obvi-
ously, Sim(2) has a quite large searching space, which is
especially challenging for real-time applications. A typical
remedy is to make use of effective sampling techniques to
greatly reduce the searching space (Doucet, de Freitas, and
Gordon 2001).

Since the tracking model hi−1 is learned from the previ-
ous frame, which is kept constant during the prediction. The
score function f is only related to the status vector τ . We
abuse the notation for simplicity:

fi(τ) = f(W(Ii, τ);hi−1). (2)
Typically, most of the conventional correlation filter-

based methods only take into account of in-plane translation
with 2-DoF, where the score function fi can be calculated
completely and efficiently by taking advantage of Convolu-
tion Theorem. To search the 4-DoF similarity space, the total
number of candidate status exponentially increases.

Although Eq. 1 is usually non-convex, the optimal trans-
lation is near to the one in the previous frame in object track-
ing scenarios. Thus, we assume that the function is convex
and smooth in the nearby region, and split the similarity
transformation Sim(2) into two blocks, t = {tx, ty} and
ρ = {θ, s}, respectively. We propose a score function fi(τ),
which is the linear combination of three separate parts:

fi(τ ;hi−1) = ηft(t;ht) + (1−η)fρ(ρ;hρ) +g(t, ρ), (3)

where η is an interpolation coefficient. ft is the translational
score function, and fρ denotes the scale and rotation score
function. g(t, ρ) = exp(|τ − τi−1|2)−1 is the motion model
which prefers the location nearby the last status. Please note
that we omit the subscript i− 1 of ht and hρ for simplicity.

Eq. 3 is a canonical form which can be solved by the
Block Coordinate Descent Methods (Richtárik and Takáč
2014; Nesterov 2010). We optimize the following two sub-
problems alternatively to achieve the global solution:

arg max
t
g(t, ρ∗) + ηft(t), (4)

arg max
ρ

g(t∗, ρ) + (1− η)fρ(ρ), (5)

ρ∗ and t∗ denote the local optimal estimation result from
previous iteration, which is fixed for the current subproblem.
Since g can be calculated easily, the key to solving Eq. 1 in
real-time is to find the efficient solvers for the above two
subproblems, fρ and ft.

Translation Estimation by Correlation Filter
Translation vector t can be effectively estimated by Discrim-
inative Correlation Filters (DCF) (Henriques et al. 2015;
Mueller, Smith, and Ghanem 2017). A large part of its
success is mainly due to the Fourier trick and translation-
equivariance within a certain range, which calculates the ft
in the spatial space exactly. According to the property of
DCF, the following equation can be obtained:

ft(W(I, t);ht) =W(ft(I;ht), t). (6)

Since the calculation of arg maxtW(ft(I;ht), t) is unre-
lated toW , we can directly obtain the transformation vector
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t from the response map. Thus, the overall process is highly
efficient. The score function ft can be obtained by

ft(z) = F−1
∑
k

ĥt
(k)
� Φ̂(k)(z), (7)

where z indicates a large testing patch. F−1 denotes the
inverse Discrete Fourier Transformation operator, � is the
element-wise multiplication and ·̂ indicates the Fourier
space. ht

(k) and Φ(k) represent the k-th channel of the linear
model weights and the feature map, respectively. The whole
computational cost is O(KN logN), where K is the chan-
nel number and N is the dimension of the patch z.

To this end, we need to learn a model ht in the process.
Note that any quick learning method can be used. Without
loss of generality, we briefly review a simple correlation fil-
ter learning approach (Bolme et al. 2010) as follows:∥∥∥∥∥∑

k

Φ(k)(x) ? ht
(k) − y

∥∥∥∥∥
2

2

+ λ1‖ht‖22, (8)

where ? indicates the correlation operator and λ1 is the reg-
ularization filters. y is the desired output, which is typically
a Gaussian-like map with maximum value of one. Accord-
ing to Parseval’s theorem, the formulation can be calculated
without correlation operation. By stalling each channel and
vectorizing the matrix, Eq. 8 can be reformulated as a nor-
mal ridge regression without correlation operation. Thus, the
solution to Eq. 8 can expressed as follows:

ĥt = (X̂T X̂ + λ1I)
−1X̂T ŷ, (9)

where X̂ = [diag(Φ̂(1)(x))T , ...,diag(Φ̂(K)(x))T ] and
ĥt = [ĥ

(1)T
t , ..., ĥ

(K)T
t ]T . In this form, we need to solve

a KD × KD linear system, where D is the dimension of
testing patch x.

To solve our sub-problem efficiently, we assume that ev-
ery channel is independent. Thus, by applying Parseval’s
theorem, the whole system can be simplified as element-
wise operation. The final solution can be derived as below:

ĥ
(k)
t = α̂� Ψ̂(k)

= (ŷ �−1 (
∑
k

V∗k �Vk + λ))�V∗k,
(10)

where α denotes the parameters in dual space and Ψ indi-
cates the model sample in feature space. Vk is the feature
data, Φ̂(k)(x) and �−1 is the element-wise division. Thus,
the solution can be very efficiently obtained with a compu-
tational cost of O(KD). With Eq. 10, the computational
cost of Eq. 8 is O(KD logD) which is dominated by the
FFT operation. For more details, please refer to the seminal
work (Henriques et al. 2015; Kiani, Sim, and Lucey 2013;
Mueller, Smith, and Ghanem 2017).

Scale and Rotation in Log-polar Coordinates
We introduce an efficient method to estimate scale and rota-
tion changes simultaneously in the log-polar coordinates.

Log-Polar Coordinates Suppose an image I(x, y) in the
spatial domain, the log-polar coordinates I ′(s, θ) can be
viewed as a non-linear and non-uniform transformation of
the original Cartesian coordinates. Like polar coordinates,
the log-polar coordinates needs a pivot point as the pole and
a reference direction as the polar axis in order to expend the
coordinates system. One of the dimension is the angle be-
tween the point and the polar axis. The other is the logarithm
of the distance between the point and the pole.

Given the pivot point (x0, y0) and the reference direction
r in Cartesian coordinates, the relationship between Carte-
sian coordinates and Log-polar coordinates can be formally
expressed as follows:

s = log(
√

(x− x0)2 + (y − y0)2)

θ = cos−1(
< r, (x− x0, y − y0) >

||r||
√

(x− x0)2 + (y − y0)2
).

(11)

Usually, the polar axis is chosen as the x-axis in Carte-
sian coordinates, where θ can be simplified as tan−1( y−y0x−x0

).
Suppose two images are related purely by rotation θ̃ and
scale es̃ which can be written as I0(es cos θ, es sin θ) =

I1(es+s̃ cos(θ+θ̃), es+s̃ sin(θ+θ̃)) in Cartesian coordinates.
The log-polar coordinates enjoy an appealing merit that the
relationship in the above equation can be derived as the fol-
lowing formula in log-polar coordinates:

I ′0(s, θ) = I ′1(s+ s̃, θ + θ̃), (12)

where the pure rotation and scale changes in Log-polar coor-
dinates can be viewed as the translational moving along the
axis. As illustrated in Fig. 3, this property naturally can be
employed to estimate the scale and rotation changes of the
tracked target.

Scale and Rotation Changes By taking advantage of the
log-polar coordinates, Eq. 5 can be calculated very effi-
ciently. Similarly, scale-rotation invariant can be hold as in
Eq. 6. The scale-rotation can be calculated as below:

fρ(W(Ii, ρ);hρ) =W(fρ(Ii;hρ), ρ
′), (13)

where ρ′ = {θ′, s′} is the coordinates of ρ in log-polar
space. s = es

′ log(W/2)/W and θ = 2πθ′/H . H and W is
the height and width of the image Ii, respectively. Similar to
estimating the translation vector t by ft, the whole space of
fρ can be computed at once through the Fourier trick:

fρ(z) = F−1
∑
k

ĥ(k)
ρ � Φ̂(k)(L(z)), (14)

where L(x) is the log-polar transformation function, and
hρ is a linear model weights for scale and rotation estima-
tion. Therefore, the scale and rotation estimation can be ob-
tained very efficiently without any transformation sampling
W . Note that the computational cost of Eq. 14 is unrelated
to the sample numbers of scale or rotation. This is extremely
efficient compared to the previous enumerate methods (Li
and Zhu 2014; Danelljan et al. 2017b)

To obtain the ĥρ efficiently, we employ the phase-
correlation to conduct the estimation,

ĥρ = Υ̂∗ �−1 |Υ̂� Φ̂(L(x))|, (15)
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Figure 3: The 3rd and 4th charts are corresponding Log-polar coordinates of the 1st and 2nd images. 2nd image is a 30◦

rotation and 1.2 times scale version of the first image. The last two charts are the phase correlation response maps. In log-polar
coordinates, the response is a peak while it is noisy in Cartesian coordinates.

where Υ =
∑
j βjΦ(L(xj)) is the linear combination of

previous feature patch and | · | is the normal operation. In-
tuitively, we compute the phase correlation between current
frame and the average of previous frames to align the image.

Implementation Details
In this work, we alternatively optimize Eq. 4 and Eq. 5 until
f(x) does not decrease or reaches the maximal number of
iterations. After the optimization, we update the correlation
filter model as

Ψ̂i = (1− λφ)Ψ̂i−1 + λφΦ̂(xi), (16)

where λφ is the update rate of the feature data model in
Eq. 10. The kernel weight in dual space is updated as be-
low:

α̂i =(1− λα)α̂i−1

+λα(ŷ �−1 (
∑
k

Φ̂(k)(xi)
∗ � Φ̂(k)(xi) + λ1)), (17)

where λα is the update of the kernel parameter in dual space
of Eq. 10. Although there exist some theoretical sounding
updating schemes (Kiani, Sim, and Lucey 2015; Danelljan
et al. 2017a; 2015), the reason we use linear combination is
due to its efficiency and the comparable performance.

Meanwhile, we also update the scale and rotation model
as a linear combination,

Υi = (1− λw)Υi−1 + λwΦ(L(xi)), (18)

where λw can be explained as an exponentially weighted
average of the model βjΦ(L(xj)). We update the model
upon Φ instead of xi because Φ(

∑
i L(xi)) is not defined.

The logarithm function in log-polar transformation intends
to blur the image due to the nonuniform sampling. This will
decrease the visual information in the original images. To
alleviate the artificial effects casued by discretization, we
interpolate the ft and fρ with a centroid-based method to
obtain sub-pixel level precision. In addition, we use differ-
ent size of z in testing and x in training since a larger search
range (N > D) help to improve the robustness for the so-
lution to sub-problems. To match the different dimension N
and D, we pad h with zero in spatial space.

Experiments
In this section, we conduct four different experiments to
evaluate our proposed tracker LDES comprehensively.

Experimental Settings
All the methods were implemented in Matlab and the ex-
periments were conducted on a PC with an Intel i7-4770
3.40GHz CPU and 16GB RAM. We employ HoG feature
for both translational and scale-rotation estimation, and the
extra color histogram is used to estimate translational. All
patch is multiplied a Hann window as suggested in (Bolme
et al. 2010). η is 0.15 and λ is set to 1e−4. λφ and λα are both
set to 0.01. λω is 0.015. The size of learning patch D is 2.2
larger than the original target size. Moreover, the searching
window size N is about 1.5 larger than the learning patch
size D. For scale-rotation estimation, the phase correlation
sample size is about 1.8 larger than the original target size.
All parameters are fixed in the following experiments.

Experiments on Proposed Scale Estimator
As one of the contributions in our work is a fast scale esti-
mator, we first evaluate our proposed log-polar based scale
estimator on OTB-2013 and OTB-100 dataset (Wu, Lim, and
Yang 2013; 2015).Three baseline trackers are involved in the
scale estimation evaluation. They are SAMF (Li and Zhu
2014), fDSST (Danelljan et al. 2017b) and ECO (Danell-
jan et al. 2017a). For fair comparison, we implement three
counterpart-trackers including fDSST-LP, SAMF-LP and
ECO-LP, which replace the original scale algorithm with our
proposed scale estimator.

In Fig. 5, these variant trackers with our scale compo-
nent outperform their original implementation. This indi-
cates that our proposed scale estimator has superior per-
formance compared with current state-of-the-art scale es-
timator. Specifically, ECO-LP achieves 69.1% and 67.3%
in OTB-2013 and OTB-2015 respectively, compared with
its original CPU implementation’s 67.8% and 66.8%. This
proves the effectiveness of our proposed scale method since
it can even improve the state-of-the-art tracker with a simple
replacement of the scale component.

Since the proposed scale estimator only samples once in
each frame, the most significant part is the efficiency of scale
estimating. In Table 2, the proposed approach has a 3.8X+
speedup on SAMF, and ECO, which obtains a significant
improvement on efficiency. Even with fDSST which is de-
signed in efficiency with many tricks, our method can still
reduce its computational time. This strongly supports that
our proposed scale estimator is superior to current state-of-
the-art scale estimating approaches. In addition, our method
is very easy to implement and plug-in to other trackers.
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Figure 4: The overall and scale performance in precision and success plots on OTB-2013 and OTB-100 dataset.
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Figure 5: Evaluation of tracking success rate improvements
over the original implementations of different trackers en-
hanced by the proposed scale estimator.

Comparison with Correlation Filter Trackers
With efficient and effective scale estimator, our proposed
tracker performs very promising in different situations. We
select seven state-of-the-art Correlation Filter-based trackers
as reference methods, including ECO-HC (Danelljan et al.
2017a), SRDCF (Danelljan et al. 2015), Staple (Bertinetto
et al. 2015), SAMF, fDSST, BACF (Galoogahi, Fagg, and
Lucey 2017), and KCF (Henriques et al. 2015). We initial-
ize the proposed tracker with axis-aligned bounding box and
ignore the rotation parameter in the similarity transforma-
tion as tracking output since the benchmarks only provide
axis-aligned labels.

In Fig. 4, it can be clearly seen that our proposed method
outperforms most of the state-of-the-art correlation filter-
based trackers and obtains 67.7% and 81.0% in OTB-2013
success and precision plots, and 63.4% and 76.0% in OTB-
100 plots respectively. ECO-HC achieves better results in
OTB-100. However, we can see that our method is more ac-
curate above 0.6 overlap threshold in success plot and com-
parable in the precision plot. The reason is that introducing
rotation improves the accuracy but also enlarges the search
space and hurts the robustness when large deformation oc-
curs. In general, our method is very promising in generic
object tracking task.

The proposed approach maintains 20 fps with similarity
estimation and is easy to implement due to its simplicity.
Moreover, our no-BCD version tracker achieves 82 fps in the
benchmark while stall maintains comparable performance
(67.5% and 62.2% accuracy in OTB-2013 and OTB-100, re-
spectively).

Please note that our proposed LDES is quite stable in

Table 2: Evaluation of speedup results on different track-
ers achieved by applying the proposed Log-Polar (LP) based
scale estimator.

Trackers FPS Trackers FPS Speedup
fDSST 101.31 fDSST-LP 112.77 1.11X
SAMF 20.95 SAMF-LP 86.75 4.14X
ECO 2.58 ECO-LP 9.88 3.82X

searching the 4-DoF status space. Introducing rotation gives
the tracker more status choice in tracking process while the
benchmark only provides axis-aligned labels which make
the performance less robust in OTB-100. However, our pro-
posed tracker still ranks 1st and 2nd in OTB-2013 and OTB-
100 respectively, and beats most of the other correlation
filter-based trackers.

Comparison with State-of-the-Art trackers on POT
To better evaluate our proposed approach to rotation estima-
tion, we conduct an additional experiment on POT bench-
mark (Liang, Wu, and Ling 2018) which is designed to eval-
uate the planar transformation tracking methods. The POT
dataset contains 30 objects with 7 different categories which
yield 210 videos in total. Alignment error and homography
discrepancy are employed as the evaluation metrics. In ad-
dition, six state-of-the-art trackers and two rotation-enabled
trackers are involved. They are ECO-HC, ECO (Danelljan et
al. 2017a), MDNet (Nam and Han 2016), BACF (Galoogahi,
Fagg, and Lucey 2017), ADNet (Yun et al. 2017), Siame-
seFC (Bertinetto et al. 2016), IVT (Ross et al. 2008) and
L1APG (Ji 2012). To illustrate the POT plots appropriately,
we set the maximal value of the alignment error axis from
20 to 50 pixels in precision plot and utilize the AUC as the
metrics for ranking in both precision and homography dis-
crepancy plots as same as OTB (Wu, Lim, and Yang 2015).

Fig. 6 shows that our proposed tracker, with hand-craft
features only, performs extremely well in all sequences at-
tributed plots and even outperforms deep learning based
methods with a large margin. In Fig. 6a, our LDES achieves
50.64% and 51.31% compared with second rank tracker
ECO’s 35.99% and 37.79% in precision and success rate
plots within all 210 sequences, which is a 13%+ perfor-
mance improvement. Since the POT sequences are quite dif-
ferent from OTB, it indicates our proposed method has better
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Figure 6: Precision and success plots on the POT dataset.

Precision Scale Rotation Persp. Dist. Motion Blur Occlusions Out of View Unconstrained ALL
LDES 0.7858 0.6986 0.2807 0.1699 0.6277 0.5663 0.4159 0.5064

LDES-NoBCD 0.6461 0.6898 0.2528 0.1595 0.6679 0.5507 0.3759 0.4775
Success Scale Rotation Persp. Dist. Motion Blur Occlusions Out of View Unconstrained ALL
LDES 0.5298 0.6778 0.3339 0.44 0.5947 0.5629 0.4526 0.5131

LDES-NoBCD 0.4724 0.6849 0.3215 0.43 0.6392 0.5615 0.4353 0.5064

Table 3: Comparison in all 7 categories attributed videos on POT benchmark.

generalization capabilities compared with pure deep learn-
ing based approaches in wide scenarios. It also shows that
our proposed method is able to search the 4-DoF similarity
status simultaneously, efficiently and precisely.

Moreover, our method ranks 1st in almost all other plots.
It not only validates the effectiveness of our proposed rota-
tion estimation but also shows the superiority of our method
compared with traditional approaches. In Fig. 6d, we argue
that our proposed log-polar based scale estimation is at least
comparable with mainstream methods in performance.

BCD Framework Evaluation on POT
To verify the proposed framework with Block Coordinate
Descent (BCD), we implement an additional variant, named
LDES-NoBCD, which turns off the BCD framework and
only estimates the object status once in each frame. We
conduct comparison experiments on POT benchmark with
LDES and LDES-NoBCD.

In Table 3, LDES performs better than its No BCD ver-
sion in most of the categories. Specifically, BCD contributes
more performance in scale attributed videos and uncon-
strained videos. LDES achieves 0.7858 and 0.5298 in scale
compared with LDES-NoBCD’s 0.6461 and 0.4724, which
is about 14% improvement in precision plot and 5% in
success plot, respectively. This indicates that the proposed
framework ensures the stable searching in the 4-DoF space.

In rotation column,the ranks in precision and success
rate metrics are inconsistent. The reason is that rotation at-
tributed videos contain pure rotation changes. This gives ro-
tation estimation a proper condition to achieve a promising
result. The only category that LDES performs inferior is oc-
clusion attributed videos. When the occlusion occurs, BCD
framework tries to find the best status of the templated ob-
ject while the original object is being occluded and cannot
be seen properly. This leads the algorithm to an inferior sta-
tus. In contrast, No-BCD version algorithm does not search
an optimal point in the similarity status space.

Conclusion
In this paper, we proposed a novel visual object tracker for
robust estimation of similarity transformation with corre-
lation filter. We formulated the 4-DoF searching problem
into two 2-DoF sub-problems and applied a Block Coordi-
nates Descent solver to search in such a large 4-DoF space
with real-time performance on a standard PC. Specifically,
we employed an efficient phase correlation scheme to deal
with both scale and rotation changes simultaneously in log-
polar coordinates and utilized a fast variant of correlation
filter to predict the translational motion. Experimental re-
sults demonstrated that the proposed tracker achieves very
promising prediction performance compared with the state-
of-the-art visual object tracking methods.
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