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The subtle balance of electronic correlations, crystal field splitting, and spin—orbit
coupling in layered Ir** oxides can give rise to novel electronic and magnetic phases.
Experimental progress in this field relies on the synthesis of epitaxial films of these
oxides. However, the growth of layered iridates with excellent structural quality is
a great experimental challenge. Here we selectively grow high quality single-phase
films of SrpIrOy4, Sr3Ir;O07, and SrlrO3 on various substrates from a single Sr3Ir;O7
target by tuning background oxygen pressure and epitaxial strain. We demonstrate
a complex interplay between growth dynamics and strain during thin film deposi-
tion. Such interplay leads to the stabilization of different phases in films grown on
different substrates under identical growth conditions, which cannot be explained by
a simple kinetic model. We further investigate the thermoelectric properties of the
three phases and propose that weak localization is responsible for the low temperature
activated resistivity observed in SrlrO3; under compressive strain. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5042836

Transition-metal oxides with partially filled d-electron states exhibit exceptionally rich electronic
and magnetic phase diagrams.!~> Strong Coulomb interactions in narrow 3d-bands can lead to Mott
insulators’ ground states. Moving down into 5d transition metal ions, the spatial extent of the orbitals
increases, resulting in a stronger 5d—0:2p overlap. This widens the electronic bands, thus reducing
electronic correlations, whereas the contribution of the crystal-field energy, A, increases. Moreover,
the higher atomic number results in a significant contribution of the spin—orbit coupling (SOC) energy.
As aresult, 5d-iridium (Ir*") oxides constitute a family of materials, in which SOC, A, and electronic
correlations present a comparable magnitude. Within this context, it has been proposed that SOC
splits the threefold degenerate #;, band in SryIrO4 into a lower Jegr = 3/2 band and a half-filled
Jef = 1/2 band. Coulomb interactions or additional structural distortions introduce further splitting
in that narrow Jegr = 1/2 band, opening up a charge gap, which can be manipulated by epitaxial
strain.*~13

The Ruddlesden-Popper (RP) series of strontium iridates, Sr;411r,03,41, features a localized-
to-itinerant crossover from that insulating ground state of SrpIrO4 (with a two-dimensional IrOg
corner-sharing octahedral network characteristic of n = 1) to a correlated metallic state in the three-
dimensional perovskite SrIrO; (n = 00).!* This suggests the possibility of fine-tuning the charge gap
across Sr,111r,03,+1 by growing high quality epitaxially strained thin films. Theoretically, tensile

3araceli.gutierrez@urjc.es

O
2166-532X/2018/6(9)/091101/10 6,091101-1 © Author(s) 2018 @ [


https://doi.org/10.1063/1.5042836
https://doi.org/10.1063/1.5042836
https://doi.org/10.1063/1.5042836
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5042836
mailto:araceli.gutierrez@urjc.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5042836&domain=pdf&date_stamp=2018-09-07

091101-2 Gutiérrez-Llorente et al. APL Mater. 6, 091101 (2018)

strain brings about an increase of the Ir—O-Ir bond angle that could favour larger bandwidths and
conductivity, at least for n = 1.!' In such a case, Serrao et al.'> proposed that the charge gap in
Sr>IrO4 depends on the ratio c/a of lattice parameters. But, as n increases, the hopping along the
c-axis becomes more relevant, and thus such a simple analysis might be no longer adequate for other
members of the RP series.

High-quality films are required to elucidate these compelling questions, making the precise
control of the growth process crucial. But, as the unit cell of each member of the RP series is a
superlattice that consists of ordered sequences of perovskite layers (SrlrO3;) sandwiched between
two rock salt layers (SrO) along the c crystallographic axis, intergrowth of different members is
frequently found.'>! This renders the growth of such artificial layered phases a great experimental
challenge, and their growth mechanisms, intriguing.!”-!3

Here we report the selective growth of high quality single-phase films of Sr,IrOy4, Sr3Ir,O7, and
SrIrO3 by pulsed laser deposition (PLD) from a single polycrystalline Sr3Ir,O7 target on substrates
that impose different signs and degrees of strain. The growth of RP phases on SrTiO3 substrates from
a SrIrO3 or Sr,IrQy target has been reported by Nishio ef al.'® and by Liu ef al.,?° respectively. In
this work, unlike these previous studies, we explore the impact of the strain imposed by the substrate
on the growth of different phases. We demonstrate a complex interplay between strain and oxygen
pressure during growth that can lead to the stabilization of different RP phases in films grown on
different substrates under identical deposition conditions of laser fluence, substrate temperature, and
background oxygen pressure. We also discuss the effect of strain, oxygen pressure, and dimensionality
on the temperature dependence of thermoelectric power, electrical resistivity, and magnetization of
these materials.

We grew 20 nm thick films of Sr;411Ir,03,4+1 with n = 1, 2, and oo on (001)SrTiO3 (STO),
(001)(LaAlO3)p.3(SrpAlTaOg)p7 (LSAT), and (110)GdScO3 (GSO) substrates by PLD from a
single polycrystalline target of Sr3Ir,O;. The laser fluence was optimized at ~1 J/cm? and
kept constant throughout the work. (See the supplementary material for a detailed experimental
description).

Off-stoichiometric transfer of materials from a multicomponent oxide target to the substrate in
pulsed PLD is an undeniable fact.'®?>% It is widely accepted that the angular distribution of the
species attaining the substrate is modified as a result of the atomic collisions between the atoms of
the plume and the molecules of the gas,?’?® and changes in the oxygen background pressure can lead
to a changeover in the growth mode.?”-° Furthermore, epitaxial strain has a major impact on growth
dynamics as it modifies surface diffusion and mobility of adatoms, although the character of that shift
is strongly material dependent, and has been little explored in oxides.3*3*

Figure 1 shows the x-ray diffraction (XRD) 6-26 scans of films grown on LSAT at oxygen
pressures of 1 mTorr, 10 mTorr, 35 mTorr, and 50 mTorr, and on GSO at 50 mTorr, at a substrate
temperature of 800 °C. The patterns of films grown at 1 mTorr and 50 mTorr on LSAT and at 50 mTorr
on GSO show all the peaks of SrIrOy4, Sr3Ir,O7, and SrIrOs, respectively, oriented with the long
axis along the substrate normal. There is no hint of impurity phases in these patterns which suggests
that the sequence of perovskite and rocksalt layers is correctly ordered in the periodic structures
along the out-of-plane direction [see the discussion of Transmission Electron Microscopy (TEM)
data below]. Strong Laue thickness fringes surrounding the main Bragg peak give evidence of an
excellent structural quality of these films. Rocking curve measurements for the (0012)Sr,IrO4 peak
show a FWHM of 0.02° + 0.003° and 0.06° % 0.005° for the films grown on LSAT substrates under
1 mTorr and 10 mTorr, respectively. The FWHM of the (002),,SrIrO3 peak of the film grown on
GSO under 50 mTorr is 0.05° + 0.003°. The diffraction peaks of SrpIrO4 can be indexed to the
tetragonal unit cell: @ = 5.499 and ¢ = 25.784 A, space group 14;/acd.’' The peaks observed in
Sr3Ir,O7 are compatible with a subtly distorted perovskite described by a monoclinic space group
(C2/c)22 with parameters 20.935 A, 5.5185 A, and 5.5099 A, where the long cell axis (a in the standard
setting of space group C2/c) is parallel to the surface normal. In this structure, a single oblique angle
B = 90.045° produces a minute deviation from a quadratic lattice,”” which is below our X-ray
experimental resolution. SrIrO3 has been indexed to an orthorhombic perovskite cell with Pnma
symmetry and lattice parameters a = 5.5909 A, b = 7.8821 A, and ¢ = 5.5617 A?>?* (pseudo-cubic
unit cell of roughly 3.94 A).
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FIG. 1. Epitaxial thin films of n = 1, 2, co phases of the Sr;,+11r, 03,4 series grown from a single Sr3Ir,O7 target. (a) Indexed
XRD 6-26 scans of films grown on LSAT over an oxygen pressure range of 1 mTorr to 50 mTorr (from bottom to top)
and on GSO at 50 mTorr (upper panel). The substrate temperature was 800 °C. As a rule, increasing the oxygen pressure
promotes the stability of phases with larger n. The film grown at 35 mTorr on LSAT shows features that can be attributed to
both n = 1 and n = 2 RP phases, suggesting a gradual transformation between the two phases. Noteworthy, Sr3Ir, O7/LSAT
and SrIrO3/GSO are both grown on different substrates side by side in the pulsed laser deposition (PLD) chamber. (See Fig.
S1 of the supplementary material for structural characterization of SrpIrO,4 and Sr3Ir,O7 phases on STO substrates; Fig. S2
of the supplementary material for 6—26 scans of SrIrO3/GSO films grown at oxygen pressure in the range 35 mTorr to 100
mTorr; and Figs. S3 and S4 of the supplementary material that provide the evidence of the influence of the substrate on the
stabilization of RP phases in films grown under identical deposition conditions.)

X-ray reciprocal space maps (RSMs) of the three phases on different substrates in Fig. 2 show
that the films are fully strained to the in-plane lattice parameter of the substrate. As expected, the
out-of-plane lattice parameter of Sr,IrO4 expands (shrinks) relative to that of bulk under in-plane
compressive (tensile) strain induced by the LSAT (STO) substrate. It decreases from 25.86 + 0.05 A
on LSAT to 25.72 + 0.03 A on STO (tensile strain of ~+0.64%). Likewise, in-plane tensile (com-
pressive) strain also results in a contraction (expansion) along the out-of-plane direction in Sr3Ir, O5.
It shrinks along the c-axis from 21.03 + 0.03 A under compressive strain on LSAT to 20.81 + 0.04 A
under tensile strain on STO. These values are in good agreement with values for the bulk of
n=1and n = 2 RP phases.?':%

Further insight into the microstructure and composition of the films is provided by Transmis-
sion Electron Microscopy (TEM) on cross section lamellas (Fig. 3). In agreement with the RSM
results, we find that the films are fully strained to the substrate. The analysis of the electron diffrac-
tion patterns (Fig. S5 of the supplementary material) reveals in-plane orientation relationships for
SrpIrO4 and Sr3lr,O7 films where the unit cell of the iridate grows 45° rotated relative to the LSAT
unit cell [Figs. 3(a) and 3(b)]. Orthorhombic SrIrO3 (b as the long axis) shows an epitaxial rela-
tionship of (101)or[101]orStIrO3 || (001)[100]LSAT [Fig. 3(c)]. Semiquantitative Energy Dispersive
Spectroscopy (EDS) analyses of the films confirmed a close to stoichiometric St/Ir ratio of 1.91,
1.74, and 1.12 for films grown under oxygen pressures of 1 mTorr, 50 mTorr, and 100 mTorr,
respectively.

Figure 4 summarizes the entanglement of epitaxial strain and background oxygen pressure in the
stabilization of Sr;,111Ir, 03,41 phases. For example, Sr,IrO4 grows with excellent structural quality on
LSAT (small lattice mismatch ~—0.26%) at oxygen pressure about 1 mTorr, as we have stated above.
However, this phase does not stabilize under a strain of ~+2% (GSO substrate) over the range of
oxygen pressures studied in this work (see Fig. S6 of the supplementary material). Furthermore, we
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FIG. 2. (a)High-resolution RSMs of Sr,IrQ4, Sr3IryO7, and SrIrO3 on LSAT. The (103) reflection from the LSAT substrate is
also shown in each map. [(b) and (c)] RSMs around the (103) substrate reflection for films grown on STO(001) and GSO(110),;,
respectively. The pseudocubic reflections (103)pc and (013)pc in SrIrO3/GSO are observed at different (¢, g1) (c). This is
consistent with the deviation of 8 from 90° that takes account of the orthorhombic distortion in the perovskite.

obtain single-phase Sr3Ir,O7 films at 50 mTorr on LSAT (lattice mismatch of ~—0.75%) and at
35 mTorr on STO (lattice mismatch ~+0.15%, Fig. S1 of the supplementary material). More-
over, SrlrO3; grows with high structural quality tensile-strained (=+0.51%) on GSO already above
~40 mTorr (see Fig. S2 of the supplementary material).

A picture emerges from these results: epitaxial stress plays a fundamental role in the stabilization
of RP phases, and low (high) oxygen partial pressure favours the formation of phases with a high
(low) St/Ir ratio. PLD plume dynamics can be invoked to give a first interpretation of these results.
In a simple kinetic model, the plume species are expected to diffuse while interacting with the
background gas until reaching the substrate. Given the large difference in size and mass between
Ir and Sr, it is expected that background oxygen pressure will significantly affect the propagation
velocity and angular distribution of Ir and Sr species which, in turn, will impact on the St/Ir cation
ratio of the films.

At the working laser fluence of ~1 J/cm?, we observe that Sr is preferentially ablated from
the target, as proved by EDS analysis carried out on the target. The original stoichiometric Sr/Ir
ratio is recovered after careful polishing of the surface of the target. We grew the films after a long
preablation of the target surface to ensure that a steady state had been reached. Such a preferen-
tial ablation of Sr has previously been reported for a SrIrO; target at laser fluences varying from
0.4 to 2.0 J/cm? 36

At low background oxygen pressure, it is predicted that lighter Sr species outnumber heavier Ir
species at the plume front.”® This effect counteracts the Ir enrichment of the target surface owing to
Sr preferential ablation. In fact, results of complementary growths hint that preferential ablation of
Sr is not a key condition for the stabilization of the Sr,IrO4 phase at low oxygen pressure (see Fig.
S7 and the discussion in the supplementary material). As a result, films with an St/Ir ratio higher than
that of the Sr3Ir,O7 polycrystalline target are grown at oxygen pressure around 1 mTorr on LSAT and
STO substrates. As the oxygen pressure inside the chamber increases, the propagation behavior of
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FIG. 3. High Resolution Transmission Electron Microscopy (HRTEM) images and structural model of the films on LSAT.
Each panel shows the HRTEM image of the interface film/substrate, the 3D structural model, and the in-plane view. The
deduced epitaxial alignments are outlined on each image. (a) Tetragonal21 SrpIrO4(001) || LSAT(001), where the unit cell
of SrpIrO4 grows 45° rotated relative to the LSAT unit cell: [110]SrpIrOy4 || [IOO]LSAT. This enables lattice matching of
a(SrIr0y4)/ V2 =3.888 A with a(LSAT) = 3.868 A. (b) Sr3Ir,07(100) || LSAT(001), where Sr3Ir,O7 is depicted as a distorted
perovskite (long axis along a%2). This refined structure gives rise to an in-plane pseudocubic lattice of roughly 3.90 A. The unit
cell of the Sr3Ir, O7 phase also grows 45° rotated relative to the LSAT substrate: [011]Sr3Ir, O7 || [LO0]LSAT. (c) Orthorhombic
SrIrO3 (b as the long axis2>2%) shows an epitaxial relationship of (101)or[101]orSrIrO3 || (001)[100]LSAT. The tetrahedral
rotation patterns expected for each space group in bulk are depicted. See Fig. S5 of the supplementary material for electron
diffraction patterns.

the species changes.?® In this case, lighter and larger species, such as Sr, are preferentially scattered
during their flight toward the substrate. Therefore, as the number of scattering events increases at
high oxygen pressure, there is an enrichment in Ir along the direction normal to the substrate that
leads to films with an St/Ir ratio lower than that of the Sr3Ir, O target.

Figure 5 shows the evolution of unit cell parameters of SrlrO3 as a function of strain for samples
synthesized under different temperatures and oxygen pressures. The values shown in Fig. 5 are in
accordance with the literature.'>36-37 Under the optimized growth conditions, the tetragonal distortion,
cla, decreases with tensile strain, although at a lower rate than that expected assuming a Poisson’s ratio
of v = 0.3, a value common to other oxide perovskites.*®*° We find that the c/a ratio increases with
increasing temperature (oxygen pressure) while keeping the oxygen pressure (temperature) constant.
For instance, the film grown at the highest pressure (100 mTorr) exhibits the highest c/a ratio. Thus,
we exclude the presence of oxygen vacancies as the cause of the deformation of the unit cell of SrlrO;
depicted in Fig. 5.404! Instead the behavior of c/a has to be caused by an increase of cation vacancies
with increasing temperature and/or oxygen pressure. The preferential scattering of Sr in the plume
at high oxygen pressure predicted by the kinetic model described above would result in SrIrO3 films
with an increased concentration of Sr vacancies, giving rise to the cell expansion observed in Fig. 5
for the films grown under tensile strain.
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FIG. 4. Combined effect of epitaxial strain and background oxygen pressure from a single Sr3Ir,O7 target at a substrate
temperature of 800 °C. Vertical bars show the experimental oxygen pressure window for the stabilisation of SrpIrOy4 (blue),
Sr3lr,O7 (red), and SrIrO3 (grey) phases on LSAT, STO, and GSO substrates. Films grown over the oxygen pressure range
denoted by discontinuous stripes exhibit features of two phases. We were not able to grow the SrpIrO4 phase at low oxygen
pressure on GSO substrates (see Fig. S6 of the supplementary material). The pictures on the left illustrate the crystal structures
of the three phases. Compressive (tensile) strain induced by the substrate on each structure is depicted by yellow (brown)
arrows whose lengths are proportional to the magnitude of strain.
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FIG. 5. Variation of the c/a ratio of pseudocubic lattice parameters with strain (open squares) and background oxygen pressure
(solid triangles) of SrIrO3 films. The open squares correspond to samples synthesized at 67 mTorr and 700 °C in the same
batch. The triangles correspond to samples deposited on GSO at 800 °C, under different oxygen pressures (these data are
extracted from XRD 6-26 scans shown in Figs. S2 and S8 of the supplementary material). The dotted line corresponds to c/a
calculated for a Poisson’s ratio of v = 0.3.
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In addition, transport properties of epitaxially grown SrIrO; films are significantly affected by
a non-stoichiometric St/Ir ratio. Indeed, the SrIrO3 film grown on GSO at 800 °C and 100 mTorr
of oxygen pressure exhibits semiconducting-like behavior (Fig. S9 of the supplementary material)
which can be associated with the increase of Sr vacancies postulated above. A film of SrIrO3 grown
from a target with a higher Sr/Ir ratio under identical conditions of substrate temperature and oxygen
pressure exhibits metallic behavior (Fig. S10 of the supplementary material), supporting the picture
of Anderson-like localization by vacancy scattering.

On the other hand, such a simple model of PLD plume dynamics overlooks the influence of
epitaxial strain on diffusion of species at the substrate surface. Actually, we observe that epitaxial
strain can promote the stabilization of different phases in films grown on different substrates under
identical growth conditions of laser fluence, substrate temperature, and oxygen pressure (Fig. 1 and
Fig. S4 of the supplementary material). For instance, it has been reported that tensile epitaxial strain
brings about an energy barrier for adatom diffusion during the growth of complex oxides at low
oxygen pressures by PLD.’® We hypothesize that this decrease of surface diffusion and mobility
of adatoms hinders the growth of Sr,IrO4 and Sr3Ir,O; phases on GSO substrates. It is also worth
bearing in mind that SrIrO3 has lower lattice mismatch with GSO, ~+0.51%, than SrIrO4 (=+2%)
or Sr3Irp, 07 (=+1.6%), providing the driving force for the stabilization of SrlrOj3 if growth conditions
of substrate temperature or oxygen pressure make it possible.

Therefore, both kinetic and thermodynamic aspects are relevant to explain the stabilization
of the different phases reported in this work (see the supplementary material for a description
of the impact of volatile IrO,). Additional experiments to probe the angular distribution of Sr
and Ir species in the plume and to further understand the role played by oxygen on the plume
propagation dynamics and on the incorporation of volatile species into the film would be highly
interesting.

Figure 6 summarizes the effect of background oxygen pressure and strain on magnetic and
transport properties of SrIrO4. This phase remains semiconducting irrespective of oxygen pressure
and strain, not showing any sensitivity to the magnetic transition, as expected.*>* By contrast, as the
canting of Ir magnetic moments in SroIrO4 follows the IrOg octahedral rotations,**6 epitaxial strain is
expected to have a strong influence on its magnetic properties. We observe a sharp magnetic transition
around T ~ 240 K (bulk value®) for the film grown compressively strained on LSAT at the lowest
oxygen pressure, 1 mTorr. This transition is flattened in the film grown on LSAT at 10 mTorr, resulting
from a decreased structural quality of the films grown at higher pressures. Indeed, as stated above,
rocking curves around the (0012)Sr,IrO4 peak exhibita FWHM of 0.02° + 0.003° or 0.06° + 0.005° for
films grown under 1 mTorr or 10 mTorr, respectively, while no significant difference was found in the
out-of-plane lattice parameter between both films (25.86 + 0.05 A and 25.85 + 0.06 A, respectively).
We also find that the ferromagnetic component, which stems from the canted antiferromagnetic
order, is lower in the film grown on STO (tensile strain) than in those grown on LSAT (compressive
strain). This is in accordance with previous studies on 200 nm-thick Sr;IrO4 films where higher
tensile strain was reported to lead to lower octahedral rotation, resulting in a weaker ferromagnetic
component.*’

SrolrOy SralrOy

LSAT 108 H=1 kOe
1 mTorr 106

102 \ =104

STO
1 mTorr

N

P/ P300 K

50 150 250 150 200 250
T (K) T (K)

FIG. 6. Left panel: Temperature dependence of electrical resistivity, p(T'), normalized to room temperature of SrpIrOy4 films
grown at 800 °C on LSAT at 1 mTorr (blue), LSAT at 10 mTorr (yellow), and STO at 1 mTorr (green). Right panel: Temperature
dependence of magnetization, M(T), at H = 1 kOe of the same films.
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FIG. 7. Temperature dependence of the electrical resistivity, p(T'), and Seebeck coefficient, S(T'), of SryIrOy, Sr3Ir, O7, and
SrIrO3 films grown on LSAT(001). The lines in the Seebeck figure are a guide to the eye.

The temperature dependence of resistivity, p(T'), and Seebeck coefficient, S(T), of Sr>IrO4,
Sr3Ir;O7, and SrIrO3 on LSAT are shown in Fig. 7. Epitaxial compression on LSAT increases
with increasing dimensionality of the material, n. Electrical transport of these phases is consistent
with the widely accepted bandwidth-driven insulator-to-metal transition previously reported on the
Sty,4+11r,03,41 series as a result of increasing dimensionality, n: StoIrO4/LSAT(001) shows semicon-
ducting behavior and high resistivity; Sr3Ir,O7/LSAT(001) exhibits a semiconducting-like behavior
over the whole range of temperatures with a characteristic feature that reflects the antiferromagnetic
transition expected at 7' = 285 K in bulk;*® and, SrIrO3/LSAT(001) presents a very low resistivity
and metallic behavior, with a slight upturn at low temperatures.

The Seebeck coefficient of the films on LSAT is positive in the whole range of temperatures
measured, Fig. 7. The magnitude of S(T) in Sr,IrOy4 is in accordance with previous reports on polycrys-
talline'>* and single-crystal samples.*>*> We observed a clear plateau below ~200 K for the epitaxial
films that could be linked to the canted antiferromagnetic structure reported in bulk,>** although no
anomaly of the Seebeck coefficient at the magnetic transition temperature has been observed in sin-
gle crystals*>* or polycrystalline'>*’ Sr,IrO4. We are not aware of any other measurements of the
thermoelectrical properties of epitaxial films of SrpIrOy4 or Sr3Ir, O7.

The effect of epitaxial strain on the thermoelectric properties of SrIrO3 is shown in Fig. 8. These
films were prepared in the same batch. Thus, the dissimilarity in their electronic properties must
stem from different substrate induced strain: —1.8%, —0.9%, and +0.5% for LSAT, STO, and GSO,
respectively. Moreover, electrical transport measurements were carried out immediately after growth
for three days in a row; hence, degradation effects reported to occur in the StIrOs films® are expected
to be negligible. The temperature dependence of p(T') shows metallic behavior at a high temperature,
with a crossover toward a thermally activated state defined by (dp(T)/dT) < O at a low temperature
in the samples under compressive strain. The magnitude of the p(T) and the value of the crossover
temperature do not follow any clear dependence with the c/a ratio. Therefore, they cannot be directly
related to a change in the bandwidth with strain.

%1073
‘ 30 AT
S ero—u GSO
STO
—25F 1 220}STO 1
g =
S 2 GO — =
B L n 10 7
15 LSAT  x2
1 1 0 1 1
50 200 350 50 200 350
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FIG. 8. Temperature dependence of the electrical resistivity, p(T'), and the Seebeck coefficient, S(T'), of SrIrO3 films grown
on GSO (2), STO (%), and LSAT (Q). These films were grown in the same batch (67 mTorr, 700 °C). The resistivity of the film
grown on LSAT has a scale factor of 2. The lines in the Seebeck figure are a guide to the eye. (See Fig. S8 of the supplementary
material for XRD measurements of the films.)
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This is in contrast to previous studies about the strain effect on electrical transport in SrIrO3
films.!30 These studies suggested a bandwidth controlled via a strain model, according to which
the Ir—O-Ir angle decreases (increases) by compressive (tensile) strain (while the Ir-O length is not
modified), thus shrinking (expanding) the bandwidth. Such a scenario echoes the behavior observed in
Sr,IrOy4,'? but essential differences between Sr,IrO4 and SrIrOs have been pointed out. In particular,
SrIrO;3 exhibits out-of-plane octahedral rotations along the [110] pseudocubic direction, but no such
[110] rotations are found experimentally in St IrO, .37 Furthermore, a reported narrower bandwidth in
SrIrO; than in Sr,IrOy4 casts doubt on the conventional picture of increased bandwidth with increasing
dimensionality, n, in the RP series of iridates.?” On the other hand, the Seebeck coefficients are very
similar for all SrIrOs; films, with only a slight dependence on epitaxial strain, Fig. 8. As thermoelectric
voltage is measured in open circuit conditions, no electrical current flows through the sample, and
consequently S(7) is not as sensitive to grain boundaries and point-defect scattering as electrical
resistivity. Indeed, S(7') rather depends on the intrinsic electronic structure of the conductor. Therefore,
we suggest that localization induced by disorder is responsible for the temperature dependence of
the resistivity observed in these films. This is in agreement with previous observations of a persistent
Drude-like peak in the optical conductivity of SrIrO5 films under comparable strain.'?

Our results reveal an intricate coupling between epitaxial strain and oxygen pressure during
pulsed laser deposition of Sr,111Ir,03,4; films. Such coupling suggests the possibility of growing
artificial superlattices of iridates with tailored electronic and magnetic properties by varying the
background pressure during deposition.”!? In addition, future studies could address atomic-scale
effects of strain on the surface diffusion of species during growth and the influence of the oxidation
state of the arriving species to promote the stabilization of RP phases with different cation stoichiom-
etry.!7-18:30.33 This study would require in-situ characterization to monitor the film growth and would
provide fundamental insights into the growth process that may lead to the stabilization of new phases
of layered materials. We have also shown that weak localization effects owing to accommodation
to compressive epitaxial strain dominate the conductivity of the metallic SrIrO3 films, beyond the
simple model of bandwidth controlled via strain.

See supplementary material for a detailed experimental description, additional figures, and a
comment on the impact of volatile IrO,.
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