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Abstract

Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated
IKKa expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of
transgenic mice overexpressing IKKa in the basal, proliferative layer of the epidermis and in the outer root sheath of hair
follicles. The epidermis of K5-IKKa transgenic animals shows several alterations such as hyperproliferation, mislocalized
expression of integrin-a6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with
the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different
preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while
in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin
carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKa-Tg.AC mice) develop invasive tumors, instead of
the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a
tumor promoter role of IKKa in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and
breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-a6 in skin of transgenic
mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKa skin
tumors.
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Introduction

Keratinocytes of the basal layer of the epidermis are mitotic,

providing new cells to replace those that are shed. After moving to

the suprabasal layers, the cells gradually differentiate and give rise to

the cornified layer at the surface of the skin that protects the internal

organs. Therefore, a balance between keratinocyte proliferation and

differentiation is required to maintain epidermal homeostasis.

IKKa (IkB kinase a) is a fundamental component of the IKK

complex that regulates the NF-kB signalling pathway [1–3]. IKKa
has a fundamental role in regulating keratinocyte proliferation and

differentiation [4–8]. The epidermis of IKKa2/2 newborn mice

lacks a terminally differentiated cornified layer and exhibits marked

thickening [6–8]. Reintroduction of IKKa or a kinase-inactive

mutant IKKa induces terminal differentiation of keratinocyte and

represses hyperproliferation [9,10]. This demonstrates that IKKa is

necessary for epidermal differentiation independently of its kinase

activity [9]. We have described that IKKa increases the

differentiation of human keratinocytes by a mechanism dependent

on E-cadherin [5]. Other adhesion molecules such as claudin-23,

occludin and desmoglein 3 have also been found to be regulated by

IKKa and to play a role in epidermal terminal differentiation and

skin barrier function [11].

Non melanoma skin cancer (NMSC) is the most common

malignancy in humans: BCCs (basal cell carcinomas) and SCCs

(squamous cell carcinomas) represent the vast majority of the

tumors diagnosed. The incidence of both benign and malignant

NMSC has been rising at an alarming rate for the past several

years. The role of IKKa in cancer development remains

controversial: while it has been suggested that it functions as a

tumor suppressor in skin cancer [4,12,13], there are also evidences

that support a role of IKKa as promoter of cancer progression and

metastasis in different types of neoplasias such as breast cancer

[14], hepatocarcinomas [15], prostate cancer [16,17] and

colorectal cancer [18,19]. Indeed, we have found, in xenograft

assays, an increase in malignancy of skin tumors over-expressing

IKKa [5].

In the last years it has been found that IKKa regulates the

expression of molecules implicated in cancer development such as

the tumor suppressor maspin (mammary serine protease inhibitor),

twist, and adhesion proteins. It inhibits cellular motility, invasi-

veness and angiogenesis, and provides sensitivity to apoptosis in
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tumor cells [20,21]. Maspin expression predicts a better prognosis

in different types of cancers: breast [22,23], prostate [24,25], colon

[26], oral squamous cell carcinoma [27], lung [28], larynx [29],

malignant melanoma [30] and ovarian cancer [31], although

recently it has been reported that it might act as tumor promoter

in colorectal or pancreatic cancers [32,33]. Maspin also acts as a

suppressor of metastasis in different types of cancer such as

prostate, liver and breast [17,34]. Interestingly, IKKa inhibits

maspin expression and promotes cell metastasis in prostate cancer

and hepatocarcinomas [15,17,35]. Twist is a basic-helix-loop-helix

(bHLH) protein known to be essential during the embryogenesis

which also plays an important role as mediator of EMT (epidermal

mesenchymal transition) during tumor progression [36]. Twist is

overexpressed in a large set of human and murine tumors

including sarcomas, melanomas, gliomas and neuroblastomas

[37,38] being the reactivation of Twist indicative of poor

prognosis. Interestingly, it has been reported that IKKa null

embryos express reduced levels of Twist [7] which suggest a

positive regulation of Twist expression by IKKa. The altered

expression of adhesion molecules has been related to tumor

development, included skin cancer, i.e., overexpression of the

adhesion protein integrin-a6 in the basal layer of epidermis and

hair follicles has been reported to cause malignization of skin

tumors in transgenic mice [39]. Moreover, a6b4 integrin

expression in suprabasal strata serves as an early predictive

marker to identify benign squamous tumors at high risk of

malignant progression [40].

In this work we have analyzed the effect of increased levels of

IKKa expression in the basal layer of the epidermis of transgenic

(Tg) mice (K5-IKKa mice), and its repercussion in in vivo skin

carcinogenesis. We have found that K5-IKKa mice exhibit in

epidermis several alterations, such as increased proliferation,

suprabasal integrin-a6 expression and downregulation of the

tumor suppressor maspin. In line with these alterations, the

application of a mitogenic agent, i.e. TPA in the back skin of mice

leads in transgenic K5-IKKa mice to the appearance of

preneoplastic features such as epidermal atypia with loss of cell

polarity and altered epidermal tissue architecture, while in wild

type (WT) littermates this treatment only leads to the development

of benign epidermal hyperplasia. Moreover, in carcinogenesis

experiments, tumors developed in transgenic mice carrying active

Ha-ras (Tg.AC mice) are invasive tumors, in sharp contrast with

the benign tumors originated in WT animals (also bearing an

active Ha-ras). In addition to integrin-a6 suprabasal overexpres-

sion, tumors developed in the K5-IKKa mice show reactivation of

the expression of Twist.

Materials and Methods

Ethics Statement
All experimental procedures were performed according to

European and Spanish laws and regulations (European Conven-

tion ETS 123 on the use and protection of vertebrate mammals

used in experimentation and other scientific purposes; Spanish

R.D 1201/2005 of the Ministry of Agricultural, Food and

Fisheries on the protection and use of animals in scientific

research) and approved by the our institution’s ethics committee.

Approval ID: BME 3/06; BME 1/09 and BME 2–10 by the

CIEMAT Institution’s ethics commitee.

Generation of Tg mice
HA-tagged murine IKKa [5] was placed under the control of a

5.2 kb 59-upstream fragment of bovine K5 promoter and a rabbit b-

globin intron (Figure 1A). Tg mice were generated by microinjec-

tion of this construct into B6D2F2 embryos using standard

techniques and Tg lines were maintained by crossing with

B6D2F1 mice. Mice were genotyped by PCR analysis of tail

genomic DNA using primers specific for the rabbit b-globin intron.

Wild type non-transgenic littermates were used as control animals.

Western Blotting
Total or nuclear and cytoplasmic protein extracts (40 mg) were

subjected to SDS/PAGE. The separated proteins were transferred to

nitrocellulose membranes (Amersham, Arlington Heights, IL) and

probed with antibodies against IKKa, IKKb, IKKc (IMGENEX,

San Diego, CA, USA); HA epitope (Covance, California, USA);

IkBa, p105/p50, p65, maspin, actin, fibrillarin, EGFR (Santa Cruz

Biotechnology, Inc. Europe); p100/p52 (Abcam, Cambridge, UK);

P-p65, P-IkBa (Cell Signaling Technology, Danvers, MA, USA);

Cyclin D1 (NeoMarkers, Fremont, CA, USA); P-tyrosine (4G10;

Upstate, NY, USA), and tubulin (Sigma, Saint-Louis, Missouri,

USA). In all cases samples were subjected to luminography with the

Supersignal West Pico Chemiluminescent Substrate (Pierce Biotech-

nology, Inc., Illinois, USA). Densitometric analysis of the blots was

performed using the Molecular Analyst software package (Bio-Rad

Laboratories Inc., Hercules, California, USA).

Histology and Immunohistochemistry
Skin and tumors were fixed in 10% buffered formalin or in 70%

ethanol and embedded in paraffin. Sections were stained with

H&E for histopathological evaluation or used for immunostaining

using primary antibodies raised against IKKa (sc-7182, Santa

Cruz Biotechnology, Inc. Europe; IMG-90454, IMGENEX),

keratin K1, K5, K10, involucrin, loricrin, filaggrin (Covance);

keratin K13, Twist (Abcam); integrin-a6 (CD49f; BD Pharmin-

gen), BrdU (Roche, Mannheim, Germany) and Cleaved Caspase-3

(Cell Signaling Technology, Danvers, MA, USA). Sections were

incubated with a biotinylated anti-mouse, anti-rat or anti-rabbit

antibody, and then with streptavidin conjugated to horseradish

peroxidase (DAKO A/S, Glostrp, Denmark). Antibody localiza-

tion was determined using 3,3-diaminobenzidine (DAB) in PBS

(Vector Laboratories; Burlingame, CA, USA).

BrdU treatment
Mice received an intraperitoneal injection of BrdU 120 mg/kg

body weight 1 h before sample harvesting.

TNF-a in vivo treatment
3 days-old mice were subcutaneously injected with 20 mg/Kg of

human TNF-a (Sigma) or with PBS (control). After the indicated

times mice were sacrificed, skin samples removed and proteins

extracted.

NF-kB activity assay
NF-kB DNA binding assays was determined by the NF-kB

p50/p65 EZ-TFA Transcription Factor Assay (Millipore, Massa-

chusetts, USA) following manufacturer’s instructions [41]. Briefly,

protein extracts from WT and Tg skins (12.5 mg) were mixed with

a double stranded biotinylated oligonucleotide containing the

consensus sequence for NF-kB binding. In this way, activated NF-

kB (active p65) contained in the extracts binds to its consensus

sequence. This mixture is transferred to a streptavidin coated plate

and the bound NF-kB subunit, p65, is detected with a specific

primary antibody. An HRP-conjugated secondary antibody is then

used for detection and provides sensitive colorimetric detection

that can be read in a spectrophotometric plate reader (Genios Pro,

TECAN, Madrid, Spain; XFluor4Version V4.50).
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Figure 1. Characterization of K5-IKKa transgenic mice. (A) Recombinant DNA construct employed to generate transgenic mice. (B) Western
blots showing IKKa and HA expression in WT and 3 different transgenic lines (L1, L3 and L5). Actin was used as a loading control. (C) Expression of the
IKKa protein in back skin of 3-day-old mice. Immunostaining with the Sc-7182 antibody is showed (middle and right panels); similar results where
obtained with the IMG-90454 anti IKKa antibody (not shown). Control without primary antibody (only with secondary biotinylated anti-rabbit
antibody) is shown as control of specificity of the immunostaining against IKKa (left panel). Arrows show the expression of IKKa in basal epidermal
keratinocytes and hair follicles. Asterisks indicate cytoplasmic expression of IKKa. (D) IKKa and HA detection in nuclear and cytoplasmic protein
extracts from 5 day-old WT and Tg mice. Samples from two different mice of the line L1 and two different control littermates were loaded. Fibrillarin
and tubulin show loading control and purity of the extracts. (E) Western blots analysis of the expression of different members of the NF-kB pathway
in skin of WT and K5-IKKa transgenic mice. Total proteins from backskin of two different mice of the line L1 and two different control littermates were
loaded. No differences were found between mice of both genotypes. (F) Western blot showing p100 and p105 processing in skin of WT and Tg mice.
No differences were found. (G) Western blot showing the nuclear localization of p52 in skin of WT and Tg mice. No differences were found. (H) p65
and IkBa phosphorylation kinetics; actin: loading control. Newborn WT and Tg mice were injected with TNF-a and analyzed at the indicated times. (I)
NF-kB activity in skin of non-stimulated and TNF-a injected mice for the indicated times. Experiments were repeated 3 times with similar results.
doi:10.1371/journal.pone.0021984.g001
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TPA treatment
To induce epidermal hyperplasia, six K5-IKKa 8-week-old

mice and six WT mice of the same age (8 weeks) were used.

Shaved dorsal skins were treated twice a week with 5 mg of 12-O-

tetradecanoylphorbol-13-acetate (TPA; Sigma) for 3 weeks. Mice

were sacrificed 24 hours after the last application.

Carcinogenesis assays
In the DMBA/TPA protocol, both, K5-IKKa and WT 9-week-

old mice (9 animals respectively) were initiated with a single dose

of 200 nmol of 7,12-dimethyl-benz[a]anthracene (DMBA) (Sigma)

on shaved dorsal skin. Two weeks later, tumor growth was

promoted by treating with 5 mg of TPA twice a week per 20 weeks.

In the carcinogenesis experiments in Tg.AC background, female

homozygous v-Ha-ras transgenic Tg.AC mice [42] were mated

with K5-IKKa males. Double transgenic K5-IKKa-TgAC and

WT-TgAC 9-week-old mice (11 animals respectively) were treated

twice weekly with topical applications of 5 mg of TPA in 200 ml

acetone for 7 weeks according to standard protocols. Experimental

procedures were performed according to European and Spanish

laws on experimental animal protection.

Statistics
Statistical significance of data was assessed using the t-test and

the Mann-Whitney (Wilcoxon) W test.

Results

Increased expression of IKKa in basal keratinocytes of
K5-IKKa transgenic mice

We generated the K5-IKKa transgenic mice overexpressing a

mouse IKKa cDNA tagged with an epitope from hemagglutinin A

(HA) (Figure 1A). The keratin 5 (K5)-derived sequences included

in this construct drive transgene expression to the basal cells of the

epidermis and outer root sheath (ORS) of hair follicles, as well as

to internal stratified epithelia [43,44]. K5-IKKa transgenic mice

developed normally and showed no obvious alterations. Immu-

noblotting analysis using specific antibodies against IKKa revealed

increased expression of IKKa in the skin of different K5-IKKa Tg

lines (Figure 1B). HA epitope was detected in skin of K5-IKKa-Tg

mice but not in skin of WT mice (Figure 1B). L1 and L3 were the

highest IKKa expressing lines and similar results were obtained in

the analysis of both of them, therefore we performed most of the

following experiments in line L1. The immunohistochemical

staining of IKKa in back skin of WT and Tg mice showed higher

IKKa staining in the basal layer of the epidermis and the ORS of

hair follicles of K5-IKKa-Tg mice than in WT littermates

(Figure 1C). IKKa immunostaining was performed with two

different antibodies (see Mat and Met section) and repetitively

IKKa expression was detected both in the cytoplasm and in the

nucleus of suprabasal and basal keratinocytes in WT and Tg

animals (Figure 1C). WB analysis confirmed this nuclear and

cytoplasmic localization of IKKa and also its overexpression in

K5-IKKa-Tg skin (Figure 1D). HA immunostaining gave similar

results (data not shown).

Classical and non-canonical NF-kB activation pathways
are not affected in the K5-IKKa-Tg mice

The state of the NF-kB pathway in WT and K5-IKKa mice

was analyzed. In agreement with other studies [8], we found that

changes in IKKa expression do not alter the expression of other

members of the NF-kB pathway such as IKKb, IKKc, IkBa and

p65 (Figure 1E). In addition no differences were found in p100 or

p105 processing, nor in nuclear p52 localization in WT and Tg

mice skin (Figure 1F, G), indicating that the non-canonical

pathway of NF-kB does not seem altered by IKKa overexpression.

Treatment of newborn mice with tumor necrosis factor a (TNF-a)

led to similar kinetics and extension of p65 and IkBa
phosphorylation in WT and Tg mice (Figure 1H). In addition,

we analyzed the NF-kB pathway by measuring NF-kB binding

activity in protein extracts from skins of mice of each genotype and

found no differences in non-stimulated skin as well as after TNF-a
subcutaneous injection of WT and K5-IKKa mice (Figure 1I).

Together, these results indicate that the classical IKK/NF-kB

pathway is not modified in K5-IKKa Tg mice, and are in

accordance with our previous data in human HaCaT keratino-

cytes [5] where the overexpression of IKKa did not alter this

signalling pathway.

Delocalized integrin-a6 suprabasal expression, increased
proliferation and maspin inhibition in epidermis of K5-
IKKa-Tg mice

As IKKa has an essential role in epidermal morphogenesis and

differentiation, we analyzed early and late differentiation markers

of the epidermis such as K1, involucrin, loricrin, and filaggrin

(Figure 2A). No appreciable differences were found between WT

and K5-IKKa-Tg mice, suggesting that no alterations of the

normal epidermal differentiation program occur in these animals.

The expression of K5 and K6 also was unaltered (data not shown).

We also analyzed the proliferative capability of WT and K5-

IKKa-Tg mice skin by measuring BrdU incorporation. We

observed increased BrdU-positive cells in the basal layer of the

epidermis of K5-IKKa mice (11.462.7% in Tg mice versus

7.661.7% in WT mice; n = 6; P,0.05) (Figure 2B). Cyclin D1,

another marker of proliferation was also increased in the skin of

Tg mice (Figure 2C). In an attempt to discover a possible cause for

the increased proliferation observed in skin of transgenic mice, we

measured EGFR expression, as this is an important factor for

keratinocyte proliferation [45]; however, we found no differences

in EGFR levels nor in EGFR phosphorylation in skin of WT and

K5-IKKa Tg mice (Figure 2D). Another reason for the increase in

the number of proliferating cells in the skin of Tg mice could be

the altered expression of adhesion molecules; in particular, the

suprabasal expression of integrin-a6 has been found to be

associated with hyperproliferative conditions in dermal equivalent

cultures of keratinocytes [46]. We therefore analyzed the

expression of integrin-a6 in the back skin of WT and Tg newborn

mice and found that while WT mice skin exhibit integrin-a6

expression restricted to the basal layer of the epidermis, K5-IKKa-

Tg mice showed increased and delocalized integrin-a6 expression

in basal as well as suprabasal keratinocytes (Figure 2B). As these

parameters (i.e. increased proliferation and altered expression of

integrin-a6 in epidermis) are signals that may precede a

malignization process [39], we checked the expression of maspin,

a tumor suppressor known to be negatively regulated by IKKa.

We found by Western blotting of total skin extracts that maspin

was downregulated in the skin of K5-IKKa-Tg mice (Figure 2C),

in agreement with other studies where IKKa overexpression leads

to the inhibition of maspin expression [15,17].

Epidermal atypia of the epidermis in K5-IKKa transgenic
mice treated with TPA

To analyze whether the alterations found in the skin of

transgenic K5-IKKa mice could predispose these mice to the

development of more severe lesions when subjected to skin insult,

we applied multiple doses of the mitogenic agent, TPA, to the back

IKKa Increases Malignancy of Skin Tumors
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skin of WT and Tg mice in the second telogen phase of the hair

follicles. As expected, 3 weeks of treatment provoked in WT

animals the entry of hair follicles into the anagen phase as well as

the development of epidermal hyperplasia (7 to 10 layers of

epidermal keratinocytes versus 2 to 4 layers observed in non-treated

epidermis of adult mice; Figure 3 compare A and B). We observed

that the hyperplasia was due to an increase both in the stratum

spinosum and granulosum (see inset in B). This hyperplasia exhibit the

typical increase in epidermal thickness, with keratinocytes of the

stratum basale containing nuclei perpendicular to the basal

membrane; keratinocytes of the stratum spinosum with round,

central nuclei; and keratinocytes of the stratum granulosum showing

progressive flattening of the cells, in parallel to the basal

membrane, with smaller nucleus and scarce cytoplasm filled with

keratohyaline granules. In Tg mice, TPA application also induces

hair follicle anagen phase and epidermal hyperplasia (Figure 3

compare C and D). However, in these mice the hyperplasia was

associated with epidermal atypia, characterized by a disorganized

architecture of the different keratinocyte layers where cells lose

their polarity and normal differentiation; it was not possible to

distinguish the stratum basale, spinosum and granulosum because most

keratinocytes appeared as round cells with central nucleus and

there was no sign of terminal differentiation (i.e. lack of

keratohyaline granules in the upper suprabasal layers) (see inset

in Figure 3D and compare with inset in B). There was also a great

heterogeneity in the nuclear staining of keratinocytes from Tg-

TPA-treated mice showing many condensed, highly basophilic

pyknotic nuclei. Elevated rates of keratinocyte proliferation

Figure 2. Alterations found in back skin of K5-IKKa-Tg mice. (A) Immunohistochemical analysis of epidermal differentiation markers in back
skin of 3-day-old WT and K5-IKKa mice. No differences were found between mice of both genotypes. B, SB, basal and suprabasal keratinocyte layers
respectively. (B) Images show the increased number of basal keratinocytes that incorporate BrdU in epidermis of Tg mice. Integrin a6 is expressed in
basal as well as suprabasal keratinocytes in skin of Tg mice. (C; D) Analysis of cyclin D1 (Cyc D1), maspin and EGFR protein levels as well as EGFR
phosphorylation (P-EGFR) in total protein extracts of skin of WT and K5-IKKa-Tg mice. Total proteins from backskin of two different mice of the line L1
and two different control littermates were loaded.
doi:10.1371/journal.pone.0021984.g002
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(measured as BrdU incorporation) were observed in the epidermis

of both WT and Tg mice treated with TPA (Figure 3 E, F), being

significantly higher the number of proliferating cells in the K5-

IKKa mice (Figure 3F) compared with WT siblings (Figure 3E)

(labelling index, Tg = 29.163.7; WT = 18.864.0; n = 6; P,0.05).

The treatment with TPA in addition to a mitogenic effect also

provokes an inflammatory response. We have analyzed this effect

in skin of WT and transgenic mice and have found a similar

response in both cases i.e. a mild lichenoid inflammation with

diffuse infiltrates of mononuclear cells in the superficial dermis

(Figure 3B and D asterisks).

Enhanced malignant potential of tumors developed in
K5-IKKa transgenic mice

We performed two different approaches to investigate the

susceptibility of K5-IKKa mice to develop skin cancer. We

initiated WT and K5-IKKa mice with a single dose of DMBA

followed by TPA application in a conventional two-stage (DMBA/

TPA) tumorigenesis protocol. DMBA activates Ha-ras to initiate

skin tumors [47]. During the course of the experiment we did not

observe significant differences in the number of tumors between

WT and Tg mice (Figure S1A). Tumors were traced until week 27,

when they were collected. The average tumor size was also similar

in both groups (data not shown). In the other approach we

performed TPA treatments in F1 crosses of K5-IKKa mice with

the Tg.AC mice strain, carrying an activated Ha-ras transgene that

triggers the classic initiation event [42,44,48]. Both groups of mice

(WT-TgAC and K5-IKKa-TgAC) developed papillomas with a

similar latency period (5–7 weeks, Figure S1B). The percentage of

animals that developed tumors, as well as the tumor multiplicity,

was similar in both genotypes. From week 17 on, the number of

tumors in WT mice in both approaches was reduced, due

probably to a higher regression rate (Figure S1A, B).

Figure 3. Atypical epidermal hyperplasia in skin of K5-IKKa-Tg mice subjected to TPA treatment. (A–D) Representative paraffin-sections
of skin from WT (A–B) and K5-IKKa-Tg mice (C–D) were stained with hematoxilin/eosin. (A, C) Non-treated skins; (B, D) TPA treated skins. (B)
Hyperplastic epidermis induced by topical application of TPA in WT mice. White arrow indicates a hair follicle in the anagen phase. (Inset in B) B:
stratum basale, S: stratum spinosum, G: stratum granulosum. Conservation of squamous differentiation is clear in WT epidermis where marked
hyperplasia of stratum spinosum (acantosis) and stratum granulosum (hipergranulosis) are observed as common facts of typical epidermal hyperplasia.
(D) Hyperplasia and epidermal atypia with loss of cellular architecture in TPA-treated Tg skin. White arrows indicate hair follicles in the anagen phase.
(Inset in D) Epidermal hyperplasia in K5-IKKa-Tg mice shows an atypical proliferating epithelium with all strata conformed by keratinocytes with
round, central nuclei highly basophilic (pyknosis). The stratum granulosum of flattened cells with cytoplasm filled with keratohyaline granules were
not formed. Asterisks in B, D points to regions of the lichenoid inflammation with diffuse infiltrates of mononuclear cells found in skin of both WT and
Tg mice after TPA treatment. (E, F) BrdU incorporation in skins from WT (E) and Tg (F) mice treated with TPA. (A–F): scale bars = 50 mm.
doi:10.1371/journal.pone.0021984.g003
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We checked by Western blot analysis that the tumors

developed in Tg mice in both carcinogenesis protocols express

higher levels of IKKa than WT tumors and also express the HA-

tag (Figure 4A, F). The histological study showed important

differences between tumors developed in WT and K5-IKKa
mice in the two approaches. Thus, while tumors arising in WT

mice in the DMBA/TPA tumorigenesis were benign papillomas

with a well conserved differentiation pattern of the epidermis

(Figure 4B, C), those developed by K5-IKKa mice exhibited

extended areas of epithelial atypia (Figure 4D, E), indicating a

higher malignant potential. These lesions resemble those found

in the epidermis of Tg mice treated with TPA (Figure 3D)

although of higher aggressive potential. The tumorigenesis assays

in Tg.AC mice showed that tumors from WT-TgAC animals

were benign papillomas (Figure 4G, H), while tumors from K5-

IKKa-TgAC mice showed areas of focal invasion, i.e.,

microinvasive infiltration, indicating a higher degree of malig-

nant progression (Figure 4I, J). The immunohistochemical

analysis of tumors developed in WT mice in both types of

carcinogenesis protocols showed a diffuse expression of IKKa in

the suprabasal cells (Figure 5A). By contrast, a higher staining for

IKKa was detected in the K5-IKKa tumors obtained by both

approaches (Figure 5A’), in accordance with the results of the

Western blot analysis of IKKa in tumors (Figures 4A and F).

IKKa was mainly located in the basal cells, where the K5

promoter directs the transgene expression although it was also

detected in the suprabasal layers (Figure 5A’ inset). Differenti-

ation markers such as the keratins K1/K10 are expressed at

higher levels in WT tumors than in Tg tumors in both protocols

of skin carcinogenesis (Figure 5B, B’ and data not shown). K13, a

keratin characteristic of internal stratified squamous epithelia

which is aberrantly expressed in skin tumors (Figure 5C),

indicating malignancy [49], was rarely expressed in WT tumors

while it was extensively expressed in the K5-IKKa tumors

(Figure 5C’). Low expression of keratins K1/K10 and elevated

expression of K13 indicate a worse prognosis of tumors that

express elevated levels of IKKa. Maspin expression was analyzed

and found that it was lower in the K5-IKKa tumors (Figure 5D,

D’). Panels A–D’ in Figure 5 show staining of DMBA/TPA

tumors although similar results were found in the Tg.AC tumors

staining (data not shown).

Induction of twist and delocalized integrin-a6 expression

in tumors developed in K5-IKKa Tg mice. We analyzed

other markers of tumor progression, such as the expression of

integrin-a6. In benign tumors, integrin-a6 is expressed by basal

keratinocytes; however in malignant tumors it is also expressed in

suprabasal layers [40,48]. We found that tumors developed in WT

mice in both carcinogenesis protocols have a basal staining of

integrin-a6 (Figure 5E); by contrast, tumors from K5-IKKa mice

exhibit basal as well as delocalized suprabasal expression of

integrin-a6 (Figure 5E’).

Another marker of tumor malignancy is Twist, which is

expressed in embryonic development and silenced in the

adulthood. However, it is induced in malignant tumors and is

associated with metastasis [36]. We found that while WT tumors

do not express Twist (Figure 5F), it is highly induced in K5-IKKa
tumors obtained by both protocols of carcinogenesis (Figure 5F’).

It is detected in the basal layer of the epidermis, where the K5

promoter directs the expression of the IKKa transgene

(Figure 5F’).

As increased integrin-a6 expression is usually accompanied by

increased proliferation [46], we next analyzed tumor cell

proliferation, measured as BrdU incorporation, and found higher

number of proliferating cells in the K5-IKKa tumors (Figure 5G,

G’). However, the size of IKKa and WT tumors showed no

significant differences; therefore, we examined the apoptosis in

both types of tumors and found that WT papillomas exhibited low

number of apoptotic cells (measured by cleaved-Caspase 3

immunostaining; Figure 5H). By contrast, the number of apoptotic

cells in IKKa tumors was markedly higher (Figure 5H’).

Nevertheless, the rate of proliferation is greater than that of

apoptosis in transgenic tumors and these differences alone would

not fully explain the similar size reached by both types of tumors.

Panels E–H’ in Figure 5 show staining of DMBA/TPA tumors

although similar results were found in the Tg.AC tumors staining

(data not shown). Altogether these results suggest that skin tumors

overexpressing IKKa in the basal layer of the epidermis have a

malignant potential due at least in part to the induction of Twist

expression and the suprabasal expression of integrin-a6.

Discussion

We have found that the overexpression of IKKa in the

epidermis of K5-IKKa mice causes several molecular alterations,

such as increased cyclin D1 expression, delocalized suprabasal

integrin-a6 expression and downregulation of the tumor suppres-

sor maspin. These proteins are important for cancer development

and progression, suggesting that the skin of these Tg mice could

develop more aggressive lesions when subjected to skin injuries

than WT skin. We have proved that in fact, after applying

proliferative stimuli (such as TPA) in back skin, K5-IKKa mice

develop epidermal atypia with loss of tissue architecture, being

these pathological changes considered as preneoplastic signals.

TPA also induces inflammation; the inflammatory response found

both in WT and Tg mice following TPA treatment was similar,

indicating that the alterations found in skin of Tg mice after TPA

application are unlikely due to the proinflammatory activity of this

agent. We have also found that in carcinogenesis assays Tg mice

develop invasive tumors with higher malignant potential than the

benign tumors developed in WT mice.

The first anomaly detected in the epidermis of the Tg K5-IKKa
mice was an enhanced proliferation of basal keratinocytes that

seems to be the consequence of both enhanced cyclin D1

expression and increased (and delocalized) integrin-a6 expression.

Epidermal suprabasal integrin-a6 expression has been correlated

with high proliferative activity in the basal layer of the epidermis,

without occurrence of abnormal terminal differentiation or

inflammation [46]. Our results are in line with these observations,

since we find in K5-IKKa Tg mice increased proliferation of

keratinocytes without inflammation or appreciable alterations in

early or terminal differentiation. While our data are the first

description of regulation of integrin-a6 by IKKa, the regulation of

the expression of other adhesion proteins by IKKa has been

previously reported: Changes in E-cadherin, desmoglein 3, claudin

and occludin expression levels as a consequence of changes in

IKKa expression have been described [5,11,50]. The induction of

cyclin D1 expression by IKKa has also been previously reported

[51]; in addition, we have also found increased cyclin D1

expression in human keratinocytes overexpressing IKKa (Alame-

da et al, unpublished data).

The suprabasal integrin-a6 expression found both in epidermis

and skin tumors of Tg mice could also cause the increased skin

malignancy of K5-IKKa tumors, as inappropriate suprabasal

integrin-a6b4 expression in epidermis correlates with high risk of

cancer progression [39]. In this regard, it is interesting to note that

the delocalized integrin-a6 expression in papillomas is an early

predictive marker for the identification of benign squamous

tumors at high risk of malignant progression [40].
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An interesting finding of this study has been the discovery of

IKKa as negative regulator of the tumor suppressor maspin in the

skin, since downregulation of this protein has been related to

tumor progression and metastasis [17,20,21]. The downregulation

of maspin by IKKa in epidermis has not been described before

and we have confirmed this result in other different transgenic

mice expressing distinct IKKa constructs (Alameda et al,

unpublished results). Additionally, we have found that Twist

expression which is silenced in adult tissues is induced in K5-IKKa

tumors. In our experience searching in mouse skin cancer we have

analyzed by immunohistochemistry more than 80 skin tumors

obtained by both protocols of chemical carcinogenesis, and wee

have never found before the induction of Twist expression in

keratinocytes. Twist induction could be another plausible reason

for the increased aggressiveness of the K5-IKKa tumors

(developed in Tg.AC and DMBA-treated mice, carrying an

activated Ha-ras), since recent findings show that in the presence of

aberrant mitogenic signalling, such as Ha-ras activation, reactiva-

Figure 4. Tumors from K5-IKKa transgenic mice show increased malignancy. (A, E) Tumors developed in WT and Tg mice in the DMBA/TPA
skin carcinogenesis assays. (A) Western blot showing the expression of the transgene in the tumors. Total protein extratcs from two different tumors
developed in transgenic mice of the line L1 and proteins from two different control mice were loaded. (B–E) Histology of tumors arising in mice
subjected to the DMBA/TPA approach. Note the epithelial atypia areas in Tg tumors (inbox in E) versus the well conserved tissue architecture in WT
tumors (C). (F–J) Tumorigenesis in Tg.AC mice. (F) Western blot showing the expression of the transgene in the tumors. Total protein extratcs were
loaded. (G, H) Development of benign tumors in WT-TgAC mice versus invasive tumors K5-IKKa-TgAC mice (I, J). (J) High magnification showing the
rupture of the basement membrane and invasion of tumor epidermal cells into the stroma of transgenic tumors. Arrows in (I, J): focal invasion areas.
doi:10.1371/journal.pone.0021984.g004
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tion of Twist promotes the transition from a premalignant to a

malignant stage by inactivation of innate failsafe programs [38]. It

is well known that Twist is reactivated in different types of tumors

and it is considered to play a key role in the development and

progression of human cancer, being associated with advanced

tumor stage and poor prognosis in rhabdomyosarcoma, gastric

carcinoma, melanoma, glioma, liver carcinoma and breast,

prostate, bladder and pancreatic cancer [37;52,53;36,54]. The

regulation of Twist expression by IKKa has been previously

noted, in other context, by Takeda et al., who described the

downregulation of twist in IKKa2/2 embryos [7].

During the last years several evidences have been reported

indicating that IKKa functions as an oncogenic molecule. For

instance, IKKa phosphorylates important molecules of signalling

cascades (b-catenin, estrogen receptor-a transcriptional factor)

which through induction of cyclin D1 and/or c-Myc expression

enhances tumor proliferation [51,55,56,57]. Recently, a nuclear

function of IKKa has been implicated in tumor progression:

[58,59,19,60]. In this regard and in agreement with the data

obtained in this study, it is interesting to mention the role of

nuclear IKKa in promoting cancer through inhibition of maspin

expression in pancreatic cancer [17,35]. Other evidences of the

implication of IKKa in tumor promotion are that IKKa is

induced by different proangiogenic agents such as TPA, UV

radiation and Ets1 and that IKKa itself promotes angiogenesis

and stimulates tumoral growth [61]. In this context, it is worth to

note that IKKa KO mice have impaired angiogenesis [8]. In

agreement with all these data, there is an increasing number of

studies reporting the relationship of IKKa signaling to the

development of different types of neoplasias: breast cancer [14];

hepatocarcinomas [15]; prostate cancer [17], and colorectal

cancer [18]. Our group has also found an increase in the

malignancy of skin tumors arising after injection of tumor

epidermal cells overexpressing IKKa into nude mice [5].

On the other hand, other studies indicate a role for IKKa as a

tumor suppressor in skin cancer. Therefore, Loricrin-IKKa
transgenic mice that overexpress IKKa in the suprabasal

terminally differentiated cells, which are mitotically inactive and

committed to shed, develop less tumors in skin carcinogenesis

experiments than WT mice [4]. However, this approach is not

comparable to ours because we have targeted IKKa to basal

keratinocytes, which are mitotically active cells. This is an

Figure 5. Immunohistochemical analysis of tumor markers in WT and K5-IKKa DMBA/TPA tumors. (A, A’) IKKa is scarcely and diffusely
expressed in the suprabasal cells of WT tumors while it is strongly expressed in K5-IKKa tumors, mainly in the basal cells, although it is also detected
in the suprabasal cells. (B, B’) Elevated expression of K1 is detected in WT tumors while Tg tumors exhibit scarce K1 staining. (C, C’) K13
immunostaining shows that it is weakly expressed in WT tumors versus the strong expression detected in Tg tumors. (D, D’) Lower staining of Maspin
in K5-IKKa tumors. (E, E’) Strong and delocalized integrin a6 staining is detected in K5-IKKa tumors while WT tumors show integrin a6 basal
expression. (F, F’) Twist is expressed in Tg tumors while it is not detected in WT tumors. (G, G’) Higher proliferation rate (measured as BrdU
incorporation) is detected in Tg tumors (both in the basal and suprabasal layers) compared to the lower proliferating cells found in the basal layer of
WT tumors. (H, H’) Increased Caspase 3 cleaved (Casp3C) staining in K5-IKKa tumors compared to that in WT tumors.
doi:10.1371/journal.pone.0021984.g005
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important difference, because the tumorigenic properties of skin

tumors strongly depend on the cell type targeted being the

expression of a potential tumoral promoter more harmful in basal

cells than in terminally differentiated cells [62]. Other studies on

the role of IKKa in skin tumorigenesis have been performed in

IKKa+/2 mice and show that these animals develop more

carcinomas with a lower latency period [13]. However, these mice

are defective in IKK expression in both epidermis and dermis, and

increasing evidences support the contribution of the tumor stroma

to some of the most malignant characteristics of epithelial tumors

[63]; therefore through this approach it is not possible to discern

the role that the expression of IKKa specifically in keratinocytes

plays for skin carcinogenesis. A different approach to this study

would be the use of conditional knockout mice lacking IKKa
specifically in keratinocytes. These mice have been generated by

two different groups and the skin phenotypes obtained are

completely different: while one model exhibits an hyperplastic

skin with absence of terminal differentiation [12], the other shows

a nearly normal skin with terminal differentiation and no signs of

hyperplasia [11] being the reasons for this discrepancy not

understood. Therefore, although skin carcinogenesis assays

showing increased tumorigenesis in the IKKa conditional mice

exhibiting a skin phenotype have been reported [12], the absence

of the same experiments in the other IKKa conditional mice

model casts doubts on the conclusiveness of the results.

Taking into account the different results published, it seems that

the role that IKKa plays in carcinogenesis could depend on the

type of tumor, the cell targeted in each tumor and the strain of

mice employed in the studies. Our present study supposes a

different approach for study the role of IKKa in skin carcinogen-

esis, targeting IKKa to the basal keratinocytes of the epidermis.

Our results showing the increase in the malignant potential of skin

tumors developed in vivo, in transgenic mice overexpressing IKKa
in keratinocytes, are in line and strengthen our previous findings

showing the enhanced aggressiveness of skin tumors arising after

injection of tumor epidermal cells overexpressing IKKa into nude

mice [5]. We have found that increased IKKa expression levels in

the basal layer of the epidermis and ORS of the hair follicles of

transgenic mice leads to alterations that originate lesions of higher

malignant potential than those developed in WT mice when

subjected to aberrant mitogenic stimuli. We have found that the

altered expression of cyclin D1, maspin and integrin-a6 in skin of

transgenic mice provide, at least in part, the molecular bases of the

increase in the malignant potential of carcinomas originated in

skin of K5-IKKa Tg mice.

Supporting Information

Figure S1 Graphical representation of the number of tumors

developed in WT and Tg-K5-IKKa mice in the two skin

carcinogenesis approaches. (A) K5-IKKa and WT 9-week-old

mice (9 animals respectively) were subjected to DMBA/TPA

carcinogenesis assay. Tumors were traced until week 26, when

they were collected. (B) Double transgenic K5-IKKa-TgAC and

WT-TgAC 9-week-old mice (11 animals respectively) were treated

twice weekly with topical applications of TPA. Tumors were

traced until week 30, when they were collected. No differences

were found between number of tumors developed in WT and Tg

animals in both approaches.

(TIF)
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