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1 Introduction

Measurements of vector boson production in hadron collisions permit tests of electroweak

physics and of QCD. The effective kinematic range of the LHCb detector [1], approximately

2.0 < η < 4.5 where η is the pseudorapidity, complements that of the general purpose LHC

detectors whose acceptance for precise measurements extends to |η| ≈ 2.5. Measurements at

LHCb are sensitive to the knowledge of the proton structure functions at very low Bjorken x

values, where the parton distribution functions (PDFs) are not well constrained by previous

data, or by other LHC experiments [2].

The most straightforward decay mode in which LHCb can study the production of the

Z boson is the channel Z→ µ+µ− [3], since the experiment has a highly efficient trigger and

precise reconstruction capabilities for high-momentum muons. However, it is also desirable

to examine the channel Z→ e+e−,1 which offers a statistically independent sample, with

substantially different sources of systematic uncertainties. The main difficulty with electron

reconstruction in LHCb is the energy measurement. A significant amount of material is

traversed by the particles before they reach the magnet, and their measured momenta are

therefore frequently reduced by bremsstrahlung, which cannot be recovered fully using the

calorimeters because of saturation at an energy corresponding to a transverse momentum of

around 10 GeV per channel. Consequently the initial electron directions are well determined,

but their measured momenta are low by a variable amount, ∼ 25% on average. Therefore

the rapidity of the Z boson, yZ, is well determined while its transverse momentum, pT, is

1Throughout this note we use Z → e+e− to imply the formation of e+e− through either a Z or a virtual

photon γ∗, including the effect of their interference.
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poorly measured and biased. Thus, as in ref. [4], the distribution of the angular variable

φ∗, which is correlated with pT but less affected by bremsstrahlung, is studied. The φ∗

variable [5] is defined in terms of the directions of the particle momenta

φ∗ ≡ tan(φacop/2)

cosh(∆η/2)
≈ pT
M

,

where ∆η is the difference in pseudorapidity between the leptons, the acoplanarity angle

φacop = π − |∆φ| depends on the difference between the azimuthal directions of the lepton

momenta, ∆φ, and M and pT are the invariant mass and transverse momentum of the

lepton pair.2

In this paper, we present a measurement of the cross-section for pp → Z → e+e−

using the data recorded by LHCb in 2012 at
√
s = 8 TeV, corresponding to an integrated

luminosity of 2.0 fb−1. The approach is essentially the same as that used in a previous

study of the same channel at
√
s = 7 TeV [4]. The current measurement, as well as being

at a higher centre-of-mass energy, benefits from a significantly higher and more precisely

determined integrated luminosity, and from stable trigger conditions. Futhermore, an

improved Monte Carlo simulation of the detector and an improved modelling of electron

bremsstrahlung are available. The determination is performed in the same kinematic

region as the LHCb measurement of Z → µ+µ− [3], namely 60 < M(Z) < 120 GeV and

2.0 < η < 4.5 and pT > 20 GeV for the leptons.

Section 2 gives a brief description of the detector, triggers and software, after which

section 3 describes the event selection and the analysis procedure, and section 4 explains

the techniques used for determining the main uncertainties in the measurement. The results

are presented in section 5 followed by a brief summary in section 6.

2 Detector and simulation

The LHCb detector [1, 6] is a single-arm forward spectrometer designed for the study

of particles containing b or c quarks. The detector includes a high-precision tracking

system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a

large-area silicon-strip detector located upstream of a dipole magnet with a bending power

of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes, placed

downstream of the magnet. The tracking system provides a measurement of momentum, p,

with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV.

The minimum distance of a track to a primary vertex, the impact parameter, is measured

with a resolution of (15 + 29/pT)µm, where pT is in GeV. Different types of charged

hadrons are distinguished using information from two ring-imaging Cherenkov detectors.

Photon, electron and hadron candidates are identified by a calorimeter system consisting

of scintillating-pad (SPD) and preshower (PRS) detectors, an electromagnetic calorimeter

(ECAL) and a hadronic calorimeter (HCAL). Muons are identified by a system composed

of alternating layers of iron and multiwire proportional chambers.

2Natural units with ~ = c = 1 are used throughout, so that mass and momentum are measured in units

of energy.
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The trigger consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

Events are first required to pass the hardware trigger for electrons, which selects events

having an electromagnetic cluster of high transverse energy geometrically associated with

signals in the PRS and SPD detectors. This high-pT single-electron trigger is then refined

by the software trigger. Global event cuts on the numbers of hits in several detectors, such

as the SPD, are applied in order to prevent high-multiplicity events from dominating the

processing time.

Simulated event samples of Z→ e+e− with M(e+e−) > 40 GeV are used in the analysis.

Simulated samples of Z→ τ+τ−, tt, W+W− and W±Z are used to assess possible background

contributions. In the simulation, pp collisions are generated using Pythia 8.1 [7, 8] with a

specific LHCb configuration [9]. The interaction of the generated particles with the detector

and its response are implemented using the Geant4 toolkit [10, 11] as described in ref. [12].

3 Data analysis

The reconstructed particles used as the basis of the analysis satisfy basic track quality

requirements. The following criteria are applied in order to refine the sample of candidates

for analysis:

• either the electron or the positron candidate should satisfy a single-electron trigger at

all stages of the trigger;

• the reconstructed electron and positron candidates should have pseudorapidity and

transverse momentum satisfying 2.0 < η < 4.5 and pT > 20 GeV respectively. The

reconstructed e+e− invariant mass should be greater than 40 GeV;

• to ensure good track quality, the electron and positron candidates should have momenta

measured with estimated fractional uncertainty smaller than 10%;

• in order to identify the particles as electron candidates, both are required to show

associated energy deposition in the calorimeters characteristic of high-energy electrons,

namely EECAL/p > 0.1, EHCAL/p < 0.05 and EPRS > 50 MeV where EECAL, EHCAL

and EPRS denote the energies recorded in the electromagnetic calorimeter, hadronic

calorimeter and preshower detector respectively;

• if more than one e+e− pair satisfies the above criteria in an event (which occurs in

approximately 0.7% of cases), one is selected at random.

Applying these selection requirements on data, 65 552 Z → e+e− candidates are obtained.

Most backgrounds are removed by subtracting a sample of same-sign e±e± candidates. The

validity of this procedure is assessed in section 4. Applying identical selection criteria, 4595

same-sign candidates are found.

The cross-section is determined using the following expression:

σ =
N(e+e−)−N(e±e±)−Nbg

ε ·
∫
Ldt

· fMZ , (3.1)
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where N(e+e−) is the number of signal candidates selected in data, N(e±e±) is the number of

same-sign candidates, Nbg is the expected background not covered by same-sign candidates

(predominantly Z→ τ+τ−) taken from simulation and
∫
Ldt is the integrated luminosity.

The event detection efficiency, ε, is evaluated using a combination of data and simulation

as explained below, and refers to events for which the true electrons satisfy 2.0 < η < 4.5,

pT > 20 GeV and 60 < M(e+e−) < 120 GeV. The factor fMZ (determined from simulation)

corrects for the inclusion in the data sample of Z→ e+e− candidates that pass the event

selection even though their true mass lies outside the range 60 < M(e+e−) < 120 GeV. The

correction procedure is applied for 17 bins in Z rapidity in the range 2.00 < yZ < 4.25.3

The analysis is also performed for 15 bins in φ∗. The choice of binning takes account of the

available sample size and the resolutions achieved on yZ and φ∗. The luminosity is obtained

with an overall uncertainty of 1.2% [13].

The efficiency of the event selection is factorised into several components,

ε = εtrack · εkin · εPID · εGEC · εtrig . (3.2)

The efficiencies are determined such that the efficiency for each stage of the analysis is

estimated for events that pass the preceding stages. Thus, εtrack is the efficiency associated

with the reconstruction of both electrons as tracks satisfying the quality requirements and

εkin gives the efficiency that both these reconstructed electron tracks satisfy the kinematic

acceptance requirements on pT and η. Similarly, εPID is the efficiency for identification

of the tracks as electrons, εGEC is the estimated efficiency of the global event cuts for

these events and εtrig is the trigger efficiency. The determination of these contributions to

the efficiency is performed separately in each bin of yZ or of φ∗. The contributions that

the terms in the efficiency make to the systematic uncertainty on the measurement are

summarised in section 4.

The tracking efficiency, εtrack, gives the probability that, in events in which the electrons

satisfy 2.0 < η < 4.5, pT > 20 GeV and 60 < M(e+e−) < 120 GeV at the particle level (i.e.

based on their true momenta, as known in simulated events), both of them correspond

to reconstructed tracks satisfying the track quality requirements. In order to characterise

accurately the dependence of the efficiency on yZ and φ∗, the efficiency is taken from

simulation. A consistency check using data allows a systematic uncertainty to be assigned

as described in section 4. The efficiency shows a significant dependence on yZ, but almost

no variation with φ∗.

The kinematic efficiency, εkin, accounts for the possibility that a Z → e+e− decay

in which the electron momenta at particle level satisfy the kinematic requirements on

pT and η may not do so for the reconstructed momenta, even though the tracks are

reconstructed and satisfy the track quality requirements. This is a sizeable correction

because of bremsstrahlung. The efficiency is determined using simulated events, with data

used to assess the systematic uncertainty as described in section 4. In contrast to the

earlier analysis [4], the particle-level electron momentum used here is the momentum before

3Although tracks can be reconstructed at larger rapidities, the efficiency for electron identification vanishes

just above yZ = 4.25 because of the inner edge of the calorimeter acceptance, so that no candidate event at

higher rapidity survives in either data or simulation.
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final-state radiation (FSR), so that the kinematic efficiency also includes the effect of FSR

as implemented in Pythia 8.1, and an additional correction is no longer applied.

The particle identification efficiency, εPID, accounts for the possibility that a signal

event passing all track finding and kinematic requirements fails the electron identification

requirements, either because the track falls outside the calorimeter acceptance, or because

the requirements on calorimeter energies are not satisfied. The overall efficiency is taken from

simulation in order to model accurately a significant dependence on yZ. This dependence is

a consequence of the geometrical acceptance and is assumed to be modelled reliably. The

efficiency of the calorimeter energy requirements is validated using data as described in

section 4, leading to a systematic uncertainty.

The only global event cut that has any significant effect on the Z → e+e− channel is

a requirement in the electron triggers that the number of hits in the SPD be less than

600. In order to assess the consequent loss of events, use is made of Z → µ+µ− events

that satisfy the dimuon trigger, for which the number of SPD hits, NSPD, is required to be

less than 900. The distribution of NSPD in dielectron events should be the same as that in

dimuon events apart from the contribution from the leptons. In the region NSPD < 600 it

is observed that the distribution for Z→ e+e− is consistent with that for Z→ µ+µ− with

an upward shift of 10± 5 hits associated with showering of the electron and positron. This

shift is confirmed in simulation. Accordingly, we use the fraction of Z → µ+µ− dimuon

triggers in the range 590 ≤ NSPD < 900 to estimate the loss of dielectron events in the range

600 ≤ NSPD < 910. The small fraction of dimuon events having NSPD ≥ 900 is estimated

to be 0.7% by extrapolation using an empirical fit to the distribution. The efficiency shows

a weak dependence on Z rapidity and φ∗.

The trigger efficiencies for events passing the selection cuts are determined from data

using a “tag-and-probe” method. The principle is to use events in which the electron

satisfies the trigger to determine the efficiency for the positron to satisfy the trigger and

vice versa.

The values of the various correction factors, averaged over all values of yZ, are sum-

marised in table 1. The uncorrelated components of the uncertainties are generally related to

the statistical uncertainty associated with each efficiency. These can be sizeable in individual

bins, but become small when their effect on the integrated cross-section is considered. The

correlated components are taken to be fully correlated between bins, and therefore have

roughly the same effect on individual bins and on the integrated cross-section. The principal

systematic uncertainties are discussed in greater detail in section 4. The overall efficiency is

shown as a function of yZ and φ∗ in figure 1.

4 Systematic uncertainties

The tracking efficiency is evaluated using simulation and checked using data. The principle

is to search for events where a track appears to be missing, so that the signature of a

Z becomes a high-pT electron track accompanied by a high-energy ECAL cluster with

no associated track. An efficiency is determined by comparison with the corresponding

number of events in which two tracks are reconstructed. To reduce background, more
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Figure 1. Overall detection efficiency, ε, determined from a combination of data and simulation as

described in the text, shown as a function of (left) yZ and (right) φ∗.

Fractional uncertainty

Average value Uncorrelated Correlated

εtrack 0.912 0.001 0.010

εkin 0.507 0.002 0.006

εPID 0.838 0.001 0.007

εGEC 0.916 — 0.006

εtrig 0.892 0.001 —

ε 0.319 0.002 0.016

fMZ 0.969 0.001 —

Background estimation — — 0.004∫
Ldt / pb−1 1976 — 0.012

Table 1. Efficiencies and other factors used for the cross-section determination (see eq. (3.1))

averaged over the experimental acceptance by integrating over yZ. The fractional uncertainties on

the overall factors are also given, separated into components that are assumed to be correlated and

uncorrelated between bins of the differential distributions.

stringent particle identification requirements are imposed on the tag electron, and isolation

requirements are imposed on both the electron and the ECAL cluster. This cannot be

regarded as a direct measurement of the efficiency of the main analysis selection because

more stringent requirements are employed. Instead, the same procedure is applied to the

simulated event sample. The ratio between the two, 0.990± 0.004, is taken as a correction

to εtrack obtained from simulation, with the full size of the correction taken as a systematic

uncertainty, ±0.010, which is assumed to be fully correlated between bins of the differential

distributions.

The kinematic efficiency is also evaluated from simulation. Accurate simulation of the de-

tector material is necessary in order to model correctly energy losses through bremsstrahlung,

and any inaccuracy would lead to a scaling of the measured momenta. This is tested by

examining the modelling of the pT distributions by simulation, particularly in the neigh-

bourhood of the 20 GeV threshold. Figure 2 shows the distribution of min(pT(e+), pT(e−))

– 6 –
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Figure 2. Comparison between data and simulation for the distribution of min(pT(e+), pT(e−)),

used in the assessment of uncertainties in εkin. The data are shown as points with error bars, the

background obtained from same-sign data is shown in red (dark shading), to which the expectation

from Z→e+e− simulation is added in yellow (light shading). The simulated distribution is normalised

to the background-subtracted data. The τ+τ− background is also included (green), though barely

visible. The dashed line indicates the threshold applied in the event selection. The small plot at the

top shows the pulls (i.e. deviations divided by statistical uncertainties) between the data and the

expectation.

for data compared with simulation. In order to quantify the uncertainty in εkin, the pT
values in data are scaled by a global factor α to represent the effect of an uncertainty in

the detector material. The χ2 between data and simulation is examined as α is varied. The

resulting uncertainty in α translates into a relative uncertainty in εkin of 0.6% (or 1.2% for

yZ > 3.75), which is taken to be a systematic uncertainty fully correlated between bins.

The contribution to εPID resulting from the calorimeter acceptance is purely geometrical

and is assumed to be modelled reliably in simulation. To assess the reliability of simulation

for the calorimeter energy requirements, events are selected in which one electron is tagged

using the standard criteria, while a second probe track is found that satisfies all the

requirements apart from that on the energy recorded in one of the calorimeters. By

examining the distributions of calorimeter energy in the neighbourhood of the threshold

applied, an estimate of any correction needed and its uncertainty is made. The test is

repeated for each part of the calorimeter in turn. As a result of these studies, a systematic

uncertainty of 0.7% on εPID is assigned, independent of yZ and φ∗, and treated as fully

correlated between bins.

The statistical uncertainty in the determination of εGEC is taken as part of the systematic

uncertainties. The uncertainty in the 10 ± 5 NSPD offset leads to an additional systematic

uncertainty of 0.4% overall, while an uncertainty of 0.2% is assigned based on comparing

various extrapolation techniques. The value of εGEC is determined as a function of yZ and φ∗.

The statistical uncertainty on the determination of εtrig is treated as a systematic uncertainty.

– 7 –
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The principal background to the selected Z→ e+e− sample is expected to arise from

failures of particle identification, typically where one or two high-pT hadrons interact early

and exhibit a shower profile in the calorimeters similar to electrons. Such backgrounds are

addressed by the subtraction of the same-sign Z → e±e± candidates. To check whether

this procedure is reliable, event samples are studied in which one electron is tagged using

the standard requirements, while the second electron satisfies the same criteria except that

the requirement on HCAL energy is not satisfied, suggesting that the probe is likely to

be a hadron. The numbers of same-sign and opposite-sign pairs satisfying these criteria

agree within 5.5%. Treating this as an uncertainty on the background corresponds to an

uncertainty of 0.4% in the signal yield, which is taken as the systematic uncertainty on the

cross-section. There is no significant variation with yZ or φ∗, so the uncertainty is taken to

be the same in all bins and fully correlated between bins.

Physics backgrounds that could give correlated pairs of genuine electron and positron

are not necessarily removed by the same-sign subtraction. Production of heavy quark

pairs, cc or bb, followed by semileptonic decay could mimic the signal. This contribution

is expected to be small, and is found to be negligible using studies of the distribution of

the vertex-fit χ2 for the candidates in data and simulation. The decay Z → τ+τ− provides

a background if both τ -leptons decay to electrons. After the selection, the background

from this source is estimated to be 0.15% of the signal using simulated samples, and the

prediction is subtracted in each bin of yZ and φ∗ as indicated in eq. (3.1) with its statistical

uncertainty included in the statistical error. The background arising from production of

pairs of gauge bosons, such as W+W− or W±Z, or of tt pairs, is neglected, being well below

the 0.1% level, based on expectations from simulation.

5 Results

The measured differential cross-sections as functions of yZ and φ∗ are tabulated in ta-

bles 2 and 3. The uncertainties in the bins of these distributions are significantly correlated

because the luminosity uncertainty and some of the systematic uncertainties are assumed

to be common between bins. The correlation matrices between bins of the distributions are

presented in tables 4 and 5 of the appendix.

The results are given as Born-level cross-sections, which do not include the effects

of final-state radiation. Tables 2 and 3 also include the factors fFSR that permit the

measurements to be converted to the particle level after FSR. These are determined using

the true momenta of the electrons before and after the generation of FSR in the simulation.

The overall cross-section, obtained by integration of the rapidity distribution, is

σ(pp→ Z→ e+e−) = 93.81± 0.41(stat)± 1.48(syst)± 1.14(lumi) pb ,

where the first uncertainty is statistical, the second includes all experimental systematic

effects apart from the contribution from the luminosity, which forms the third uncertainty.

When combining the experimental systematic uncertainties, those associated with εtrig, and

those parts of εtrack, εkin and εPID arising from the size of the Monte Carlo sample, are treated

– 8 –
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yZ dσ/dyZ [pb] fFSR
2.000–2.125 8.27± 0.37± 0.21± 0.14± 0.10 0.953± 0.003

2.125–2.250 26.17± 0.61± 0.32± 0.43± 0.32 0.955± 0.002

2.250–2.375 40.29± 0.72± 0.36± 0.62± 0.49 0.959± 0.001

2.375–2.500 52.16± 0.80± 0.39± 0.81± 0.64 0.960± 0.001

2.500–2.625 61.92± 0.86± 0.40± 1.01± 0.77 0.958± 0.001

2.625–2.750 72.32± 0.93± 0.45± 1.10± 0.88 0.958± 0.001

2.750–2.875 76.29± 0.98± 0.47± 1.16± 0.93 0.956± 0.001

2.875–3.000 77.67± 0.99± 0.48± 1.18± 0.95 0.952± 0.001

3.000–3.125 77.72± 1.03± 0.51± 1.18± 0.95 0.952± 0.001

3.125–3.250 69.58± 1.02± 0.50± 1.06± 0.85 0.949± 0.001

3.250–3.375 62.03± 1.01± 0.51± 0.96± 0.76 0.950± 0.001

3.375–3.500 46.26± 0.92± 0.46± 0.71± 0.56 0.949± 0.001

3.500–3.625 33.49± 0.84± 0.41± 0.53± 0.41 0.947± 0.002

3.625–3.750 22.81± 0.74± 0.37± 0.36± 0.28 0.951± 0.002

3.750–3.875 13.56± 0.64± 0.33± 0.28± 0.17 0.946± 0.002

3.875–4.000 6.28± 0.57± 0.28± 0.13± 0.08 0.939± 0.004

4.000–4.250 1.85± 0.33± 0.16± 0.04± 0.02 0.928± 0.005

Table 2. Differential cross-section for Z → e+e− as a function of Z-boson rapidity. The first

error is statistical, the second the uncorrelated experimental systematic, the third the correlated

experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are

at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, fFSR,

by which the results should be multiplied in order to give the cross-sections after FSR.

as uncorrelated between bins and therefore combined quadratically; other contributions are

treated as fully correlated, as is the luminosity uncertainty, and combined linearly.

The measured cross-section is compared in figure 3 with next-to-next-to-leading order

(NNLO; O(αs
2)) QCD predictions, based on Fewz version 3.1.b2 [14] using five different

PDF sets, MSTW08 [15], CTEQ10 [16], ABM12 [17], NNPDF23 [18] and NNPDF30 [19].

Of these, MSTW08 and CTEQ10 predate the start of LHC data-taking, while ABM12 and

NNPDF have included some LHC measurements in their analyses. The uncertainties in

the predictions include the effect of varying the renormalisation and factorisation scales

by factors of two around the nominal values (set to the Z mass), combined in quadrature

with the PDF uncertainties evaluated at 68% confidence level. All predictions are in good

agreement with the data.

The differential distribution with respect to yZ is presented in figure 4 (left) and

compared with the NNLO calculations based on Fewz, all of which are compatible with

the integrated cross-section, and model the rapidity distribution as well. In comparing

the shapes of the differential cross-sections with theoretical predictions it can be beneficial

to normalise them to the integrated cross-section in the acceptance, since most of the

correlated systematic uncertainties in the data cancel. This is useful when comparing with

– 9 –
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φ∗ dσ/dφ∗ [pb] fFSR
0.00–0.01 996± 13 ± 7 ± 15 ± 12 0.954± 0.001

0.01–0.02 933± 13 ± 7 ± 14 ± 11 0.955± 0.001

0.02–0.03 851± 12 ± 6 ± 13 ± 10 0.954± 0.001

0.03–0.05 664± 8 ± 4 ± 10 ± 8 0.954± 0.001

0.05–0.07 505± 7 ± 3 ± 7 ± 6 0.953± 0.001

0.07–0.10 346± 5 ± 2 ± 5 ± 4 0.952± 0.001

0.10–0.15 221.5± 2.9 ± 1.4 ± 3.4 ± 2.7 0.953± 0.001

0.15–0.20 126.9± 2.2 ± 1.1 ± 2.0 ± 1.6 0.952± 0.001

0.20–0.30 65.8± 1.1 ± 0.5 ± 1.0 ± 0.8 0.949± 0.001

0.30–0.40 32.2± 0.8 ± 0.4 ± 0.5 ± 0.4 0.951± 0.002

0.40–0.60 13.86± 0.36 ± 0.17 ± 0.22 ± 0.17 0.951± 0.002

0.60–0.80 5.63± 0.23 ± 0.11 ± 0.09 ± 0.07 0.955± 0.003

0.80–1.20 1.64± 0.09 ± 0.04 ± 0.03 ± 0.02 0.957± 0.003

1.20–2.00 0.334± 0.026± 0.013± 0.006± 0.004 0.957± 0.005

2.00–4.00 0.031± 0.006± 0.002± 0.001± 0.001 0.966± 0.007

Table 3. Differential cross-section for Z→ e+e− as a function of φ∗. The first error is statistical, the

second the uncorrelated experimental systematic, the third the correlated experimental systematic

and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e.

before FSR. The rightmost column gives values of the additional factor, fFSR, by which the results

should be multiplied in order to give the cross-sections after FSR.

) [pb]-e+ e→ Z→(ppσ
70 75 80 85 90 95 100 105 110

-e+ e→8 TeV Z 

Data (stat.)

Data (tot.)

NNLO/MSTW08

NNLO/CTEQ10

NNLO/NNPDF23

NNLO/NNPDF30

NNLO/ABM12

LHCb

Figure 3. Measured cross-section for Z → e+e− shown as the shaded band, with the inner

(orange) band indicating the statistical error and the outer (yellow) band the total uncertainty.

For comparison, the NNLO predictions of Fewz are shown using five different sets of PDFs. The

uncertainties on these predictions include the PDF uncertainties and the variation of the factorisation

and normalisation scales, as well as the errors arising from numerical integration.

models based on LO or NLO calculations, which may predict the integrated cross-section

well. The normalised differential distribution with respect to yZ is presented in figure 4

(right) and compared with calculations that partially take account of higher-order effects. A
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Figure 4. (left) Differential cross-section dσ/dyZ and (right) normalised differential cross-section

(1/σ)dσ/dyZ as a function of yZ. The measured data are shown as the shaded bands, with the inner

(orange) bands indicating the statistical error and the outer (yellow) bands the total uncertainty.

For comparison, the NNLO predictions of Fewz using five different sets of PDFs are shown on the

left-hand plot. The same data are compared with leading log calculations in the right-hand plot. To

aid clarity, small horizontal displacements are applied to some of the predictions.

QCD calculation that takes multiple soft gluon emissions into account through resummation

is provided by ResBos [20, 21].4 Alternatively, Powheg [22, 23] provides a framework

whereby a NLO (O(αs)) calculation can be interfaced to a parton shower model such

as Pythia, which can approximate higher-order effects. The parton shower model of

Pythia 8.1 [7, 8] is also compared with the data. All approaches reproduce the main

features of the rapidity distribution.

Studies at 7 TeV [4] showed that the NNLO calculations based on Fewz fail to model

the φ∗ distribution. It is expected that the φ∗ distribution, like that of pT, is significantly

affected by multiple soft gluon emissions, which are not sufficiently accounted for in fixed-

order calculations. The present data exhibit the same behaviour, and this comparison is

not shown. The normalised distribution with respect to φ∗ is therefore presented in figure 5

(left) and compared with the ResBos, Powheg and Pythia 8.1 calculations. These all

model the data reasonably well, especially at lower φ∗ where differences are typically up to

the 10% level, while larger discrepancies are seen for φ∗ > 1. To show this more clearly,

the ratios between the calculations that include higher orders and the data for the φ∗

distribution are also shown in figure 5 (right). The data tend to fall between the different

models, indicating no clear preference for any of them.

6 Summary

A measurement of the cross-section for Z-boson production in the forward region of pp

collisions at 8 TeV centre-of-mass energy is presented. The measurement, using an integrated

4The P branch of ResBos is used with grids for LHC at
√
s = 8 TeV based on CTEQ6.6.
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Figure 5. (left) Normalised differential cross-section (1/σ)dσ/dφ∗ as a function of φ∗. The measured

data are shown as the shaded bands, with the inner (orange) bands indicating the statistical error

and the outer (yellow) bands the total uncertainty. For comparison, the predictions of the leading-log

calculations described in the text are shown. (right) The same data and predictions normalised to

the measurement in data, so that the measurements are shown as the shaded bands at unity. To aid

clarity, small horizontal displacements are applied to some of the predictions.

luminosity of 2.0 fb−1 recorded using the LHCb detector, is based on the Z→ e+e− decay.

The acceptance is defined by the requirements 2.0 < η < 4.5 and pT > 20 GeV for the leptons

while their invariant mass is required to lie in the range 60–120 GeV. The cross-section is

determined to be

σ(pp→ Z→ e+e−) = 93.81± 0.41(stat)± 1.48(syst)± 1.14(lumi) pb ,

where the first uncertainty is statistical and the second reflects all systematic uncertainties

apart from that associated with the luminosity, which is given as the third uncertainty.

Differential cross-sections are also presented as functions of the Z-boson rapidity, and the

angular variable φ∗. The rapidity distribution is well modelled by NNLO calculations, and is

compared with several recent sets of parton distribution functions. A reasonable description

of the φ∗ distribution requires the use of calculations that implement approximations of

higher orders, either through resummation or using parton shower techniques.
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A Correlation matrices

Bin
index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1.00
2 0.23 1.00
3 0.26 0.43 1.00
4 0.22 0.36 0.41 1.00
5 0.30 0.49 0.56 0.47 1.00
6 0.30 0.50 0.56 0.47 0.64 1.00
7 0.30 0.50 0.57 0.47 0.65 0.65 1.00
8 0.30 0.50 0.57 0.47 0.65 0.65 0.65 1.00
9 0.30 0.49 0.56 0.47 0.64 0.64 0.65 0.64 1.00
10 0.28 0.47 0.54 0.45 0.61 0.62 0.62 0.62 0.61 1.00
11 0.27 0.45 0.51 0.43 0.58 0.59 0.59 0.59 0.58 0.56 1.00
12 0.25 0.41 0.46 0.39 0.53 0.53 0.54 0.54 0.53 0.51 0.49 1.00
13 0.22 0.36 0.41 0.34 0.47 0.47 0.47 0.47 0.47 0.45 0.43 0.39 1.00
14 0.18 0.30 0.34 0.28 0.39 0.39 0.39 0.39 0.39 0.37 0.35 0.32 0.28 1.00
15 0.15 0.26 0.29 0.24 0.33 0.33 0.33 0.33 0.33 0.32 0.30 0.27 0.24 0.20 1.00
16 0.09 0.14 0.16 0.14 0.18 0.19 0.19 0.19 0.18 0.18 0.17 0.15 0.13 0.11 0.10 1.00
17 0.04 0.07 0.08 0.07 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.05 0.03 1.00

Table 4. Correlation matrix between bins of yZ. The bin numbering follows the same sequence as

table 2.

Bin index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00
2 0.63 1.00
3 0.62 0.61 1.00
4 0.82 0.80 0.79 1.00
5 0.64 0.63 0.62 0.82 1.00
6 0.64 0.63 0.62 0.82 0.64 1.00
7 0.65 0.64 0.63 0.83 0.65 0.65 1.00
8 0.58 0.57 0.56 0.74 0.58 0.58 0.59 1.00
9 0.58 0.58 0.57 0.75 0.59 0.59 0.59 0.53 1.00
10 0.48 0.48 0.47 0.62 0.49 0.49 0.49 0.44 0.44 1.00
11 0.46 0.46 0.45 0.59 0.47 0.47 0.47 0.42 0.43 0.35 1.00
12 0.35 0.34 0.34 0.44 0.35 0.35 0.35 0.31 0.32 0.26 0.25 1.00
13 0.30 0.30 0.30 0.39 0.31 0.31 0.31 0.28 0.28 0.23 0.22 0.16 1.00
14 0.22 0.22 0.21 0.28 0.22 0.22 0.22 0.20 0.20 0.17 0.16 0.12 0.10 1.00
15 0.10 0.10 0.10 0.13 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.05 0.04 1.00

Table 5. Correlation matrix between bins of φ∗. The bin numbering follows the same sequence as

table 3.
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a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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d Università di Bologna, Bologna, Italy
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