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Abstract

Stem taper data are usually hierarchical (several measurements per tree, and several trees
per plot), making application of a multilevel mixed-effects modelling approach essential.
However, correlation between trees in the same plot/stand has often been ignored in previ-
ous studies. Fitting and calibration of a variable-exponent stem taper function were con-
ducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.)
stands in NW Spain. In the fitting step, the tree level explained much more variability than
the plot level, and therefore calibration at plot level was omitted. Several stem heights were
evaluated for measurement of the additional diameter needed for calibration at tree level.
Calibration with an additional diameter measured at between 40 and 60% of total tree height
showed the greatestimprovement in volume and diameter predictions. If additional diame-
ter measurement is not available, the fixed-effects model fitted by the ordinary least squares
technique should be used. Finally, we also evaluated how the expansion of parameters with
random effects affects the stem taper prediction, as we consider this a key question when
applying the mixed-effects modelling approach to taper equations. The results showed that
correlation between random effects should be taken into account when assessing the influ-
ence of random effects in stem taper prediction.

Introduction

Maritime pine (Pinus pinaster Ait.) is the most common forest species in Spain (15%), where it
currently yields 27% of the annual timber volume harvested [1]. Timber produced by this spe-
cies is usually destined for sawing, pulp and wood-based panels, depending on the log dimen-
sions [2]. Maritime pine is well-represented in the region of Asturias (NW Spain), where it
occupies more than 22,000 ha (almost 5% of the forest area) [3].
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Accurate volume predictions to any merchantable limit have always been a matter of inter-
est to forest managers. Several methods can be used to estimate merchantable volume, although
the most common is integration of a taper function along the bole (e.g. [4-6]). According to
[7], together with total and merchantable volume, taper functions can also provide forest man-
agers with estimates of the following: (i) diameter at any point along the stem, (ii) merchant-
able height to any top diameter, and (iii) individual log volumes of any length at any height
from the ground.

Taper functions are usually classified as single, segmented and variable-exponent ([8, 9],

p- 12). Although many taper functions have been reported in the forestry literature over the
past few decades, there seems to be general agreement that none of them performs particularly
well across multiple species (e.g. [10]). Nevertheless, variable-exponent models usually provide
the most accurate predictions [11-13]. These models consist of a continuous function for
describing the shape of the bole by using a changing exponent to describe the lower (neiloid),
mid (paraboloid) and upper (conic) forms of the stem.

When fitting taper functions, the structure of the dataset is usually grouped, i.e. longitudinal
measurements within the same tree (diameters along the stem) are grouped into an upper hier-
archy at plot level (several trees per plot). As a consequence, within-tree observations are likely
to be correlated, which implies that the significance of parameter estimates obtained by the
ordinary least squares (OLS) technique is not reliable ([14], p. 288). Mixed-effects models
allow the autocorrelation to be at least partly accounted for, by the inclusion of random effects
([9], pp- 36-41). This approach also enables the variability between trees within the same plot
and the variability between plots (i.e. two grouping factors) to be accounted for. This can be
useful for calibrating (also known as localizing) the model for a specific subject if at least one
additional measurement from this subject is available [15]. To our knowledge, multilevel
mixed-effects models have been applied in several studies within the forestry modelling frame-
work [16-19], although they have not previously been considered for nonlinear stem taper
functions. This represents an important advance in relation to other studies based on the appli-
cation of the mixed-effects modelling approach to nonlinear stem taper functions (e.g. [13, 15,
20]), in which the correlation between trees of the same plot has been ignored. The approach
also enables researchers to determine how the random variation in stem shape is split into por-
tions attributable to different hierarchical levels (plot and tree in this case, [17]).

In mixed-effects taper modelling, it is essential to understand how the expansion of parame-
ters with random effects affects stem taper prediction. [12] evaluated how the stem taper varies
with individual variations in the values of several parameters of the taper function. Neverthe-
less, this approach (op. cit.) may be not reliable when more than one parameter is expanded
with random effects, as it does not take into account correlation between parameters. To our
knowledge, this correlation has not been previously considered in assessing the sensitivity of
the stem taper to changes in model parameters.

The objectives of the present study were as follows: (i) to fit a stem taper function for Pinus
pinaster Ait. in Asturias by using a multilevel mixed-effects modelling approach; (ii) to evaluate
the proportion of variability explained at plot and tree levels; (iii) to select the best combination
of parameters to expand with random effects; (iv) to recommend the best stem location to mea-
sure an additional diameter for calibrating the mixed-effects model; and (v) to assess the sensi-
tivity of stem taper prediction to parameter variations.

Materials and Methods

The data used in this study were obtained from a network of 73 research plots established in
2007 in pure even-aged maritime pine stands. The plots were installed in forests privately
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Table 1. Data summary.

Variable Fitting (294 trees) Evaluation (126 trees)
Mean Min Max Std. dev. Mean Min Max Std. dev.
No. sections 14 7 20 3 14 7 24 3
d 235 7.15 56.9 10.2 234 6.50 52.4 10.1
h 13.9 4.58 27.6 5.46 141 3.77 29.5 5.82
hst 0.08 0.03 0.40 0.05 0.09 0.03 0.67 0.06
v 0.38 0.01 2.67 0.45 0.39 0.01 2.39 0.48

d, diameter at breast height (cm); h, total tree height (m); hs;, stump height (m); v, total outside-bark stem volume (m?®).

doi:10.1371/journal.pone.0143521.t001

owned by local communities but managed by the regional government of Asturias, which was
the institution that allowed the plot establishment through the technicians of the Forest Service.
They covered the distribution area of this species in Asturias, comprising the existing range of
ages, stand densities and site qualities. Taper data were measured in six trees (two dominant,
two intermediate, and two suppressed) located close to each plot (except in one plot where only
two trees were felled). Diameter at breast height (d, cm) was measured to the nearest 0.1 cm.
After felling each tree, total bole length was measured to the nearest 0.01 m to calculate the total
tree height (4, m). The stem was subsequently cut into logs of 0.3 to 2.5 m length. Diameter over
bark (d;, cm) was measured twice, to the nearest 0.1 cm, in each crosscut section, with the sec-
ond measurement made at right angles to the first. The average diameter was then calculated for
each section. The height of each section from ground level (h;, m) was also recorded, to the near-
est 0.01 m. Log volumes were calculated as conical frustums, while the top section was treated as
a cone. These values were used to obtain the total outside-bark stem volume (v, m>).

Visual inspection of each stem taper and of a scatter plot of relative diameter (d;/d) against
relative height (h;/h) was used to detect possible outliers. Four trees with abnormal stem
taper and extreme data points (caused by large knots or abiotic damage in the stem) were
removed from the data set. Subsequently, all plots with fewer than six trees were removed to
yield the same number of trees per plot. A total of 5,744 bole sections from 420 trees of 70
plots were finally used for the analysis (S1 Dataset). This data set was then randomly divided
by plot: 70% for model fitting and the remaining 30% for evaluation. The summary statistics
for both fitting and evaluation data sets are presented in Table 1. Fig 1 shows a scatter plot of
relative diameter (d;/d) against relative height (h;/h) of the final data used, for both fitting
and evaluation data sets.

Taper function

The variable-exponent model proposed by [7] (Eq 1) was selected for analysis because it per-
formed best in describing the stem taper of maritime pine in the nearby region of Galicia [11].
Moreover, a number of successful applications of this function involving different species and
stem tapers have been reported (e.g. [8, 21, 22]). The expression of this model is as follows:

d = aoda]ha2x(b1q4+b2(1/exp(d/h))+h3x“'1+b4(1/d)+b5hw+hﬁx) (1)

- w 13 _ _
where x = —1 - (1.3/}1)(1/3), w=1-g ", q = h;/h, and ap—a, and b,—bg are parameters.
Some authors (e.g. [12, 23]) have stated that taper functions should be fitted for d? rather
than d; because the former provides less biased estimates of total or merchantable volumes.

Nevertheless, we considered d; as the dependent variable because estimation of #; is a key step
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Fig 1. Relative diameter against relative height of fitting and evaluation data sets.

doi:10.1371/journal.pone.0143521.g001

in classifying stem portions by top diameter limits and log lengths according to the require-
ments of different industrial destinations (peeling, sawing, pulp wood, etc.). Because the model
of [7] has no generalized inverse, the total volumes were computed by numerical integration,
using the integrate function of R [24].

Mixed-effects modelling

The parameter vector of mixed-effects models is allowed to vary between subjects, considering
a fixed part (common to the population, fixed-effects parameters, hereafter fixed parameters)
and a random component (specific for each subject, i.e. random effects). The random effects
are assumed to follow a multivariate normal distribution with mean zero and a positive-defi-
nite variance-covariance matrix D. A more detailed explanation of mixed-effects modelling
can be found in [15, 25, 26], the last two within a taper modelling framework.

A key question in mixed-effects modelling is the definition of which parameters should be
considered as fixed and which as mixed (composed of fixed parameters and random effects)
([25], p. 282). Three possible approaches can be used to deal with this task: (i) fitting each indi-
vidual separately without random effects and selecting the most variable parameters to be
expanded with random effects [27], (ii) assessing how the stem taper varies with individual var-
iations in the values of several parameters of the taper function [12], and (iii) evaluating several
combinations of parameters to be expanded with random effects. The former presents two
problems: (a) individual fitting was not possible in this case as there were not enough observa-
tions per tree (average of 14 observations) to obtain significant parameter estimates (Eq 1 has 9
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parameters), and (b) high variability of parameters across individuals may not be related to
high variability in stem shape prediction, as parameters enter the function in a nonlinear fash-
ion. Concerning the second approach, we demonstrate below that this may not be a good solu-
tion in some cases. Therefore, in the present study we used the third approach by considering
all possible expansion combinations of one and two parameters (i.e. 9 candidate models with
one parameter expanded plus 36 candidate models with two parameters expanded), which
yielded 45 candidate mixed-effects models.

As can be inferred from the data description, the data set has a hierarchical structure, with
three levels: each plot contains six trees belonging to three sociological classes, and each tree
includes several diameter measurements along the stem. Preliminary analysis (results not
shown) did not show any differences between the stem taper of different sociological classes,
and therefore these were not included in the model as dummy variables. We therefore consid-
ered a two-level mixed-effects model, which is able to distinguish among variability between
plots and variability between trees within the same plot. The plot level has not been considered
in other previous studies (e.g. [13, 15, 20, 28]), and the authors have thus assumed that the stem
shape of trees from the same plot are not correlated, which does not seem reasonable [16, 29].

The error term of a mixed-effects model is assumed to follow a multivariate normal distribu-
tion with mean zero and a positive-definite variance-covariance matrix (R;). Because the data
used consisted of repeated measurements along tree stems, correlations between residuals for the
same tree are expected. When mixed-effects modelling did not completely account for this auto-
correlation, we modelled the error term with a continuous autoregressive structure (CAR(1)),
because the within-tree observations were not equally spaced. Apart from the autocorrelation, the
residuals are assumed to be homoscedastic (i.e. independent from predictions and covariates).

Application of mixed-effects modelling involves three steps [30]: (i) estimating model
parameters, (ii) predicting random effects, and (iii) making subject-specific (SS) predictions.
The first step corresponds to the fitting phase, while the second and third are known as calibra-
tion and SS prediction respectively.

Fitting mixed-effects models

We fitted a nonlinear model linearized by a first-order Taylor series expansion around the ran-
dom effects ([25], p. 312). Two expansion methods are available: (i) the first-order (FO)
approximation of [31] and (ii) the first-order conditional expectation (FOCE) approximation
of [32], in which random effects are set to the expected value of zero or to the current estimated
best linear unbiased predictor (EBLUP) respectively. The FOCE method provides slightly bet-
ter results than the FO method, although it fails more often to reach convergence [33]. Within
the forestry modelling, [30, 34] found that models fitted by the FO method may yield biologi-
cally unreasonable results when making SS predictions, which was not observed with the
FOCE method; we therefore used the latter approach in the present study.

Two fitting procedures can be used [25, 35, 36]: maximum likelihood (ML) and restricted max-
imum likelihood (REML). The former was used to compare the models by goodness-of-fit statis-
tics, given that it provides asymptotic efficient estimates, whereas the latter was used to obtain the
final parameter estimates, as it yields unbiased estimates of variance components ([37], p. 746).

Model fitting was accomplished with the n1me function of the n1me package [38] of R sta-
tistical software [24].

Calibration and subject-specific prediction

The mixed-effects modelling framework enables localization of the taper function to a new tree
in a new plot with at least one additional diameter measurement. This process is known as
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calibration and involves prediction of random effects. Note that the calibration of a two-level
mixed-effects model provides plot- and tree-level random effects, which can then be added to
localize the function and yield SS predictions. According to the recommendations of [30], we
used the FOCE method in the calibration and the SS prediction steps, to be consistent with the
expansion method used in the fitting step. Numerous studies have mixed FO and FOCE meth-
ods (e.g. [20, 27, 39]): they used the former to predict random effects and the latter to make SS
predictions, which may compromise the results obtained [30, 34]. For the FOCE method, the

random effects for a plot (b,) and their corresponding trees (Bi].) are aggregated in b and calcu-
lated as follows [36]:

6 = f)Z;(er)Z: + lfi’z‘)il[yi _f(xia ﬁ76) + Z,B} (2)
where
l;il
Bin,
b, D, 0 0 Z, Z, 0 0
0 D, 0 Z, 0 Z, 0
b=| |:D= s Z, =
bilnr
o 0 0 D, Z, 0 0 Z,
Binil
Vi
Zijll Zij12 T Ziﬂn,
yilnij
Zile Zij22 U th?n,
Zi=| . Y%
yinll
ijn;;l Zij?nr T Zijn,jn,

in;n;;
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M, 0 .- 0
0 M, 0

Ri = 6-2gMi; M, =
0 0o --- M.

in;

where f{-) is a nonlinear function (the taper function); B is the vector of estimates of fixed
parameters (B); i index stands for the plot number (i: 1, . . ., m); j index represents the tree
number within plot i (j: 1, .. ., n;); k index represents the number of additional measurement of

tree j (k: 1, ..., n;); n, is the number of parameters to expand with random effects; b,, — b in,

(b,)and b, — b

D ,and f)tj (]A)t1 =D o == f)mi) are the estimates of variance-covariance matrices of
. of (xijk7 B,b)

plot- and tree-level random effects respectively; Z;, = 0

of f with respect to the random effect b, (it represents the random effect of the r-parameter

expanded, the same for plot and tree level); Xiji is the predictor vector of observation k of tree j;

(Bij) are the estimates of plot- and tree-level random effects respectively;

ijny

35 is the partial derivative

Yijk is the additional measurement k of tree j within plot R, is an estimate of the error matrix;
6 is the estimate of the error variance; g is a variance function (1 if the residuals are homosce-
dastic); and M;; is an n;; x n;; matrix, which equals an identity matrix for non-correlated
within-tree observations and to a CAR(1)-structured matrix if within-tree correlation exists.
Note that the partial derivatives of Z; are equivalent to the partial derivatives with respect to
the fixed parameters, because b enters linearly in the parameter vector. Taking into account

that b appears on both sides of Eq 2, the calibration process must be solved iteratively [32].

After obtaining b, the function can be localized at plot level, or at tree level, by adding respec-
tively plot-level or plot- and tree-level random effects to the corresponding fixed parameters.

Eq 2 explains a general case of taper function calibration based on the hierarchical structure
of the data, allowing several trees to be used per plot and several additional measurements to be
made per tree to estimate the random effects. To assess whether trees from the same plot should
be used together to estimate the plot-level random effect in calibration, we evaluated the vari-
ability explained by the plot and tree levels. Additionally, we only considered one additional
diameter measurement per tree for calibration, because the improvement achieved by including
more measurements does not usually compensate the field sampling effort required [15, 26, 40].

All heights along the stem where crosscut sections were measured in the field were consid-
ered in assessing the best stem location for the additional diameter measurement. The calibra-
tion procedure was implemented in R ([24], see S1 Appendix).

Assessment of model performance

In addition to mixed-effects modelling, two fixed-effects models were fitted from Eq 1 by OLS
(hereafter referred to as FMOLS) and by generalized least squares (GLS; hereafter referred to as
FMGLS), which enables the error variance to be modelled for both heteroscedasticity and auto-
correlation. The n1s and the gnls functions, the latter from the n1me package [38] of R [24],
were used for this purpose.

Akaike’s information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC)
were used to compare the two fixed-effects models and the 45 candidate mixed-effects models.
For the latter, these statistics were obtained by assuming non-correlated within-tree residuals,
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although the autoregressive error structure was then included when necessary, because inclu-
sion of an autocorrelation structure artificially improves the goodness-of-fit statistics (e.g.
[41]). We used the random effects obtained from fitting step of the candidate mixed-effects
models (i.e. those obtained by calibration with all measurements of all trees of all plots) to
obtain SS predictions at plot- and tree-level.

For the calibration step (using the evaluation data set), the candidate mixed-effects models
were localized using one additional diameter measurement per tree taken at different calibra-
tion heights. SS predictions of diameter outside bark (d;) and total stem volume (v) were subse-
quently obtained. These predictions were compared with those yielded by the fixed-effects
models (FMOLS and FMGLS). We also considered the predictions of the mixed-effects models:
(i) using only the fixed parameters, known as mean (M) response; and (ii) computing mean
predictions of the mixed-effects model over the distribution of random effects, known as popu-
lation-averaged (PA) response (e.g. [12, 42]).

The following statistics were used to compare the predictive performance of the models:

i M

Z Z(yijk _)A/ijk) (3)

i=1 j=1 k=1

n—p

RMSE =

‘?:1005 4
e% 5 (4)

where RMSE is the root mean square error; y; and y; are the observed and predicted values
of the variable considered, respectively; # is the number of observations; p is the number of
parameters; €% is the percentage mean prediction error; € is the mean prediction error,

ni

m ij

obtained as Z Z Z(yijk — J)/n; and y is the mean of the observed values of the depen-
i=1 j=1 k=1

dent variable considered.

Influence of random effects in stem taper

One objective of this study was to analyse the appropriateness of the strategy proposed by [12]
for evaluating the variation in stem taper with the variation in parameter values. This type of
analysis was used for assessing which part of the stem curve is affected by each parameter and
for considering a parameter expansion combination in the mixed-effects model to account for
variations in specific parts of the stem. These authors (op. cit.) evaluated how one parameter
varied at a time, and therefore they did not take into account the correlation between random
effects when more than one parameter was expanded. Moreover, they based the analyses on
arbitrary parameter variations relative to fixed-effects model estimates.

In the present study, we selected the best mixed-effects model with two parameters
expanded with random effects and the two mixed-effects models in which the previous param-
eters were expanded separately. The former enables consideration of the combined variation in
parameter values, as it considers correlation between random effects, whereas the latter two are
useful for evaluation of the individual variation in parameter values.

The estimates of the distribution of random effects obtained in the fitting step were used to
obtain several quantiles of parameters and to simulate the stem taper variation over the mean
response (M) of each model. This approach also allowed us to mimic the real variation in
parameters in terms of magnitude, which constitutes a new procedure for understanding how
the stem shape prediction varies with the inclusion of random effects.
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Results

When fitting mixed-effects models, 43 of the 45 candidate models reached convergence. Of
these 43 models, 13 were excluded from further analysis because the fixed part of at least one
parameter expanded with random effects was not significant at the 95% confidence level. Of
the remaining 30 candidate models, in 14 of them at least one fixed parameter was non-signifi-
cant at the specified level; the models were subsequently refitted by excluding these parameters.
A CAR(1) error structure was required to account for autocorrelation in 21 of these 30 candi-
date models. The remaining 9 models were combinations of random effects in ay, a;, or a,,
together with b,, bs, or b,.

Heteroscedasticity was observed and accounted for with a variance function depending on
the power of d (g = d°). Fig 2 shows standardized residuals of diameter outside bark (d;) against

predicted values ((3 ;) and other covariates of stem taper function (d and k) for a candidate
mixed-effects model (a; and b; expanded with random effects), without (g = 1) and with the
variance function. The observed pattern of increase in residual variance with the value of the
dependent variable predictions and independent variables (Fig 2, first row) disappeared after
including the variance function (Fig 2, second row).

o>
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- 4 i .

§ s
(2]
©
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®
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Fig 2. Standardized residuals of diameter outside bark against predicted values (left), diameter at breast height (middle) and total tree height
(right), for a candidate mixed-effects model (a; and b; expanded with random effects), without (g = 1, top row) and with variance function (g = d°,
bottom row). The black dots and vertical lines represent the means and confidence intervals of standardized residuals calculated for 10 intervals in which
abscissa values were divided.

doi:10.1371/journal.pone.0143521.9002
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Table 2. AIC, BIC and RMSE (in diameter outside bark —d;, cm—, for mean, plot-level, and tree-level predictions) values for the fixed-effects models
(fitted by OLS and GLS, first and second row, respectively) and for the best mixed-effects model of each group in the fitting step (p is the number

of fixed parameters).

Name Random
FMOLS None
FMGLS None

MM1 bs, be
MM2 a1, bg
MM3 aq, bs

doi:10.1371/journal.pone.0143521.1002

P

© 00w N © ©

AIC BIC RMSE,,

Mean SS plot level SS tree level
13042 13105 1.235 - -
11476 11552 1.242 - -
10097 10191 1.285 1.127 0.7552
10756 10856 1.323 1.186 0.8793
10790 10897 1.276 1.207 0.8272

All candidate mixed-effects models in which one parameter was expanded with random
effects performed worse than the models in which two parameters were expanded. The former
were therefore not considered for further analysis. Three groups of mixed-effects models were
subsequently defined, depending on which parameters included random effects and whether
the CAR(1) structure was needed to model autocorrelation: (MM1) variable-exponent ran-
dom-effects (all of the models within this group needed CAR(1)), (MM2) random effects both
inside and outside the variable-exponent and including CAR(1), (MM3) random effects both
inside and outside the variable-exponent without including CAR(1).

Table 2 shows the AIC and BIC values for the fixed-effects models (FMOLS and FMGLS)
and for the best candidate mixed-effects models of each group in the fitting step. Moreover, the
values of RMSE in d; prediction were obtained for mean (FMOLS, FMGLS, and the M response
of MM1-3) and SS responses for both plot and tree levels. The AIC and BIC values indicated
that all of the candidate mixed-effects models (MM1-MM3) performed better than both the
OLS and GLS fitting procedures. The RMSE values indicated that FMOLS slightly outper-
formed FMGLS and both performed better than M response of the three candidate mixed-
effects models.

The inclusion of the plot-level random effects in the mixed-effects models overcame the
OLS response from 2 to 9%, while the inclusion of both plot- and tree-level random effects
increased the accuracy by 33 to 39% relative to the OLS response. Therefore, we considered
that calibration at plot level with several trees could be omitted, as the maximum predictive
ability with the plot level alone is much lower than that of the tree level (both plot- and tree-
level random effects). Thus, plot- and tree-level random effects were estimated for each addi-
tional stem diameter per tree in the evaluation data set and were used together to obtain SS
predictions.

Table 3 shows the RMSE and percentage mean prediction error in predicted d; and v, using
fixed-effects models and the best candidate mixed-effects model from each group with the eval-
uation data set. In general, computing mean predictions from the mixed-effects models over
the distribution of random effects (PA response) was more accurate than using the fixed part
of mixed-effects models (M response). In addition, calibrating mixed-effects models increased
their predictive ability relative to M and PA responses, and were also more accurate than fixed-
effects models, except for MM2 and MM3 predictions of d; and v, respectively.

Fig 3 shows the RMSE and percentage mean prediction error values obtained for SS
response in predicting d; and v, disaggregated by relative height classes at which the additional
diameter for calibration was measured (hereafter referred to as calibration relative height clas-
ses). The OLS and GLS responses were included for comparative purposes. The SS predictions
were less accurate and were slightly biased when the additional diameter for calibration was
measured at the top or bottom of the tree. Calibration of the taper function using diameters

PLOS ONE | DOI:10.1371/journal.pone.0143521 December 2, 2015 10/20



el e
@ : PLOS ‘ ONE Multilevel Mixed-Effects Stem Taper Model: Maritime Pine in NW Spain

Table 3. RMSE and percentage mean prediction error (&8, %) in diameter outside bark (d;, cm) and total tree volume (v, m®) predictions for the fixed-
effects models (fitted by OLS and GLS, first and second row, respectively) and for the best mixed-effects model of each group in the fitting step
considering: (i) considering only the fixed parameters (M), (ii) the mean predictions over the distribution of random effects (PA), and (iii) the ran-
dom effects obtained from calibration using one additional diameter measurement per tree (SS).

Variable Name Random RMSE & (%)
M PA SS M PA SS
d; FMOLS None 1.282 = = 0.52 = =
FMGLS None 1.305 = = 0.58 > =
MM1 bs, be 1.352 1.348 1.268 0.91 0.65 0.73
MM2 ay, bg 1.355 1.358 1.316 -0.033 -0.17 0.097
MM3 ay, bs 1.290 1.286 1.219 0.34 0.10 0.18
v FMOLS None 0.05676 - - 1.8 - -
FMGLS None 0.05872 = = 2.2 = =
MM1 bs, be 0.06083 0.05905 0.05624 2.9 2.3 2.0
MM2 ay, be 0.05742 0.05648 0.05175 1.3 0.86 0.79
MM3 ay, bz 0.06557 0.06333 0.05714 2.3 1.6 1.4

doi:10.1371/journal.pone.0143521.1003

SShs, bs SSabs -~ SSab, — OLS --- GLS -—-
0.2 0.4 0.6 0.8
d,‘ v
1.5
1.4 %
131 §
§
12w
S
o
1.1

0.2 0.4 0.6 0.8
Calibration relative height

Fig 3. RMSE (top) and percentage mean prediction error (bottom) in diameter along the stem (d;, left) and total tree volume (v, right) predictions of
the fixed-effects models (fitted by OLS and GLS techniques), and of the three candidate mixed-effects models (SS predictions obtained from
calibration), disaggregated by calibration relative height classes.

doi:10.1371/journal.pone.0143521.9003
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measured between 40 and 60% of the total tree height improved the accuracy and reduced the
bias relative to those yielded by the fixed-effects models (FMOLS and FMGLS). For these cali-
bration relative height classes, the best mixed-effects model was the model that expanded the
parameters a; and b; with random effects (MM3). Within the fixed-effects models, FMOLS
showed better predictive ability than FMGLS.

The RMSE values of model MM3 in SS predictions for d; were subsequently disaggregated
by total tree height and prediction relative height classes (Fig 4). The top graph shows that
RMSE values in d; generally increased with total height of trees. The same pattern was found
for OLS, GLS, M, and PA responses (graphs not shown). In addition, there was a lack of data
for trees from 16 to 20 m in the 0.1 relative height class and for trees from 5 to 8 m in the 0.2
relative height class. We also observed that the lack of trees of 27 m in the evaluation data set
(only one tree) caused an abnormally high RMSE in this range. Fig 4 (bottom) shows RMSE in
d; prediction by relative stem heights depending on the relative height at which the additional
diameter for calibration was taken. As expected, use (for calibration) of diameters measured at
the nearby parts of the stem section for which we predicted diameter yielded the lowest errors
(see squares in the diagonal of Fig 4, bottom). Moreover, the highest RMSE values were
obtained for basal tree log predictions, while the RMSE values were low for predictions at 10
and 100% of the total tree height, regardless of the relative height used for diameter measure-
ment for calibration purposes. This general trend was also observed for OLS, GLS, M, and PA
responses (graphs not shown).

Fig 5 (top two graphs) shows the variations in stem taper for a tree of d =24 cm and h = 14
m, when parameters a; and b; vary separately. The variation in a, affects the middle and bot-
tom parts of the stem, whereas b; variation affects the taper of the whole stem, constraining the
curve to pass through the observed diameter at breast height, as the x value from Eq 1 is 1
when h; equals 1.3 m. The lower graph in Fig 5 was obtained from the joint variation of a; and
bs. In this case, the model is forced to provide the same d; value at approximately one-third of
total tree height (4.7 m), regardless of the random effects values, and the stem curve is mainly
modified in the lower and upper parts of the tree.

Discussion

In the present study, random effects alone accounted for within-tree residual correlation.
Using the same base model, [13] reported that mixed-effects models accounted for only part of
the serial correlation, whereas [26] indicated that the correlation could be completely overcome
by including random effects.

The plot level of the mixed-effects models explained much less variability than the tree level
(see Table 2). Nevertheless, the plot level should not be omitted in the mixed-effects model as
done in other studies (e.g. [13, 15, 20]). Moreover, we applied a likelihood-ratio test to the best
model (a; and b; expanded with random effects) comparing the model in which plot and tree
level were considered in random effects and the model in which plot level was ignored. The for-
mer proved significantly better at a confidence level of 95% (AIC of 10790 against 10807
respectively), therefore indicating that the plot level should be considered. The relative impor-
tance of each level was found to differ in studies dealing with mixed-effects models including
trees and plots as levels. [16] used a linear mixed-effects model to describe the stem taper of
Scots pine in Finland, and found that random variation between plots was initially higher than
the variation between trees in an overall model, but it was lower than that when different
regions were considered in the model. [43] applied multilevel mixed-effects modelling to a lin-
ear stem taper model for stone pine in Spain, and found that the variability between plots was
about nine times greater than the variability between trees within the same plot. [17] and [44]
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Prediction relative height
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Fig 4. RMSE in SS predictions of diameter along the stem (d;, cm) for the mixed-effects model in
which a; and b; were expanded with random effects, disaggregated by calibration relative height
classes, total tree height (h, top), and prediction relative height classes (bottom).

doi:10.1371/journal.pone.0143521.g004
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Fig 5. Variation of the stem taper (stem height against diameter along the stem, h; and d;, respectively)
for a tree with d =24 cm and h = 14 m when varying a, and b; separately (top two) and jointly (bottom)
for several quantiles (Q3_70, Q10-90, and Q_gg), Obtained from the estimates of distribution of random
effects for the corresponding mixed-effects model. The solid line corresponds to the M response.

doi:10.1371/journal.pone.0143521.g005

PLOS ONE | DOI:10.1371/journal.pone.0143521 December 2, 2015 14/20



@’PLOS ‘ ONE

Multilevel Mixed-Effects Stem Taper Model: Maritime Pine in NW Spain

observed that plot level variance was at least twice that of the tree level when applying multi-
level mixed-effects modelling to describe individual tree height growth of Norway spruce and
tree basal area increment of aspen, respectively. More recently, [45] used a multilevel mixed-
effects model to describe diameter growth for China-fir in Southeast China, and indicated that
variability between trees was higher than the variability between plots. These examples together
suggest that the proportion of variability explained by each level depends on the data set used
or on the type of relation to be modelled.

According to Fig 3, the values of RMSE when calibrating with diameters measured at 10-
20% of the total tree height were not expected a priori, as they decreased sharply for a calibra-
tion relative height of 0.1 and increased for 0.2, in this case indicating even lower accuracy than
for the fixed-effects models (FMOLS and FMGLS). A more detailed analysis showed that this
was due to the lack of bole section measurements between 1.3 and 3.3 m, which roughly corre-
sponds to 0.1-0.2 relative height for the experimental data. Taking into account the trend in
RMSE with total tree height (top graph of Fig 4), when the results for all total tree heights were
averaged, the lack of data led to a reduction in RMSE for the 0.1 calibration relative height class
and an increase for the 0.2 class. Therefore, we excluded these stem parts for evaluation of the
best height at which to measure the additional diameter for calibration.

When results from all available calibration heights were averaged, some candidate mixed-
effects models yielded less accurate subject-specific predictions than the fixed-effects models.
The poor performance is explained by the fact that calibration with additional diameters taken
at the top or bottom of the tree decreased the performance of the mixed-effects model (Fig 3).
This result suggests that these parts of the stem are not useful for explaining the variation in
stem taper between plots and trees. In contrast, SS predictions clearly outperformed the predic-
tive ability of fixed-effects models when the diameter for calibration was measured at between
40 and 60% of the total tree height. These height ranges are consistent with those proposed in
some recent studies to improve taper function accuracy: [20] suggested a 60% value both for
loblolly pine in southern United States and radiata pine in New Zealand, while [42] recom-
mended measuring an additional diameter at 50% of total tree height for radiata pine in Spain.
They are also consistent with those used as the starting point in other studies (50% [46, 47]).

Within the 40-60% relative height range, model MM3 (parameters a; and b; expanded with
random effects) showed the best predictive ability. Note that MM3 was not the best model at
the fitting step, which suggests that the smaller number of parameters in models MM1 and
MM2 may have enhanced the corresponding goodness-of-fit statistics (Table 2). The mixed-
effects model in which parameters a, and b; were expanded with random effects was refitted
for the whole data set (both fitting and evaluation data sets) and the parameter estimates are
shown in Table 4.

In this study, the FOCE method was used consistently both in fitting and calibration phases.
This method proved superior to the FO method in studies comparing these methods [30, 34],
although the superiority is lower for models developed on the basis of subjects with few obser-
vations and high variability between subjects [34]. For these cases, other common methods can
be used to estimate the likelihood function ([25], p. 312; [48]): the Laplacian approximation
(e.g. [49]), the adaptative Gaussian quadrature rule (e.g. [50]) or Bayesian estimation (e.g. Mar-
kov Chain Monte Carlo -MCMC- integration, [49]).

Four alternatives were considered in this study for cases where no additional diameter is
available for calibration: OLS and GLS can be used under the fixed-effects modelling approach,
while the M and PA response can be obtained from the mixed-effects modelling approach.
From the point of view of prediction (i.e. based on results from evaluation data set), the fixed-
effects model fitted by OLS yielded the highest degree of accuracy, with negligible bias (see
Table 3), although it violates the assumption of homocedasticity and the independence of
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Table 4. Parameter estimates of the fixed-effects model (fitted by OLS, FMOLS) and the recommended
mixed-effects model (expanding a4 and b; with random effects, MM3), fitted using the whole data set.

Parameter FMOLS MM3 (a4, bs)
ao 0.9891 1.050

ay 0.9633 0.9427

a» 0.04585 0.04734

b 0.3672 0.3619

bs -0.3350 -0.6907

bs 0.5192 0.5847

b 0.8471 1.126

bs 0.01777 0.02271

bs -0.02647 -0.05812
O, 1.263107°
O, 8.273107*
0, a,, b3 -1.104 107°
07 1.205 107*
02y, 3.095107°
0j, a,, b3 3.847107°
o 1.555 6.117 1073
5 0.7405

2
ia;?

g of.b% and g;, ,,, »3, variances and covariance of random effects in parameters a; and b at plot level,

“g-au o—;b! and gj, 4, a3, variances and covariance of random effects in parameters a; and b at tree level;

02, residual variance; 6 parameter of power function. Note that the o2 of the mixed-effects model must be
multiplied by g = d° when applied (variance obtained from ordinary residuals is 0.6866).

doi:10.1371/journal.pone.0143521.t004

within-tree observations. FMGLS accounted for these problems, but decreased the predictive
performance of the model. On the other hand, M and PA responses were generally less accurate
than the fixed-effects models (see Table 3 and Fig 3). These results are consistent with those
reported in other studies (e.g. [42, 51]). Within mixed-effects modelling, PA response yielded
generally better results than the M response, as also been reported in previous studies [12, 42],
confirming that within the nonlinear mixed-effects modelling approach, the M response does
not fully represent PA, because random effects enter in a nonlinear fashion [52]. Based on
these results, and only for prediction purposes, we recommend use of the fixed-effects model
fitted by OLS when no additional diameter for calibration is available. As done for the best can-
didate mixed-effects model, the base model was refitted by OLS for the whole data (Table 4).

Regarding disaggregation of RMSE values for SS response in d; predictions by prediction of
relative heights (Fig 4, bottom), we observed that the improvement in the predictive ability
mainly focuses on the part of the bole around the diameter measurement used for calibration,
which was also pointed out by [40]. This is logical because the stem curve is modified to pass
close to the additional diameter used. The small errors observed for 10 and 100% of total tree
height are explained by the fact that these relative heights correspond to breast height and total
tree height, respectively, and the [7] equation returns zero diameter for ; = i and passes close
to diameter at breast height when h; = 1.3 m.

Basal log appears to be the most difficult-to-predict part of the stem (see Fig 4, bottom),
except when an additional diameter from this part is used for calibration (bottom left square of
Fig 4, bottom). Therefore, if the main interest is accurate prediction of the shape of basal stem

PLOS ONE | DOI:10.1371/journal.pone.0143521 December 2, 2015 16/20



@’PLOS ‘ ONE

Multilevel Mixed-Effects Stem Taper Model: Maritime Pine in NW Spain

log rather than the whole stem, we recommend calibrating the mixed-effects model by measur-
ing the extra diameter at this part of the stem.

Fig 5 demonstrates that the variation in stem taper varies depending on how parameter values
vary. As we hypothesized, stem taper may differ substantially depending on whether or not the
correlation between random effects is taken into account, which can lead to incorrect assessment
of the sensitivity of stem taper to parameter variations. Within this context, we demonstrated
that the approach of varying one parameter at a time, proposed by [12], is only valid when just
one parameter is expanded. In this case, this information could be used to indicate about which
parameter should be expanded with random effects. Otherwise, fitting several candidate mixed-
effects models by expanding different parameters with random effects should be considered.

Conclusions

A nonlinear mixed-effects stem profile model was developed for maritime pine stands in NW
Spain on the basis of the variable-exponent taper function of [7]. This study represents the first
application of multilevel mixed-effects modelling approach to nonlinear stem taper functions.
In the fitting step, tree level accounted for much more variability than the plot level in multi-
level mixed-effects models. Therefore, subject-specific predictions were obtained with the joint
use of plot- and tree-level random effects.

The calibration process generally improved the predictions of the fixed-effects models fitted
by OLS and GLS and those of the fixed part of the mixed-effects models (M response) and the
mean predictions of mixed-effects models over the distribution of random effects (PA
response). Expanding the parameters a; and b; with random effects and taking the additional
stem diameter for calibration from 40 to 60% of the total tree height yielded the most accurate
SS predictions of diameter outside bark along the stem (d;) and total tree volume (v). For prac-
tical application, when no additional diameter is available for calibration, we recommend use
of the fixed-effects model fitted by OLS.

In mixed-effects modelling, when deciding which parameters must be expanded with ran-
dom effects according to the parts of the stem they influence, the option of varying one param-
eter at a time can only be considered when one parameter is expanded with random effects.
Otherwise, correlation between random effects must be taken into account by fitting a mixed-
effects model.

Supporting Information

S1 Appendix. R implementation of the calibration procedure for a multilevel mixed-effects
model based on stem taper function of Kozak (2004).
(ZIP)

S1 Dataset. Stem measurements of 420 trees of Pinus pinaster Ait. from Asturias.
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